
Client Server Explained

What happens in detail in client server situations

Web server
AJAX

pdf

1/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest Web Server Situation

Your computer < Network > Another computer

Browser Web Server
test.html Folder “www” with files

2/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest Web Server Situation 2

You type a URL in the address bar of the browser, or click on a
hyperlink in the HTML you are reading. The URL is
http ://server.com/test2.html

Your computer < Network > Another computer

Browser –> Web Server
test.html Folder “www” with files

3/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest Web Server Situation 3

The server receives the URL, tests if it corresponds to a file,
reads the file, send the data

Your computer < Network > Another computer

Browser <– Web Server
test.html Folder “www” with files

4/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest Web Server Situation 4

The browser receives the new data and shows it

Your computer < Network > Another computer

Browser Web Server
test2.html Folder “www” with files

5/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Focus on the server only
The simplest web server receives a request and send a
response. So it is a function like :

function webserver(request, response) {
...

}

To be able to write the code, we need :

the request object to contain all info about the received
request : URL, headers, origin, etc
the response object to have all the methods to configure
then send the response to the client : setHeader, send, etc

There is extra stuff you do not need to know in detail (TCP, HTTP
text exchanged, encryption, compression, etc)

6/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest Web Server 2
Logic of a web server serving only files :

does the URL correspond to an existing file?
• if yes, read the file and send content
• if no, send error message

function webserver(request, response) {
const filepath = request.url.substring(1); // remove initial /
if (fs.existsSync(filepath)) {
response.setHeader("Content-Type", mime.getType(filepath));
response.end(fs.readFileSync(filepath));

} else {
response.statusCode = 404;

response.end("the file " + filepath + " does not exist on the server");
}

}

7/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest Web Server 3
Logic of a web server serving only generated data :

does the URL belong to the list of URLs I know?
• if yes, generate corresponding content and send
• if no, send error message

Logic of a web server serving both :

is is a URL for a file?
• if yes, does the URL correspond to an existing file?

– if yes, read the file and send content
– if no, send error message

• if no, does the URL belong to the list of URLs I know?
– if yes, generate corresponding content and send
– if no, send error message

So simple web server code is a list of ifs with conditions on the
URL.

8/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest Web Server 4

function webserver(request, response) {
if (request.url === '/addmodule') {

... code for add module ...
} else if (request.url === '/changegrade') {

... code to change grade ...
} else ...

}

9/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest AJAX Situation

Your computer < Network > Another computer

Browser Web Server
test.html Folder “www” with file “test.txt”
Ajax code

10/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest AJAX Situation 2

You press on a button that triggers the Ajax code

Your computer < Network > Another computer

Browser Web Server
test.html Folder “www” with file “test.txt”
var xhr = new XMLHttpRequest();
xhr.open("GET", "test.txt");
xhr.onload = function() {...}
xhr.send(); –>

11/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest AJAX Situation 3

Server gets request for “test.txt”, sends file content

Your computer < Network > Another computer

Browser Web Server
test.html <– Folder “www” with file “test.txt”
Ajax code

12/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Simplest AJAX Situation 4

The code in the xhr.onload function is called with
this.responseText equal to the content of the test.txt file.

Your computer < Network > Another computer

Browser Web Server
test.html Folder “www” with file “test.txt”
alert(this.responseText);

13/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Timing
There are five delays :

internal delay in your machine between the button and the
Ajax code (microseconds)
network delay for the browser to send request to server (10s
of milliseconds)
server delay computing the response, maybe delay reading
file from disk (microseconds to milliseconds)
network delay for the server to send the test.txt data to the
browser
internal delay for the browser to execute the final code

Because of the delays, this is called asynchronous programming.
Synchronous programming is when one program executes from
beginning to end. Asynchronous programming has many bits of
code which get activated when they called or when their data is
ready.

Warning : JS looks synchronous, but is asynchronous, e.g. the
onload function is between open and send, but is executed later.

14/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

More complex situations

more complex URL to get
request with other method (PUT, POST, DELETE)

• for PUT and POST, there is more code in the Ajax part to
send more stuff to the server

more complex code in the onload function, e.g. create a
whole piece of HTML from the received data
the web server serves a generated file, not an existing file

• the web server accesses a database and generates HTML
from the database response

• the web server can be PHP, python (django), Java (TomCat),
JS (node.js)

Choice : the code can be placed in the onload function on the
client, or on the web server.

15/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Programming the server
When programming a web application server, there are many
steps.

1. The user loads a page from the server
2. The user interacts with the page
3. The page generates a request to the server to do something
4. The server computes the request to the server

It is important to distinguish 1. and 3. even though these are two
requests to the server. The first request is for an interface. The
second request carries the action.

