
Data on the Web
The web started with static content and became gradually
dynamic over the years.
Now, almost every page is a Web Application or has some
attributes of a Web Application.
Reminder : A Web Application is HTML + CSS + JS +
resources + server-side support
Web Applications can process and display data

• In e-commerce applications : catalog items and prices, stock
information, . . .

• In Social Networks/Blog applications : messages, photos, . . .
• In Data Science applications : numerical data, graphs . . .

Web data can be of different types :
• Text content : real text (e.g. messages, comments), numbers

(e.g. graph data, prices, . . .),
• Non-textual content : images, videos, sounds

Each type of data may have different server-side and
client-side processing

• How is the data stored server-side?
• What server-side processing is applied?
• What client-side processing is applied?

pdf

1/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Representing World Wide Web Resources
Source :
https ://en.wikipedia.org/wiki/Languages_used_on_the_Internet
(Feb 2020)

W3Techs estimated percentages of the top 10 million websites
on the World Wide Web using various content languages

Rank Language Percentage

1 English 58.5%
2 Russian 8.1%
3 Spanish 4.4%
4 German 3.4%
5 French 3.0%
6 Persian 2.6%
7 Turkish 2.6%
8 Japanese 2.6%
9 Portuguese 2.3%
10 Chinese 1.4%2/35 IMT-TP-IDS-MM

../tp
../logo-IPP-small

Internet Users
Source :
https ://en.wikipedia.org/wiki/Languages_used_on_the_Internet
(Feb 2020)

Rank Language Internetusers Percentage

1 English 1,105M 25.2%
2 Chinese 863M 19.3%
3 Spanish 344M 7.9%
4 Arabic 226M 5.2%
5 Portuguese 171M 3.9%
6 Indonesian/ Malaysian 170M 3.9%
7 French 145M 3.3%
8 Japanese 119M 2.7%
9 Russian 109M 2.5%
10 German 92M 2.1%
1-10 Top 10 languages 3,346M 76.3%
- Others 1,040M 23.7%
Total 4,386M 100%

3/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

The internationalization (i18n) problem
Web resources are mostly text-based resources
What is text?

• A sequence of character : what is a character?
– in English, in French, in Chinese, in Arabic . . .
– what about symbols (e.g C), punctuation (., spanish reverse

question mark) . . .
– Difference character/character code (used for

storage/transfer)
– Difference character/graphical representation (used for

display)
Need for a text representation

• Working for all languages
• Including alphabets, ideograms, writing modes, . . .
• Efficient for storage and network transfer
• Efficient for display, editing, text selection

Fundamentals
• Unicode : Character Set
• UTF-8 : Encoding

4/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

http://www.w3.org/International/

I18N Handling
Correct processing of accents and other special characters

Using writing modes
• Left-to-right/right-to-left/Vertical text

• Text selection
Handling language specificities

• Arabic substitutions

• French ligatures
• Indian baselines . . .

5/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

I18N Processing

6/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Character Set

A set of ordered characters (aka Repertoire)
• from one or more languages
• closed (ASCII) or open (Unicode)

Universal Character Set
• Each character is only present once in the set
• Characters are defined independently of their graphical

representation or position in a text
Each character is identified by its position (code position,
code point)
Characters from a set are encoded to store/transmit text :
codec character set, character encoding

7/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

ASCII

American Standard Code for Information Interchange
• Invented in 1965 in the USA, standardised in 1983 as ISO

646
• Derived with many variants
• Widely used

Set of 128 characters
• 33 command characters (ex CR)
• 95 printable character
• 83 characters common to all ASCII variants

– small, capital roman letters
– digits
– punctuation : (! " % & ‘ * + , - . / : ; < = >? _) and space

• 2 symbols : # or £ et $ or ¤
• 10 variable characters (per country)

Associated encoding on 7-bits

8/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

ASCII

9/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

ASCII Variants

10/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

ISO-8859
8-bit extension to ASCII
Same 128 first characters as ASCII
32 additional characters
96 language-specific characters
ISO/IEC 8859-n, n=1. . .16 (aka Latin-1, Latin-2 . . .)

11/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

The Unicode Standard

Universal Character Set
• More than 1 million of representable characters

Latest version
• Unicode 8.0 - 06/2015
• Over 120 000 characters defined

Grouped in 17 planes de 2ˆ16 characters
• Base Multilingual Plane (BMP)
• Supplementary Multilingual Plane (SMP)
• . . .

