
ModelGraft: Accurate, Scalable, and Flexible

Performance Evaluation of General Cache Networks

Michele Tortelli1, Dario Rossi1 and Emilio Leonardi2

1Télécom ParisTech, Paris, France
2Politecnico di Torino, Torino, Italy

Abstract

Large scale deployments of general cache networks, such as Content Delivery
Networks or Information Centric Networking architectures, arise new challenges
regarding their performance evaluation for network planning. On the one hand,
analytical models can hardly represent all the detailed interaction of complex
replacement, replication, and routing policies on arbitrary topologies. On the
other hand, the sheer size of network and content catalogs makes event-driven
simulation techniques inherently non-scalable.

We propose a new technique for the performance evaluation of large scale
caching systems that intelligently integrates elements of stochastic analysis
within a MonteCarlo simulative approach, that we colloquially refer to as Mod-
elGraft. Our approach (i) leverages the intuition that complex scenarios can be
mapped to a simpler equivalent scenario that builds upon Time-To-Live (TTL)
caches; it (ii) significantly downscales the scenario to lower computation and
memory complexity, while, at the same time, preserving its properties to limit
accuracy loss; finally, it (iii) is simple to use and robust, as it autonomously con-
verges to a consistent state through a feedback-loop control system, regardless
of the initial state.

Performance evaluation shows that, with respect to classic event-driven sim-
ulation, ModelGraft gains over two orders of magnitude in both CPU time and
memory complexity, while limiting accuracy loss below 2%. In addition, we
show that ModelGraft extends performance evaluation well beyond the bound-
aries of classic approaches, by enabling study of Internet scale scenarios with
content catalogs comprising hundreds of billions objects.

1 Introduction

Caching systems, from their simplest single-cache incarnation to more complex
general networks, have attracted remarkable attention over the years. Different
approaches have been proposed to study their performance, from exact analyti-
cal models [21] with a high computational cost, to refined approximations able to

1

2

 0

 10

 20

 30

 40

 50

 60

1e2
1e5

1e3
1e6

1e4
1e7

1e5
1e8

1e6
1e9

0|Cache| (C)
|Catalog| (M)

p h
it

[%
]

α = 0.8
α = 1.0
α = 1.2 89.9 %

100.0 %

55.9 %

Figure 1: Hit ratio variability - 4-level binary tree, variable α, fixed C/M = 0.01%
ratio, with proportional variation of C and M .

reduce the computational cost while preserving their accuracy within acceptable
bounds [11, 19, 12, 22, 36, 10, 13, 35, 29, 26]. However, with Content Distribution
Networks (CDNs) first, and then with the advent of a new networking paradigm,
namely Information Centric Networking (ICN) [32], caches become the atomic part
of globally deployed networks. Under CDN/ICN architectures, several factors like
content replacement algorithms, cache decision policies, and forwarding strategies,
interact with each other at a global scale: such intricate dependencies heavily influ-
ence the performance of the whole system, and thus make it hard to rely only on pure
analytical models to reliably predict network Key Performance Indicators (KPIs).

It follows that, especially as a first step to assess the performance of new complex
protocols, event-driven simulation techniques represent an appealing alternative:
indeed, simulative techniques make it simpler to describe algorithmic interactions
between all the different entities with the desired level of fidelity. At the same
time, large-scale simulations require massive computational resources (both CPU
and memory), to the point that the very same fidelity of simulation results may be
compromised by the intrinsic scalability limit of the technique itself.

To show why this may be the case, we provide in Fig. 1 an illustrational example.
Whereas it is well known that Internet-scale catalogs approaches trillion objects [30],
these scales are hardly achievable in simulation: as such, simulation-based studies
typically resort to näıve downscaling of the scenario under investigation, to comply
with memory constraints and CPU-time budgets. Using the mean hit ratio as KPI,
Fig. 1 contrasts the performance of a four-level binary tree where the Zipf exponent
is varied α ∈ {0.8, 1, 1.2}, and the ratio between catalog cardinalityM and cache size
C is kept constant to C/M = 0.01%, while both M and C are jointly downscaled.
Results in Fig. 1 clearly show that barely downscaling the simulated scenario by

3

linearly reducing the size and cardinality of all the components does not preserve its
original properties at all: the relative error between the smallest vs largest scenario
is between 50% and 100%. This fact has profound implications: indeed, rather
typically, crucial parameters of the scenario under investigation such as the Zipf
exponent α (or Mandelbrot Zipf plateau q) are measured over real Internet catalogs
such as YouTube [8] (or the BitTorrent ecosystem [16]) that are not only growing,
but already had a catalog in the order of hundred millions objects about 10 years
ago [8]. Clearly, Fig. 1 also implies that merely applying catalog parameters inferred
from large-scale measurements to small-scale simulations does not make any sense,
as it induces excessive distortion of the KPI to make results of practical relevance.

Inspired by hybrid models proposed over the years in different domains (see
Sec. 9) we argue that grafting components of stochastic modeling into simula-
tive techniques can increase the scalability of the resulting technique by orders
of magnitude, without compromising its accuracy at the same time. Specifically,
our methodology exploits a synergy between stochastic analysis of Least Recently
Used (LRU) caches [10, 26] and MonteCarlo approaches based on Time-To-Live
(TTL) caches [19, 12, 27, 29]. In particular, our intuition consists in using the
characteristic time TC of Che’s approximation [10] for LRU caches as the TTL
parameter in MonteCarlo simulations: as a consequence, the complexity is signifi-
cantly reduced by simulating TTL-based caches in place of their more complex LRU
counterpart, and by subsampling the original catalog in a way that preserves its key
statistical properties. Given that TC in complex scenarios is not known a priory,
our system uses a feedback loop to iteratively converge to the correct TC value, even
when the initial guess is wrong by two orders of magnitude.

We develop this intuition further to build a fully integrated system, making the
following contributions:

• we propose a novel hybrid methodology for the performance evaluation of
cache networks, that reduces CPU time and memory usage by over two orders
of magnitude, while limiting accuracy loss to less than 2%;

• we implement the methodology as an alternative simulation engine, so that
users can seamlessly switch between event-driven vs ModelGraft simulation,
on the very same scenario;

• we make the technique (and scenarios) available as open source in the latest
release of ccnSim [1].

In the remainder of this paper, we first provide background information about
the building blocks leveraged by our methodology, and about the modeling intuition
behind them (Sec. 2). We next provide a succinct overview of our proposal (Sec. 3),
followed by an in-depth description of each component (Sec. 4–6). We next validate
the technique through a performance evaluation (Sec. 7) involving both very-large

4

and Internet-scale scenarios, before showcasing results related to an extensive sen-
sitivity analysis (Sec. 8) on all the main parameters of the ModelGraft workflow.
In the end, we cover related work (Sec. 9) and conclude the paper (Sec. 10).

2 Modeling intuition

In this section we first introduce background material on Che’s approximation [9]
(Sec. 2.1), and then formalize our intuition about the equivalence between LRU
caches and (opportunely configured) TTL-based caches [19, 12, 27, 29] (Sec. 2.2),
which constitute a fundamental building block of our methodology.

2.1 Background

Che’s approximation [9], conceived for a LRU cache, is essentially a mean-field
approximation which greatly simplifies interactions between different contents inside
a cache. In particular, it consists in confusing the cache eviction time TC(m) for
content m (i.e., the time since the last request after which object m will be evicted
from the cache, unless the object is not requested again in the meantime), with a
constant characteristic time TC , which does not depend on the content itself, being
a property of the whole cache. As a consequence, content m is considered to be
in the cache at time t, if and only if, at least one request for it has arrived in the
interval (t− TC , t]. Supposing an Independent Request Model (IRM), with content
catalog of size M , and request process for content m to be Poisson of rate λm, the
probability pin(m) for content m to be in a LRU cache at time t can be expressed
as:

pin(λm, TC) = 1− e−λmTC (1)

Denoting with 1{A} the indicator function for event A, we have that by construction,
cache size C must satisfy:

C = E[C] = E

[∑
m

1{m in cache at t}

]
=
∑
m

pin(λm, TC). (2)

It follows that the characteristic time TC can be computed by numerically inverting
(5), which admits a single solution [9]. Finally, KPIs of the system, such as the
cache hit probability phit, can be computed using the PASTA property as:

phit = EΛ[pin(λm, TC)] =
∑
m

λmpin(λm, TC)/
∑
m

λm (3)

As far as a single cache is concerned, Che’s approximation was originally proposed
for LRU caches [9], but it has been extended in more recent times to FIFO or
Random replacement [13], LRU caches with probabilistic insertion [26], possibly
depending on complex cost functions [4], and renewal request models [23].

5

As far as networks of caches are concerned, however, further approximations are
required as an alternative approach to the computationally and algorithmically chal-
lenging characterization of the miss streams at any node in the network [26, 29]. In
arbitrary networks with shortest path [36], or more complex routing policies [38], it
has been shown that inaccuracies can potentially cascade, with significant degrada-
tion of the accuracy with respect to simulation [39]. Finally, analytical approaches
often assume stationary conditions, thus lacking in characterizing transient periods,
although a model has been recently proposed only for a single cache [14]. All these
reasons thus justify the quest for an hybrid approach, such as the one we propose in
this work.Che’s approximation [9], conceived for a LRU cache, is essentially a mean-
field approximation which greatly simplifies interactions between different contents
inside a cache. In particular, it consists in confusing the cache eviction time TC(m)
for content m (i.e., the time since the last request after which object m will be
evicted from the cache, unless the object is not requested again in the meantime),
with a constant characteristic time TC , which does not depend on the content itself,
being a property of the whole cache. As a consequence, content m is considered to
be in the cache at time t, if and only if, at least one request for it has arrived in the
interval (t− TC , t]. Supposing an Independent Request Model (IRM), with content
catalog of size M , and request process for content m to be Poisson of rate λm, the
probability pin(m) for content m to be in a LRU cache at time t can be expressed
as:

pin(λm, TC) = 1− e−λmTC (4)

Denoting with 1{A} the indicator function for event A, we have that by construction,
cache size C must satisfy:

C = E[C] = E

[∑
m

1{m in cache at t}

]
=
∑
m

pin(λm, TC). (5)

It follows that the characteristic time TC can be computed by numerically inverting
(5), which admits a single solution [9]. Finally, KPIs of the system, such as the
cache hit probability phit, can be computed using the PASTA property as:

phit = EΛ[pin(λm, TC)] =
∑
m

λmpin(λm, TC)/
∑
m

λm (6)

As far as a single cache is concerned, Che’s approximation was originally proposed
for LRU caches [9], but it has been extended in more recent times to FIFO or
Random replacement [13], LRU caches with probabilistic insertion [26], possibly
depending on complex cost functions [4], and renewal request models [23].