The important part of the first request is to create the interface
capable of sending actions. This means HTML and CSS for the
semantics and visual part of the interface, plus client-side
javascript for the potential to send actions.

The important part of the second request is the action itself. In a
travel reservation system, the action is to create the reservation
and buy the ticket. There is also an interface part, the reporting
of success or failure to the user, but it is only a consequence.

16/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Skeleton of a server
I assume that the server is programmed in JavaScript with
Express.

1. Create the express application(s) : this is the object which
carries all the functional power

2. Create the HTTP(S) server(s) from the application
2.1 Possibly, create credentials (if HTTPS)

3. Configure the server and position the middleware
4. Configure all the routes, i.e. URL-processing function pair

4.1 Routes for interface creation
4.2 Routes for action implementation

5. Start the server(s)

An HTTP server listens to possibly many HTTP requests. To
process a request, the server prepares a request object, with all
the received information, and a response object that can be
used to create the response. For each URL there will be one
main function computing a response.

17/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Application, server and middleware
The application object is the one which implements all the
configuration, server creation, server starting actions.

The server object(s) is(are) the one(s) which implements HTTP,
so you tell them the options you want : security, encryption,
ports, subprotocols like WebSockets. . .

The middleware needs a definition. There are actions to do on
one/some/all requests, before or after the main processing.

creating a log of all requests
authentification of the user requesting an action
detection of requests which should be modified,
e.g. translate old URLs to a new format
detection of requests which should be redirected elsewhere,
i.e. sending the URL to another server
detection of hacking, e.g. blocking connection from “bad” IPs
detection of complex requests, e.g. processing of file
uploads
etc

Among such actions, some will do something and let the process
continue and some will check something and either let the
process continue or interrupt it.

18/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Middleware
A middleware is a function which receives a request and a
response object as well as a next function. A middleware does
its processing with request and response, then calls next() to
allow the other middleware to be executed, then the main
processing to happen, then possibly does more of its processing
after.

Express has a list of middlewares to call, the list you gave it upon
configuration.

A logging middleware gets the URL from the request, writes it in
a log and passes the buck.

A hacking detection middleware checks the origin IP, passes the
buck if the IP is OK, and stops everything if the IP is not OK.

A performance checking middleware would check the time, pass
the buck, and when all the processing is finished, check the time
again and log the execution time somewhere.

19/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Routes
A route is a pairing between a URL and the processing function
for that URL. Sometimes the URL is constant, sometimes the
URL has parameters.

From the previous slides, what Express does upon receiving a
request is :

1. prepare the request and response object
2. execute the middlewares
3. if not interrupted, look for the matching route
4. execute the processing function of the matching route

If the matching route creates an interface, then the job is to
prepare the required objects then render the pug template.

If the matching route is one of action, then the job is to
implement the action and possibly report the results.

20/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Interface

Pug is a template language to easily create HTML pages. It is a
mixture of simplified HTML and JavaScript code. Pug is like
python : indentation determine the inclusion in the above tag.
Pug templates are simpler if you adopt the following structure :

in your JS code, compute all the objects that will be
necessary for the template
call render on your pug view, passing all the objects as input

Separating the object computation makes for cleaner code and
simpler templates.

21/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Pug

What you can do in pug :

insert a variable in any HTML content
on a condition, add an HTML subtree (attribute, text content,
tags. . .)
loop on an array to add an HTML subtree (to create a table)
and as usual, add styling and scripts

• it is possible to simply import existing style and scripts
• it is also possible to create CSS with a style tag inside pug,

using template functionality
• it is also possible to create JavaScript with a script tag inside

pug, using template functionality

22/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Summary
So you have many possible places where to put your JS code :

1. express configuration : before the start of the server
2. express middleware : when express is checking the URL of

the request
3. express processing to create an interface, e.g. with a pug

template
4. client-side javascript which creates a part of the interface
5. client-side javascript responding to user interaction, e.g. to

send an action
6. express middleware checking the action URL
7. express processing to implement the action, e.g. change the

database
8. express processing to create action reporting, which is like

3.

Step 5. is typically Ajax code. Step 4. is optional. Steps 2. and 6.
are similar but apply to different data.

23/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

Difficulty

It is difficult to pass information from the server/express context
to the client-side javascript context. This is information you have
access to in step 3. and you need it in step 5. One way to do it
is :

you have one object obj to transmit
pass obj to pug
in pug, add a script tag with content let info =
JSON.parse("#{JSON.stringify(obj)}");

Then you will be able to use the variable info in the client-side
JavaScript.

24/24 IMT-TP-IDS-MM
../tp

../logo-IPP-small

