
Web Security

pdf

Overview
Client-side security :

• risks, attacks, solutions
Server-side security :

• risks, attacks, solutions

1/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Client-Side Security
Anyone can create a web site, publish it on the Web and
have it indexed by search engines :

• including malicious persons
Browsers execute arbitrary JavaScript code when you visit a
Web site :

• They don’t know a priori if a site is malicious
Navigating to a malicious site could have more or less
dramatic consequences :

• Browser crash
• Data leak (passwords, credit card information, email

addresses . . .)
• Identity theft (reuse of stolen information from one site to

another site to send emails, transfer money. . .)
• Data corruption (ransomware)
• Illegal use of computer resources as part of botnets (spam,

DDoS attacks . . .)

2/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Browser strategies

Browsers limit client-side security issues by :
• Supporting only JavaScript APIs that have been reviewed for

security
• Not allowing certain APIs (file browsing, network scanning,

. . .)
• Asking permissions to the user for some APIs (e.g. Camera)
• Running the code of a web page isolated from the other

pages, and from the OS :
– the sand box

• Fixing bugs/vulnerabilities
But this is not perfect :

• Web users/developpers should be careful !
• Web users/developpers update their browsers/servers

regularly !

3/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Same Origin Security

The architecture of the Internet is based on private
sub-networks (local networks, intranets . . .)

• It is necessary to protect a sub-network even if one
computer of this sub-network is compromised

• –> Goal of the same origin policy
General principle :

• A page requested from Origin A
(e.g. http ://www.example.org) should not be able to retrieve
content from Origin B (e.g. http ://mylocalserver.com)

4/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Example of “cross-origin attack”

Example of a cross-origin attack
• Computer A is in a Network X (e.g. Telecom Paris)
• User Alice on computer A receives a link to a (malicious)

Web site at http ://malicious.org
• Alice loads http ://malicious.org (1).
• http ://malicious.org contains a script S to scan all resources

in network X (2).
• That script forwards all information to X (3)

5/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Same Origin Policy
Web browsers restrict resource loading based on the
resource type and on the origin
Origin is defined as :

• protocol + domain + port
• Examples :

– http ://example.org is a different origin from
http ://example.com

– http ://www.example.org is different origin from
http ://data.example.org

– http ://example.org is a different origin from
http ://example.org :8000

– http ://example.org is a different origin from
https ://example.org

For historical reasons, markup resources are NOT restricted
to the same origin :

• HTML : an <iframe> can point to a different domain
• CSS : a <link> element can point to a different domain
• Images : a element can point to a different domain

– Basic web behavior : reuse an image from another site
without copying

• Scripts : a <script> element can point to a different domain
– Important for CDN hosted scripts (e.g. jQuery, . . .)

• Video : a <video> element can point to a different domain

6/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Same Origin and JavaScript

The main restriction is on JavaScript downloads :
• XMLHTTPRequests calls in AJAX are restricted to the Same

Origin
• Unless

– The request is “simple”
– CORS is used

• Some work-around exists :
– create a script tag to make the download (JSONP)
– Use a proxy so that all requests come from the same origin

JavaScript Communication between pages of different
origins is possible using JavaScript postMessage API

7/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

CORS
HTTP Cross-Origin Resource Sharing

Server A explicitly allows clients to use its data within
JavaScript if downloaded from server B

8/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

images/cors-archi.png
images/cors-request.png
images/cors-response.png

Cookies and Cross-origin
Reminder : Cookies are small text files, containing server
information, stored on the client-side and exchanged in
HTTP or HTTPS requests

• Mainly used today as tracking tools for advertizers
(annoying) but server-side tools can do worse. . .

• Can be used to keep track that the user is logged (cookie is
set by the server after login/password have been verified)

• Cookies can be risky if used to store passwords or long-lived
client session information. Modern web sites use short-lived,
randomized session ids

• Cookie can be session-based or permanent (“remember my
identifier”)

• Cookies follow the same origin principle but with a looser
concept of Origin

• Can be created/manipulated in JavaScript using
document.cookie. Be careful when loading cross origin
scripts, they may steal cookies (unless HttpOnly is used)

9/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Some client-side attacks

Clickjacking
Phishing
Data Sniffing

10/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Clickjacking

Problem :
• The user is made to be believe that they click on something

(e.g. “click here to get a free gift”), while clicking on
something else (e.g. allowing camera access, . . .).

• Usually done using transparent <iframe>
Solution :

• Limit the use of <iframe> with X-Frame-Options : disallowed
or same origin

• Make sure in JavaScript that the click happend on the most
top level window

11/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

Phishing

Problem
• Alice receives of a link (via email, messaging, . . .) to a site

that looks like another site (e-commerce, bank . . .)
• Alice believes that she is on the official site and enters her

personal information (login, password, credit card . . .)
• Her personal information is stolen and used elsewhere.

Solution :
• As a user, make sure the URL of a site is the right one.
• As a developer, require HTTPS for sensitive sites

12/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Data Sniffing

Problem :
• On a wired networks (including possibly within operator’s

networks) or on a WiFi network not sufficiently protected (e.g.
WEP), one can capture IP packets and analyze them.

• HTTP packets may contain login, password, credit card
information that anyone can copy

• By scanning packets on a network, anyone can steal
information

Solution :
• As a user : do not transmit sensitive information unless the

site uses HTTPS
• As a developper : do not setup sites requiring sensitive

information with HTTP, require HTTPS

13/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Server-side Security

The Web and the Internet are hostile environments !
Unless the access to the server is restricted (firewalls, NATs
. . .), anyone from the Internet can make request to a web
server, including malicious requests
Web security is a shared responsibility : web server
administrator and web master

14/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Server-side Security Risks

Data leak (e.g. Yahoo !, Ashley Madison . . .)