As far as networks of caches are concerned, however, further approximations are
required as an alternative approach to the computationally and algorithmically chal-
lenging characterization of the miss streams at any node in the network [26, 29]. In
arbitrary networks with shortest path [36], or more complex routing policies [38], it

6

has been shown that inaccuracies can potentially cascade, with significant degrada-
tion of the accuracy with respect to simulation [39]. Finally, analytical approaches
often assume stationary conditions, thus lacking in characterizing transient periods,
although a model has been recently proposed only for a single cache [14]. All these
reasons thus justify the quest for an hybrid approach, such as the one we propose
in this work.

2.2 Intuition

Observe that, given the characteristic time TC under Che’s approximation, the
dynamics of the different contents become completely decoupled. As a consequence,
we can resort to simpler caching than LRU to ease the analysis of complex and large
cache networks. One such alternative is constituted by Time-to-Live (TTL) based
caches [19, 12, 27, 29]: contents are evicted from the cache after a pre-configured
eviction time T ′C since the last request, unless a cache hit happens in the meantime
(which resets the object timer).

Observation 1. As experimentally shown in [9], and remarked in [12, 26], the
dynamics of a LRU cache with characteristic time TC , fed by an IRM process as-
sociated to a catalog M with cardinality M , and request rates λm drawn from a
distribution Λ, become indistinguishable from those of a TTL based cache with de-
terministic TTL parameter set equal to TC , and operating on the same catalog :

pTTLhit (TC) = EΛ[1− e−λmTC] = EΛ[pin(λm, TC)] = pLRUhit (TC) (7)

Specifically, (7) equals the average hit probability of the original LRU system to
that of its TTL-based equivalent [12, 26]. Leveraging further on this intuition, we
argue:

Observation 2. Large-scale LRU networks can be analyzed through a downscaled
system associated to a catalog M′ with cardinality M ′ � M , where each cache is
replaced by its TTL equivalent with an eviction time T ′C set equal to the charac-
teristic time TC of the original LRU cache. KPIs of the original network are, by
construction, recovered by averaging system performance over multiple MonteCarlo
realizations of the downscaled one, each lasting for a duration δT , and where rates
λ′m for individual objects of the downscaled catalog M′ are uniformly and indepen-
dently drawn from Λ. Thus, expanding (7):

EΛ
′
[
pin(λ′m, TC)

]
=

EΛ

[
λ′mpin(λ′m, TC)

]
EΛ[λ′m]∑

m λmPt(λ
′
m = λm)pin(λm, TC)∑

m λmPt(λ
′
m = λm)

=

∑
m λmpin(λm, TC)∑

m λm
(8)

where Pt(λ
′
m = λm) represents the probability that we have λ′m = λm at a generic

time instant t. Observe that the top-right expression admits a simple physical

7

RESULTS SCENARIO
DESCRIPTION Model ModelGraft Simulation

TC (model)

TC (guess)

Downscaling factor (Δ) Yotta (Y) Topology
Routing and Forwarding
Cache replacement policy
Cache decision policy
Content popularity
Request Rate (λ)
Nodes (N)
Catalog cardinality (M)
Cache size (C)
Requests (R)

(a) High level view of the integrated simulation workflow

Downscaling
& Sampling

[4]x

+
TC

Correction

[6.2]x

Transient

Steady-state
Monitor

Simulation
Cycle

Consistency
Check

[6.1]x

MC-TTL Simulation [5]x

C ′ T
(z+1)
C

C ′

Y

Y∆ T
(z)
C

C̃(z)

C̃(z)

(b) Details of the ModelGraft MonteCarlo TTL-Based workflow

Figure 2: ModelGraft overview: (a) integration in ccnSim and (b) synoptic of the
ModelGraft workflow.

interpretation as the ratio between the average hit-rate and the average rate of
requests at the cache.

Given that, under the previous assumptions, contents have decoupled dynamics,
we can significantly downscale the system, thus reducing both memory and CPU

8

complexity on the one hand, and accurately represent complex interactions and
correlations among different caches, at the same time.

Observation 3. A practical approach is to let δT → 0, and a convenient approxi-
mation is to re-extract λ′m at every new request, so to satisfy (8).

We would like to remark that, in this case, in order to ensure that at a given
arbitrary time t, Pt(λ

′
m = λm) = 1/M, we have to extract the new value for λ′m at

every arriving request from Λ non uniformly. In particular, it can easily shown, as
consequence of classical renewal arguments, that the probability of extracting λm
as a new value for λ′m must be set equal to λm∑

m λm
, i.e., more formally, P (λ′m =

λm) = λm∑
m λm

.

The remainder of this paper illustrates, describes, and validates in greater details
the methodology that is built upon these observations.

3 ModelGraft overview

ModelGraft performs MonteCarlo simulations of an opportunely downscaled system,
where LRU caches are replaced by their Che’s approximated version, implemented
in practice as TTL-based caches. Before dwelving into its details, it is worth to
both placing it into a broader context, as well as illustrating, at high level, each of
its building blocks.

We implement ModelGraft as a simulation engine available in the latest version
of ccnSim [1]. As illustrated in Fig.2(a), starting from a unique scenario descrip-
tion, users can analyze the performance of cache networks via either an analytical
model [26], if available (left), a classic event-driven simulation engine (right), or via
the ModelGraft engine (middle).

ModelGraft depends on a single additional parameter, namely the downscaling
factor ∆, which can be easily tuned according to guidelines in Sec.6.2. As introduced
in Sec. 2.2, ModelGraft requires input TC values for each cache in the network. One
option could be to bootstrap ModelGraft with informed guesses of TC gathered
via, e.g., analytical models (notice the TC(model) switch in Fig.2(a)), which would
however limit the interest of the methodology (i.e., only cases covered by the model
could be considered). A more interesting approach, used by default in ModelGraft,
is instead to start from uninformed guesses of TC (notice the default wiring to the
TC(guess) switch in Fig.2(a)), and let the system iteratively correct the TC value.
In other words, ModelGraft is intrinsically conceived as an auto-regulating system,
so that, by design, it achieves accurate results even when the input TC values, that
the user does not even need to be aware of, largely differ from the correct ones.

Details are exposed in Fig.2(b), which shows each of the blocks that are thor-
oughly described in the following sections. In a nutshell, ModelGraft starts with
the configuration of the downscaling and sampling process (Sec. 4), before entering

9

the MonteCarlo TTL-based (MC-TTL) simulation (Sec. 5). During the MC-TTL
phase, statistics are computed after a transient period (Sec. 5.1), where an adap-
tive steady-state monitor tracks and follows the dynamics of the simulated network
in order to ensure that a steady-state regime is reached without imposing a fixed
threshold (e.g., number of requests, simulation time, etc.) a priori (Sec. 5.2). Once
at steady-state, a downscaled number of requests are simulated within a MC-TTL
cycle (Sec. 5.3), at the end of which the monitored metrics are provided as input to
the self-stabilization block (Sec. 6): a consistency check decides whether to end the
simulation (Sec. 6.1), or to go through a TC correction phase (Sec. 6.2) and start
a new simulation cycle.

4 Downscaling and sampling

4.1 Design

The ModelGraft workflow starts with a proper downscaling of the original scenario.
The only controlling parameter is the downscaling factor ∆ � 1: a catalog com-
prising M ′ = M/∆ objects, attracting R′ = R/∆ total requests, will be simulated
at steady-state in the equivalent TTL-based system (Sec. 5.3). Moreover, when
T ′C = TC , a TTL cache will store, on average, C ′ = C/∆ contents at steady-state.
Indeed, adapting (5) to the downscaled scenario (i.e., M ′ = M/∆), we can compute
the expected cache size as:

E[C ′] =

M
′∑

n=1

pin(λ′n, TC) = C/∆. (9)

However, in order to avoid pitfalls caused by a nav̈e downscaling process (recall
Fig. 1), we need to ensure that the downscaled catalog preserves the main features
of the original one, e.g., its popularity distribution. While our methodology is
not restricted to a specific popularity law, in what follows we develop the case
where object popularity follows a Zipfian probability distribution with exponent α
– which is also the most interesting case from a practical viewpoint. Hence, we
denote with Λ the aggregate arrival rate of all objects in the catalog, and with
λn = Λn−α/

∑M
k=1 k

−α the rate for the n-th object in the original catalog.
The proposed approach, sketched in Fig. 3, consists in splitting the original

catalog into a number of M ′ bins having the same cardinality ∆, i.e., |Mn| = ∆,
where Mn refers to the n-th bin, with n ∈ [1,M ′]. In ModelGraft, each bin of
the original catalog is represented by a single “meta-content” in the downscaled
system, i.e., the active catalog comprises M ′ meta-contents. The key idea is to let
each meta-content n to be requested with an average request rate, λ̄′n, which closely
approximates the average request rate of the contents within the respective bin in
the original catalog. More formally, for the n-th meta-content, with n ∈ [1,M ′], it

10

Bins

3 M’ . . . Meta Contents

. . . Original Contents

Δ Δ Δ Δ

2 1

DOWNSCALING
& SAMPLING

M
C
R

M’ = M / Δ
C’ = C / Δ
R’ = R / Δ

Figure 3: Downscaling and sampling process.

is required that:

λ̄′n =
1

∆

n∆∑
m=(n−1)∆+1

λm, (10)

where the interval [(n−1)∆+1, n∆] represents contents of the original catalog that
fall within the n-th bin. This design can be achieved by (i) instantiating M ′ parallel
request generators, i.e., one per each meta-content, each of which is identified by
a fixed n ∈ [1,M ′]; (ii) for any given meta-content n, varying its instantaneous
request rate at each new request, as suggested in Observation (3), so that its average
complies with (10).

