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Abstract: We introduce dual-polarization probing codes based on two circularly shifted frequency 

sweep signals enabling perfect channel estimation. This is achieved with a probing length equal to 

at least twice the fiber round-trip propagation time. 

 

1. Introduction 

The emergence of distributed fiber sensing exploiting the optical phase variations [1] has opened the way to a wide 

range of new applications where fibers capture low energy mechanical perturbations over a wide bandwidth. 

Moreover, the recent introduction of a dual polarization probing technique along with a coherent receiver where the 

fiber is jointly probed on two orthogonal polarization axes by means of mutually orthogonal codes derived from Golay 

sequences has shown to enable perfect estimation of the retro-propagated optical field [2]; polarization fading issues 

are solved, leading to substantial sensitivity gain for practical applications. The technique is suitable for sensing 

dedicated fibers as those which include equally spaced Fiber Bragg Gratings (FBGs) to reinforce the backscattered 

optical intensity. However, when probing standard Single Mode Fibers (SMF) deployed in metropolitan optical 

networks and submarine long-haul transmission links, the back-propagated field originates from the sole Rayleigh 

backscatter with reflectors randomly distributed along the fiber. A perfect channel estimation was shown to be also 

achievable with binary codes in this latter case, subject to the use of code lengths greater than 4 times the round-trip 

in the fiber to sense. This constraint reduces the maximal amount of probing codes transmitted per time unit and so 

the maximal achievable mechanical bandwidth by a factor of four compared with the theory. 

     This paper introduces alternative probing codes based on phase generated frequency sweeps leading to perfect 

channel estimation with a maximal bandwidth of half the theoretical limit (instead of one fourth with binary codes). 

Section 2 details the code design and compares it to the former binary approach based on Golay sequences whereas 

Section 3 compares the performance between the two approaches on a simulated SMF optical line thanks to a dual-

polarization model of the Rayleigh backscatter optical field. 

2.  Design of dual-polarization codes 

The probing signal choice in optical sensing has a strong impact on the performance and this is even more crucial in 

phase OTDR systems. Basic light pulse interrogation potentially induces optical non-linearities whereas standard 

sweep excitation on a single polarization axis is subject to polarization fading effects. To circumvent these effects, we 

introduced in [2] a probing technique based on mutually orthogonal binary codes derived from Golay sequences that 

simultaneously modulate two orthogonal polarization states of a continuous light signal. A dual-polarization coherent 

receiver, as usually used in long haul communication systems, captures the backpropagated optical field. This 

polarization-diversity interrogation technique, that can be named as Multiple Input Multiple Output (MIMO) since the 

polarization diversity applies to both the transmitter and the receiver sides, was shown to provide a perfect estimation 

of the probed fiber backscattered optical field. We recall below the theory when probing an SMF modeled with 

randomly distributed scattering points in its core.  

     After correlation of the received signals with the original ones, the backscattered signal vectors 𝑬𝒓 = (
𝑬𝒓𝒙

𝑬𝒓𝒚
) from 

the ith segment are given by 𝑬𝒓𝒊,𝒋
= 𝑯𝑖,𝑗𝑬𝒕 where 𝑬𝒕 = (

𝑬𝒕𝒙

𝑬𝒕𝒚
) are the transmitted symbol-vectors onto each of two 

orthogonal polarization axes x and y, and 𝑯𝑖,𝑗 is the dual-pass impulse response, represented by a 2×2 Jones matrix, 

up to the ith fiber segment at time index j. The absolute optical phase is extracted from each matrix 𝑯𝑖,𝑗 as 𝝋𝑖,𝑗 =

