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ABSTRACT
We propose and evaluate simple signals coming from in-network

telemetry that are e�ective to enhance the quality of DASH stream-

ing. Speci�cally, in-network caching is known to positively a�ect

DASH streaming quality but at the same time negatively a�ect the

controller stability, increasing the quality switch ratio. Our contri-

butions are to �rst (i) consider the broad spectrum of interaction

between the network and the application, and then (ii) to devise

how to e�ectively exploit in a DASH controller a very simple signal

(i.e., per-quality hit ratio) that can be exported by framework such

as Server and Network Assisted DASH (SAND) at fairly low rate

(i.e., a timescale of 10s of seconds). Our thorough experimental cam-

paign con�rms the soundness of the approach (that signi�cantly

ameliorate performance with respect to network-blind DASH), as

well as its robustness (i.e., tuning is not critical) and practical appeal

(i.e., due to its simplicity and compatibility with SAND).

1 INTRODUCTION
According to Cisco VNI [2], video tra�c will account for over 80%

of all IP tra�c by 2021, making video the predominant network ap-

plication. In recent years, several over-the-top techniques emerged

to e�ciently deliver videos over the Internet, both proprietary such

as Microsoft HSS and Apple HLS, as well as standard-based as in

the case of Dynamic Adaptive Streaming over HTTP (DASH). At

the same time, to reduce the pressure that video represent on the

network infrastructure, we also observe a growing o�er of network
frameworks, such as Server and Network Assisted DASH (SAND) or

Information Centric Networks (ICN), as well as network functions,
such as in-network caching and multi-path forwarding, that are

meant to e�ectively assist the video delivery.

Whereas the literature abounds with controllers[16], there is no

systematic study of the controller interaction with network func-

tions (but, see Sec.2 for an overview). In particular, we argue that

it would be desirable for any network-controller mechanism to be

as lightweight as possible, limiting the amount of information that

it needs to collect from the network and disseminate to clients, as

well as the rate at which the information needs to be disseminated.

Additionally, it would be desirable for this signal to be easily plug-

gable within existing DASH controllers — i.e., naturally extending

their logic by �tting the additional information provided by the

network, as opposite to requiring a complete redesign around it.

In this paper, we tackle this challenge by considering a speci�c

network function, namely in-network caching, that is known to have

potential for relieving tra�c load on the one hand, but that can

possibly induce quality oscillations [18]. To reduce cache-induced

oscillation, shaping is seldom used to reduce the rate toward the

cache [15] (which practically limits its usefulness), or the assistance
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of a centralized resource manager is usually assumed [5] (which

requires global instantaneous knowledge and decision of all cached

content and is too heavyweight to have practical relevance). Specif-

ically, our aim is to understand the feasibility of a SAND interaction

that (i) uses the most lightweight network signal, (ii) requires only

minimal changes to existing DASH logics, and can (iii) maximise

cache usefulness and therefore increasing the average video quality,

while (iv) avoiding cache-induced oscillations at the same time.

Summarizing our main contributions:

• we systematically assess the impact of in-network caching

when several ICN DAS players compete to watch a video,

exploring the boundaries of the design space for network

vs client interaction using various adaptation logics (Sec. 3)

• we propose and evaluate (Sect. 4) a network-aware evolu-

tion of an existing adaptation logic (speci�cally, AdapTech [3]),

based on simple network signals (speci�cally, per-quality

cache hit-rates) exported at low rate timescales (speci�cally,

tens of seconds).

Our results, gathered over an experimental campaign worth

several weeks of video streaming, show this to be a promising and

viable direction. We plan to make our code available to the scienti�c

community (which is impossible at submission time due to double-

blind requirement), along with instructions to reproduce results of

this paper at [1].

