
JS Closures

Because closures are a difficult notion. . .

Overview

constructing privates
defining closures
constructing modules
classic closure mistakes

pdf

1/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



JS Object

A JS object is the equivalent of a Java object with all fields
declared as public

let a = {v1: 10, v2: "oqroi"};

console.log(a.v1);
> 10

a.v1 += 1;

console.log(a.v1);
> 11

Missing : private keyword

2/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



A function as property of an object

let a = {v1: 10, v2: "oqroi"};

a.f = function(x) { return x+1;}

a.f(4)
> 5

3/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



this
A function which is a property of an object has the keyword this
set to the object.

let a = {v1: 10, v2: "oqroi"};

a.g = function() { return this.v1 = this.v1+1;}

a.g()
> 11

Or written in another way :

let a = {v1: 10, v2: "oqroi", g: function() { return this.v1 = this.v1+1;} }

a.g()
> 11
a.g()
> 12
a.v1
> 12

4/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Variable scope

f1, variable inside of f, is not visible outside

function f() {
let f1 = 4;
console.log(f1);

}

f()
> 4
f1
> ReferenceError

5/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Creating a private scope
function f() {

let f1 = 4;
return function() { console.log(f1); }

}

let g = f() // f() returns a function referring to the variable f1 inside

f1
> ReferenceError
g()
> 4 // f1 still exists

By creating a function inside another function :

I can create a way to access a variable that is not
accessible in any other way : a private
the variable is kept as long as the access function exists

6/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



This private is using a closure

The closure is constructed with :

a function outside
some variables in the function
a function defined inside and referring to variables of the
outside function

The closure “is” the set of variables known inside the outside
function.

The closure exists as long as the inside function exists == can be
accessed.

As soon as the inside function is not referred to by any variable,
the function and the closure are garbage-collected.

7/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Same as before with anonymous functions

let g = (function () {
let f1 = 4;
return function() { console.log(f1); }

})(); // the last two parentheses are the call to the anonymous function

f1
> ReferenceError
g()
> 4 // f1 still exists

8/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Creating more access functions
let h = (function () {

let f1 = 4; // private
let i = {};
i.get = function() { return f1; } // getter
i.set = function(x) { f1 = x; } // setter
return i;

})(); // the last two parentheses are the call to the anonymous function

h.get()
> 4
h.set(10)
> undefined
h.get()
> 10

9/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



What is missing?

So we have ways to :

define private variable
define getters
define setters
return as many functions from a private scope == export

Missing : a way to import stuff

10/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Importing

const importer = require("someModuleName");

let h = (function (imp) {
let f1 = imp.foo.bar;
let i = {};
i.get = function() { return f1; } // getter
i.set = function(x) { f1 = x; } // setter
return i;

})(importer);

With this, we have a way to import another set, and rename it if
necessary.

To conclude, we have a full module system.

11/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Two module syntaxes

There are two frequent module syntaxes :

CommonJS (the old one)
ES6 (the new one)

12/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Module syntax : CommonJS
A JS file can be considered as a module, if it finishes on
something like :

// at the end of toto.js
exports.fibonacciIt = fibonacciIt;
exports.fibonacciRec = fibo_rec;
exports.fibonacciArray = fibonaArr;
exports.fibonacciMap = fibonacciMap;

In that case, in another file, you can use :

let totoMod = require("toto");

console.log(totoMod.fibonacciRec(4));

If the file extension is .cjs, node understands this file to be in
CommonJS syntax. If the file extension is .js and the
package.json does not have a "type": "module"line, node also
understands this file to be in CommonJS syntax.13/20 IMT-TP-IDS-MM

../tp
../logo-IPP-small



Module syntax : ES6
To import fun from module npmmod (managed by npm),
use : import {fun} from 'npmmod';
To import fun from module mod (yours, residing in mod.js or
mod.mjs), use : import {fun} from './mod';
You can import more : import {fun, fun2, fun1 as foo}
from 'mod'; where I renamed fun1 as foo for use in the
current file
If you want to manipulate the module itself : import default
from 'mod' then you can use mod.fun, mod.fun2, etc.
You can rename the module with : import default as
othername from 'mod'
You can export a const, a let or a function by putting export
in front of the definition

If the file extension is .mjs, node understands this file to be in
ES6 syntax. If the file extension is .js and the package.json has
a "type": "module"line, node also understands this file to be in
ES6 syntax.14/20 IMT-TP-IDS-MM

../tp
../logo-IPP-small



Modules

there are multiple module systems
the best known module manager for node.js is npm
there are many module systems for the browser

• require.js : just deals with importing all the dependencies in
the right order from one line of HTML

• webpack : import all dependencies, compile single bundle
with many options,. . .

• browserify, bower, gulp, grunt. . .

15/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



More on closures

A classic mistake

function f() {
for (var i=0; i<3; i++) {
setTimeout(function(){ console.log(i);}, 1000);

}
}

f();

// 1s later
3
3
3

16/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Not a fix
This does not work

function f() {
for (var i=0; i<3; i++) {
setTimeout(function(){var j = i; console.log(j);}, 1000);

}
}

f();

// 1s later
3
3
3

There are three variables named j, but they are set later from a
reference to the same i.

17/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Closures : Fix
function g(j) {

return function() { console.log(j); };
}

function f() {
for (i=0; i<3; i++) {
setTimeout(g(i), 1000);

}
}

f();
0
1
2

Solution :
• Problem is solved by calling another function n times
• Each function call creates a space to save a value for j
• The value of i is copied during the loop, not after (when g is

called)

18/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Closures : Fix 2
function f() {

for (i=0; i<3; i++) {
setTimeout((function (j) {console.log(j);})(i), 1000);

}
}

f();
0
1
2

More compact : create an anonymous function called
immediately

• current practice in JS libraries
• not recommended : less readable

19/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Summary of this lesson

object with a function as property, this, variable scope
creating private and getter, closure
access functions, export, import, modules
typical closure mistake

20/20 IMT-TP-IDS-MM
../tp

../logo-IPP-small


