
Research Article Vol. 16, No. 4 / April 2024 / Journal of Optical Communications and Networking 481

Machine-learning-based technique to establish
ASE or Kerr impairment dominance in optical
transmission
Isaia Andrenacci,1,2,* Matteo Lonardi,3 Petros Ramantanis,1 Élie Awwad,2

Ekhiñe Irurozki,2 Stephan Clémençon,2 AND Sylvain Almonacil1

1Nokia Bell Labs, 12 Rue Jean Bart, 91300 Massy, France
2Télécom Paris, 19 Pl. Marguerite Perey, 91120 Palaiseau, France
3Nokia Bell Labs, Via Energy Park, 14, 20871 Torri Bianche, Monza and Brianza, Italy
*isaia.andrenacci@nokia.com

Received 26 September 2023; revised 29 January 2024; accepted 29 January 2024; published 18 March 2024

Data extraction from optical networks has increased substantially with the evolution of monitoring and telemetry
methods. Using data analysis and machine learning, this paper aims to derive insights from this data, contribut-
ing to the development of self-optimized optical networks. More particularly, it focuses on predicting the Kerr
and amplified spontaneous emission dominance by examining the fluctuations in the signal-to-noise ratio due
to polarization-dependent loss. Building on previous work, which used the SNR statistic as the input feature of
machine learning, our primary goal is to enhance prediction precision while concurrently decreasing the com-
putational model’s complexity. After refining the selection parameters of the input features, we observed a 70%
reduction in the input feature length with respect to our previous work. The model reached a 98% accuracy rate,
and it was able to successfully classify the regimes in a limited set of unseen experimental instances. © 2024

Optica Publishing Group
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1. INTRODUCTION

In today’s fast-paced world of communication, the need for
cost-effective, high-speed, and reliable connections is ever-
increasing. The traditional approach to deploying a new
optical network leans heavily towards a “set-and-forget” men-
tality. This method involves designing network links with a
focus on worst-case scenarios, often incorporating huge safety
margins to guarantee seamless operation throughout the net-
work’s lifespan. While this cautious approach has historically
served its purpose, it is increasingly being viewed as a subop-
timal use of valuable resources. This is particularly true when
considering the growing demand for higher network capacity
and the need for improved operational efficiency in future
optical networks.

Elastic optical networks (EONs) have recently emerged as
a promising and innovative solution to tackle the challenges
posed by modern communication requirements [1]. EONs
capitalize on the flexibility offered by the new generation of
transponders, enabling intelligent transmission of signals at
higher capacities while seamlessly adapting to diverse traffic
load scenarios and line constraints. This hardware resource
diversification and flexibility brings a significant challenge
to the optical communication control system. However, the
dynamic and efficient management of an optical network

requires an accurate representation of the optical network itself
at all times.

To address this challenge, a solution is to implement a
digital twin (DT) for control management. A DT refers to a
high-fidelity, real-time, digital copy of an entity that closely
mimics its real-world counterpart [2,3]. The aim of the DT is
to construct an optical communication management system
capable of adapting to the time-varying network environment.
This idea is in opposition to the “set-and-forget” approach,
for which worst-case degradations are assumed. This adaption
ability of the DT is made possible by iteratively optimizing
the virtual copy through real-time models. Then, the chosen
optimization strategy is applied to the optical communica-
tion network. The DT may be leveraged to perform various
functions such as hardware reconfigurations, transmission
emulation, or failure prediction. In this work, we focus on the
problem of identifying the type of noise dominating in point-
to-point optical links, i.e., amplified spontaneous emission
(ASE), or nonlinear noise generated by Kerr effects.

The ability to identify whether the system is operating in
the linear or nonlinear regime is crucial for optimizing launch
power and consequently enhancing the signal-to-noise ratio
(SNR). This could be achieved by monitoring the optical
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power of a transmission system. For instance, the longitudi-
nal profile can be typically measured by employing optical
time-domain reflectometers (OTDRs) or methods proposed
in [4–6], thus providing a complete evolution of the optical
power along the link. Nevertheless, the extra hardware or the
additional complexity as sociated with the aforementioned
methods may be prohibitive, while it is also expected to limit
the ability of the DT to adjust in real time.

Artificial intelligence has arisen in recent years to build a
DT for optical networks because it provides low-complexity
real-time models without losing their accuracy. These char-
acteristics are possible thanks to training, which moves the
complexity in an initial phase before using the model. For
instance, in [7], an artificial neural network (ANN)-based
model was introduced to estimate nonlinear noise in live net-
work scenarios. The proposed model demonstrated robust
training in larger parameter spaces, encompassing link and
transmitter parameters, resulting in low prediction errors
across a wide range of configurations investigated. In contrast
to this approach, a novel and monitoring fusion strategy is
initiated to investigate the incorporation of monitored infor-
mation into the model. This approach aims to achieve a more
accurate estimation of performance, enhancing the model’s
ability to reflect real-world scenarios. Building on this concept,
in [8], the authors used an ANN to predict how much Kerr
nonlinear and linear ASE contributes to the SNR. They relied
on measurements of the constellation diagram clouds, the
amplitude noise covariance of the received symbols, and the
number of channels. In a similar approach an ANN is proposed
in [9] to predict the nonlinear SNR using the amplitude noise
covariance of received symbols and network parameters. In
[10], the authors used a long short-term memory network
(LSTM) to predict the nonlinear power and SNR using the
fast Fourier transform of the received signal. In a more recent
study conducted by [11], a novel approach was introduced,
leveraging the statistics of the bit error rate (BER) as input
features using a fast BER histogram method for the estimation
of the probability density function (PDF) of BER samples.
Specifically, the authors employed an ANN to predict the lin-
ear and nonlinear noise-to-signal ratio (NSR) by utilizing the
statistics of the BER, along with additional network parameters
such as the number of channels and spans.