2 RELATEDWORK
HTTP Adaptive Streaming (HAS) systems traditionally delegate

bitrate selection and control to the client application, which takes

independent decisions based on local estimates of available end-to-

end bandwidth and awareness of bu�er level dynamics. Recently,

many studies have shown the bene�ts of network assistance in HAS

to overcome the limitations of a purely client-driven scheme (see

e.g. [3, 5–7, 9, 12, 17, 25]). The lack of direct knowledge about net-

work status (congestion, bottleneck, cached content) as well as of

coordination among concurrent �ows may result in frequent qual-

ity/bitrate oscillations, sub-optimal bitrate decisions by the clients,

unfairness among ongoing �ows and ine�cient overall utilization

of network resources. Moreover, service di�erentiation and man-

agement policies cannot be guaranteed in purely client-driven HAS.

As such, a dedicated MPEG standard has been developed to formal-

ize the interaction between client and network elements under the

name of Server and Network Assisted DASH (SAND)[27]. While

there is work focusing on assistance of multiple network elements

and more complex control systems (e.g., CDNs [8, 11, 21], SDN

[4, 5, 12, 22] or network of caches in ICN [19, 24]), due to space con-

straint we focus here on work that consider the assistance of a sin-

gle network element (i.e., server, intermediate cache, edge router),

which is closer to our work. In particular, we restrain our attention

to work that leverage nodes caching capabilities, be it on general

purpose architectures [6, 10, 18, 20] or ICN-speci�c [13, 15, 23].



The fact that in-network caches may induce quality oscillations

at the clients and thus a degradation of the QoE has been observed

in [18]: the incorrect estimation of the available bandwidth at the

client, due to a possible overestimation of the available bandwidth

in case of retrieval from the cache, can lead to bitrate oscillations

in case of cache miss. To tackle this issue, [18] introduces ViSIC, an

intelligent cache which assists the bitrate adaptation by perform-

ing shaping of tra�c from the cache. Common to [6, 10, 20] is to

consider a multiuser HAS distribution and propose to optimize the

QoE of all clients, either by means of a proxy-assisted in-network

adaptation [10, 20], or by means of an ILP optimisation (in a cen-

tralized or decentralized way) [6]. In the above work, an optimal

target bitrate is computed and then noti�ed to the clients (either by

modifying the HTTP requests at the proxy [10], or by a modi�ed

HAS logic that enforces clients selection of the optimal target bi-

trate [6, 20]). In all the above cases, the capability to adapt rate at

the client is traded-o� for a global optimization of resources’ alloca-

tion: taking the purely client-driven and network-driven solutions

as references, we instead investigate the space of solutions that

combine network-awareness and user-centric QoE, augmenting

client-driven rate adaptation with clues provided by the network.

A cache-assisted HAS approach is developed in [23] under the

assumption of Scalable Video Coding (SVC): an intermediate ICN

cache monitors all the requests, that it either forwards or drops

(sending a NACK to the client) with the intent of steering client

requested quality. Whereas SVC plays nicely with caches, it is how-

ever not currently widely deployed and we thus disregard it in

what follows. In [13], the authors illustrate the downsides of video

delivery over ICN in presence of in-network caching: decreased

cache hit and quality oscillations arise when the client-cache path

is signi�cantly better than the client-server one. However, under

the assumption that a distinction can be made between a content

served by the server vs the cache, the client can then manage two

separate rate estimators (i.e., for the server vs cache), which we also

consider in this work. To reduce bitrate oscillations the intermedi-

ate cache further performs live transcoding: however, transcoding

is a heavyweight operation requiring signi�cant amount of comput-

ing resources, which is contrary to our design goal. Recently, [15]

suggested shaping at the cache to avoid oscillations. The shaping is

done to guide the client to the next decision: if the next segment

is present in cache, at a given quality, the shaping will be done to

match the bitrate of this quality – which as previously observed

diminishes adaptiveness to variable network and client conditions,

and that we thus avoid in our work.

To broaden the scope of previous work, we assess in a more

systematic fashion whether (and how) network-assistance can be

bene�cial also in non-controlled network environments (like the

mobile access) and in presence of purely reactive caching, with the

objective of preserving dynamic bitrate adaptation at the client.