4.2 Implementation

As already anticipated in section 2.2, it is easy to see that the simplest imple-
mentation of the above requirements boils down to bind the probability accord-
ing to which, rate λ′n for n-th meta-content is sampled at every new request i.e.,
P (λ′n = λm) with the popularity distribution of the ∆ contents inside the respective
bin m ∈ [(n− 1)∆ + 1, n∆]:

P (λ′n = λm) =
λm
n∆∑

j=(n−1)∆+1

λj

≈ 1

∆

λm

λ̄′n
. (11)

While the above requirement (10) is met, a significant downside of this näıve im-
plementation is its space complexity. Indeed, since it is based on the classic inverse
transform sampling, this approach would require to store M ′ Cumulative Distri-
bution Functions (CDFs) having each a size ∆, resulting in an overall memory

11

allocation equal to M ′∆ = M elements, i.e., as in the original scenario. Given that
M is the dominant factor driving the overall memory occupancy, it is clear that
such a simple implementation is not compatible with our goals.

We therefore resort to a better sampling technique called Rejection Inversion
Sampling [18], which is an acceptance-rejection method that efficiently generates
random variables from a monotone discrete distribution (in this case Zipf’s distri-
bution) without allocating memory-expensive CDFs, and which is characterized by
a O(1) runtime complexity. Originally proposed in [18] for α > 1, this technique has
been recently extended to all non-negative exponents α > 0 [3]. Without thoroughly
discussing all its details, we provide a brief overview of its main steps. First of all,
the object population (that we assume being the interval [1,∆] for sake of simplic-
ity) is divided into two parts: the head, composed by only the first element, and
the tail, consisting in the remaining objects. Then, as in any acceptance-rejection
method, a hat function h(x) and its integral H(x) are defined. At this point, the
algorithm [3] iterates through the following steps:

1. Extract a uniformly distributed random variable U from the area under the
hat function.

2. Extract, by inversion, the element X to test, and limit its range to [1,∆]:

X ← H−1(U), K ← bX + 1/2c (12)

3. Return K if:
K −X ≤ s ‖ U ≥ H(K + 1/2)− h(k) (13)

It can be shown [3] that the probability of selection and acceptance for both the
head and an element from the tail are proportional to the probability mass function
of Zipf’s distribution.

Recall now that power-law distributions (and hence Zipf’s one) exhibit a scale-
independent (or self-similar) property, according to which the scale exponent α is
preserved independently of the level of observation. Hence, by means of rejection
inversion sampling, we can consider a single interval [1,∆] (i.e., with the same
cardinality of one bin) from which extracting indexes that follow a Zipf’s distribution
with exponent α, and that will be used to vary the request rates of the M ′ meta-
contents at each new request, as pointed out in Sec. 4.1. Indeed:

Observation 4. If the request generator associated to the n-th bin, with n ∈ [1,M ′],
needs to schedule the next request rate for the n-th meta-content, an index t ∈ [1,∆]
is extracted with the aforementioned technique: to satisfy condition (10), the relative
request rate has to be computed as λ′n = λ(n−1)∆+t.

12

Proof. In classic event-driven simulation, the average request rates for contents of
the original catalog M inside an ideal bin n of size ∆ would be:

E[λn] =
1

∆

n∆∑
i=(n−1)∆+1

λi =
Λ

∆

n∆∑
i=(n−1)∆+1

P (i) (14)

=
Λ

∆

n∆∑
i=(n−1)∆+1

 1
i
α∑M

j=1
1
j
α


=
L

∆

n∆∑
i=(n−1)∆+1

1

iα
. (with L = Λ∑M

j=1
1

i
α

)

Consider, now, the design of ModelGraft: a single random number generator which
extracts, at each request, and for each n-th meta-content (where n ∈ [1,M ′]), a
random number from a Zipf’s distribution with exponent α and cardinality ∆, i.e.,
equal to the cardinality of a single bin. It follows that, the probability for the n-th
meta-content to be requested with a rate λm, where m ∈ [(n − 1)∆ + 1;n∆], is
given by the joint probability of two events: P (Mn), which is the probability of
scheduling a request for the n-th bin (given by the sum of the P (λi) of that bin, i.e.,
the aggregate request rate it represents), and P (t), which represents the probability
of extracting an index t from a Zipf’s distribution with exponent α and cardinality
∆. The final request rate for the n-th meta-content will be, then, λm = λ(n−1)∆+t,
provided that a request for the n-th bin is being scheduled. As a consequence, it
results that:

λ̄′n =
Λ

∆

∆∑
i=1

P (i ∩Mn) =
Λ

∆

∆∑
i=1

P (i|Mn)P (Mn)

=
Λ

∆

∆∑
i=1

P (i)P (Mn)

=
Λ

∆

∆∑
i=1

 1
i
α∑∆

j=1
1
j
α

n∆∑
k=(n−1)∆+1

(
1
k
α∑M

z=1
1
z
α

)
=

Λ

∆

n∆∑
k=(n−1)∆+1

(
1
k
α∑M

z=1
1
z
α

)
∆∑
i=1

 1
i
α∑∆

j=1
1
j
α


=
L

∆

n∆∑
k=(n−1)∆+1

1

kα
(with L = Λ∑M

z=1
1

z
α

)

= E[λn],

where the first step follows from Bayes’ theorem, the second step from independence
between the two events, and the latest steps from algebra. �

13

5 MC-TTL Simulation

5.1 Transient

Once the scenario is properly downscaled, ModelGraft starts the warm-up phase of
the first MC-TTL simulation cycle (with initial uninformed guesses for TC). Given
that the duration of the warm-up can be affected by many parameters, ModelGraft
monitors KPIs in order to automatically adapt the duration of the transient period,
thus guaranteeing their statistical relevance. For instance, transient duration can be
affected by forwarding policies (e.g., where shorter average paths under ideal Nearest
Replica Routing can reduce the transient with respect to shortest path [38]), as
well as from cache decision policy (e.g., like Leave Copy Probabilistically (LCP) [5],
where the reduced content acceptance ratio with respect to Leave Copy Everywhere
(LCE) is expected to yield longer transient durations).

5.2 Steady-state monitor

TThe convergence of a single node i is effectively monitored using the Coefficient
of Variation (CV) of the measured hit ratio, p̄hit(i), computed via a batch means
approach. In particular, denoting with phit(j, i) the j-th sample of the measured
hit ratio of node i, node i is considered to enter a steady-state regime when:

CVi =

√√√√ 1
W−1

W∑
j=1

(phit(j, i)− p̄hit(i))
2

1
W

W∑
j=1

p̄hit(j, i)

≤ εCV , (15)

where W is the size of the sample window, and εCV is a user-defined convergence
threshold. To avoid biases, new samples are collected only if (i) the cache has
received a non-null number of requests since the last sample, and (ii) its state has
changed, i.e., at least a new content had been admitted in the cache since the last
sample. To exemplify why this is important, consider that with a LCP(p) cache
decision policy, where new contents are probabilistically admitted in the cache,
the reception of a request is correlated with the subsequent caching of the fetched
content only in 1 out of 1/p cases.

At network level, denoting with N the total number of nodes in the network,
and given a tunable parameter Y ∈ (0, 1], we consider the whole system to enter
steady-state when:

CVi ≤ εCV , ∀i ∈ Y, (16)

where |Y| = dY Ne is the set of the first Y N nodes satisfying condition (15). The
rationale behind this choice is to avoid to unnecessarily slow down the convergence of
the whole network by requiring condition (15) to be satisfied by all nodes: indeed,

14

due to particular routing protocols and/or topologies, there are nodes that have
low traffic loads (hence, long convergence time), and, at the same time, a marginal
weight in network KPIs. A sensitivity analysis of the impact that Y has on system
performance is presented in Sec. 8.3, with the aim to show that, even by excluding
some nodes, the accuracy of the gathered KPIs is not affected, and, at the same
time, the time of convergence is reduced.

5.3 Simulation cycle

For the original system, the duration of a simulation cycle T at steady-state is
computed as T = R/(ΛNC), where R is the target number of requests, Λ =

∑
i∈M λi

is the aggregate request rate per client, and NC the number of clients. In MC-TTL
simulations, instead, the total request rate per each client is Λ′ =

∑
n∈M ′ λ′n ≈ Λ/∆.

Keeping the simulated time T ′ = T constant, it follows that the number of simulated
events per each cycle of a MC-TTL simulation is R′ = R/∆ – with an expected
significant reduction of the CPU time required to simulate a cycle.

6 Self-stabilization

As described in Sec. 3, one of the desirable properties of our hybrid methodology
is a self-contained design that allows to simulate large scale networks even in the
absence of reliable estimates of characteristic times TC . This is achieved through
a feedback loop, which ensures that our methodology self-stabilizes as a result of
the combined action of two elements: a measurement step, referred as consistency
check, and a controller action, where inaccurate TC values are corrected at each
iteration.

6.1 Consistency check

The consistency check is based on Eq. (9), according to which a TTL cache of
the downscaled system, with downscaling factor ∆, and T ′C = TC , would store, on
average, C ′ = C/∆ contents at steady-state. Moreover, it is worth highlighting that,
unlike LRU caches having a fixed size (and where the oldest content is selected for
eviction), TTL caches are supposed with infinite size [12] (as old contents remain
soft-state in the cache for a fixed TTL, but are not otherwise evicted due to cache
size limits). Considering that there exists a strong correlation between the eviction
time TC and the number of cached contents, it follows that we can consider the
measured cache size C̃ as our controlled variable.