However, all previous proposals require using as input
features various link and transmission parameters, such as sym-
bol rate, link length, and the number of channels and spans,
potentially in addition to performance statistics monitored
at the receiver. Furthermore, all previous methods effectively
perform regression on the exact values of the nonlinear and
linear SNR. In contrast, our approach a) assumes solely the
performance timeseries monitored at the receiver; b) aims to
solve the problem through a less complex classification task
that identifies the operational regime, rather than identify-
ing the optimal power through regression; and c) through a
specific normalization of the SNR PDFs we choose to con-
centrate solely on the shape of the distributions, in contrast
to the actual PDFs. Furthermore, in this research, we harness
the influence of polarization-dependent loss (PDL) within
optical links. PDL is a phenomenon where the attenuation or
loss of light varies depending on its polarization orientation.

Although conventional optical fibers typically exhibit minimal
PDL effects, it is crucial to acknowledge that certain optical
components commonly utilized in terrestrial optical com-
munication systems can introduce notable PDL. Specifically,
devices like wavelength-selective switches (WSSs) integrated in
reconfigurable optical add-drop multiplexers (ROADMs), and
erbium-doped fiber amplifiers (EDFAs) can manifest distinct
interactions with light of different polarization orientations.
The presence of PDL in optical communication systems gen-
erally leads to fluctuations in the SNR of the received optical
signal; it may induce crosstalk between the polarization tribu-
taries and/or cause an unequal loss of signal energy, resulting
in an imbalance in the performance of the two polarization
tributaries. This power imbalance together with the random
state of polarization rotations occurring in the fiber translates
into oscillations of the BER over time [12]. Even though PDL
has a detrimental effect, in this work we propose to leverage
its presence to perform low-cost and low-complexity moni-
toring. Here, we build upon the foundation laid out in [13],
where a machine learning (ML) classifier was introduced for
monitoring the operational regime in optical links (“linear” or
“nonlinear”) using a statistical analysis of the SNR obtained
from the received signal. Specifically, a two-step input fea-
ture preprocessing was applied, involving normalization and
binning of the SNR distribution. This preprocessing empha-
sizes the PDF shape by effectively eliminating dependence on
average SNR values. Hence, it enhances the generalizability
of our technique beyond specific trained configurations. In
[13], a k-nearest neighbors (KNN) algorithm with a fixed set of
hyperparameters was both trained and tested by using a dataset
obtained with the enhanced Gaussian noise (EGN) model,
adapted to include PDL [12]. Extending the findings of [13],
we delve into the exploration of four distinct ML classification
models—KNN, support vector machine (SVM), ANN, and
random forest (RF)—all leveraging the same EGN dataset.
Our approach underscores the efficacy of diverse algorithms
in addressing the problem, highlighting their higher compu-
tational efficiency and greater interpretability compared to the
more common ANN [14]. Finally, we are using the proposed
algorithms trained with the EGN dataset to identify the oper-
ating regimes in the case of limited unseen experimental data
acquired with a different setup.

In Section 2, we review our methodology and data collection
strategy of [13]. Unlike [13], we focused on the different ways
of defining input features. We also present the fine-tuning
of the four ML models under investigation. In Section 3,
we present numerical results obtained from the training and
fine-tuning of four distinct models. These models exhibited
proficiency in recognizing both nonlinear and linear domi-
nance, demonstrating their versatility without relying on
assumptions about the knowledge of link and transmitter
parameters. Our work illustrates that all four models consis-
tently achieve an accuracy rate exceeding 97% in the test phase.
This level of accuracy is comparable to the previous studies,
but noteworthy is our ability to achieve the same accuracy
with a 70% shorter input feature vector, thereby reducing the
complexity of our ML models. Additionally, we conducted
a comprehensive analysis of misclassifications to indicate the
scenarios where our models might fall short. In Section 4, our



Research Article Vol. 16, No. 4 / April 2024 / Journal of Optical Communications and Networking 483

study deviates from prior research by introducing experimental
validation in novel configuration scenarios that differ from the
training datasets. This includes variations in fiber types, modu-
lation formats, symbol rates, and the numbers of channels and
spans. The experimental investigation demonstrates that these
models are robust and effective even over the configurations
that are unseen and not trained for. Finally, in Section 5, we
wrap up our paper with a conclusion.

2. METHODOLOGY, SYSTEM SETUP, AND
MACHINE LEARNING DETAILS

In this section, we first describe the methodology used
to classify the operational regimes. Then, we provide the
details of the emulated system. Finally, we describe the steps
of data-processing and fine-tuning of the considered ML
algorithms.

A. Methodology

For a particular set of point-to-point transmission systems,
we used the EGN model, which incorporates the impact of
the PDL. A large number of SNR samples were generated for
different random states of polarization rotations along the line.
From these SNR samples, we generate the PDFs. We repeated
these steps for different input optical power levels correspond-
ing to system operation in different regimes, spanning from
weakly linear up to highly nonlinear, including the power level
yielding the optimal performance denoted as the nonlinear
threshold (NLT).

Then, we convert each of the aforementioned PDFs into
a vector of input features, which are suitable for use with a
supervised ML classifier, following a normalization procedure,
which will be detailed later. We labeled each input feature
vector according to the system operation regime which is set to
be either “linear” if the power is below the NLT or “nonlinear”
otherwise. Finally, we used these labeled datasets to train and
test four ML algorithms.

B. EGN Simulation Setup for Collecting the SNR
PDFs

In Fig. 1, we present the simulation setup, where the signal
propagation occurred iteratively over spans, each comprising
a standard single-mode fiber (SSMF) and an EDFA with 5 dB

of noise figure. The fiber’s dispersion parameters were set at
16.7 ps/nm/km, and each span had a length of 100 km, an
attenuation of 0.22 dB/km, and a nonlinear parameter of
1.26 W−1 km−1 at 1550 nm. One ROADM was placed after
the transmitter and another one before the receiver, operating
in the add or drop mode, acting as WSSs. Within the trans-
mission line, the ROADMs were operated in bypass mode,
involving two WSS elements, assumed not to add filtering
penalties. We used an EGN model extended to PDL [12], for
the simulation of the SNR fluctuations.