3 TO CACHE OR NOT TO CACHE?
While caching can be bene�cial to DASH by increasing the average
quality (e.g., as typically the bandwidth to the edge-cache is larger

than that toward the end-server), it may also negatively impact

performance by increasing the quality switch ratio (e.g., in case of a

cache miss, which can further lead to oscillations). To understand

which conditions lead to performance impairment, and how to

avoid it, it is important to systematically study the design space of

DASH interaction with in-network caches.

3.1 Design space
We consider a reference baseline scenario (without in-network

caches) and contrast it with in-network caching scenarios (with

proactive vs reactive policies), considering both network-blind

(bu�er vs rate based) and network-aware adaptation (with either a

strict or soft interpretation of the network feedback).

3.1.1 Application: DASH adaptation logic. We consider two rep-

resentative examples of network-blind DASH controller.

Bu�er-Based Algorithm (BBA). Introduced in [14], this simple

and robust algorithm is agnostic to the network conditions, and its

decisions are only driven by the bu�er state. In a nutshell, BBA
1

de�nes two bu�er thresholds, Bmin and Bupper and uses the bu�er

level B (t ) at the client to take decisions. If 0 ≤ B (t ) ≤ Bmin, the

quality selected is the lowest. If B (t ) > Bupper, the quality selected

is the highest one. When Bmin ≤ B (t ) ≤ Bupper, a linear mapping

is done from the bu�er level to the selected quality.

AdapTech. Introduced in [3], AdapTech is an hybrid adaptation

logic, relying on both rate estimation and bu�er level. In a nutshell,

AdapTech de�nes two bu�er thresholds, Bmin and B
steady

, which

de�ne three zones in the bu�er: 1 the panic zone, when 0 ≤ B (t ) ≤
Bmin, 2 the bu�ering-state zone, Bmin < B (t ) ≤ B

steady
and 3 the

steady-state zone, B
steady

< B (t ) ≤ Bax. When the player is in the

1 panic zone, it selects the lowest quality q = 0 in order to avoid

rebu�ering events. In the 2 bu�ering-state zone, if the throughput

estimation for the last video segment is higher than the bitrate of the

next quality (BW ≥ bq+1), then the quality is increased. Conversely,

if the throughput estimation for the last video segment is lower

than the actual bitrate, BW < bq then the quality is decreased. At

last, in the 3 steady-state zone, the quality is never decreased,

in order to avoid overreaction to negative spikes in the available

bandwidth. The quality can be increased if over the last T seconds,

the average throughput estimate is higher than the next bitrate

B̂W > bq+1 and the throughput of the last download is higher than

the bitrate of the next higher quality BW > bq+1.

3.1.2 Network: Cache policies. We consider three scenarios, and

devise two modes of interaction between network and application.

Baseline. No caches are considered in the network. On the client

side, network-blind BBA and AdapTech logics are used.

Proactive placement, no cache replacement. A proactive place-

ment is performed at the cache: one quality is fully cached at the

router (i.e., all the data packets of all the segments of the selected

quality are cached, and there is no cache replacement). Moreover,

the router advertises the quality that is in cache to the clients via

annotations in the MPD �le. Network-blind clients resorts to their

unmodi�ed BBA and AdapTech adaptation logics to select the qual-

ity of the next segment. Conversely, network-aware clients can

interact with two modes: 1 a strict one, that forces the client to

1
We use the BBA-0 algorithm, referred to as BBA in the remainder of this paper
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Figure 1: Design space at a glance: plots (a)-(d) show a key performance metrics, with di�erent subplots for di�erent scenarios,
i.e., baseline (left), proactive placement without replacement (middle) and no placement with LRU replacement (right). The
bottom x-axis reports the quality cached at the router (in the proactive placement scenario) or the cache size in number of
data packets (in the LRU replacement scenario), while the top x-axis reports the equivalent cache size in MB (both scenarios).

download segments at the quality advertised by the network, re-

gardless of its state (bu�er level and rate estimation); 2 a steered
one, that follows the router indication unless his bu�er level is

below a given threshold (Bmin = 20% in our experiments), in which

case the client downloads at the lowest quality q = 0 (i.e., panic

mode as in AdaptTech).

