
Chapter 4

Fractional Brownian motion

In the nineties, statistical evidence, notably in finance and telecommunica-
tions, showed that Markov processes were to far away from the observations
to be considered as viable models. In particular, there were strong suspicions
that the data exhibit long range dependence. It is in this context that the frac-
tional Brownian motion, introduced by B. Mandelbrot in the late sixties and
almost forgotten since, enjoyed a new rise of interest. It is a Gaussian process
with long range dependence. Consequently, it cannot be a semi-martingale
and we cannot apply the theory of Itô calculus. As we have seen earlier, for
the Brownian motion, the Malliavin divergence generalizes the Itô integral
and can be constructed for the fBm, so it is tempting to view it as an ersatz
of a stochastic integral. Actually, the situation is not simple and depends on
what we call a stochastic integral.

4.1 Definition and sample-paths properties

Definition 4.1. For any H in (0, 1), the fractional Brownian motion of index
(Hurst parameter) H, {BH(t); t 2 [0, 1]} is the centered Gaussian process
whose covariance kernel is given by

RH(s, t) = E [BH(s)BH(t)] =
VH

2

�
s
2H + t

2H
� |t � s|

2H
�

where

VH =
� (2 � 2H) cos(⇡H)

⇡H(1 � 2H)
·

Note that for H = 1/2, we obtain

R1/2(t, s) =
1

2
(t + s � |t � s|)
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60 4 Fractional Brownian motion

which is nothing but the sophisticated way to write

R1/2(t, s) = min(t, s).

Hence, B1/2 is the ordinary Brownian motion.

Theorem 4.1. Let H 2 (0, 1), the sample-paths of W
H are Hölder contin-

uous of any order less than H (and no more) and belong to W↵,p for any
p � 1 and any ↵ 2 (0, H).

We denote by µH , the measure on W↵,p which corresponds to the distri-
bution of BH .

Proof. Step 1. A simple calculations shows that, for any ↵ � 0, we have

E [|BH(t) � BH(s)|↵] = C↵|t � s|
H↵

.

Since BH is Gaussian, its p-th moment can be expressed as a power the
variance, hence we have

E

"ZZ

[0,1]2

|BH(t) � BH(s)|p

|t � s|1+↵p
dt ds

#
= C↵

ZZ

[0,1]2

|t � s|
�1+p(H�↵) dt ds.

This integral is finite as soon as ↵ < H hence, for any ↵ < H, any p � 1, BH

belongs to W↵,p with probability 1. Choose p arbitrary large and conclude
that the sample-paths are Hölder continuous of any order less than H, in
view of the Sobolev embeddings (see Theorem 1.4)
Step 2. As a consequence of the results in [Arc95], we have

µH

 
lim sup
u!0+

BH(u)

uH
p

log log u�1
=
p

VH

!
= 1.

Hence it is impossible for BH to have sample-paths Hölder continuous of an
order greater than H.

The di↵erence of regularity is evident on simulations of sample-paths, see
Figure 4.1.

As a consequence, BH cannot be a semi-martingale as its quadratic vari-
ation is either null or infinite.

Lemma 4.1. The process (a�H
BH(at), t � 0) has the same distribution

as BH .

Proof. Consider the centered Gaussian process

Z(t) = a
�H

BH(at).

Its covariance kernel is given
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Fig. 4.1 Sample-path example for H = 0.2 (upper left), H = 0.5 (below) and H = 0.8
(upper right).

E [Z(t)Z(s)] = a
�2H

RH(at, as) = RH(t, s).

Since a covariance kernel determines the distribution of a Gaussian process,
Z and BH have the same law.

Theorem 4.2. With probability 1, we have:

lim
n!1

nX

j=1

����BH

⇣
j

n

⌘
� BH

⇣
j � 1

n

⌘����
2

=

(
0 if H > 1/2

1 if H < 1/2.

Proof. Lemma 4.1 entails that

nX

j=1

����BH

⇣
j

n

⌘
� BH

⇣
j � 1

n

⌘����
1/H

has the same distribution as

1

n

nX

j=1

���BH

⇣
j

⌘
� BH

⇣
j � 1

⌘���
1/H

.