We emulated six distinct scenarios by varying the transceiver
and line setups to evaluate the performance of the proposed
technique under different conditions. The transceiver operated
either at 49 GBd with 50 GHz spacing or at 69 GBd with
75 GHz spacing. In all scenarios, we considered 21 channels
with Gaussian modulation and analyzed the performance of
the central channel.

Along the transmission line, we explored different numbers
and locations of the ROADM, as well as different probabil-
ity distributions for selecting PDL values of the WSSs in the
setup. We investigated two cases for the ROADM location,
depicted as the yellow switch in Fig. 1: first, the regular pattern
where a ROADM was cascaded after a series of three spans, and
second, the random pattern where a ROADM was randomly
inserted at each span with a 30% likelihood. Regarding the
PDL-generation mechanism, two options were considered
for introducing PDL values. The first approach involved
randomly selecting PDL values for each PDL element from
a uniform (U ) distribution ranging between 0.1 and 1 dB.
The second option utilized a chi-square (χ2) distribution with
three degrees of freedom, with a mean of 0.2 dB and a proba-
bility of exceeding 0.8 dB set at 1.05%. For each scenario, we
investigated 20 different random realizations of PDL elements.

To assess the impact of different lightpath lengths, we con-
sidered four options: 12, 15, 18, and 21 spans, as indicated
by the blue switch in Fig. 1. Additionally, we varied the trans-
mitted power Plaunch from −10 to 10 dBm in steps of 0.5 dB.
In total, we collected SNR fluctuations from six different
scenarios, each involving specific parameters related to PDL
generation, ROADM pattern, and symbol rate.

We gathered a total of 1 million SNR samples for each sim-
ulation run. Subsequently, we computed the corresponding
PDFs of the SNR samples for each scenario. Figure 2 shows an
illustrative example of the collected SNR PDFs. Specifically,
we report the SNR PDFs for 49 GBd signals and a ROADM
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Fig. 1. Simulation setups used to collect the SNR samples. At the transmitter, different symbol rates and channel spacings were employed in a
fixed 21-grid with Gaussian modulation. The optical link consists of a repetition of an SSMF+ EDFA span, followed by either a “regular” or “ran-
dom” location of the ROADM (two WSS cascade). PDL elements are independently chosen using chi-squared (χ2) or uniform (U ) distributions.
Specifically, links composed of 12, 15, and 21 spans were investigated.
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Fig. 2. Examples of SNR distributions for optical signals trans-
mitted at 49 GBd through a 21-span link with a regular ROADM
pattern, i.e., a ROADM after every 3 spans. Each line on the plot
represents a distinct PDL sequence realization, while different colors
indicate various power levels ranging from Plaunch =NLT− 2 (linear)
dBm to Plaunch =NLT+ 2 (nonlinear) dBm.

every 3 spans, within a total length of 21 spans. The analysis
considers five different power levels located near the NLT. For
each power, we conducted 20 separate realizations to capture
the variability of the SNR PDFs.

In this study, it is essential to recognize that, while in the
linear regime distributions are Gaussian-like symmetric, SNR
PDFs in the nonlinear regime exhibit asymmetry due to the
fact that NLI-PDL interaction is fundamentally different from
the interaction between ASE and PDL. This phenomenon
has been experimentally observed and numerically validated
in [15], while a theoretical justification and discussion may
be found, e.g., in [12] (Section III). This characteristic holds
considerable importance for the proposed ML classification,
enabling the differentiation between these regimes based solely
on SNR observations.

C. Data Preparation

1. Input Feature Extraction

We proposed a two-step procedure to extract the necessary
input features. Figure 3 depicts a qualitative example of an
asymmetrical nonlinear distribution. The first step, presented
at the top of Fig. 3, involves normalizing the PDF of the SNR.
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Fig. 3. Two-step procedure used to extract input features in [7] at
fixed p lim and N values. The left part represents the normalization of
the SNR distribution, while the right part showcases the second step,
involving cutting and binning at fixed p lim and N values with two dis-
tinct threshold values p lim2 > p lim1.
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Fig. 4. Sketch of the classification problem where the input feature
vector representing SNR distribution is used to predict the two target
classes, i.e., linear and nonlinear regimes.

Normalization in this context refers to rescaling the SNR
PDF values between 0 and 1. The second step, illustrated at
the bottom of Fig. 3, consists of two consecutive processes:
cutting and binning the normalized PDF of the SNR. The
“cut” is executed using a fixed threshold p lim, where only the
data points above p lim are kept, and the “binning” is performed
by dividing the remaining data into a fixed number of bins
N. Hereafter, p lim and N will be referred to as input feature
parameters. Finally, we extracted an N length input feature
[x1, . . . , xN] for each of the collected SNR PDFs.

2. Data Labeling

We have established a classification system comprising two
distinct classes: the “linear regime” for scenarios in which the
launch power (Plaunch) falls below the NLT and the “nonlinear
regime” for all the launch power exceeding this threshold. The
NLT, which signifies the launch power that optimizes the SNR
[16], has been evaluated for each investigated link without con-
sidering PDL. We labeled each input feature vector obtained
in the previous step with these two classes. Figure 4 illustrates
this binary classification problem, with class 1 representing the
linear regime and class 0 representing the nonlinear regime.

At fixed input feature parameters, we generated a labeled
dataset of 20,000 instances, including all six scenarios. Unlike
the approach taken in [13], where a single labeled dataset
was generated with a fixed p lim = 10−3 and N = 100; in this
work, we generated multiple labeled databases by varying the
threshold limit and the number of bins. This approach allows
for a more comprehensive analysis of how varying p lim and N
influences the ML model’s performance.

3. Data Analysis

We examine the effects of the simulation setup parameters,
threshold, and number of bins on the input feature vectors
collected in the previous subsection.