No proactive placement, LRU replacement.No proactive place-

ment is performed and the cache uses a LRU replacement as cache

management policy. On the client side, network-blind BBA and

AdapTech logics are used.

3.2 Results at a glance
3.2.1 Scenarios. For the sake of simplicity, we consider six em-

ulated clients connected (via Wi-Fi 802.11n or Ethernet) to an in-

termediate router (possibly equipped with a transparent cache of

controlled size S) connected to a video server via an Ethernet link

(of controlled capacityC). All the nodes (i.e., clients, router, servers)

are ICN-enabled (using the ICN stack of the Linux Foundation CICN

project [26]), and each client runs an instance of Viper (the default

dual-stack TCP/IP and ICN video player of CICN). We set the bu�er

capacity to 20 video segments, and uses the defaults parameters

of the adaptation algorithms early indicated. The server hosts the

Tears of Steel video encoded at 6 di�erent qualities, identi�ed by

their bitrates (i.e., 3, 6, 9, 12, 15 and 18 Mbps).

Without loss of generality, we report here a case where we set the

capacity C = 60Mbps, and connect the clients to the intermediate

router using a WiFi 802.11n link: clients are close to the access

point, so that the WiFi channel capacity is about 100 Mbps. In

order to prevent PIT aggregation from occurring at startup in our

experiments (which would lead to a multicast tree to naturally form

in ICN), we introduce stochastic arrivals (with average interarrival

of two seconds). For each scenario, each player downloads once the

video and we gather 95% con�dence interval over 10 runs.

3.2.2 Experimental results. We contrast in Fig. 1 the wide bound-

aries of the design space with the usual metrics: the average qual-

ity perceived by all clients (Fig. 1a), the number of rebu�ering

events (Fig. 1d), the ratio of quality switches (the number of quality

switches divided by the number of segments downloaded, Fig. 1b)

and the cache hit ratio (whenever relevant, Fig. 1c). Each sub�gure

is further divided in three plots, one for each scenario: baseline

(left), proactive placement (middle) and reactive LRU cache (right).

Whenever relevant, the cache size is reported in bytes (top x-axis)

and the placed quality or the equivalent number of data packets

are also indicated (bottom x-axis).



Baseline. In the baseline scenario, when no cache is available and

there is no PIT aggregation, the bottleneck for each six clients is

the router-server link: the fair-share is about 10 Mbps, so that the

highest viable quality is q = 2 (bitrate b2 = 9Mbps). However, due

to the segment size �uctuation, the average quality is around 1.5

for both BBA and AdapTech.

Proactive placement. For Network-blind clients, placement may

be ine�cient when there is a mismatch between the available re-

sources and the cached qualities: these will be unlikely to be re-

quested by the clients, either because too high qualities are cached

and there is not enough bandwidth to request them (e.g., b4 = 15

and b5 = 18 Mbps exceed the fair-share of the WiFi access to the

cache), or because the cached quality is too low in terms of bitrate

compared to the bottleneck capacity (e.g., b0 = 3 and b1 = 6 Mbps

are lower than the fair-share of each client on the bottleneck link

between the router and the original server). As such, placing either

the lowest or the highest qualities (qualities 0,1,4 and 5) does not

result in measurable gain compared to the baseline scenario, while

the cache hit is low (up to 15% for quality 1, close to 0% for the

other qualities). Rather, wrong placement can even worsen the user

QoE: placing q = 1 induces quality oscillations (the quality switch

ratio for AdapTech nearly doubles), while the other metrics are not

impacted.

Network-aware strategies, that are informed of the cached quali-

ties, do not necessarily bene�t from proactive placement either: if

the cached quality is too low (qualities 0 and 1), the average quality

of all clients is below the baseline scenario. Conversely, when the

cached quality is too high (qualities 4 and 5), we see an improvement

of the average quality, but at the costs of either rebu�erings (strict

policy), or quality switches (steered policy). A well dimensioned

proactive placement (e.g., which can be the result of an optimiza-

tion problem) exacerbates the tradeo� between average quality and

quality switch for both network-blind and network-aware clients.