0.5∠ det(𝑯𝑖,𝑗) where det(.) stands for the determinant of 𝑯𝑖,𝑗. The computed absolute phases hold the phase evolution 

from the interrogator up to the ith segment; we obtain the phase evolution per segment by extracting the differential 

phases with the phase from the first reflector set as a reference. 
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The estimation problem is to find Et that allows for a perfect estimate of all matrices 𝑯𝑖,𝑗  from the captured optical 

field. The initial solution proposed in [2] consists in probing the optical line with two mutually orthogonal 

complementary Golay binary pairs {Ga1, Gb1} and {Ga2, Gb2} that jointly modulate the two orthogonal polarization 

states through a Polarization-Division-Multiplexed (PDM) binary phase-shift-keying (BPSK, or 2-PSK) mapping. The 

complementary pairs are designed [3] by recursion from a 4-symbol seed of alphabet {-1,+1} to get the desirable 

length, yielding a probing code duration TGolay =2.(4.2K)/Fsymb, where K is an integer standing for the number of 

recursions and Fsymb is the fixed symbol rate. When continuously probing the fiber with the period TGolay, the line is 

analyzed within a mechanical bandwidth BW=1/(2TGolay), whereas the spatial resolution Sr=cf /(2Fsymb) is adjusted 

through the symbol rate, cf standing for the light velocity in the fiber core. 

     The processing at the reception side consists of four correlations between each of the two received optical fields 

{𝑬𝒓𝒙, 𝑬𝒓𝒚} and each of the two transmitted codes {𝑬𝒕𝒙, 𝑬𝒕𝒚}, leading to periodical estimates of 𝑯𝑖,𝑗. The condition for 

perfect estimation of 𝑯𝑖,𝑗 from Er when the sensed fiber is probed with PDM-BPSK codes was shown [2,4] to be 

TGolay>4Tir, where Tir=2L/cf stands for the time spreading of the channel response for a fiber of length L. Notice that 

selecting TGolay close to the lower limit 4Tir  maximizes the mechanical bandwidth BW of the sensing system. The 

PDM-QPSK alternative mapping developed in [2] does not guarantee a noise-free estimation for the random Rayleigh 

backscattering intensity profile but is better suited for a periodical intensity profile as the one obtained from equally-

spaced high-reflecting FBG arrays.   

     As an alternative to the above-mentioned probing technique, we consider phase-modulated CAZAC (Constant 

Amplitude Zero-Autocorrelation Code) sequences usually used in the telecommunication domain to perform channel 

estimation of a transmission link. The symbols from a class of perfect-squares minimum-phase CAZAC sequences 

[5] are defined as: 

𝑐𝑛 = exp (𝑗
2𝜋

√𝑁
. (𝑚𝑜𝑑(𝑛 − 1, √𝑁) + 1). (⌊

𝑛−1

√𝑁
⌋ + 1))                            (1) 

𝑛 = {1, … , 𝑁} denotes the time index of the symbol with 𝑁 = 4𝑀, M being a non-zero positive integer. The alphabet 

is composed of 2𝑀  complex symbols having the same module and uniformly distributed over the unit circle, leading 

to a 2𝑀-symbol Phase Shift Keying (2𝑀-PSK) constellation. Exploiting the properties of CAZAC sequences, we apply 

a circular shift of N/2 symbols onto the initial N-symbol CAZAC sequence c which leads to a sequence c’. Sending c 

and c’ simultaneously over two polarization states offers mutual orthogonality [5] and achieves perfect channel 

estimation as for the above codes derived from Golay, however with a less-stringent constraint on the length of the 

probing sequence as demonstrated in Fig.1 below. When estimating a fiber Rayleigh backscattering over a round-trip 

duration of Tir, the perfect estimation is now obtained under the condition Tcazac>2Tir. Fig.1 shows a comparison of 

the backscattered optical field intensity estimated when the line is probed with the initial Golay codes in Fig.1(a) and 

with CAZAC ones in Fig.1(b) of the same length (M=7). A dual-polarization Rayleigh backscatter model [6] is used 

to simulate the backpropagated field from an 8.5km length SMF with an attenuation of 0.2dB/km. The line is 

interrogated with the shortest compatible PDM-BPSK Golay code, that is TGolay=4Tir=0.3ms. Fig.1(a) displays one 

period TGolay of the estimated backscattered intensity response. The actual fiber response spreads over the first 

displayed quarter on the left and is immediately followed by a spatial aliasing pattern. The response captured when 

interrogating the simulated optical fiber with the CAZAC sequences of the same length Tcazac=TGolay=4Tir, appears in 

Fig.1(b). As for Fig.1(a), the useful response part appears in the first quarter but the spatial aliasing pattern is now a 

copy of this response, and is concentrated in the center of the 4.Tir-long displayed window. 