The threshold limit plays a crucial role in shaping the tails
of the SNR distributions, representing rare events such as
extremely high or low SNR values for a fixed configuration
setup. Accurately estimating these tails poses a challenge due
to the limited availability of SNR samples [17]. For a fixed
number of bins, employing higher threshold values provides
a more precise depiction of the SNR distribution; however,
this precision comes at the cost of losing information from
the extreme tails. Conversely, using lower threshold values
considers the noisy estimated values of the PDF but can result
in a reduction in the accuracy of the classification model. To
grasp the idea of this trade-off, consider the qualitative graph at
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Fig. 5. Examples of input feature vectors (normalized SNR PDFs)
for a fixed probability threshold and a bin number, respectively 0.1
and 50. The figure represents different transmitted powers with a
fixed number of spans of 18. For each of these powers, six realizations
are reported with the same color to represent the different scenarios.

the bottom side of Fig. 3. This figure represents an example of
a normalized PDF in the nonlinear case. Two threshold values
p lim1 and p lim2 are compared with the first much smaller than
the second. The resulting two input feature vectors are the
zoomed version of the normalized probability density. Note
that, in the case of a smaller threshold limit, the asymmetric
characteristic of the nonlinear probability density is still visible.
Therefore, a specific threshold value should exist that permits
a more accurate normalized SNR distribution while capturing
the tilting of the nonlinear case.

A higher number of bins allows for a more accurate represen-
tation of the normalized probability density shape. However,
this increases the input feature length, leading to higher com-
putational complexity for the ML algorithms. Hence, there is a
trade-off between accuracy and ML model complexity.

Although we have not applied any supervised model yet,
we can make some observations on the input features, which
will help to gain insight into the forthcoming results. As an
example, consider Fig. 5, where several realizations of the
input features are represented. These realizations are drawn
from the labeled dataset with p lim = 0.1 and N = 50. These
input features are reported for five different powers, respec-
tively, NLT− 7, NLT− 0.5, NLT, NLT+ 0.5, and NLT+ 7.
Meanwhile, the number of spans was kept fixed at 18. This dis-
tance is sufficient to generate high accumulated nonlinearity.
We reported six different realizations with the same color for all
these investigated powers. Each of these realizations represents
one of the six scenarios described above (one out of two symbol
rates, one out of two ROADM location strategies, and one out
of two PDL distributions).

We first note that the six considered scenarios yield very sim-
ilar input feature vectors (normalized SNR PDFs), therefore
advocating for the robustness of the explored method. Second,
we note that the input features near the NLT are very simi-
lar, while the linear and nonlinear regimes have very distinct
shapes.

Given our definition of two regimes in our dataset, it is
worth noting that there is a slight imbalance in the label or
class distribution in our dataset. Approximately 60% of the
instances fall into the linear regime category, while the remain-
ing 40% belong to the nonlinear regime. Despite this minor
disparity, we have opted to utilize accuracy as the primary
performance metric for our ML models, as elaborated in the
following section.

Furthermore, we observed that the constructed labeled
datasets have a uniform distribution of the transmitted power
and span number for both linear and nonlinear cases. This
uniform distribution ensures that the ML model encounters
instances from various power levels and spans with the same
probability during training and testing. This distribution is
beneficial for training the ML models as they learn from all
possible power and span combinations.

D. ML Model Tuning and Performance Evaluation

As a difference from [13], we assessed the classification problem
with four different algorithms and compared their per-
formance. Specifically, we focused on KNN, SVM, ANN,
and RF. We review these four ML models and their used
hyperparameters in Appendix A.

In this subsection, we explain how we evaluate and compare
the performance of each classifier. First, we divided the 20,000
instances into training and test sets for each dataset at a fixed
threshold limit and a bin number. Specifically, we split each
dataset into an 80% for training and tuning and a 20% for
testing.

1. Training: K-Fold Cross-Validation for Model Tuning

The process of evaluating and comparing the performance
of each classifier through cross-validation is essential to tune
hyperparameters and, in this work, the input feature param-
eters of each ML model. In this work, we explore different
hyperparameters reported in Table 1 for tuning the four ML
models.

To begin, we focus on one fixed dataset, but the following
procedures apply to the other datasets as well. The training set
is divided into K multiple subsets or folds to perform K-fold
cross-validation. During cross-validation, K − 1 folds are used
for training, and the remaining one is used for validation. This
process is repeated K times to ensure that every data point is
used for both training and validation. As a result, we obtain
K different values of accuracy, one for each fold. The average
performance over K iterations provides a more reliable estima-
tion of the model’s test performance, and it helps mitigate the
risk of overfitting. Additionally, calculating the standard devi-
ation or other measures of variance from the K accuracy values
indicates the model’s stability and consistency in performance.

To evaluate the classification performance, we use accuracy
as the performance metric. This metric measures the propor-
tion of correctly classified instances out of the total number of
instances. Accuracy is chosen because the class distribution is
relatively balanced, as shown in the previous subsection, and
there is no distinction in terms of importance between the two
classes (nonlinear and linear regimes).
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2. Testing: Misclassifications Analysis

After completing the tuning stage, we proceed with the test
phase and error analysis of the four ML models. Using the
unseen test data, we evaluate the accuracy of the four tuned
ML models. The misclassifications are carefully analyzed to
understand the impact of different simulation parameters, such
as the transmitted power and link length, on the ML models’
performance when errors occur.

3. RESULTS: ML APPLIED TO SIMULATION
DATA

In this section, we present the results of the impact of different
probability limits and the number of bins on the estimated test
accuracy, i.e., cross-validation accuracy. Then, we report the
test accuracy of the four tuned ML models with an analysis of
their misclassifications.

A. Training Results: 10-Fold Cross-Validation for
Model Tuning

1. k-Nearest Neighbors

For KNN we perform a comprehensive grid search, by explor-
ing different hyperparameters such as the number of neighbors
and distance metrics, using various labeled datasets with dis-
tinct input feature parameters. Among the combinations, we
achieved the highest accuracy when employing a threshold
limit of 0.3, using 70 bins for feature representation, setting k
to 1, and utilizing the L1 metric for the KNN model. Upon
analyzing the hyperparameter variations, we observed that
the accuracy values remained relatively stable across different
distance metrics, except for Chebyshev [18], which showed
slightly lower accuracy. Additionally, the choice of the number
of neighbors did not have a substantial impact on the test’s
estimated accuracy, with the optimal performance observed at
k = 1.