For instance, placing q = 2 or 3 in our scenario induces a cache hit

increases for BBA (respectively 40% and 50%), along with a slight

increase of both the average quality and of the quality switch ratio
2
.

Even with well dimensioned proactive placement, AdapTech still

su�ers from cache-induced quality oscillations: this can be inferred

by a low cache hit ratio, a higher quality switch ratio and no sig-

ni�cant improvement of the average quality. It is worth noting

that network-aware policies with proactive placement yield better

results in terms of cache hit ratio and better (than AdapTech) or

comparable (to BBA) results for the average quality, but do not

eradicate oscillations.

Reactive LRU caches. Finally, when a LRU replacement is done

at the cache, we observe an improvement compared to the other

scenarios: the average quality and cache hit ratio are higher, while

the quality switch ratio remains more or less the same. It is worth

noting that the size of the cache has some in�uence on the perfor-

mance of the clients: when the cache has a small size (18 MB), the

average quality is less than the one observed with a bigger cache

(180 MB or 1800 MB).

2
This is due to BBA’s linear mapping from the bu�er level to the quality requested:

when q = 2 is cached, it will be quickly retrieved from the cache, thus the client will

eventually request q = 3, which will take longer to download, depleting the bu�er

and causing the player to request q = 2, and so on.

4 NETWORK-AWARE DASH PROPOSAL
From Sec. 3, we learn that caching increases average quality but

possibly induce quality oscillations. Proactive placement is cum-

bersome (as it should carefully take into account available and

time-varying resources) whereas LRU caches are simpler and thus

appealing. At the same time, we observe that advertising the cached

quality to guide the client choice can improve the overall QoE: while

advertisement is natural in the proactive placement case, bene�ts

should arise also under reactive LRU caches. Indeed, LRU caches are

driven by the controller requests, which would thus bene�t from

informed assistance from the network to increase cache e�ciency

and reduce oscillations: the simplest possible signal that an LRU

cache can track (at low overhead) and export (through SAND, at

low rate) is the average per-quality hit-ratio. We now show how

network-aware DASH clients can turn this simple indication to a

useful knob to re�ne their decision process by simply performing

throughput estimations on a per-path basis.

4.1 NA2: Network-Aware AdapTech
We enable clients to di�erentiate the source of each ICN Data packet

by using a path label. This allows to dicriminate server vs cache

tra�c, so that clients can keep track of throughput estimations

on a per-path basis: one estimation for the throughput toward

the cache and one toward the server. Furthermore, we enable the

cache to periodically advertise to the clients a per-quality pair of

signals: the average hit-ratio and number of samples (ICN Interest

packets). This advertisement can be done using SAND, but it can

also be achieved by updating the MPD on the �y at the cache in

cases where the MPD is periodically updated (e.g., MPD live). By

combining theses informations, the client can make an educated

choice on the quality of the next segment to download. Algorithm 1

describes Network-Aware AdapTech (NA
2
), a modi�ed version of

AdapTech taking into account the in-network assistance provided

by both path-labelling and cache advertisements.

Like AdapTech, NA
2

divides the bu�er in three zones: the 1

panic zone, the 2 growing zone and the 3 steady zone, delimited

by two thresholds: Bpanic and Bsteady . In the 1 panic zone, the

lowest quality is selected in order to quickly �ll the bu�er as to

avoid rebu�ering events that are harmful to the user QoE. In the 2

growing and 3 steady zones, selection is a two-step process: �rst

we compute the feasibility of each considered quality and second,

we select the highest feasible quality. A quality q is feasible if the

downloading rate BW is higher than the associated bitrate bq , i.e.,

the segment is downloaded faster than viewed. Speci�cally, the rate

is multiplied by a conservative slack factor δ to account for size

variations across segments, and the instantaneous BW or average

B̂W rates are used depending on the bu�er state.

