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Abstract: Considering coherent optical transmissions with PDL disturbance, we evaluate how far
from the fundamental limit (based on the outage probability) are conventional coding schemes using
Polarization-Time Codes and/or LDPC codes.

Introduction

In coherent optical communication systems,
linear optical impairments such as Chromatic-
Dispersion (CD) and Polarization-Mode-
Dispersion (PMD), can be fully compensated by
using advanced digital signal processing tools.
Such an efficient compensation is actually possi-
ble since CD and PMD can be viewed as unitary
operator. Contrariwise, Polarization-Dependent-
Loss (PDL) is not unitary and thus remains one
of the major bottlenecks in high-bit-rate optical
communication schemes.

PDL being a time-varying phenomenon, from
an information-theoretic point-of-view, it is con-
venient to analyse it using the outage probabil-
ity (Pout) as done in1. As the outage probabil-
ity only provides the fundamental limit of PDL-
disturbed communication systems, practical cod-
ing schemes mitigating the PDL may offer dif-
ferent performance. Therefore, in this paper, we
evaluate how far from the outage probability is
the Bit-Error-Rate (BER) of the most powerful
existing coding schemes relying on Polarization-
Time Code (PT Code)2 and/or Low-Density-
Parity-Check code (LDPC Code). Notice that,
while the use of similar combinations (Space-
Time Codes + LDPC) is widespread in wireless
communications, its benefit has never been ana-
lyzed to mitigate PDL in fiber optical links.

System Model

In order to completely remove the CD and
PMD impairments, Orthogonal-Frequency-
Division-Multiplexing (OFDM) is considered.
Consequently, we assume a Polarization-
Division-Multiplexing (PDM) scheme disturbed
only by the PDL impairment. Since PDL is not a
frequency-selective phenomenon, the received
signal Y(ω), in the frequency domain, can be
written as follows:

Y(ω) = HPDLX(ω)+N(ω)

where X(ω) is the transmitted signal and N(ω) is
the additive white Gaussian noise (AWGN) with

variance N0 per real dimension3. The 2×2 matrix
HPDL stands for the PDL and can be modeled in
two different ways:

• HPDL = Rα Dγ Rβ where Rθ is a rotation
matrix of angle θ and Dγ is a 2× 2 di-
agonal matrix whose diagonal is equal
to [
√

1− γ,
√

1+ γ] with γ ∈ [0,1]. Several
distribution models have been presented
in the literature to characterize γ or Γ =
10log10((1+ γ)/(1− γ)). Hereafter, we con-
sider one of the most relevant models for
which Γ is a Maxwellian-distributed random
variable4. Furthermore α and β are uni-
formly distributed in [0,2π].

• HPDL =
√

2H̃PDL/‖H̃PDL‖F where
‖ • ‖F is the Frobenius norm and
H̃PDL = ∏

N
`=1(Rα`

Dγ`
Bφ`

) with N the number
of elementary PDL slices and Bφ is a
birefringence diagonal matrix whose diag-
onal is [eiφ ,e−iφ ], α` and φ` are uniformly
distributed in [0,2π], and γ` are independent
but identically distributed according to
a truncated Gaussian-distribution. This
phenomenological model has been partly
presented in1. The normalization operator
has been added in order to keep the same
energy at the receiver side regardless of
the channel realization, as in the above-
mentioned theoretical model. Notice that,
for each HPDL, we define an equivalent γeq.
as follows: the square condition number
of HPDL is identified to (1 + γeq.)/(1− γeq.).
For a given N, we have computed a
lookup table whose input is E[Γeq.] with
Γeq. = 10log10((1 + γeq.)/(1− γeq.)) and the
outputs are the two parameters of the
truncated Gaussian-distribution.

With the phenomenological model, the out-
age probability can only be evaluated numeri-
cally. In contrast, the outage probability under a
Maxwellian model assumption takes the following
closed-form expression1.
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Fig. 1. Communication scheme

Pout =

 2Q
(

TR,ρ
σ

)
+
√

2√
πσ

TR,ρ e
−T 2

R,ρ
2σ2 , if ρ < 2R−1

2

0, elsewhere

where TR,ρ = (20/ log10)artanh(
√

fR,ρ) with fR,ρ =

1− (2R−1−2ρ)/ρ2, ρ being REb/N0, R the spec-
tral efficiency and Eb the bit energy. Finally Q(x)
stands for the Gaussian tail function and σ is de-
fined as in4.

As the outage probabilities only provide funda-
mental limits, we propose to compare them to the
BER offered by the simulated systems generically
described in Fig. 1. We consider a PDM-based
OFDM transmission scheme. The channel trans-
fer matrix HPDL is assumed to be perfectly known
at the receiver side.