Figure 6 illustrates the cross-validation accuracy of the KNN
model as a function of the threshold limit and number of bins.

Table 1. Different Hyperparameters Investigated in
the Four Used ML Models, Where N Is the Input Feature
Length

Hyperparameters Values

KNN Metric L2, L1, cosine,
Hamming,
Chebyshev

K neighbors 1, 3, 5, 7, 9, 11, 13
RF Tree depths 1, 3, 5, 7, no

constraints
Number of trees 100, 200, 500

Percentages for bootstrapping 10%, 40%, 60%,
80%

Feature for splitting sqrt(N), N/2, N
ANN Activation functions Logistic, relu, tanh

Number of neurons 5, 10, 15, 20, 25
Number of hidden layers 1, 2

SVM Radial kernel Gamma 0.1, 1, 10
Polynomial kernel Degree 1, 2, 3, 4, 5, 6

C value 0.01, 0.1, 1, 10, 100

Fig. 6. KNN cross-validation accuracy as a function of threshold
limits used to extract the input feature. The lines represent the accu-
racy for different values of the number of bins.

Each line in the plot corresponds to a different number of
bins used in the analysis. The markers represent the average
accuracy, while the error bars indicate 2 times the standard
deviation of the 10 accuracy values obtained from the cross-
validation technique. The figure shows that the KNN model’s
cross-validation accuracy remains relatively stable across vari-
ous threshold limits, with a slight decline observed after the
probability limit of 0.3, which coincides with the point of
achieving the maximum estimated accuracy.

This behavior confirms the intuitions discussed above about
the threshold limit. A high value of p lim distorts the PDFs,
leading to a lower accuracy. On the contrary, a low threshold
value preserves the PDF shape, thus resulting in a high accu-
racy. Furthermore, the figure shows the result for different bin
values, which reach similar accuracy values for bins above 10.
Therefore, the accuracy is minimally affected by fluctuations
in the number of bins. This observation is supported by the
overlapping error bars for different bin values, suggesting that
the KNN model’s performance is relatively insensitive to the
number of bins used for feature representation.

2. Random Forest

For the RF model, we conducted the same procedure as
with the KNN model to determine the optimum hyperpa-
rameters and input feature parameters. Through 10-fold
cross-validation on all labeled datasets, we found that the RF
model had the best accuracy with a threshold limit of 0.01,
by using 100 bins. Additionally, we found that setting 80%
of the dataset for bootstrapping yielded the best results, and
there were no constraints on the tree depth. For the number of
trees in the ensemble, the optimum value was 500. Moreover,
we fixed the maximum feature for splitting to the square
root of the input feature length, i.e., the number of bins. An
interesting observation was that the tree depth was the only
hyperparameter that had a significant impact on the model’s
performance accuracy. When the tree depth was set to be
unconstrained, it led to an improvement of approximately 2%
in accuracy compared to using a tree depth of 1. This indicates
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Fig. 7. RF cross-validation accuracy as a function of probabil-
ity limits used to extract the input feature. The lines represent the
accuracy for different values of the number of bins.

that allowing the trees to grow deeper slightly improved the
model performance.

With these fixed optimum hyperparameters, we further
investigated the impact of input feature parameters on the
cross-validation accuracy for the RF model, as shown in Fig. 7.
The behavior of accuracy was quite like what was previously
observed with the KNN model. However, this time, we noticed
that the probability limit started to decrease after the threshold
of 0.1, suggesting that the model’s decision-making became
more sensitive to changes in the probability limit within this
range.

Furthermore, the difference in accuracy observed earlier for
the KNN model concerning the number of bins became less
pronounced in the case of the RF model. This indicates that
the RF model’s performance was less affected by variations
in the number of bins used for feature representation compared
to the KNN model.

3. Support Vector Machine

We repeated the cross-validation process for the SVM model
using the hyperparameters specified in Table 1. We performed
this cross-validation for each dataset with different probability
limits and numbers of bins. In the SVM model, we found
that the optimum performance was achieved with a third-
degree polynomial kernel. Additionally, the best values for
the hyperparameters were a C value of 10 and a gamma value
of 0.1.

After determining these fixed optimum hyperparameters, we
illustrate the SVM model’s performances in Fig. 8. The cross-
validation accuracy obtained from the SVM exhibited very
similar behaviors with different input parameters. Like the RF
model, the decreasing trend in accuracy started at probability
limits around 0.1.

Interestingly, this model showed a more significant decrease
in cross-validation accuracy when the number of bins was fixed
at 10, compared to the other models previously investigated.
This implies that the SVM model is more sensitive to a lower
number of bins when it comes to decision-making.

Fig. 8. Cross-validation accuracy as a function of probability lim-
its for the SVM model. The lines represent the accuracy for different
values of the number of bins.

4. Artificial Neural Network

For the last investigation, we conducted a cross-validation
analysis employing a shallow ANN. Various neural network
configurations were explored, encompassing a maximum of
two hidden layers, each having a variable number of neurons,
similar to [11]. The experimentation also encompassed three
different activation functions, as detailed in Table 1.

After subjecting all labeled datasets to a 10-fold cross-
validation process, we determined that the ANN model
exhibited the highest accuracy when employing a thresh-
old limit of 0.0001 and utilizing 70 bins. Using, the neural
network configuration featuring two hidden layers of 10 neu-
rons with the hyperbolic tangent (tanh) activation function
produced the most favorable outcomes.

With the identified optimal hyperparameters, our inves-
tigation extended to examine the impact of input feature
parameters on the cross-validation accuracy for the ANN
model. Figure 9 presents a depiction of the cross-validation
accuracy as a function of different probability limits, following
the same methodology as employed in our analysis of pre-
vious models. Similar to the RF model, the number of bins
utilized does not significantly affect cross-validation accuracy.
Furthermore, similar to all three previous ML models, the
ANN maintains a rather constant accuracy for probability
limits lower than 0.1, nevertheless exhibiting a slightly lower
average cross-validation accuracy overall.