Data ransom

Illegal use of server resources as part of a botnet (storage, spam
or DDoS)

15/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Server-side Security Measures : Why?

Some verifications of the data sent to the server can be
made at the client-side :

• Limit text field size, file upload size, . . .
• use radio buttons or pre-determined choices to avoid

arbitrary text upload
• Use JavaScript client-side checks to verify the validity of data

sent
But a malicious person will probably not use your site to
attack the server

• Necessity to perform input checks at server-side to avoid
“code injection”

16/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

XSS - Cross Site Scripting : Problem
A Web Site contains a form to send text content to a server

<form action="http://myserver.com/hello">
<input type="text" name="Nom">
</form>

A malicious user uses this site to send HTML content
including <script> (not just text) to the server

World <script>alert('You have a won the lottery!')</script>

The server receives this content, treats it as simple text and
returns an HTML response based on this text content

return "<html><body><p>Hello" + Nom + "</p></body></html>"

The browser receives the new HTML page and execute the
malicious-user-inserted HTML :

• A pop-up appears that was not planned by the Web Site
author !

• Any arbitrary code could be run (leaking cookies, . . .)
• It is even worse if the injected HTML is saved and sent to

every new user afterwards (e.g. comment section in a forum)

17/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

XSS : Solutions
Check where the text content will be inserted
Never insert untrusted text content except in allowed
locations (e.g. NOT in scripts, NOT as attribute names, or
NOT as element names, or NOT as comments, or NOT in
CSS content)
Use specific escaping mechanisms depending on where the
text content is inserted

• Escape HTML special characters when saving/returning text
content in HTML text content using HTML entities (&...;)

– If a malicious user enters <script> the server should use
<script>

• In many server-side programming languages, there are
helper functions. In PHP, you can use the function
htmlspecialchars, htmlentities, or strip_tags In NodeJS
or Python, use HTML escape modules

• Use specific escape mechanism when inserting text in
attribute content (e.g. quote)

• Use specific escape mechanism when inserting text in script
tags (if allowed at all !)

See Cheat Sheet for detailed rules
18/23 IMT-TP-IDS-MM

../tp
../logo-IPP-small

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

XSRF - Cross Site Request Forgery
Problem :

• User Alice is already logged onto a site (Forum, Blog, . . .)
• Malicious user Bob sends a link to a malicious page
• The malicious page contains a ‘hidden’ link, such as :

• Alice erroneously clicks on the link without realizing,
because Alice is still logged in :

– User Donald is removed from the forum
Solutions :

• Use HTTP POST requests to make it more complex to send
the parameters and to force a page refresh when the action
is done (make the user aware)

– Can be worked-around with 0-width 0-height iframes
• Limit the use of <iframe> with X-Frame-Options : disallowed

or same origin
• Check the referer : where this action comes from
• Best practice : Use random tokens to avoid the URL of the

action to be known in advance
19/23 IMT-TP-IDS-MM

../tp
../logo-IPP-small

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

SQL injection

Problem
• If the user input text is used to be build SQL requests,

well-crafted text can leak database information
• Example :

– The HTML form includes a text field called “passwd”
– The server uses this text to make a request :

mysql_query("SELECT * FROM T WHERE passwd='$passwd'")
– If the input passwd text is : ' OR 1=1 -- the request

becomes :
mysql_query("SELECT * FROM T WHERE passwd='' OR 1=1 --'")

• Which returns all values ! !
Solution

• Do not construct SQL requests from user text inputs
• If not possible, escape text content (e.g. PHP
mysql_real_escape_string)

20/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

http://php.net/manual/fr/function.mysql-real-escape-string.php

Command-line injection
Problem

• If the user input text is used to be call executables (e.g. using
exec in PHP or NodeJS), well-crafted text can execute
arbitrary code

• Example :
– The HTML form includes a text field called “a”
– The server uses this text to list the content of a directory

named “a” :
exec("ls $a")

– If the input text is : && cat /etc/passwd the system call
becomes :

exec("ls && cat /etc/passwd")
• Passwords are leaked ! !

Solution
• Avoid calling executables using parameters input from a web

page
• If not possible, inspect final command line and escape text

content (e.g. PHP escapeshellcmd or escapeshellarg)

21/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

http://php.net/manual/fr/function.escapeshellcmd.php
http://php.net/manual/fr/function.escapeshellarg.php

Directory Traversal

Problem
• If the user input text is used to open files, well-crafted text

(i.e. using ‘..’ and ‘/’) can allow reading any file
• Example :

– The HTML form includes a text field called “file”
– The server uses this text to list open a file and return its

content :
read($file)

– If the input text contains : ../../../../../etc/passwd,
passwords are leaked ! !

Solution
• Avoid allowing reading of a file whose name is based on an

input from a web page
• If not possible, inspect the final path and disallow specific

paths

22/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Summary of the lesson (web data and web
security)

Web data, text, internationalization, text rendering
Character set, Unicode, encoding, UTF-8
Structured text, CSV, XML, JSON, JSONP
REST and web APIs
Security, browser protection
Same origin, cross origin, CORS
Client-side attacks : clickjacking, phishing, data sniffing
Server attacks : injections

23/23 IMT-TP-IDS-MM
../tp

../logo-IPP-small