In particular, for each TTL cache we maintain an online average of the number
of stored contents as:

C̃
(z)
i (k + 1) =

C̃
(z)
i (k) t(k) +Bi

(z)(k + 1) [t(k + 1)− t(k)]

t(k + 1)
, (17)

15

where C̃
(z)
i (k) is the online average of the cache size of the i-th node at k-th mea-

surement time during z-th simulation cycle, and Bi
(z)(k + 1) is the actual number

of contents stored inside the TTL cache of the i-th node at the (k + 1)-th mea-
surement time during the z-th simulation cycle. Samples for the online average are
clocked with miss events and collected with a probability 1/10, so that samples are
geometrically spaced, in order to avoid oddities linked to periodic sampling [6].

At the end of each MC-TTL simulation cycle (i.e., after the simulation of R′

requests), the consistency check block evaluates the accuracy of the measured cache

size C̃(z), with respect to the target cache C ′, by using the following expression:

1

Y N

∑
i∈Y

∣∣∣C ′ − C̃(z)
i (kend)

∣∣∣
C ′

≤ εC , (18)

where C̃
(z)
i (kend) is the online average of the measured cache size of i-th node at the

end of the z-th simulation cycle, C ′ is the target cache, supposed to be equal for all
the nodes without loss of generality, and εC is a user-defined consistency threshold.
For coherence, measures are taken on those |Y| = Y N nodes that have been marked
as stable in Sec. 5.2. If condition (18) is satisfied, the MC-TTL simulation ends,
otherwise a new MC-TTL cycle needs to be started: TC values are corrected (as in
the next subsection), all the caches are flushed, and the online average measurements
are reset.

6.2 TC correction

The controller action leverages the direct correlation that exists between the target
cache size C ′ = C/∆ expected for a TTL cache at steady-state, and its characteristic
time T ′C = TC , that is expressed through equations (4)-(5)-(7)-(18). Intuitively,
there exists a direct proportionality between C ′ and TC : i.e., the average number
of elements C̃ stored in a TTL cache, with TTL=TC , grows as TC grows.

Therefore, if the consistency check block reveals that the measured cache size
C̃ of a particular node is smaller than its target cache C̃ < C ′, it means that the
respective TC value provided as input is actually smaller than the actual TC , thus
suggesting an increment in the next step. Viceversa, for a C̃ > C ′, the TC of the
correspondent node should be decreased.

As a consequence of this relationship, we employ a proportional (P) controller
to compensate for TC inaccuracies. That is, if condition (18) is not satisfied at the
end of z-th simulation cycle, TC values are corrected, before starting the next cycle,
as:

TCi
(z+1) = TCi

(z)

(
C ′

C̃
(z)
i

)
, (19)

where TCi
(z) is the TTL value assigned to the i-th node during the z-th simulation

cycle. In practice, (19) guarantees a fast convergence towards the right TC values

16

(see Sec. 8.1), avoiding at the same time any divergence of the control action (pro-
vided that measures on C̃ are taken at steady-state). This allows ModelGraft to
guarantee considerable gains, even when multiple simulation cycles are necessary
due to significantly inaccurate input TC values.

There is an important condition worth highlighting: i.e., the controller needs
to react on reliably measurable quantities, as opposite to noisy measures – which

happens whenever the terms of the ratio are very small C ′ ≈ C̃(z)
i ≈ 1, as errors in

their estimation amplify in their ratio C ′/C̃
(z)
i . In particular, this translates into a

very simple practical guideline: i.e., it introduces a lower bound to the target cache
size of the downscaled system C ′ = C/∆ ≥ 10, which practically upper bounds the
maximum downscaling factor to ∆ ≤ C/10 (see Sec. 8.2 for further details).

7 Results

We now validate the ModelGraft engine against classic event-driven simulation
in very-large scale scenarios (Sec. 7.1), and we then project ModelGraft gains to
Internet-scale one, which are prohibitively complex for classic event-driven simula-
tions (Sec. 7.2). To simplify the analysis of ModelGraft gains, in this section we
limitedly provide accurate TC values extracted from event-driven simulations1. We,
instead, defer the evaluation of ModelGraft self-stabilization capabilities to Sec. 8,
where TC guesses, which are possibly inaccurate by several orders of magnitude, are
provided as input. All the results presented in this section have been obtained by
executing both event-driven and ModelGraft simulations on the same commodity
hardware, i.e., an Intel Xeon E5-1620, 3.60GHz, with 32GB of RAM.

7.1 ModelGraft validation: Very-large Scale Scenario

To evaluate the accuracy of ModelGraft, we consider the largest scenario we can
investigate via event-driven simulation gathered via ccnSim – which was already
shown to be among the most scalable ICN software tools [39]. To stretch the
boundaries reachable by event-driven simulation even further, we integrate the re-
jection inversion sampling in ccnSim – so that, to the best of our knowledge, we are
the first to evaluate the performance of ICN networks when the content catalog is
in the order of billions.

The validation scenario represents an ICN-access tree network [28], where the
topology is a N=15-nodes 4-level binary tree depicted in Fig. 4(a). A single repos-
itory, connected to the root node, stores a M = 109 objects catalog, where objects
follow a Zipf popularity distribution with exponent α = 1. An overall R = 109

requests are injected at each leaf nodes, at a rate of Λ = 20 req/s per leaf.

1
Reported for completeness in Tab. 4 and discussed in Sec. 8.1

17

Tier 1

Tier 2

Tier 3

Core nodes
Repository Access tree nodes
Leaf nodes (exogenous traffic)

(a)

...
...

...
...

... ...
...

(b)

Figure 4: Network Topologies: (a) 4-level binary tree, (b) CDN-like.

The cache size of each node is fixed at C = 106, resulting in a cache to catalog
ratio of C/M = 0.01%. Three different cache decision policies are considered for the
comparison: (i) LCE, where fetched contents are always cached in every traversed
node; (ii) LCP(1/10), that probabilistically [5] admits contents in the cache (config-
ured so that one over ten fetched contents is cached on average); (iii) 2-LRU [20, 26],
where cache pollution is reduced by using an additional cache in front of the main
one, with the purpose of caching only the names of requested contents: the fetched
contents will be stored in the main cache only in case of a hit event in the first cache.
According to our rule of thumb C ′ = C/∆ ≥ 10 (anticipated in Sec. 6.2 and sub-
stantiated in Sec. 8.2), the maximum downscaling factor is ∆ = 105. Additionally,
equations (16) and (18) are computed considering Y = 0.75, εCV = 5 · 10−3, and
εC = 0.1 (see Sec. 8 for a sensitivity analysis on εCV and εC): in other words, we
test convergence of 75% of the caches in the network, by requiring the coefficient of
variation of the hit rate to be below 5 ·10−3, and we iterate ModelGraft simulations
until the measured average cache size of those nodes is within 10% of the expected
size C ′ = C/∆. A sensitivity analysis to the above parameters is provided in Sec. 8.

Tab. 1 reports mean values (computed over 10 different runs) for three KPIs:
mean hit ratio phit, CPU time, and memory occupancy. Relative gains are also
highlighted for CPU and memory footprint (i.e., KPISimulation/KPIModelGraft), as

well as the accuracy loss with respect to simulation (i.e., |pSimulationhit −pModelGraft
hit |).

From the table, sizable gains emerge, which are due to the combination of several
factors. First of all, (i) ModelGraft brings significant improvements in terms of
reduction of both CPU time and memory occupancy; indeed, the relative gains
with respect to the classic event-driven approach are always about two orders of
magnitude large, regardless of the cache decision policy. Considering the LCE case
as an example, ModelGraft requires only 38 MB of memory and 211 sec of CPU time,
compared to 6.4 GB and 11 hours under classic simulation. Additionally, we can

18

Table 1: ModelGraft validation, accurate initial TC
(4-level binary tree, M = R = 109, C = 106,∆ = 105, Y = 0.75)

Cache Decision
Policy Technique phit Loss CPU

time Gain Mem [MB] Gain

LCE
Simulation 33.2%

1.8%
11.4 h

194x
6371

168x
ModelGraft 31.4% 211 s 38

LCP(1/10)
Simulation 35.4%

1.4%
7.3 h

90x
6404

168x
ModelGraft 34.0% 291 s 38

2-LRU
Simulation 37.0%

0.9%
10.8 h

97x
8894

234x
ModelGraft 36.1% 402 s 38

also highlight the fact that, despite the aforementioned gains, (ii) the discrepancy
between phit measured by ModelGraft vs the one gathered through the event-driven
approach remains always under 2%. Finally, it is interesting to point out the absence
of either an (iii) accuracy vs. speed trade-off, as one would typically expect [31],
or of a (iv) memory vs. CPU trade-off [17], i.e., cases where an algorithm either
trades increased space (e.g., cached results) for decreased execution time (i.e., avoid
computation), or viceversa. ModelGraft thus stands in a rare win-win operational
point where both CPU and memory usage are significantly relieved, at a price of a
furthermore very small accuracy loss.

0·100

2·1010

4·1010

6·1010

8·1010

1·1011

1 50 100

M

N

0·100

1·105

2·105

3·105

4·105

5·105

6·105

7·105

M
em

or
y

[M
B]

70 GB

520 GB
CDN-like

Access-like

Figure 5: Estimated memory occupancy for event-driven simulation (MemED)
based on predictive model in (20).

19

Table 2: Internet-scale scenarios: ModelGraft results
and projected gains vs event-driven simulation.

Topology Parameters Technique phit
CPU time
(#Cycles) Gain Mem Gain

Access-like
(N = 15)

 M = 1010

 R = 1010

 C = 106

 Δ = 105

 Y = 0.75

Simulation
(estimate) n.a. 4.5 days

270x

70 GB

~1500x
ModelGraft 31.4% 24 min

(1 cycle) 45 MB

CDN-like
(N = 67)

 M = 1011

 R = 1011

 C = 107

 Δ = 106

 Y = 0.75

Simulation
(estimate) n.a. 50 days

96x

520 GB

~16700x
ModelGraft 34.0% 12.5 h

(3 cycles) 31 MB

7.2 Gain projection: Internet-scale Scenario

We finally employ the validated ModelGraft engine to venture scenarios that are
prohibitively complex for classic event-driven simulation, due to both CPU and
memory limitations. Indeed, our aim is to investigate Internet-scale scenarios, whose
content catalogs are estimated to be in the order of O(1011) – O(1012) [30], i.e.,
two orders of magnitude larger than those considered in the previous section.