The ergodic theorem entails that this converges in L
1(W ! R; µH) and

almost-surely to E
⇥
|BH(1)|H

⇤
. Hence the result.
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4.2 Cameron-Martin space

The next step is to describe the Cameron-Martin space attached to the fBm
of index H. The general theory of Gaussian processes says that we must
consider the self-reproducing Hilbert space defined by the covariance kernel,
see the appendix of Chapter 1.

Definition 4.2. Let

H
0 = span{RH(t, .), t 2 [0, 1]},

equipped with the scalar product

hRH(t, .), RH(s, .)iHH
= RH(t, s). (4.1)

The Cameron-Martin space of the fBm of Hurst index H, denoted by HH ,
is the completion in L

2([0, 1] ! R; �) of H
0 for the scalar product defined

in (4.1).
This means that f 2 L

2([0, 1] ! R; �) belongs to H whenever there exists
a sequence (fn, n � 0) of elements of H

0 which is Cauchy for the norm
induced by k kHH

, converges to f in L
2([0, 1] ! R; �). Then,

f = HH � lim
n!1

fn, i.e. lim
n!1

kf � fnkHH
= lim

n!1

⇣
lim

m!1

kfm � fnkHH

⌘
= 0.

This is not a very practical definition but we can have a much better descrip-
tion of HH thanks to the next theorems.

Lemma 4.2 (Representation of an RKHS). Assume that there exists a
function KH : [0, 1] ⇥ [0, 1] ! R such that

RH(s, t) =

Z

[0, 1]

KH(s, r) KH(t, r) dr, (4.2)

and that the linear map defined by KH is one-to-one:

⇣
8t 2 [0, 1],

Z

[0, 1]

KH(t, s)g(s) ds = 0
⌘

=) g = 0 �� a.s. (4.3)

Then the Hilbert space HH can be identified to KH

�
L
2([0, 1] ! R; �)

�
: The

space of functions of the form

f(t) =

Z

[0, 1]

KH(t, s)ḟ(s) ds

for some ḟ 2 L
2([0, 1] ! R; �), equipped with the inner product

hKHf, KHgi
KH(L2([0, 1]!R;�)

= hf, gi
L2([0, 1]!R;�)

.
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Note that we abused the notations by denoting K
�1

H
(f) as ḟ . We will be

rewarded of this little infrigement below as all the formulas will look the
same whatever the value of H.

Proof. Step 1. Eqn. (4.3) means that

KH = span {KH(t, .), t 2 [0, 1]}

is dense in L
2([0, 1] ! R; �).

Step 2. Since KH

�
KH(t, .)

�
(s) = RH(t, s),

KH

 
nX

k=1

↵kKH(tk, .)

!
=

nX

k=1

↵kRH(tk, .).

On the one hand, we have

�����

nX

k=1

↵kRH(tk, .)

�����

2

HH

=
nX

k=1

nX

l=1

↵k↵lRH(tk, tl) (4.4)

and on the other hand, we observe that

�����

nX

k=1

↵kKH(tk, .)

�����

2

L2([0, 1]!R;�)

=

Z

[0, 1]

⇣ nX

k=1

↵kKH(tk, s)
⌘2

ds

=
nX

k=1

nX

l=1

↵k↵l

ZZ

[0, 1]⇥[0, 1]

KH(tk, s)KH(tl, s) ds

=
nX

k=1

nX

l=1

↵k↵lRH(tk, tl),

(4.5)

in view of (4.2).
Step 3. Equations (4.4) and (4.5) mean that the map KH :

KH : KH �! H
0

H

KH(t, .) �! RH(t, .)

is a bijective isometry, when these spaces are equipped with the topology of
L
2([0, 1] ! R; �) and HH respectively. By density, KH is a bijective isometry

from L
2([0, 1] ! R; �) into HH . Otherwise stated, KH

�
L
2([0, 1] ! R; �)

�

is isometrically isomorphic, hence identified, to HH .

Example 4.1. For H = 1/2, we have
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t ^ s =

Z
1

0

1[0,t](r)1[0,s](r) dr.

This means that the RKHS of the Brownian motion is equal to I1,2 since for
K1/2(t, r) = 1[0,t](r),

K1/2f(t) =

Z
1

0

1[0,t](r) f(r) dr = I
1
f(t).

We now have to identify KH for our kernel RH .