 

 
Fig.1: Intensity response highlighting PDM-BPSK(a) and PDM-CAZAC(b) codes respective aliasing patterns 



 
Fig. 2: Energy distribution in the time-frequency planes of PDM-BPSK(a) versus PDM-CAZAC(b) codes 

 

     The blank zone that separates the useful response from the spatial aliasing pattern highlights that we have not 

reached the maximal fiber probing distance with CAZAC codes; the distance can be extended up to a factor of 2 to 

reach the error-free estimation condition Tcazac>2.Tir, whereas selecting TGolay smaller than 4.Tir would lead to a fiber 

response estimation corrupted by aliasing. 

     A key difference between these two MIMO interrogation methods is illustrated through the respective projection 

of the probing sequences in a time versus frequency plane. Fig.2(a) and (b) display, for each of the two compared 

techniques their time-frequency signatures (one per polarization axis). They are obtained from a series of short-term 

spectral decompositions from sequences generated to have a length of N=216 symbols for both methods (M=8 with 

CAZAC). For PDM-BPSK codes, we observe a uniformly distributed energy and it is not possible to distinguish 

between the two sequences used to probe each polarization axis. Conversely, for the PDM-256PSK CAZAC case, the 

time-frequency plane highlights that the 2 CAZAC codes used to probe the optical channel onto both polarization axes 

are nothing but two linear frequency sweeps delayed by half the code period. This observation clarifies how the 

orthogonality property is achieved here: the two polarization axes are probed at each time instant with two distinct 

instantaneous frequencies, separated by fSymb/4.  

     The frequency sweep interrogation, known as OFDR, is a well spread method for channel estimation in various 

application fields. Therefore, it is worth considering an alternative, somehow more intuitive, way to generate a dual-

polarization frequency sweep as that achieved with the CAZAC method. A first amplitude modulated real sweep 

signal is used to linearly and uniformly cover the [0:Fsymb/2] bandwidth over a period Tsweep=Tcazac over the first 

polarization tributary and a second identical signal, but delayed by half the code period, modulates simultaneously the 

second tributary. The associated signature in a time-frequency plane is equivalent to that shown in Fig.2(b). The two 

continuously repeated signals are, for a practical use case example, digitally generated and then converted by two 

Digital to Analog Converters (DACs) prior to modulating the laser light onto the two polarization axes. The next 

section examines the performance of the three above defined methods when probing simulated fibres of various length. 

3.  Simulation results 

The backpropagated optical field from an SMF of length L is simulated using our dual-polarization Rayleigh 

backscatter model [6]. The symbol rate Fsymb and the probing sequence length are fixed to 50Mbaud and 214 symbols 

respectively, yielding a sequence duration T=328µs, identical for the three interrogation methods. The associated 

spatial resolution is Sr=2m (cf ≈2.108m/s in the SMF core) and the Rayleigh backscatter model generates one Jones 

matrix of the backpropagated field for each Sr long segment along the fibre. The set of generated Jones matrices Hi  

(1<i<L/Sr) is used as reference to compare with the estimated matrices yielded by each probing technique. We 

consider two error criteria per segment: the relative error on the matrix determinant and the absolute error on the phase. 

The maximal fiber length to be probed with PDM-BPSK codes to achieve perfect estimation is  𝐿𝐶𝑜𝑑𝑒
𝑀𝑎𝑥 =