5. Comparison of the Four ML Models

To gain a comprehensive understanding of the maximum
achievable performance of the four different algorithms, we
selected fixed optimum input feature parameters based on the
previous results. We used a violin plot to observe the cross-
validation performance of four ML models. A violin plot
displays the 10-fold accuracy distribution by featuring a white
dot for the median, and a thick gray bar for the interquartile
range. A violin-shaped curve on each side depicts the proba-
bility distribution of the 10 accuracy values obtained from the
cross-validation technique. In Fig. 10 we illustrate with this
violin plot for the four investigated different ML models.
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Fig. 9. Cross-validation accuracy for the ANN model as a function
of probability limits. The lines depict the accuracy for different values
of the number of bins.

Fig. 10. Cross-validation accuracy distributions of four different
algorithms, respectively, KNN, RF, SVM, and ANN.

The RF, KNN, and SVM models display similar perfor-
mances and distributions. In contrast, the ANN model exhibits
a lower median and a distribution with larger tails, reaching a
minimum of 95.5%. Remarkably, the RF model showcases
a distribution tilted toward higher accuracy, with worst-case
scenarios surpassing those of the other models Moreover, the
KNN model stands out with a higher median cross-validation
accuracy. Overall, all the analyzed models achieve a median
cross-validation accuracy above 97%. These findings indi-
cate that the selected models demonstrate a highly promising
average accuracy during the testing phase. Upon closer exami-
nation of Fig. 10, it becomes apparent that the RF model is the
preferred choice, particularly in the worst-case scenario.

To quantitatively assess the complexity of the considered
ML algorithms, we measured their corresponding training
and testing times on a server with 540 Gb of memory using
one CPU Intel Xeon Gold 6338N at 2.20 GHz. Results are
reported in Table 2. Notably, the key takeaway from these
results is that the most resource-intensive training is done by
the RF, which takes about 10 s. On the other hand, testing is
faster for the ANN compared to all other algorithms.

Table 2. Training and Test Time of the Four ML
Models Investigated

Training Time [seconds]
(16,000 instances)

Test Time [seconds]
(4000 instances)

KNN 0.0015± 0.0001 0.369± 0.018
RF 10.33± 0.041 0.062± 0.0002
ANN 1.985± 0.002 0.0012± 0.00001
SVM 1.0314± 0.002 0.0919± 0.0002

B. Testing: Misclassifications Analysis

Our goal is to find an optimum combination of input fea-
ture parameters while considering two constraints. First, we
aimed to reduce the input feature length to decrease the ML
complexity, thus selecting a lower number of bins. According
to the previous analysis, we settled on using 30 bins since it
was shown that higher values did not lead to improved per-
formance. Second, we sought a higher probability limit to
filter out unreliable tails in the data distribution, which repre-
sented improbable SNR values. These tails were particularly
significant when dealing with experimental results since the
experimental data has a less accurate tail estimation, as we will
see in the next section. To achieve this, we chose a probabil-
ity limit before the point of decreasing validation accuracy,
which was 0.1. This allowed us to maintain high estimated test
accuracy while eliminating noisy estimates from the tail of the
distribution.

During the test phase, we evaluated the performance of
all four ML models using 4000 unseen instances. The results
revealed high accuracy for all models, with RF leading the way
at 98.75%, followed by KNN at 98.52%, SVM at 98.17%
and ANN at 97,68%. All the results have been succinctly
summarized in the left column of Table 3.

To gain insights into the cause of misclassifications, we
focused on analyzing the RF model, which achieved the high-
est accuracy. Among the 4000 test instances, we observed 49
misclassifications made by the RF model. Our objective was
to identify the specific scenarios where the model tended to
fail more often. In particular, we closely analyzed the launch
power and the number of spans that caused the majority of
these misclassifications. This analysis aimed to shed light on
the situations in which the RF model might have encountered
challenges and make further improvements to the model’s
performance.

By plotting a histogram of the percentage of misclassifica-
tions as a function of launch powers in Fig. 11, we observed
the majority of misclassifications occurred at a power equal to

Table 3. Accuracy Test for the KNN, RF, SVM, and
ANN Models at Fixed Optimum Input Feature
Parameters

Numerical Test Accuracy
(4000 instances)

Experimental Test Accuracy
(10 instances)

KNN 98.52% (58 misclassifications) 90% (1 misclassification)
RF 98.75% (49 misclassifications) 100% (0 misclassifications)
ANN 97,68% (91 misclassifications) 70% (3 misclassifications)
SVM 98.17% (72 misclassifications) 90% (1 misclassification)
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Fig. 11. Misclassification percentage of the RF model as a
function of different transmitted power positions with respect to
the NLT.

the NLT or near the NLT in the linear regime. In fact, approx-
imately 70% of the misclassifications were attributed to input
powers close to NLT − 0.5, NLT, and NLT − 1. However,
note that misclassifications are generally rare events and their
corresponding histograms (e.g., see NLT + 3 up to NLT + 6)
are not very accurately assessed, and Fig. 11 should be therefore
interpreted qualitatively and not quantitatively for these power
levels.

This analysis indicated that the proposed ML model showed
significant accuracy in identifying high linear or nonlinear
regimes. However, it struggled when it came close to the NLT
in the linear regime. This emphasized the importance of con-
sidering different transmitted power distributions for testing
this ML classification technique in future works.

Furthermore, the misclassifications analysis was extended to
include the KNN, SVM, and ANN algorithms. Interestingly,
the conclusions drawn from the RF analysis also hold true for
the KNN and ANN algorithms. Like the RF model, the KNN
and ANN algorithms have many misclassifications in the linear
regime and around the NLT value. Around 75% of misclassifi-
cations in the KNN model were linked to transmitted powers
near the NLT in the linear regime. Similarly, 66% of misclas-
sifications in the ANN model were associated with this range,
underscoring the impact of transmitted power distribution on
the classifier’s performance. However, it is worth noting that
the SVM algorithm exhibited a different behavior, with a mis-
classification portion occurring in the high nonlinear regime.
The misclassification percentage in this nonlinear regime was
around 20%, indicating that the SVM model struggled to
accurately classify instances with high levels of nonlinearity.

