
Asynchronous JavaScript

Overview

callbacks : example setTimeout
asynchronous IO : ajax
from callbacks to Promises
async await

pdf

1/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Problem statement
Problem statement :

1. do something
2. ask for processing that will take too long to wait and return a

value
3. do something with that value

Extended problem :

1. do something
2. ask for processing that will take too long to wait and return a

value
3. do something else that is independant
4. do something with that value

Extended extended problems :

do this with multiple async actions
wait for multiple results

2/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Callbacks
JavaScript has features that help :

• the function to help with capturing code to be executed later :
a function is a set of coherent instructions that can be
triggered, e.g. at the end of a wait

• the function can be defined inside another function to have a
specific variable context (closure)

Example : code to load a file and find the last occurrence of
a string in it then call function fun on this information

function f(fileName, searchString, fun) {
fs.readFile(fileName, function(err, data) {

if (err) {
// do something to process the error

}
if (data) {

fun(data.lastIndexOf(searchString));
}

});
}3/16 IMT-TP-IDS-MM

../tp
../logo-IPP-small



Warnings

returning a value is not possible, you can only provide a
function to consume the value when ready.
order of execution is not obvious

function f(fileName, searchString, fun) {
fs.readFile(fileName, function(err, data) {

if (err) {
// do something to process the error

}
if (data) {

fun(data.lastIndexOf(searchString));
}

});
}

4/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Another example : animations

function animate() {
// do something
...
setTimeout(animate, 100); // call myself in 100ms

}

This function is called every 100ms after the first time, which you
have to call to start.

5/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Another example : Ajax

var xhr = new XMLHttpRequest();
xhr.open("GET", "test.txt");
xhr.onload = function() {

alert(this.responseText);
}
xhr.send();

1. create the xhr object
2. position the method and url
3. define the callback
4. start executing the background code

6/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Consequences

if result comes later, errors also come later, in a context they
may not be understood : context needs to be kept not only
for processing results
debugging is a mess as the order of execution depends on
things out of my control
errors are not always predictable
if you did not provide error recovery, errors can be really
hard to understand
you have to create your code in a way resistant to
out-of-order results
you may not have thought of all the actual dependencies

7/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Promises
Promises are a way to structure asynchronous code that is
convenient/readable
Promises are still new and you may find Promise code that
is “legacy” (behaves differently)
Using promises :

// f is a function that returns a promise when all its stuff is done
f()

.then(resultProcessing)

.catch(errorProcessing)

.finally(doItAnyWay)

function resultProcessing(result) {...}
function errorProcessing(error) {...}
function doItAnyWay() {...}

8/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Why does this notation work?
f().then(resultProcessing).catch(errorProcessing).finally(doItAnyWay)

the function f is called and returns a pending promise
then is called and returns a pending promise (same object
as above)
catch is called and returns a pending promise (same object
as above)
finally is called and returns a pending promise (same object
as above)
the code after that is executed until there is a thread break
. . . After that, either :
resultProcessing is called with the value passed to resolve,
followed by doItAnyWay()
or errorProcessing is called with the value passed to reject,
followed by doItAnyWay()

9/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Creating promises

A Promise needs one function with two parameters :
• a function resolve called when the processing is successful,

to pass the result of the processing on
• a function reject called when there is an error

A Promise is in one of three states :
• pending (in progress)
• fulfilled (resolve has been called)
• rejected (reject has been called)

To create a Promise :

let p = new Promise(function (resolve, reject) {...}) ;
// the anonymous function should call resolve with the result of
// the processing OR call reject with the reason (error)

10/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Rewrite Ajax as Promise

function get(url) {
return new Promise((resolve, reject) => {

var xhr = new XMLHttpRequest();
xhr.open("GET", url);
xhr.onload = () => resolve(xhr);
xhr.onerror = () => reject(xhr);
xhr.send();

});
}

11/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Combining promises

Promise.all(iterable).then(. . .)

I have used this function on an array of promises (the iterable)
to wait for the completion of all the promises in the array

Promise.any(iterable).then(. . .)

This is the opposite of Promise.all, and then is executed with the
value of the first promise that is resolved in the iterable

12/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



More on Promises

More on Promises

13/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small

https://javascript.info/promise-basics


Async / await
Async/await is actually just syntax sugar built on top of
promises. It cannot be used with plain callbacks or node
callbacks.
Async/await is, like promises, non-blocking.
Async/await makes asynchronous code look and behave a
little more like synchronous code. This is where all its power
lies.

Promise code :

const makeRequest = () =>
getJSON()
.then(data => {
console.log(data)
return "done"

})

makeRequest()

Async/await :

const makeRequest = async () => {
console.log(await getJSON())
return "done"

}

makeRequest()

14/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



Discussion of async/await vs Promise
async/await is only relevant for code USING Promises, it
seems you need to learn the Promises anyway if you need
to write code that creates Promises. . .
It is only syntax, but the syntax seems to be simpler in more
complex cases, including the cases where multiple
Promises are involved
If you do not know Promises syntax, you may be better off
learning the async syntax directly
More complex cases seem to be A LOT simpler with async
than with Promises

• especially debug
It looks like on of those des gouts et des couleurs...
cases

• One thing is clear : learn async/await and Promises
async cannot be used at the top level, so the top level code
has to be in Promise form

15/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small



More

More on Async/await

More on asynchronous JS

16/16 IMT-TP-IDS-MM
../tp

../logo-IPP-small

https://javascript.info/async-await
https://javascript.info/async