We consider two characteristic examples: an Access-like scenario, depicted in
Fig. 4(a), represented by a 4-level binary tree with a single repository connected to
the root, serving a catalog with cardinality M = 1010. Cache size is C = 106, which
limits the maximum downscaling to ∆ = 105 (see Sec. 8.2). The second scenario,
depicted in Fig. 4(b), models, instead, a more complex CDN network, where three
repositories, serving a catalog with cardinality M = 1011, are connected to backbone
nodes which are interconnected as the classic Abilene network, and where an access
tree is further attached to each backbone node. In this scenario, we let the cache
size be C = 107, which allows to increase the downscaling factor to ∆ = 106. In
both cases, considering the lack of ground truth, we provided TC guesses as input.

As before, we set Y = 0.75, εCV = 5 · 10−3, and εC = 0.1, and we run experi-
ments on the same Intel Xeon E5-1620, 3.60GHz, with 32GB of RAM. Although we
cannot instrument event-driven simulations at such large-scale, due to both physical
memory limits (a hard constraint), as well as time budget (a soft constraint), we can
estimate the expected memory occupancy and CPU times by means of a predictive
model created by fitting and cross-validating several smaller scenarios (more than
50 in our case). Despite pertaining only to the specific implementation of ccnSim
(and so being of limited interest), estimates are useful to project ModelGraft gains.

As for the memory occupancy (Memsim) of the optimized event-driven module

20

of ccnSim, we resorted to fitting the following formula:

Memsim = βcacheNC + βcatalogM + βfix [Bytes], (20)

where N is the number of nodes, C the cache size, M the catalog cardinality, while
the three constants βcache, βcatalog, and βfix, take into account the memory cost for
cache entries, catalog representation, and simulator environment, respectively. The
fitting resulted in βcache = 165, βcatalog = 4, and βfix = 20 · 106, with asymptotic
standard errors of 3.28%, 0.02%, and 0.03%, respectively, showing that the (non)-
scalability of classic event-driven simulation are mainly influenced by the cardinality
of the catalog, i.e., O(M). In our specific case, Memsim estimates are shown in Fig.
5 by means of a contour plot, with isobars at 70 and 520 GB: to simulate the selected
CDN-like scenario we would need almost 520 GB of RAM and 50 days to complete
a single run. As for the CPU time, indeed, it resulted a linear variation with the
total number of requests, i.e., O(R).

ModelGraft does not have to face with neither the presented estimates (pro-
hibitive memory and CPU budgets), nor with drawbacks (e.g., message passing
overhead) that classic parallelization approaches may suffer from [37], as it clearly
appears from results reported in Tab. 2.

Consider the Access-like scenario first: even though the rejection inversion sam-
pling technique optimizes the memory allocation of both simulation and Model-
Graft, a mapping between seed copies (i.e., O(M)) and respective repositories still
needs to be stored somewhere; this justifies the substantial increment in memory
allocation for the event-driven approach, with respect to previous scenarios with
M < 1010. On the contrary, the memory footprint of ModelGraft increases only
slightly, since the mapping scales as M ′ � M : this leads, in the end, to projected
memory gains which are significantly higher (i.e., more the three orders of magni-
tude) than the ones shown in Tab. 1. Regarding CPU time, instead, relative gains
are similar (i.e., higher than two orders of magnitude) to Tab. 1, since, in this case,
our initial TC guesses were accurate enough to let ModelGraft converge after one
cycle.

If we shift the attention to the CDN-like scenario, instead, we notice that mem-
ory gains increase by one further order of magnitude, with respect to the Access-
like scenario: a larger downscaling factor, i.e., ∆ = 106, amplifies the difference
between simulation and ModelGraft (same considerations about scalability of con-
tent/repository mappings hold also in this case). Conversely, CPU time gains are
reduced due to the higher number of MC-TTL cycles needed to end the simulation:
specifically, given that our initial TC guesses were not accurate enough, ModelGraft
took three cycles to converge, reducing the respective gains. However, a CPU time
reduction of 96× remains very significant.

21

Table 3: Sensitivity analysis parameters

Variable parameters

Parameter Default Range Sec.

TC T
sim
C (Tab. 4) [T

sim
C /(100u), T

sim
C u] [8.1]x

∆ 10
5

10
2
, 10

3
, 10

4
, 10

5
, 10

6
[8.2]x

Y 0.75 1, 0.95, 0.9, 0.75, 0.5 [8.3]x

α 1 0.8, 1, 1.2 [8.4]x

εCV 0.005 {0.005, 0.01, 0.05, 0.1} [8.5]x

εC 0.1 {0.05, 0.1, 0.5} [8.5]x

Fixed parameters

Parameter V alue

Catalog Cardinality (M) 10
9

Cache Size (C) 10
6

Number of Requests (R) 10
9

Cache Decision Policy LCE,LCP (1/10)

Topology 4-level binary tree, NDN Testbed

8 Sensitivity analysis

To thoroughly test the correctness of ModelGraft, we conducted an extensive sen-
sitivity analysis by varying all the main parameters involved in its workflow. Tab.
3 presents an overview of them, and, at the same time, it summarizes the adopted
approach: that is, we considered the scenario presented in Sec. 7.1 as a baseline,
with certain fixed parameters (bottom part), while we let the remaining ones, i.e.,
those with the highest impact on ModelGraft performance, vary, as reported in the
upper part of Tab. 3.

Results related to each parameter will be extensively discussed in the following:
a strong evidence of the self-stabilization property will be provided by simulating
different scenarios with variable input TC (Sec. 8.1); then, we will investigate on
how the variation of the downscaling factor ∆ may impact on the reduction of
the space/time complexity, and on the accuracy of the gathered KPIs (Sec. 8.2);
accuracy and consistency that could be influenced, also, by the Y parameter (Sec.
8.3). In the end, we validate the ModelGraft approach with different scenarios
by varying the skewness of Zipf’s distribution (Sec. 8.4), before concluding with
considerations about the variability of the remaining parameters (Sec. 8.5). Each
section is ended with a concise remark, in order to sum up lessons learned and useful
guidelines.

22

Table 4: TC values for validation scenario
(4-level binary tree, M = R = 109, C = 106, Y = 0.75)

Level LCE LCP(1/10) 2-LRU
(Name/Main)

0 (Root)
T

C
 v

al
ue

s
[s

] 16.7 • 103 16.7 • 104 20.0 • 103 / 76.4 • 104

1 32.5 • 103 31.4 • 104 38.1 • 103 / 12.5 • 105

2 63.0 • 103 56.9 • 104 71.9 • 103 / 20.4 • 105

3 (Leaves) 11.1 • 104 88.3 • 104 11.1 • 104 / 22.6 • 105

phit 33.2% 35.4% 37.0%

8.1 Input sensitivity (TC)

The downscaling factor ∆ is not the sole aspect that influences ModelGraft perfor-
mance in terms of CPU time; correctness of TC values provided as input, in fact,
may impact on the number of MC-TTL cycles needed before consistency is stated,
as seen in Sec. 7.2 for the CDN-like scenario, thus affecting the overall CPU time.
Since in typical use cases ModelGraft is meant to target (i.e., those presented in
Sec. 7.2) exact TC values are not known a priori, it is of primary importance to (i)
assess its performance in the presence of TC guesses, and to (ii) try to grasp some
recurrent trends that may limit the inaccuracy of those guesses at the same time.

To this end, we first show, in Tab. 4, example of TC values computed by
simulating the same very-large scenario, introduced in Sec. 7.1, by means of the
classic event-driven approach, and by varying the cache decision policy. It can be
clearly noticed that TC values vary more according to the cache decision policy than
to the topological position inside the network; in particular, the more conservative
the cache decision policy (e.g., LCP or 2-LRU), the bigger the TC values. Intuitively,
this reflects the fact that if nodes regulate the storage of new (unpopular) contents
(as for conservative cache decision policies), (popular) contents will be cached for
longer periods (i.e., bigger TC values), thus inevitably increasing the overall hit
probability (as the last row of Tab. 4 shows). In the specific case reported in Tab.
4, TC values can vary by up to one order of magnitude among different policies,
thus suggesting that, even with more complex and random topologies, the order
of magnitude of TC values can be guessed starting from smaller scenarios and by
combining simple and topology-independent information, like cache decision policy,
cache size, catalog cardinality, and so on.

With this baseline in mind, our approach in testing the resilience of ModelGraft
against input TC variability consists in purposely introducing estimates errors, for
each node, in a controlled fashion; in particular, we set T 0

C(i) = b(i)T simC (i), where

23

 0

 50

 100

 150

 200

C
P

U
 a

n
d

M
e
m

o
ry

 G
a
in

s

CPU Gain
Memory Gain

 0

 50

 100

 150

 200

C
P

U
 a

n
d

 M
e
m

o
ry

 G
a
in

s

CPU Gain
Memory Gain

 0

 1

 2

 3

 4

 5

1/(100u) 1/(5u) 1 5u 100u

#
C

y
cl

es
 a

n
d

 A
cc

u
ra

cy
 L

o
ss

 [
%

]

T
C

 Multiplicative Factor (b)

Cycles
Accuracy Loss

(c) LCE

 0

 1

 2

 3

 4

 5

1/(100u) 1/(5u) 1 5u 100u

#
C

y
cl

es
 a

n
d

 A
cc

u
ra

cy
 L

o
ss

 [
%

]

T
C

 Multiplicative Factor (b)

Cycles
Accuracy Loss

(d) LCP(1/10)

Figure 6: TC sensitivity for very large scenario: 4-level binary tree,
M = 109, R = 109, C = 106,∆ = 105, LCE (a,c) and LCP(1/10) (b,d) cache

decision policies.