Network-awareness kicks in zones 2 and 3 . If there are not

enough samples for this quality (Nq < Tsamples ), the informations

provided by the cache are not signi�cant and therefore a conserva-

tive choice is made, by using the estimated throughput to the server

to compute the quality’s feasibility. If there are enough samples, the

average per-quality cache-hit ratio Pq is segmented in three zones:

4 cold (Pq ≤ PLow ), 5 warm (PLow < Pq ≤ PHiдh ) and 6 hot

(Pq > PHiдh ) cache. In the 4 cold zone, it is likely that segments

of quality q are not cached, and will be downloaded from the server,



Algorithm 1 NA
2
: Network-Assisted AdapTech

1: B(t) . Bu�er level

2: BWS ,BWC . Server and cache instant throughput

3: B̂W S , B̂WC . Server and cache average throughput

4: {Pi }1≤i≤M , {Ni }1≤i≤M . Per quality cache hit and samples no.

5: q, bq . Current quality and associated bitrate

6:

7: if B(t) ≤ Bpanic then . 1 Panic

8: q← 1

9: else if B(t) ≤ B
steady

then . 2 Growing

10: q← argmax

i ∈~q−1,q+1�
isFeasible( i, BWS , BWC , growing)

11: else if B(t) > B
steady

then . 3 Steady

12: if isFeasible(q+1, B̂W S , B̂WC ,steady) && CSU then
13: q← q + 1
14: return q
15:

16: function isFeasible(q,BWS ,BWC , state)

17: if (Nq < TSamples ) | | (Pq ≤ TLow ) then . 4 Cold

18: return (BWS × δ > bq )
19: else
20: if Pq ≤ THiдh then . 5 Warm

21: if state = growing then
22: return (BWS × δ > bq ) && (BWC × δ > bq )
23: else
24: return (BWS × δ > bq ) | | (BWC × δ > bq )

25: else . 6 Hot

26: return (BWC × δ > bq )

therefore the estimated throughput to the server is used to conser-
vatively compute the quality’s feasibility. In the 6 hot zone, it is

likely that the quality is cached and thus the estimated throughput

to the cache is used. Finally, in the 5 warm zone both estimates are

used: in the 2 growing bu�er state, the main objective is to �ll the

bu�er, therefore a conservative choice is made (i.e., the quality has

to be feasible for both paths), while in the 3 steady bu�er state,

the bu�er level is high enough to allow for a more optimistic choice

(i.e., the quality has to be feasible for at least one of the two paths).

As in AdapTech, we restrict the magnitude of a quality switch

to one. As a result, in the 2 grow and 3 zones, we consider only

the current quality and the ones directly below and above it (when

possible). Note that, just like AdapTech, in the steady zone, we

can only increase the quality if for at least T seconds, the network

conditions allow us to switch to a higher quality: at that point, the

can-switch-up (CSU) �ag is set to True .

4.2 Experimental evaluation
4.2.1 Sensitivity analysis. To assess the impact of the di�erent

parameters of our algorithm on the user QoE, we use the early

described topology, in which all six clients are connected to the

router using an Ethernet link with a capacity of 30 Mbps. The

router is connected to the server via an Ethernet link of capacity C =

30 Mbps. To avoid PIT aggregation, we introduce stochastic arrivals

(with average interarrival of 6 seconds). We set the cache capacity of

the router to 1.8GB (corresponding to 1.2M Data packets). We use
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default AdapTech values for Bpanic = 10s , Bsteady = 20s , δ = 0.8.

For Network-awareness, we advertise the cache hit-ratio every

30 seconds, and require to have collected at least TSamples = 10
4

packets. Assuming that the available bandwidth to the server is

lower than the one to the cache, the higher TLow is, the more

conservative our algorithm is. We thus set TLow = 0.1 to avoid

being too conservative and we varyTHiдh from 0.1 to 0.9. For each

value, we repeat experiments 40 times, for a total of over 100 hours

work of experiments.