12/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Basic Multilingual Plane

13/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

A Unicode code point

Each character is assigned
• A unique code point (code position) :

– U+xxxx (BMP) Ex : U+0044
– Ex : U+yyxxxx (other planes)

• A name : ex Capital latin letter D
• A direction : « left – right » or « right – left »
• A possible decomposition : é=e + ‘
• Some language information

The graphical shape is not associated
• see Font information

The byte representation on the wire is not defined in
Unicode

• see Character Encoding (fixed length, variable length)

14/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Fixed-length Character Encoding

Mostly defined by ISO
ASCII

• Not capable of encoding the Unicode Character Set
UCS-2 (deprecated)

• 16 bits - PMB
• Not ASCII-compatible

UCS-4 (deprecated)
• 31 bits (+ leading 0 bit)
• Designed for 32-bits machines
• Restricted to [0x0..0x10FFFF] for UTF-16 compatibility
• Not ASCII-compatible

15/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Variable Length Character Encodings
Mostly defined by IETF (RFC 2279, 1998)
UTF-8 : Universal Transformation Format

• Most popular format
• 1-Byte alignment (no multi-byte problem)
• ASCII-compatible (0..127)

– An ASCII file transcoded in UTF-8 is identical to the original
file

– Bytes with the most-significant bit set to 1 are ignored by
ASCII processors

• Efficient conversion into UTF-16 & UTF-32
• Used on the web

UTF-16
• Alignment on 2-bytes
• BMP=2 bytes
• Other planes=2 (indirection) + 2
• Use of Byte Order Mark (BOM) to detect Endianness
• Used on Windows and in Java

UTF-32=UCS-4

16/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

http://www.rfc-editor.org/rfc/rfc2279.txt
http://en.wikipedia.org/wiki/UTF-8#mediaviewer/File:UnicodeGrow2b.png

Universal Transformation Format
Code Position Unicode

UTF-16

UTF-8 1st byte

UTF-8 2nd byte

UTF-8 3rd byte

UTF-8 4th byte

0000 0000 0xxx xxxx

0000 0000 0xxx xxxx

0xxx xxxx

0000 0yyy yyxx xxxx

0000 0yyy yyxx xxxx

110y yyyy

10xx xxxx

zzzz yyyy yyxx xxxx

zzzz yyyy yyxx xxxx

1110 zzzz

10yy yyyy

10xx xxxx

000u uuuu zzzz yyyy yyxx xxxx

1101 10ww wwzz zzyy + 1101 11yy yyxx xxxx wwww=uuuuu–1

1111 0uuu

10uu zzzz

10yy yyyy

10xx xxxx

17/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Unicode & encodings : example and
counter-examples

Character Unicode Code UTF-8 UTF-8 in ASCII UTF-16 (BE) UTF-16 (LE) UTF-32

A U+0041 41 A 0041 4100 0000 0041
space U+0020 20 0020 2000 0000 0020
é U+00C9 C3 A9 Ã© 00E9 E900 0000 00E9
greek delta U+03B4 CE B4 Î´ 03B4 B403 0000 03B4
Å U+00C5 C3 85 Ã. . . 00C5 C500 0000 00C5
Å U+212B E2 84 AB â„« 212B 2B21 0000 212B
A + ° U+0041 + U+030A 41 CC 8A AÌŠ 0041 030A 4100 0A03 0000 0041 0000 030A

18/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

http://www.fileformat.info/info/unicode/char/c5/index.htm
http://www.fileformat.info/info/unicode/char/212b/index.htm
http://www.fileformat.info/info/unicode/char/030a/index.htm

Other encodings

ISO-8859-1 : Western Europe
ISO-8859-6 : Arabic
ISO-8859-11 : Thai
Windows-1252 : Western languages
Shift-JIS : Japanese
GB-2312 : Chinese Guobiao
Big-5 : Taïwan
ISO-2022-KR : Korean
. . .

19/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Declaring character encoding

In HTTP Headers (default is ISO-8859-1)

Content-Type: text/html; charset=utf-8

XML Declaration

<?xml version="1.0" encoding="ISO-8859-1"?>

In HTML Documents

<meta charset='utf-8'>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />

20/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Escape codes in Web Content
Character(s)

é

Å

greek delta

±

space

Text

HTML Escaping (a.k.a. entity names or entity numbers)

´ ; / É ;

Å ; / Å ;

&delta ; / δ ;

± ; / ± ;

 ; / ;

Text

URL escaping

%C3%A9

%C3%85

%CE%B4

%C2%B1

%20

Text

Base 64 encoding

w6k=

w4U=

zrQ=

wrE=

IA==

VGV4dA==

MIME Escaping

=C3=A9

=C3=85

=CE=B4

=C2=B1

=

Text

Online encoder/decoder

21/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

http://www.webatic.com/run/convert/html_entities.php

Structured Text Data

Text data that is structured, with a specific syntax to relate
pieces of text :

• CSV (Comma Separated Values, exported from Spread
Sheets (Excel, . . .))

• XML (syntax inspired by HTML)
• JSON (syntax inspired by JavaScript), JSONP

Data is often stored in databases
• Possibly exported in one of these formats
• Or directly integrated into the HTML content (e.g. via HTML

Templates))

22/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

https://www.ietf.org/rfc/rfc4180.txt

CSV
Example

city,state,population,landarea
seattle,WA,652405,83.9
new york,NY,8405837,302.6
boston,MA,645966,48.3
kansas city,MO,467007,315.0

Be careful of :
• absence of comments,
• difficult use of ", line break, spaces or commas in the

content. . .
How to process it in a Web Browser?