T 0
C(i) is the initial characteristic time for node i, T simC (i) is the accurate value

taken from Tab. 4, and b(i) ∈ [1/(Bu), Bu] is a multiplicative factor obtained
by multiplying a bias value B ∈ [1, 100] (equal for all the nodes), by a uniform
random variable u ∈ (0, 1]. This means that we allow both overestimating, b(i) >
1, and underestimating, b(i) < 1, the accurate T simC (i). Notice that, in case of
maximum bias (i.e., Bmax = 100), T 0

C(i) will differ from T simC (i) by up to two orders
of magnitude, and the delta will be different for each node in the network due to
the uniform variable u.

Fig. 6 reports the collected results related to four KPIs and two cache deci-
sion policies, that are LCE and LCP, as a function of the multiplicative factor b;
in particular, CPU and memory gains, vs accuracy loss and number of MC-TTL
cycles, are monitored. The exhaustive case set shown in Fig. 6, inspires the fol-
lowing observations: in the first place, (i) the presence of a feedback control loop
efficiently nullifies the effects of the initial TC variability, since the accuracy loss on
phit remains always under 2%, regardless of the magnitude of the bias b(i) (figs. 6(c)
and 6(d)); this remarkably confirms ModelGraft to converge to the accurate system
performance even for very harsh estimation of the initial TC values, making the
methodology very robust for practical purposes. Additionally, (ii) MC-TTL cycles

24

 0.1

 1

 10

 100

 1000

10
2

10
3

10
4

10
5

10
6

10
4

10
3

10
2

10
1

10
0

~168x

~1133x

G
a
in

∆

C/∆

ModelGraft

(a) Memory Gain

 0.1

 1

 10

 100

10
2

10
3

10
4

10
5

10
6

10
4

10
3

10
2

10
1

10
0

~91x

~5.4x

G
a
in

∆

C/∆

ModelGraft

(b) CPU Gain

1

2

3

4

5

10
2

10
3

10
4

10
5

10
6

10
4

10
3

10
2

10
1

10
0

~1.4%

~4.9%

A
cc

u
ra

cy
 L

o
ss

∆

C/∆

ModelGraft

(c) Accuracy Loss (%)

∆ Simulation ModelGraft ∆ Simulation ModelGraft ∆ Simulation ModelGraft

10
2

6404 16549 10
2

26280 52810 10
2

35.40 34.39

10
3

6404 1674 10
3

26280 4741 10
3

35.40 34.55

10
4

6404 187 10
4

26280 666 10
4

35.40 34.72

10
5

6404 38 10
5

26280 287 10
5

35.40 33.96

10
6

6404 6 10
6

26280 4841 10
6

35.40 30.50

(d) Memory[MB] (e) CPU time [s] (f) phit[%]

Figure 7: ∆ sensitivity - ModelGraft vs Simulation in 4-level binary tree, with
M = 109, R = 109, C = 106, Y = 0.75, LCP(1/10) as cache decision policy: (a-c)

Respective gains, (d-f) Tabular values.

always remain under a maximum threshold of five, regardless of the cache decision
policy, and even in those extreme cases of under/over estimation, where the number
of MC-TTL cycles increases with respect to ideal situations (i.e., the central high-
lighted bars of Fig. 6, where exact TC estimates are provided as input). It follows
that, (iii) while CPU gain is maximum in the absence of bias (about 200x, and
90x for LCE and LCP, respectively, when no iterations are required), the benefits
brought by ModelGraft are, however, still significant (always higher than 50x, for
both LCE and LCP) even for very large TC biases (e.g., 100x overestimation or
1/100x underestimation). Finally, (iv) memory gain is, as expected, independent of
the initial TC bias.

Remark 1. ModelGraft is self-contained and self-stabilizing: the accuracy of the
gathered metrics is always guaranteed, regardless of input TC values. Performance,
in terms of memory and CPU time reduction, are maximum, i.e., more than two
orders of magnitude, when exact TC values are provided as input; moreover, even
with very inaccurate TC estimates, ModelGraft converges within few cycles, always
guaranteeing more than one order of magnitude of memory and CPU time reduction
w.r.t. event-driven simulation.

8.2 Downscaling factor (∆) sensitivity

ModelGraft is designed to combine two objectives that may conflict with each other:
(i) maximizing performance, and (ii) minimizing accuracy losses. As seen previously,

25

the presence of a closed-loop control feedback helps neutralizing potential negative
effects that TC guesses may have on the accuracy of the gathered KPIs, and, at
the same time, it minimizes losses in terms of CPU times. However, another key
parameter surely impacts on ModelGraft performance, in terms of both CPU time
and memory occupancy: that is, the downscaling factor ∆. In this subsection we
present results related to a sensitivity analysis executed by simulating the same
very-large of Sec. 7.1: LCP(1/10) is used as a cache decision policy, exact TC
estimates (Tab. 4) are provided as input, and the downscaling factor ∆ is varied in
the interval [102, 106] (i.e., target cache C ′ = C/∆ is progressively decreased from
104 to 100).

Fig. 7 reports the three KPIs, i.e., memory gain, CPU gain, and accuracy loss,
as well as tables with correspondent numerical values. First of all, inefficiencies of
ModelGraft emerge when choosing a downscaling factor from either extremes of the
interval (i.e., ∆ = 102 or ∆ = 106), as shown in Figures 7(a) and 7(b); indeed, when
∆ is too small, i.e., ∆ = 102, both memory occupancy and CPU time exceed the
respective values measured with the classic event-driven simulation. This is mainly
due to the fact that TTL caches, having no size limit (as opposed to LRU ones),
reach their target cache size C ′ = C/∆ only at steady-state, while peaks where
C ′ > C are common during the transient state, thus requiring the allocation of more
memory space. Furthermore, the implementation of TTL caches does not require
the ordered structure which characterizes LRU ones, thus inevitably degrading the
lookup time, and, in the end, the total CPU time, as reported in Fig. 7(b).

On the contrary, when the downscaling factor is too big, e.g., ∆ = 106 = C,
ModelGraft, despite a very low memory footprint, as shown in Fig. 7(a), starts
presenting problems related to CPU time and accuracy, as reported in Figures 7(b)
and 7(c). The causes of this performance degradation are mainly two: on one side,
(i) the very small downscaled request rate Λ′ = Λ/∆ slows down the collection of
the W samples needed to compute Eq. 15 (Sec. 5.1), resulting in longer transient
periods; on the other side, and most importantly, (ii) a very small target cache
C ′ = C/∆ = 1 may hamper the measurement step of the consistency check, Eq.
18, as anticipated at the end of Sec. 6.2, thus resulting in unjustified (i.e., when
exact TC estimates are provided as input) and additional MC-TTL cycles. As a
consequence, the controller action will, in the end, diverge, thus inevitably increasing
accuracy losses, as reported in Fig. 7(c) (in the specific case of Figures 7(b) and 7(c),
ModelGraft simulations ended since the maximum number of cycles, set to 21 for
practical reasons, had been reached; this means that inaccuracy may have been
increased with additional cycles).

It follows that, the only constraint that could limit the magnitude of the down-
scaling factor ∆ comes from the cache size C; once passed a certain threshold, e.g.,
when C ′ = C/∆ = 1, ModelGraft becomes inefficient and unstable. However, when
the downscaling factor is chosen properly, i.e., when C ′ ≥ 10, the best performance
are guaranteed: a CPU time reduction of about 91x, and a memory reduction of

26

0

1.0

0.5 0.75 0.9 0.95 1

987 s

283 s111 s4 s

N
or

m
al

iz
ed

 C
PU

 ti
m

e
@

 st
ea

dy
-s

ta
te

Y

Simulation ModelGraft

42.5%

71.3%

(a)

0

1.0

0.5 0.75 0.9 0.95 1

38.5%
37.3%

37.3%31.4%

N
or

m
al

iz
ed

 p
hi

t @
 st

ea
dy

-s
ta

te

Y

Simulation ModelGraft

(b)

Figure 8: Y sensitivity - ModelGraft and event-driven simulation in very large
scenario: NDN Testbed, M = 109, R = 109, C = 106,∆ = 105, LCE as cache

decision policy - normalized (a) phit and (b) CPU time when the system converges
to steady-state.

168x, as reported from Figures 7(a) and 7(b). Since we experienced the same trend
for all the executed simulations, we can consider the aforementioned criterion for
the dimensioning of ∆ as a de facto rule.

Remark 2. The downscaling factor ∆ has to be chosen in accordance with the
simulated scenario, and especially with the cache size C; when too small, memory
occupancy and CPU time may be higher then the respective values for the event-
driven simulation; when, instead, too big, both CPU and accuracy are degraded,
due to instability introduced by unmeasurable quantities. It follows that ∆ should
be set in the interval (102, C/10], and that maximum performance gains are expected
for ∆ = C/10.

8.3 Consistency (Y) sensitivity

Performance in terms of CPU time are also influenced by the Y parameter: since
ModelGraft has an adaptive steady-state monitor which varies the length of the
transient period according to the simulated scenarios, as already seen in Sec. 5.2,
the Y parameter allows to tune the number of nodes that will be considered for
the convergence computation. The subtle task here is reaching the correct balance
between performance and accuracy: indeed, according to inequality (16), requiring
the convergence of all network nodes may uselessly extend the transient period;
for example, if we take into account the 4-level binary tree topology depicted in
Fig. 4(a), it may be intuitive to think at removing the root from the computation,
as the node with the highest convergence time and with the lowest impact on the

27

overall performance (since content requests will be progressively satisfied by nodes at
lower levels). This aspect may be emphasized with more complex topologies and/or
elaborate routing strategies, where some nodes may receive such a very derisory
amount of traffic (thus being irrelevant in the overall network performance) that
their convergence could be hardly detected.

We, then, investigate on this aspect by considering the same very-large scenario
in terms of catalog cardinality, cache size, number of requests, and downsizing
factor (that is, M = 109, R = 109, C = 106,∆ = 105), but with LCE as cache
decision policy, and the NDN Testbed [2] as our topology. We purposely vary the
Y parameter in the interval [0.75, 1], for both ModelGraft and classic event-driven
simulation.