Fig. 3 presents the ratio of the usual metrics of our algorithm vs

baseline AdapTech for the 10-th worst percentile of clients (left) and

the median client (right). We see that our algorithm signi�cantly

reduces the number of quality switches (by about a factor of 2 in

both cases) and drastically cut the rebu�ering rate (by about one

order of magnitude for both cases). In the case of the median client,

this is done as expected at the expense of the average quality, which

reduces by about 15%. Interestingly, for the worst 10-percentile of

clients, the average quality actually increases by 50%, which is again

a sizeable improvement. Finally, note that results are very stable

irrespectively of the exact (TLow , THiдh ) parameterization: we can

observe the upper bound of average quality is obtained at (0.1, 0.35)

and the lower bound of quality switch at (0.1, 0.5).

4.2.2 Comparison with Network-blind baseline. We �nally vary

the cache capacity of the router between 90MB and 1.8 GB (respec-

tively corresponding to 60k and 1.2M packets). For each cache size,

we run 20 experiments for each adaptation logic: network-blind

AdapTech, NA
2

(upper bound), and NA
2

(lower bound), for yielding

a total of 120 experiments. The results are presented in Fig. 4, in

terms of average quality, quality switch ratio, cache hit ratio and
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Figure 4: Evaluation: Comparison of Network blind vs Net-
workAwareAdapTech, for twoNA2 settings: upper bound of
average quality (TLow ,THiдh ) = (0.1, 0.35) and lower bound of
quality switch ratio (TLow ,THiдh ) = (0.1, 0.5).

rebu�ering probability (the ratio of the number of rebu�erings

over all experiments over the number of segments downloaded).

The gold bars present the results for network-blind AdapTech, the

brown ones present the results for NA
2

(upper bound) and the

green one presents the results for NA
2

(lower bound).

For both cache sizes , we con�rm that NA
2

sizeably (drastically)

reduces the quality-switch (rebu�ering) ratio. Particularly, when

the cache is small (60k packets), NA
2

outperforms a network blind

AdapTech, both in average quality and in quality switches. This is

due to a better utilisation of the cache (notice the the hit rate in-

crease): with network-blind AdapTech, quality oscillations happens

which pollutes the cache. When the cache is small, this pollution is

critical because it replaces segments that can be useful for the other

clients. Our network-aware approach circumvents this pollution by

giving more informations to the client, which can make educated

choices for the quality of the next segment and thus preventing

quality oscillations.

With a bigger cache (1.2M packets), the pollution is still present,

but is less critical because it does not replace useful segments. As

a result, the average quality is higher, for both network-aware

and network-blind algorithms. The average quality observed for

our network-aware approach is slightly lower than compared to

network blind AdapTech, which is necessary to prevent cache-

induced quality oscillations. Shortly, NA
2

is simple and robust,

providing sizeable bene�ts for DASH QoE.

5 CONCLUSION
In this paper, we propose a simple signal such as the per-quality

cache hit-rates from cache, coupled with a per-path throughput

estimation, which is e�ective for (i) avoiding the cache-induced

oscillations (reduction of the quality switch ratio), while (ii) main-

taining a comparable average quality (increasing worst case quality

but necessarily reducing quality for more aggressive clients), and

(iii) increasing the cache hit ratio.

While the quantitative results showed in this paper are gathered

with a speci�c network-aware evolution of AdapTech, we argue

that network-assistance such as the one we propose is bene�cial to

all rated-based adaptation logics: part of our future work aims at

systematically leveraging such signals in multiple controllers [16].

Additionally, we plan to further extend the class of signals that

the network can export. Particularly, another appealing signal is

binary feedback piggybacked from the cache to assert whether the

next segment in the same quality is cached. On one hand, such

feedback would require additional overhead at the cache (extra

lookup for content that has not been requested yet) and would also

need a re�ned timing: if the feedback is too early, the segment could

be evicted from the cache, and if the feedback is too late, it will

reach the client after his decision. On the other hand, such feedback

would help further to increase the user QoE.
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