We also investigated how different spans affect the mis-
classification error of ML classifiers. Figure 12 displays the
misclassification percentage of the RF as we varied the number
of spans (12, 15, 18, and 21). Our findings reveal a clear trend:
smaller spans lead to higher error rates, with 46.94% of errors
occurring with the 12-span scenario. This can be attributed to
wider SNR distributions in both regimes, resulting from fewer
accumulated PDL elements along the link. Interestingly, errors

Fig. 12. Test misclassification percentage of the RF model as a
function of different spans.

also seem to increase with larger spans. These consistent trends
in misclassification errors were observed across all studied
classifiers. Hence, we conclude that the PDFs corresponding
to both higher and lower numbers of spans exhibit similarities,
which leads to an error in the classification.

4. RESULTS: ML APPLIED TO EXPERIMENTAL
DATA

In this subsection, we employ the same four tuned ML mod-
els (RF, KNN, SVM, and ANN) to classify the regions with
experimental data. Based on the insights gained from the cross-
validation process, we fixed the number of bins to 30 and set a
probability limit of 0.1, as these parameter values consistently
demonstrated the best performance. Consequently, we utilized
these trained models to test them against unseen experimental
scenarios.

A. Setup, Data, and Learning

In Fig. 13, the presented experimental data is derived from
the testbed outlined in [19]. This configuration involves a
comb of 13 channels operating at a symbol rate of 32.5 GBd
with PDM-QPSK modulation, evenly space by 50 GHz. The
transmitter employed three distinct power levels for experi-
mentation: linear, nonlinear dominant, and at the optimum
power. The comb signal traversed between 10 and 12 recir-
culating loops, where each loop corresponded to a pairing of
an EDFA and 100 km of large effective area fiber (LEAF).
The fiber’s parameters included a chromatic dispersion of
4.3 ps/nm/km, an attenuation of 0.22 dB/km, and a non-
linear coefficient of 1.5 W−1 km−1 at 1550 nm. To emulate
PDL, a polarization scrambler followed by a PDL element was
utilized, calibrated offline with 1 dB of PDL. At the receiver,
processes such as carrier phase recovery and equalization of
linear impairments were executed. The SNR of each polari-
zation tributary was estimated based on the variance of the
constellation clouds. Approximately 1000 SNR samples were
collected at two launch powers: 1) in the linear regime, approx-
imately 4 dB below the NLT, and 2) in the nonlinear regime,
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Fig. 13. Experimental setup for collecting the SNR fluctuations in [20].

Fig. 14. Average per-polarization SNR as a function of different
input powers. The average is carried out across five acquisitions in the
experimental setup without a PDL element.

approximately 4 dB above the NLT. This ensured that in each
case, either ASE or nonlinear dominated the total variance.
In this experiment, we determined the optimal launch power
by conducting five repetitions of the experiment without the
PDL element in the link. This procedure was repeated with
different launch powers, ranging from 5 to 14 dBm in steps of
1 dBm. Figure 14 illustrates the average per-polarization SNR
of these experiments as a function of different power levels.
Hence, the NLT of the experimental setup was identified to
be 10 dBm for both loops investigated. For the first set of 10
spans, we collected SNR sequences for two distinct transmit-
ted power scenarios: linear and nonlinear. In the loop of 12
spans, the SNR sequences were collected for three different
transmitted power scenarios: linear, nonlinear, and at the NLT.
Hence, it was gathered in a total of 5 sets of SNR PDFs for each
polarization, corresponding to a total of 10 instances.

Due to the relatively small sample size, the PDFs of the SNR
appeared noisy; hence we applied interpolation to the PDFs of
the SNR, resulting in smoother representations.

Figure 15 shows the interpolated SNR PDFs for the 12-loop
experiment, showing three cases: linear, nonlinear, and at the
NLT, each with two realizations corresponding to the two
polarizations (x and y).

Observing the interpolated PDFs, we noted that the
nonlinear PDFs exhibited a typical left tilt, while the linear
PDFs followed Gaussian-like shapes, consistent with the

Fig. 15. Examples of experimental SNR PDFs. For a link of 12
spans, each line represents polarization, while different colors indicate
various power levels.

patterns observed in the simulation results while the PDF
corresponding to the NLT was centered around the highest
SNR.

B. Results

We evaluated each model’s performance based on accuracy
and misclassifications. The RF classifier achieved the high-
est accuracy of 100%. On the other hand, both the KNN
and SVM models achieved an accuracy of 90%, with one
misclassification, while the ANN results in 70% with three
misclassifications. Table 3 summarizes the test accuracy
obtained with the numerical and experimental data.

The experimental setup differed from the simulation, but
the ML models showed promising results in predicting unseen
experimental scenarios. It is important to note that 8 out of 10
experimental data were in either the linear or nonlinear regime.
In this region, we demonstrated that the four algorithms
performed a correct classification of these SNR PDFs.

On the contrary, the SVM and KNN models were not able
to correctly classify one of the SNR PDFs corresponding to the
NLT. This finding was identified in the previous section, where
errors were located, especially at transmitted powers in the lin-
ear regime near the NLT.

In conclusion, this section provides valuable insights into
the performance of the ML models using real-world exper-
imental data. The successful validation demonstrates the
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models’ capability to handle unseen real scenarios. However, it
is crucial to highlight that these results are based on a limited
experimental dataset. Therefore, a larger experimental dataset
is needed to accurately validate and confirm these findings.

5. CONCLUSION

This paper presented a comprehensive investigation and exten-
sion of the ML-based solution proposed in [13] to classify
optical communication systems operating in either a linear
or nonlinear regime. The focus of this extension work was on
fine-tuning the input feature parameters, namely, the number
of bins and probability limits, and evaluating the classification
performance of different ML models while considering pos-
sible complexity reductions. Furthermore, we gave a deeper
understanding of the physical background, and we performed
an experimental validation.