1

4

𝑁𝐶𝑜𝑑𝑒.𝑐𝑓

2.𝑓𝑆𝑦𝑚𝑏
, 

which yields 8.2km here, whereas the maximal length 𝐿𝐶𝑎𝑧𝑎𝑐
𝑀𝑎𝑥 =

1

2

𝑁𝐶𝑎𝑧𝑎𝑐.𝑐𝑓

2.𝑓𝑆𝑦𝑚𝑏
 is twice larger when using CAZAC (or 

sweep) sequences with Ncazac=NCodes. Fig.3(a) shows the mean relative error of the estimated Jones matrix determinants 

and Fig.3(b) displays the mean phase error as a function of the fiber length for each of the three considered probing 

methods. We generated the reference Jones matrices for a 20km long SMF and then we simulated the sensing over 

increasing portions of it, successively using the three probing techniques. The mean error is obtained by averaging the 

error per fiber segment up to the distance portion of interest. No laser phase noise is considered here, only an additive 

white Gaussian noise is added at the receiver to simulate thermal noise. Results in Fig.3(a) and (b) highlight the perfect 

channel estimation provided by the initial code interrogation technique up to the 8.2km limit. As expected, the error 

starts increasing beyond 8.2km whereas CAZAC codes keep providing a low estimation error until 16.4km. 



Fig. 3: relative error on the Jones matrix determinant(a), phase error without(b) & with(c) laser phase noise 

 

Beyond this limit, CAZAC estimation error becomes immediately large, which is a consequence of its larger aliasing 

pattern with an energy concentrated over a much shorter zone when compared to the aliasing obtained for BPSK Golay 

codes, as shown in Fig.1. The continuously modulated (amplitude) sweep signal behavior shows an error floor prior 

to reaching the 16.4km limit. Though orthogonality between the two amplitude and frequency modulated sweep 

signals is fulfilled in theory, we conjecture the residual error is induced by the hard transition when switching from 

maximal instantaneous frequency Fsymb/2 down to 0 within one symbol period. Conversely, the 2 frequency sweep 

signals from the CAZAC sequences are derived from phase shifts through a constant amplitude modulation, allowing 

to handle in a softer way the transitions between consecutive codes, with a lesser impact when crossing the 

instantaneous intermediate frequency Fsymb/4 that modulates the orthogonal polarization axis. 

     We complement the study by simulating the imperfection of a laser source since the coherence loss is known to 

have a major impact on the phase estimation in coherent phase OTDR systems [6]. Fig.3(c) shows the estimated phase 

error with a laser linewidth df=10Hz simulated from a Lorentzian model. A comparison with the laser noise free 

performance in Fig.3(b) shows a significant growth of the phase estimation noise floor for both codes and CAZAC 

probing cases. The intrinsic noise floor induced by the dual-polarization sweep case remains beyond this limit.     

Therefore, perfect channel estimation is verified for both binary PDM-BPSK and PDM-CAZAC cases, under their 

respective round-trip probing distance limit, which is twice longer with CAZAC sequences. When probing a fiber 

having the maximal allowed length with PDM-BPSK codes, that is L=8.2km with the above defined set of parameters, 

the maximal achievable bandwidth is 𝐵𝑊𝐶𝑜𝑑𝑒
𝑀𝑎𝑥 =

1

4

𝑐𝑓

4.𝐿
= 3kHz with BPSK whereas CAZAC sequences allow for 

𝐵𝑊𝐶𝑎𝑧𝑎𝑐
𝑀𝑎𝑥 =

1

2

𝑐𝑓

4.𝐿
= 6kHz. 

     It can be noticed from Fig.3c that PDM-BPSK codes look more robust to laser phase noise below this 8.2km limit. 

This might be induced by the better frequency diversity over time provided by these codes, see Fig.2. Let’s also point 

out that, from a practical point of view, PDM-CAZAC sequences require a more complex and accurately tuned 

transmitter to generate a 2M-PSK constellation for large values of M.  

4.  Conclusion 

We demonstrated that a class of CAZAC sequences is an alternative candidate to previously introduced PDM-BPSK 

Golay codes for jointly probing two orthogonal polarization axes in Phase-OTDR. Both methods yield perfect 

estimation of the Rayleigh backscattered response, but the CAZAC-based method achieves it with a mechanical 

bandwidth twice larger than that of the initial codes. A PDM version of the more usual sweep signal probing technique 

(OFDR) was also studied but it was shown to exhibit a severe estimation noise. The existence of alternative sequences 

enabling perfect channel estimation of the round-trip Jones matrices after Rayleigh backscattering with a higher 

mechanical bandwidth than the proposed CAZAC solution remains an open question. 
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