At the transmitter side, the bit stream is first
coded through one of the most powerful For-
ward Error Correcting codes, namely, an LDPC
code. Then in order to spread the consecutive bits
in time and polarization, and so to be more ro-
bust to burst error, we insert an interleaver. After-
wards, these interleaved bits are transformed into
symbols (PSK or QAM). In2, it has been shown
that PT coding dramatically improves the perfor-
mance over PDL-disturbed systems. Therefore,
a Polarization-Time code is also carried out. As
PDL is not frequency-selective, the way the PT
codeword is spread out on different subcarriers
does not impact the final performance.

Although PDL is a time-varying phenomenon,
it actually varies slowly compared to the symbol
duration. Therefore we assume the PDL matrix is
invariant over the LDPC codeword length.

At the receiver side, we only consider soft de-
coding. More precisely, the output of each step is
the so-called LLR (Log-Likelihood ratio) instead
of a hard decision, which is only made at the fi-
nal step, i.e. after the LDPC decoding (via the
Sum-Product Algorithm5). The hard decoding ap-
proach has been omitted since its performance is
much poorer than the soft one.

Numerical results

We consider QPSK modulation. The LPDC code
is the Quasi-Cyclic Progressive Edge Growth al-
gorithm with the rate rLDPC = 3/4 designed in6.
The PT code is either the Silver or the Golden,
and thus is full-rate. Since the channel bandwidth
is assumed to be 50GHz (actually, ∼40GHz as ∼
10GHz is dropped for guard interval), an informa-
tion bit rate of at least 100Gb/s is ensured regard-
less of any simulated coding scheme.

In the simulations, we consider various coding
schemes: no code (QPSK only), no LDPC code
(Silver or Golden only), no PT code (LDPC only),
PT (Silver or Golden)+LDPC. Notice that two out-
age probabilities have to be taken into account:
on the one hand, R = 4 bits/s/Hz when no LDPC is
considered; on the other hand, RLDPC = 3 bits/s/Hz
when the considered LDPC is carried out.

In Fig. 2 (resp. Fig. 3), the outage probabili-
ties and BER versus SNR are plotted assuming
the Maxwellian model (resp. the phenomenologi-
cal model). The mean PDL, defined as E[Γ] and
inherently expressed in dB, is set at 3 dB. Firstly,
we observe that Silver Code is slightly better than
the Golden Code for both Maxwellian and Phe-
nomenological models. This confirms a remark
done in2 for other PDL random models. An in-
teresting observation is that the gains offered by
the PT code and the LDPC code are cumulative.
Consequently, to mitigate PDL, both techniques
have to be used and optimized simultaneously.
Finally, given a BER of 10−6, the best simulated
configuration (actually, the Silver Code coupled
with a soft LDPC decoding) leads only to a SNR
loss of 1.5 dB compared to the fundamental limit.
So, when the mean PDL has a reasonable value,
conventional coding scheme is nowadays close
to the fundamental limit.

In Fig. 4 (resp. Fig. 5), we plot the SNR
gap versus the mean PDL for the different cod-
ing schemes when the Maxwellian model (resp.
the phenomenological model) is considered. The
SNR gap associated with a coding scheme is de-
fined as the ratio between the SNR needed to
yield a required BER with this coding scheme and
the SNR needed to have the same value of out-
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Fig. 2. Comparison for Maxwellian model
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Fig. 3. Comparison for phenomenological model
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Fig. 4. SNR Gap for Maxwellian model
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Fig. 5. SNR Gap for phenomenological model

age probability as the required BER. We have
fixed the required BER and outage probability to
10−7. We remark that the LDPC code is greatly
affected by high mean PDL. In contrast, the PT
codes are significantly less sensitive to the PDL
phenomenon. More importantly, the concatena-
tion of PT and LDPC really manages to keep the
SNR gap quite weak even when the mean PDL
is very large. Furthermore, the phenomenolog-
ical model appears to be slightly more severe.
Thus, whatever the value of the mean PDL, it is
still a relevant and challenging task to fill up the
SNR gap since significant improvement (at least
a few dB) can be provided. Consequently, design-
ing good LDPC and PT for mitigating PDL phe-
nomenon remains of great interest.

Conclusion

In presence of PDL, various BERs for differ-
ent code combinations (with/without PT coding,
with/without LDPC) have been numerically eval-
uated and compared to the fundamental limits
given by the outage probability. We have seen
that i) the gains provided by the LDPC and the
PT are cumulative, and ii) the performance of
the LDPC alone are not satisfactory. Finally, we

have shown that designing better new FEC codes
and/or PT codes will at best offer around 1.5dB of
SNR gain when a 3dB mean PDL is considered.
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