I Asynchronous JavaScript

Overview

B callbacks : example setTimeout
B asynchronous IO : ajax

m from callbacks to Promises

B agsync await

pdf

tp

1/lpgo-IPP-

I Problem statement

Problem statement :

1. do something

2. ask for processing that will take too long to wait and return a
value

3. do something with that value

Extended problem :

1. do something

2. ask for processing that will take too long to wait and return a
value

3. do something else that is independant

4. do something with that value

Extended extended problems :

B do this with multiple async actions
B wait for multiple results

tp

1/lpgo-IPP-

B Callbacks

® JavaScript has features that help :
+ the function to help with capturing code to be executed later :
a function is a set of coherent instructions that can be
triggered, e.g. at the end of a wait
+ the function can be defined inside another function to have a
specific variable context (closure)
® Example : code to load a file and find the last occurrence of

a string in it then call function fun on this information

function f(fileName, searchString, fun) {
fs.readFile(fileName, function(err, data) {
if (err) {

b

if (data) {
fun(data.lastIndexOf (searchString));

3

e

3116 IMT-TP-IDS-MM 90-IPP-

N Warnings

B returning a value is not possible, you can only provide a
function to consume the value when ready.
® order of execution is not obvious

function f(fileName, searchString, fun) {
fs.readFile(fileName, function(err, data) {
if (err) {

}
if (data) {
fun(data.lastIndexOf (searchString));

i
P 1/lpgo-IPP-

I Another example : animations

function animate() {

setTimeout(animate, 100);

This function is called every 100ms after the first time, which you
have to call to start.

tp

1/lpgo-IPP-

I Another example : Ajax

var xhr = new XMLHttpRequest();
xhr.open("GET", "test.txt");
xhr.onload = function() {

alert(this.responseText);

}
xhr.send();

1.
2.
3.
4.

create the xhr object

position the method and url

define the callback

start executing the background code

i
P 1/lpgo-IPP-

I Cconsequences

B if result comes later, errors also come later, in a context they
may not be understood : context needs to be kept not only
for processing results

B debugging is a mess as the order of execution depends on
things out of my control

B errors are not always predictable

m if you did not provide error recovery, errors can be really
hard to understand

B you have to create your code in a way resistant to
out-of-order results

B you may not have thought of all the actual dependencies

i
P 1/lpgo-IPP-

I Promises

B Promises are a way to structure asynchronous code that is
convenient/readable

B Promises are still new and you may find Promise code that
is “legacy” (behaves differently)

B Using promises :

uff
O

.then(resultProcessing)

.catch(errorProcessing)

.finally(doItAnyWay)

function resultProcessing(result) {...}
function errorProcessing(error) {...}
function doItAnyWay() {...}

i
P 1/lpgo-IPP-

B \Why does this notation work ?

f().then(resultProcessing).catch(errorProcessing).finally(doI

B the function f is called and returns a pending promise

® then is called and returns a pending promise (same object
as above)

B catch is called and returns a pending promise (same object
as above)

m finally is called and returns a pending promise (same object
as above)

B the code after that is executed until there is a thread break
... After that, either :

B resultProcessing is called with the value passed to resolve,
followed by doltAnyWay()

B or errorProcessing is called with the value passed to reject,
followed by doltAnyWay()

tp

1/lpgo-IPP-

I Creating promises

B A Promise needs one function with two parameters :
+ a function resolve called when the processing is successful,
to pass the result of the processing on
« afunction reject called when there is an error
B A Promise is in one of three states :
+ pending (in progress)
« fulfilled (resolve has been called)
* rejected (reject has been called)

B To create a Promise :

let p = new Promise(function (resolve, reject) {...}) ;

i
P 1/lpgo-IPP-

I Rewrite Ajax as Promise

function get(url) {
return new Promise((resolve, reject) => {
var xhr = new XMLHttpRequest();
xhr.open("GET"”, url);

xhr.onload = () => resolve(xhr);
xhr.onerror = () => reject(xhr);
xhr.send();

i
P 1/lpgo-IPP-

I Ccombining promises

Promise.all(iterable).then(. . .)

| have used this function on an array of promises (the iterable)
to wait for the completion of all the promises in the array

Promise.any(iterable).then(. . .)

This is the opposite of Promise.all, and then is executed with the
value of the first promise that is resolved in the iterable

i
P 1/lpgo-IPP-

I 1ore on Promises

More on Promises

tp

1/lpgo-IPP-

https://javascript.info/promise-basics

N Async / await

14/16

B Async/await is actually just syntax sugar built on top of
promises. It cannot be used with plain callbacks or node
callbacks.

B Async/await is, like promises, non-blocking.

B Async/await makes asynchronous code look and behave a
little more like synchronous code. This is where all its power
lies.

Promise code :

const makeRequest = () =>
getJSON()
.then(data => {
console.log(data)

return "done”

b))

makeReatiest ()
IMT-TP-IDS-MM

go-IPP-:

I Discussion of async/await vs Promise

B async/await is only relevant for code USING Promises, it
seems you need to learn the Promises anyway if you need
to write code that creates Promises. ..

B |t is only syntax, but the syntax seems to be simpler in more
complex cases, including the cases where multiple
Promises are involved

® [f you do not know Promises syntax, you may be better off
learning the async syntax directly

® More complex cases seem to be A LOT simpler with async
than with Promises

* especially debug
B |t looks like on of those des gouts et des couleurs...

cases
* One thing is clear : learn async/await and Promises

B async cannot be used at the top level, so the top level code
has to be in Promise form

i
P 1/lpgo-IPP-

B More

More on Async/await

More on asynchronous JS

i
P 1/lpgo-IPP-

https://javascript.info/async-await
https://javascript.info/async