We monitor two KPIs in particular: the convergence time, that is the elapsed
time after which the simulation is considered at steady-state, and the measured phit
in that specific time instant; results are reported in figs. 8(a) and 8(b), respectively,
which show normalized values w.r.t. maximum (Fig. 8(a)) and ground truth value
of phit gathered from event-driven simulation (Fig. 8(b)). The first thing to notice
is that, as long Y is reduced (i.e., fewer nodes contribute to the steady-state eval-
uation), the convergence time is reduced. For example, for the classic event-driven
approach, the exclusion of only 5% of nodes (i.e., from Y = 1 to Y = 0.95) leads
to a convergence time reduction of about 71%, while, for ModelGraft, the exclusion
of the same amount of nodes lowers the convergence time of about 12% (percent-
age that increases up to 42.5% if Y = 0.75, as shown in Fig. 8(a)). At the same
time, there exists almost no variation in the phit measured at stability, for both
approaches. This indicates that, as long as Y is decreased, we may exclude nodes
that have, indeed, the smallest impact on the monitored KPIs (i.e., peripheral nodes
with a very small hit ratio compared to the mean one), and that uselessly extend
the duration of the transient period.

However, as also highlighted in Fig. 8(b), some inaccuracies may be introduced
if Y goes too low, e.g., Y = 0.5. In this case, since too many nodes are cut out
from the convergence computation (i.e., 50%), the phit at stability, especially for
ModelGraft, starts to diverge from the real value, thus introducing non-negligible
accuracy losses.

Remark 3. The exact setting of the Y parameter allows the dynamic steady-state
monitor to state the convergence of the network faster. To avoid inconsistencies in
the gathered metrics, a lower bound on Y should be considered, e.g., Y ∈ [0.75, 1).

8.4 Scenario (α) sensitivity

In the end, in order to extend the applicability of ModelGraft, we verify its con-
sistency in different scenarios. In particular, we vary the Zipfian distribution by
changing the exponent α ∈ {0.8, 1, 1.2}, and we compare the two approaches by
means of the same very-large scenario (Sec. 7.1), and by monitoring Phit, CPU

28

time, and memory occupancy.

Table 5: α sensitivity - ModelGraft and event-driven simulation in very-large
scenario: 4-level binary tree, M = 109, R = 109, C = 106,∆ = 105, Y = 0.75, LCE.

α Technique phit CPU time Gain Mem [MB] Gain

0.8
Simulation 7.96% 22.8 h

461x
6356

168x
ModelGraft 7.85% 179 s 38

1
Simulation 33.2% 11.4 h

194x
6371

168x
ModelGraft 31.4% 211 s 38

1.2
Simulation 52.9% 4.2 h

52x
6393

168x
ModelGraft 52.6% 286 s 38

Tab. 5 reports numerical values and relative gains of ModelGraft w.r.t. event-
driven simulation. As it is clearly noticeable, ModelGraft accuracy is confirmed also
for α = 0.8 and α = 1.2, with losses of 0.1% and 0.3%, respectively. Interestingly,
the CPU gain for the case α = 0.8 is more than twice the one obtained with
α = 1 (i.e., 461× instead of 194×), making ModelGraft ending the simulation in
179 seconds, instead of almost 1 day of the event-driven simulation. For the case
α = 1.2, instead, the computational gain is smaller (52×): specifically, the CPU time
of the classic event-driven approach was already smaller than the respective case
with α = 0.8, since a hit ratio higher than 50% translates in almost no propagation
of content requests (i.e., generated events), since they are mostly satisfied by leaf
caches. However, a reduction of 52× is still noteworthy. In the end, as expected,
memory reduction (168×) is not influenced by the skewness of the catalog. The
sensitivity on α adds, then, further flexibility to ModelGraft as a scalable method
for the analysis of Internet-scale cache networks.

Remark 4. The popularity distribution of the content catalog does not affect the
accuracy and the performance of ModelGraft; even though different gains, in terms
of CPU reduction, are associated to different skewness values, they are always higher
than one order of magnitude.

8.5 Convergence (εCV) and Consistency (εC) Sensitivity

Convergence and consistency thresholds, i.e., εCV and εC , respectively, might, also,
influence both the execution time and the accuracy of ModelGraft.

As a consequence, in this section we investigate the performance variations of
ModelGraft when varying such parameters. As shown in Tab. 3, the respective sen-
sitivity concerns, in this case, εCV ∈ {0.005, 0.01, 0.05, 0.1} and εC ∈ {0.05, 0.1, 0.5}.

29

0x

125x

250x

0.005 0.01 0.05 0.1
0

2

4

C
P

U
 g

ai
n

A
cc

u
ra

cy
 L

o
ss

 [
%

]

ε
CV

CPU Gain Accuracy Loss

(a)

0x

75x

150x

0.005 0.01 0.05 0.1
0

2

4

C
P

U
 g

ai
n

A
cc

u
ra

cy
 L

o
ss

 [
%

]

ε
CV

CPU Gain Accuracy Loss

(b)

Figure 9: εCV sensitivity - ModelGraft in very large scenario: 4-level binary tree,
M = 109, R = 109, C = 106,∆ = 105, CPU gain and Accuracy Loss in (a) LCE

and (b) LCP(1/10).

Fig. 9 reports results related to εCV sensitivity for both LCE and LCP(1/10):
the same very large scale scenario introduced in Sec. 7.1 is used as a base for the
comparison between ModelGraft and event-driven simulation, when jointly vary-
ing εCV . CPU gain and accuracy loss are considered as representative KPIs; in
particular, they are both computed by comparing the result of the two techniques,
when executed with the same εCV value. As expected, the bigger εCV , the faster
ModelGraft goes to convergence for both cache decision policies, owing to a less
stringent requirement on the coefficient of variation of the average hit probability.
The result is a reduction of ModelGraft execution time, which is, at the same time,
associated with an unvaried accuracy. However, we select εCV = 0.005 as the de-
fault value in order to compare ModelGraft against event-driven simulation in the
most conservative case.

The effects of εC sensitivity, instead, are partially represented in Fig. 10, where
the number of cycles and the accuracy loss are monitored for different values of
εC , and for two cache decision policies, i.e., LCE and LCP(1/10). The first clear
consequence is linked to small εC values: indeed, when εC is too small (e.g., εC =
0.05), ModelGraft could be forced to execute multiple MC-TTL cycles, even when
it is not necessary. That is, considering that results reported in Fig. 10 are obtained
by feeding ModelGraft with exact TC values as input, the case for εC = 0.05 in Fig.
10, i.e., #Cycles >> 1, should not happen.

On the opposite, the risk of considering milder conditions, i.e., large εC values,
is that ModelGraft could end the simulation before the effective number of cycles
which are needed to limit the accuracy loss within a certain threshold (i.e., less
than 2%). When performed, then, an input sensitivity, like the one presented in
Sec. 8.1, where we monitor all the KPIs when executing ModelGraft with εC = 0.1

30

1

21

0.05 0.1 0.5
0

2

4
#

C
y

cl
es

A
cc

u
ra

cy
 L

o
ss

 [
%

]

ε
C

#Cycles-LCE
#Cycles-LCP(1/10)

Loss-LCE
Loss-LCP(1/10)

Figure 10: εC sensitivity - ModelGraft in very large scenario: 4-level binary tree,
M = 109, R = 109, C = 106,∆ = 105, LCP(1/10) as cache decision policy - #

Cycles and Accuracy Loss.

and εC = 0.5.
What emerges from Fig. 11 is that a bigger εC threshold is associated with

a smaller number of cycles, especially when incorrect TC values are provided as
input to ModelGraft, and, consequently, with higher CPU gains. However, this
phenomenon comes with a degradation of the accuracy, as for the case b = 1/(2u)
in Fig. 11(a), where the accuracy loss is higher than 2%. As a final result, we select
εC = 0.1 as our default value, in order to avoid the risk of altering the accuracy of
ModelGraft.

9 Related Work

Hybrid approaches have been considered to make it practical to study large scale
networks even with commodity hardware, and at a reasonable time scale. From
one side, the concept of inferring key aspects of large systems from the study of
equivalent and scaled-down versions has been adopted in other several domains,
from cosmology and biology, to the more closer communication networks, in the
forms of large scale IP networks [34, 25], wireless sensor networks [24], and control
theory [7]. On the other side, the design of efficient simulative techniques [15] has
been preferred to the less scalable experimentation on real testbeds as a mean to
empirically evaluate algorithmic solutions for large-scale and distributed systems.

What presented in this paper finds a strict correspondence with the work in [34],
where the authors present a technique to scale large IP networks, in order to reduce

31

 0

 1

 2

 3

 4

 5

1/(5u) 1/(2u) 1 2u 5u

#
C

y
cl

es
 a

n
d

 A
cc

u
ra

cy
 L

o
ss

 [
%

]

T
C

 Multiplicative Factor (b)

Cycles (εC=0.1)
Cycles (εC=0.5)
Accuracy Loss (εC=0.1)
Accuracy Loss (εC=0.5)

(a)

 0

 50

 100

 150

 200

 250

1/(5u) 1/(2u) 1 2u 5u

C
P

U
 a

n
d

M
em

o
ry

 G
ai

n
s

T
C

 Multiplicative Factor (b)

CPU Gain (εC=0.1)
CPU Gain (εC=0.5)
Memory Gain (εC=0.1)
Memory Gain (εC=0.5)

(b)

Figure 11: εC sensitivity - ModelGraft with εC ∈ {0.1, 0.5} in very large scenario:
4-level binary tree, M = 109, R = 109, C = 106,∆ = 105, LCP(1/10) - (a) #

Cycles and Accuracy Loss, (b) CPU and Memory gains.

the computational requirements of simulations and simplify performance prediction.
Their idea consists in feeding a suitable scaled version of the system with a sample
of the input traffic; in particular, they differentiate the scaling rule according to
the type of TCP/UDP flows traversing the network: for IP networks with short
and long flows they demonstrate, both analytically and with simulation, that their
scaling technique leaves certain metrics, such as the distribution of the number
of active flows and of their normalized transfer time, virtually unchanged in the
scaled system. For networks with long-lived flows controlled by queue management
schemes, instead, they demonstrate, through differential-equation models, that a
different scaling approach leaves queuing delay and drop probability unchanged.
In this latter case, the proposed approach drastically reduces the CPU time of ns
simulations.