• Example with D3.js d3.csv("/data/cities.csv",
function(data) { console.log(data[0]); });
→ {city: "seattle", state: "WA", population: 652405,
landarea: 83.9}

• Other examples : jQuery, . . .
Limits :

• When the number of columns is variable in each line
• When each line is type dependent

23/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

XML

Example

<data>
<sensor time="0" type="3D" x="0" y="12" z="33"/>
<sensor time="0" type="temperature" value="10"/>
<sensor time="10" type="3D" x="0" y="22" z="33"/>
<sensor time="20" type="2D" x="0" y="12"/>
</data>

Highlights
• Can be flat, similar to CSV, with a markup syntax
• Variability in the number and type of data per “line”
• Possible validation of the data (3D requires z)
• Can represent more complex data structure
• Verbosity

24/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

XML continued

How to process it in a Web Browser?

var xhttp = new XMLHttpRequest();
xhttp.onload = function() {

if (this.status == 200) {
console.log(this.responseXML);

}
};
xhttp.open("GET", "http://server.com/data", true);
xhttp.send();

25/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

JSON

Example

[
{ "city": "seattle","state": "WA","population": 652405,"landarea": 83.9 },
{ "city": "new york","state": "NY","population": 8405837,"landarea": 302.6 },
{ "city": "boston","state": "MA","population": 645966,"landarea": 48.3 },
{ "city": "kansas city","state": "MO","population": 467007,"landarea": 315.0 }
]

Highlights :
• Similar to XML, with a JS-like syntax but

– Absence of comments,
– Need to use " for property names
– Not tolerant to errors (trailing comma)

26/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

JSON continued

How to process it in a Web Browser?
• Example with D3.js d3.json("/data/cities.json",
function(data) { console.log(data[0]); });
→ {city: "seattle", state: "WA", population: 652405,
landarea: 83.9}

• Other examples : basic XHR, jQuery, . . .
Limit : Cross-origin restrictions

27/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

JSONP

JSON is restricted to Single-Origin requests unless using
CORS
JavaScript is not restricted
JSON cannot be used as is in a <script> element (no
variable name)
JSONP concepts :

• Wrap JSON into JS code (variable, function) to make it
script-compatible process({ "city": "seattle","state":
"WA","population": 652405,"landarea": 83.9 });

• The wrapped JSON can be loaded via a <script> element
• The actual wrapper can be generated specifically

based on the URL <script type="application/javascript"
src="http://server.example.com/City/Seattle?callback=process">
</script>

28/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Databases & the Web

Database types :
• Relational databases / Tables / SQL : MySQL, . . .
• Key-value / Document-oriented : CouchDB, MongoDB, . . .

APIs :
• REST
• SOAP

29/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

REST and Web Services

A Web Service is
• Software
• Exposes functions with a communication protocol on the web
• With a standard way to use it, independent from languages

and systems
This makes possible

• To make the service accessible on the web
• To distribute the services
• To concatenate services into more complex ones
• To use a well established network infrastructure

30/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Example

Gitlab has a REST interface that I use to gather information
about the amount of work that a PACT group is doing :

number of commits in a project :
/projects/ :id/repository/commits
list members of a project : /projects/ :id/members
etc

The response is a JSON. The API is quite detailed.

I only have access to these because I am an admin for these
projects, and I authenticate with Gitlab. :id is a 4 digits number
identifying the repository.

31/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

REST : Representational State Transfer

Neither a protocol, nor a format
More a style of distributed service

• You can use the model/style completely or just reuse parts
• Initial proposal by Roy Fielding

Basic principles
• You just need to know the URL of a service to access it
• HTTP provides everything required :

GET, PUT, POST, DELETE are used as action commands
on the server

• Stateless : the URL contains all the information required
for the server to provide an answer, there is no need
for the server to keep any client state
(there may still be a server state, such as a DB)

32/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

REST URL scheme

Typical form-related url :

http://server/path?param=value¶m2=value2&...

Typical URL scheme for a REST service :

http://server/path/value/value2

where value, value2 are parameter values of the request.

33/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Benefits of using REST

Simple to implement, at least for developers used to
implementing dynamic web services
Stateless means

• Server load is smaller, can deal with more clients
• Easy to debug
• Easy to balance the load onto a server farm

Excellent integration into the HTTP universe
Standard Web Cache works well with the use of URLs

34/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Web APIs

Web Services accessible on the Web (including REST) are
often called Web APIs
ProgrammableWeb

• Example of an API directory
• https ://www.programmableweb.com/category/all/apis
• Hundreds of referenced APIs, covering mapping, social

networks, translation. . .

35/35 IMT-TP-IDS-MM
../tp

../logo-IPP-small