To gain a deeper understanding of the problem, we con-
ducted a detailed data analysis, exploring the effects of various
parameters in the simulation setup on the input feature rep-
resenting the SNR distribution. This analysis was crucial
in comprehensively examining misclassification patterns
and understanding the impact of different simulation setup
parameters on the SNR distribution.

We employed four ML models, namely, k-nearest neigh-
bors, random forest, support vector machine, and artificial
neural network, to perform the classification task. Through
an in-depth analysis of the models’ results with respect to the
input feature parameters, we observed that validation accuracy
remained relatively consistent for threshold limits below 0.1
across all four algorithms. Moreover, we found that the number
of bins had minimal impact on validation accuracy once the
value exceeded 10.

In the testing phase with simulation data, we achieved high
accuracy above 97% for all ML models. However, a closer
examination of misclassification errors revealed issues related
to the transmitted power in the linear regime, especially near
the launch power yielding the maximum SNR, as well as the
impact of smaller spans. Recognizing these sources of errors
has yielded valuable insights for enhancing future models and
system performance.

Furthermore, we demonstrated the models’ ability to pre-
dict outcomes in experimental scenarios that were previously
unseen. Notably, the RF model achieved an accuracy of 100%
in these scenarios, highlighting the potential of ML-based
solutions for real-world applications.

In conclusion, our study underlines the significance of care-
ful parameter tuning and data analysis in developing accurate
ML classifiers for optical communication systems. Future work
could explore further refinements to the models, leveraging
the insights gained from this research to enhance classification
performance and broaden the applicability of ML in optical
communication systems with more realistic impairments
including filtering penalties and transponder imperfections.

APPENDIX A: ML MODELS

In this appendix, we briefly review the ML models that played
a pivotal role in our study: KNN, SVM, RF, and ANN.
Moreover, we shed light on hyperparameters, which are

parameters related to these ML models. These parameters are
configured before the training process, influencing how the
ML models operate. Properly tuning these hyperparameters
is essential for optimizing the models to achieve their highest
potential accuracy. For a more in-depth understanding of these
models and their associated hyperparameters, we encourage
you to consult our referenced sources [14,20].

1. k-Nearest Neighbors

KNN is a non-parametric classification algorithm that finds
the k-nearest training instances (neighbors) to a given test
instance in the feature space. It classifies the test instance based
on the majority class among its k-nearest neighbors [14]. In
this work, we varied the following hyperparameters.

• k (integer): the number of nearest neighbors to consider
when making predictions. In binary classification, it is pref-
erable to choose an odd number to avoid ties. Choosing the
correct k value is essential, as smaller values (e.g., k = 1) can
lead to overfitting, while larger (e.g., k = 11) values may result
in underfitting.

• Distance Metric: the measure calculates the similarity
or distance between instances. Depending on the appli-
cation, different distance metrics, such as Euclidean or
Manhattan distance, can significantly influence classification
performances.

2. Random Forest

Random forest is an ensemble learning algorithm that com-
bines multiple decision trees to make predictions [21]. Each
decision tree in the random forest is built using a randomly
selected subset of the training data and features. During pre-
diction, the random forest aggregates the predictions of all the
trees to make a final decision. By combining the predictions
of multiple trees, random forest improves generalization and
reduces the risk of overfitting, which is a common problem of
traditional decision trees. This approach makes it more robust
to noise and outliers in the data. The hyperparameters that we
explore for this ML algorithm are noted below.

• Number of Trees: the number of decision trees T to
include in the random forest. Increasing the number of trees
can improve performance but also increases computational
complexity.

• Percentage of Data for Each Tree: the training data percent-
age for each decision tree. Using smaller percentages introduces
additional randomness and diversity in the forest, helping to
mitigate overfitting.

• Maximum Tree Depth: the maximum depth allowed for
each decision tree. Setting a maximum depth helps prevent
overfitting by limiting the complexity of individual trees.

• Number of Features per Tree (m): the number of features
considered at each split point in a decision tree. Smaller values
increase randomness and diversity among trees, while larger
values may produce more similar trees.

3. Support Vector Machine

SVM is a classification algorithm that finds an optimal hyper-
plane in the feature space to separate different classes [22]. It
utilizes different kernel functions to transform the data into a
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higher-dimensional space where a linear separation is possible.
Then, a set of training instances closest to the decision bound-
ary, known as support vectors, is used to find the hyperplane
for the separation. For this investigation, we used the following
hyperparameters.

• Kernel Type: the type of kernel function to use, such as
linear, polynomial, or radial kernel. Each kernel has its impact
on the decision boundary and model performance.

• Kernel-Specific Hyperparameters: each kernel type has
its own set of hyperparameters. For example, the polyno-
mial kernel has a degree parameter that controls the degree of
the polynomial function, and the radial kernel has a gamma
parameter that determines the kernel width. These hyperpa-
rameters influence the complexity and flexibility of the decision
boundary.

• Regularization Parameter (C ): it balances training error
and margin size trade-offs. The margin separates the decision
boundary and the nearest support vectors. A small C empha-
sizes a wider margin and allows more training misclassification,
promoting generalization. A large C fits the training data more
precisely but may lead to overfitting.

4. Artificial Neural Network

An artificial neural network is a machine learning model
designed to mimic the functioning of the human brain to
perform tasks such as pattern recognition and decision-making
[20]. The key components of an ANN include input nodes,
hidden layers, and output nodes. During training, the net-
work learns to adjust the weights associated with connections
between neurons to optimize its performance on a given task.
The hyperparameters for tuning an ANN are crucial in achiev-
ing better generalization and preventing overfitting. Here are
some essential hyperparameters to consider.

• Activation Function: this function acts as a decision maker
for each neuron, determining whether the incoming informa-
tion is significant enough to trigger the neuron’s activation.
Common activation functions include logistic, hyperbolic
tangent (tanh), and rectified linear unit (relu).

• Hidden Layers: these are the middle layers between input
and output, processing complex patterns using weighted
connections and activation functions.

• Number of Neurons: the number of neurons in each layer,
especially in the hidden layers, influences the network’s ability
to capture intricate patterns. More neurons may enhance the
network’s capacity to learn, but it also increases computational
complexity.
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