TCP networks are also considered in [25], where the authors propose a scalable
model which is easily comparable with discrete event simulators due to its time-
stepped nature. In particular, they refine a known analytical model [33] based on
ordinary differential equations, and they solve it numerically using the Runge-Kutta
method. Results show that their approach yields accurate results with respect to
those of the original networks, and, at the same time, it is able to speedup the
completion time of orders of magnitude with respect to packet level and discrete
events simulators like ns.

This work is the first to apply these concepts to the study of cache networks.
Clearly, caching dynamics are intrinsically different from system-level aspects of
wireless sensor networks [24], or the steady state throughput of TCP/IP networks [34,
25]. Our methodology is not only novel, but also practical, as it is fully integrated
in open-source tools [1].

32

An hybrid approach is also considered in the simulation framework described
in [15], namely SimGrid. The purpose is to offer a versatile simulation framework
for the performance evaluation of large scale and distributed systems (e.g., Grids,
High Performance Computing (HPC), P2P, Clouds) which would preserve both ac-
curacy and scalability at the same time. SimGrid offers several APIs which let
users interface their code with its core; regardless of the API, the simulation ap-
plication consists of a set of communication and computational activities which are
executed on simulated hardware resources, defined in terms of compute capacities
(e.g., CPU cycles per time unit). They are interconnected via a network topology
that comprises network links and routing elements, defined by bandwidth capacities
and latencies. Specifically, SimGrid simulates the execution of the aforementioned
activities through a Max-Min optimization problem, which provides instantaneous
resource shares, i.e., which resources are used by which activities. Moreover, a flow-
level model is used at network level: an end-to-end communication is characterized
only by the bandwidth associated to the relative flow.

10 Conclusion

This work proposes ModelGraft, an innovative hybrid methodology addressing the
issue of performance evaluation of large-scale cache networks. The methodology
grafts elements of stochastic analysis to MonteCarlo simulation approaches, retain-
ing benefits of both methodology classes. Indeed, ModelGraft inherits simulation
flexibility, in that it can address complex scenarios (e.g., topology, cache replace-
ment, decision policy, etc.). Additionally, ModelGraft is implemented as a simu-
lation engine to retain simulation simplicity : given its self-stabilization capability,
ModelGraft execution is decoupled from the availability of accurate input TC values,
which is completely transparent to the users. Results presented in this paper finally
confirm both the accuracy and the high scalability of the ModelGraft approach:
CPU time and memory usage are reduced by (at least) two orders of magnitude
with respect to the classical event-driven approach, while accuracy remain within a
2% band.

References

[1] ccnSim Simulator. http://perso.telecom-paristech.fr/~drossi/ccnSim.

[2] NDN Testbed web page. http://named-data.net/ndn-testbed/.

[3] Zipf distributed random number generator . https://github.com/apache/

commons-math/blob/master/src/main/java/org/apache/commons/math4/

distribution/ZipfDistribution.java.

http://perso.telecom-paristech.fr/~drossi/ccnSim
http://named-data.net/ndn-testbed/
https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java
https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java
https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java

33

[4] A. Araldo, D. Rossi, et al. Cost-aware caching: Caching more (costly items)
for less (isps operational expenditures). 2015.

[5] S. Arianfar and P. Nikander. Packet-level Caching for Information-centric Net-
working. In ACM SIGCOMM, ReArch Workshop. 2010.

[6] F. Baccelli, S. Machiraju, et al. On optimal probing for delay and loss mea-
surement. In Proc of the ACM SIGCOMM IMC. 2007.

[7] M. Branicky, V. Borkar, et al. A unified framework for hybrid control:
model and optimal control theory. IEEE Transactions on Automatic Control,
43(1):31, 1998.

[8] M. Cha, H. Kwak, et al. I tube, you tube, everybody tubes: analyzing the
world’s largest user generated content video system. In ACM IMC. 2007.

[9] H. Che, Y. Tung, et al. Hierarchical web caching systems: Modeling, design
and experimental results. IEEE JSAC, 20(7):1305, 2002.

[10] H. Che, Z. Wang, et al. Analysis and design of hierarchical web caching systems.
In Proc of IEEE INFOCOM. 2001.

[11] A. Dan and D. Towsley. An Approximate Analysis of the LRU and FIFO Buffer
Replacement Schemes. SIGMETRICS Perform. Eval. Rev., 18(1):143, 1990.

[12] N. Fofack, P. Nain, et al. Performance evaluation of hierarchical TTL-based
cache networks. Elsevier Computer Networks, 65:212 , 2014.

[13] C. Fricker, P. Robert, et al. A versatile and accurate approximation for LRU
cache performance. In Proc. of International Teletraffic Congress (ITC 24).
2012.

[14] N. Gast and B. V. Houdt. Transient and steady-state regime of a family of
list-based cache replacement algorithms. In Proc of ACM SIGMETRICS Con-
ference, pages 123–136. 2015.

[15] e. a. H. Casanova. Versatile, scalable, and accurate simulation of distributed
applications and platforms. Journal of Parallel and Distributed Computing,
74(10):2899, 2014.

[16] M. Hefeeda and O. Saleh. Traffic modeling and proportional partial caching
for peer-to-peer systems. IEEE/ACM Transactions on Networking, 16(6):1447,
2008.

[17] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26(4):401, 1980.

34

[18] W. Hörmann and G. Derflinger. Rejection-inversion to generate variates from
monotone discrete distributions. ACM Trans. Model. Comput. Simul., 6(3):169,
1996.

[19] J. Jaeyeon, A. W. Berger, et al. Modeling TTL-based Internet caches. In Proc.
of IEEE INFOCOM. 2003.

[20] T. Johnson, D. Shasha, et al. 2q: A low overhead high performance buffer
management replacement algorithm. In 20th International Conference on Very
Large Data Bases (VLDB), pages 439–450. 1994.

[21] W. King. Analysis of paging algorithms. In In IFIP Congress, pages 490–490.
1971.

[22] N. Laoutaris, H. Che, et al. The LCD interconnection of LRU caches and its
analysis. Performance Evaluation, 63(7), 2006.

[23] E. Leonardi and G. Torrisi. Least Recently Used caches under the Shot Noise
Model. In Proc. of IEEE Infocom. 2015.

[24] P. Levis, N. Lee, et al. TOSSIM: Accurate and Scalable Simulation of Entire
TinyOS Applications. In Proc. of ACM SenSys. 2003.

[25] Y. Liu, F. Presti, et al. Scalable Fluid Models and Simulations for Large-scale
IP Networks. ACM Trans. Model. Comput. Simul., 14(3):305, 2004.

[26] V. Martina, M. Garetto, et al. A unified approach to the performance analysis
of caching systems. In Proc. of IEEE INFOCOM. 2014.

[27] D. Berger et al. Exact Analysis of TTL Cache Networks: The Case of Caching
Policies Driven by Stopping Times. In Proc. of ACM SIGMETRICS Confer-
ence, pages 595–596. 2014.

[28] S. Fayazbakhsh et al. Less Pain, Most of the Gain: Incrementally Deployable
ICN. SIGCOMM Comput. Commun. Rev., 43(4):147, 2013.

[29] N. Fofack et al. On the performance of general cache networks. In Proc. of
VALUETOOLS Conference, pages 106–113. 2014.

[30] K. Pentikousis et al. Information-centric networking: Evaluation method-
ology. Internet Draft, https://datatracker.ietf.org/doc/draft-irtf-icnrg-
evaluation-methodology/, 2015.

[31] M. Rosenblum et al. Complete Computer System Simulation: The SimOS
Approach. IEEE Parallel Distrib. Technol., 3(4):34, 1995.

[32] G. Xylomenos et al. A survey of information-centric networking research. Com-
munication Surveys and Tutorials, IEEE, 16(2):1024, 2014.

35

[33] V. Misra, W. Gong, et al. Fluid-based Analysis of a Network of AQM Routers
Supporting TCP Flows with an Application to RED. SIGCOMM Comput.
Commun. Rev., 30(4):151, 2000.

[34] R. Pan, B. Prabhakar, et al. SHRiNK: A Method for Enabling Scaleable Per-
formance Prediction and Efficient Network Simulation. IEEE/ACM Trans.
Netw., 13(5):975, 2005.

[35] E. Rosensweig, D. Menasche, et al. On the steady-state of cache networks. In
Proc. of IEEE INFOCOM. 2013.

[36] E. J. Rosensweig, J. Kurose, et al. Approximate Models for General Cache
Networks. IEEE INFOCOM, pages 1–9, 2010.

[37] G. Rossini and D. Rossi. ccnSim: a highly scalable CCN simulator. In Proc.
of IEEE ICC. 2013.

[38] G. Rossini and D. Rossi. Coupling caching and forwarding: Benefits, analysis,
and implementation. In Proc. of ACM SIGCOMM ICN. 2014.

[39] M. Tortelli, D. Rossi, et al. ICN software tools: survey and cross-comparison.
Elsevier Simulation Modelling Practice and Theory (SIMPAT), 63:23 , 2016.

	Introduction
	Modeling intuition
	Background
	Intuition

	ModelGraft overview
	Downscaling and sampling
	Design
	Implementation

	MC-TTL Simulation
	Transient
	Steady-state monitor
	Simulation cycle

	Self-stabilization
	Consistency check
	TC correction

	Results
	ModelGraft validation: Very-large Scale Scenario
	Gain projection: Internet-scale Scenario

	Sensitivity analysis
	Input sensitivity (TC)
	Downscaling factor () sensitivity
	Consistency (Y) sensitivity
	Scenario () sensitivity
	Convergence (CV) and Consistency (C) Sensitivity

	Related Work
	Conclusion