Lemma 4.3. For H > 1/2, Eqn. (4.2) is satisfied with

KH(t, r) =
r
1/2�H

� (H � 1/2)

Z
t

r

u
H�1/2(u � r)H�3/2

du 1[0,t](r). (4.6)

Proof. According to the fundamental theorem of calculus, applied twice, we
can write:

RH(s, t) =
VH

4H(2H � 1)

Z
t

0

Z
s

0

|r � u|
2H�2 du dr (4.7)

After a deep inspection of the handbooks of integrals or more simply, finding,
with a bit of luck, the reference [BVP88], we see that

VH

4H(2H � 1)
|r � u|

2H�2

= (ru)H�1/2

Z
r^u

0

v
1/2�H(r � v)H�3/2(u � v)H�3/2 dv. (4.8)

Plug (4.8) into (4.7) and apply Fubini to put the integration with respec to v

in the outer most integral. This implies that (4.2) is satisfied with KH given
by (4.6).

Unfortunately, this integral is not defined for H < 1/2 because of the term
(u � r)H�3/2. Fortunately, the expression (4.6) can be expressed as an hy-
pergeometric function. These somehow classical functions can be presented
of di↵erent manners so that they are meaningful for a very wide range of
parameters, including the domain which is of interest for us.

The Gauss hypergeometric function F (a, b, c, z) (for details, see [NU88])
is defined for any a, b, any z, |z| < 1 and any c 6= 0, �1, . . . by

F (a, b, c, z) =
+1X

k=0

(a)k(b)k
(c)kk!

z
k
, (4.9)

where (a)0 = 1 and (a)k = � (a + k)/� (a) = a(a + 1) . . . (a + k � 1) is the
Pochhammer symbol. If a or b is a negative integer the series terminates after
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a finite number of terms and F (a, b, c, z) is a polynomial in z. The radius of
convergence of this series is 1 and there exists a finite limit when z tends to 1
(z < 1) provided that <(c � a � b) > 0. For any z such that | arg(1 � z)| < ⇡,
any a, b, c such that <(c) > <(b) > 0, F can be defined by

F (a, b, c, z) =
� (c)

� (b)� (c � b)

Z
1

0

u
b�1(1 � u)c�b�1(1 � zu)�a

du. (4.10)

Given (a, b, c), consider ⌃ the set of triples (a0
, b

0
, c

0) such that |a � a
0
| = 1

or |b� b
0
| = 1 or |c� c

0
| = 1. Any hypergeometric function F (a0

, b
0
, c

0
, z) with

(a0
, b

0
, c

0) in ⌃ is said to be contiguous to F (a, b, c). For any two hypergeo-
metric functions F1 and F2 contiguous to F (a, b, c, z), there exists a relation
of the type :

P0(z)F (a, b, c, z) + P1(z)F1(z) + P2(z)F2(z) = 0, for z, | arg(1 � z)| < ⇡,

(4.11)
where for any i, Pi is a polynomial with respect to z. These relations permit
to define the analytic continuation of F (a, b, c, z) with respect to its four
variables in the domain C⇥C⇥ (C\{0, �1, �2, . . . }) ⇥ {z, | arg(1 � z)| < ⇡}.
We will also use other types of relations between di↵erent hypergeometric
functions, namely :

F (a, b, c, z) =
� (c)� (b � a)

� (c � a)� (b)
(1 � z)�a

F (a, c � b, 1 + a � b, 1/(1 � z))

+
� (c)� (a � b)

� (c � b)� (a)
(1 � z)�b

F (b, c � a, 1 � a + b, 1/(1 � z)), (4.12)

for any z such that | arg(1 � z)| < ⇡ and a � b 6= 0, ±1, ±2, . . . .

Theorem 4.3. For any H 2 (0, 1), RH can be factorized as in (4.2) with

KH : [0, 1]2 �! R

(t, s) 7�!
(t � s)H�1/2

� (H + 1/2)
F
�
H � 1/2, 1/2 � H, H + 1/2, 1 � t/s

�

(4.13)

If we identify integral operators and their kernel, this amounts to say that

RH = KH � K
⇤

H
.

Proof. For H > 1/2, a change of variable in (4.6) transforms the integral
term in

(t � r)H�1/2
r
H�1/2

Z
1

0

u
H�3/2 (1 � (1 � t/r)u)H�1/2

du.
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By the definition (4.10) of hypergeometric functions, we see that (4.13) holds
true for H > 1/2. Using property (4.12), we have

KH(t, r) =
2�2H

p
⇡

� (H) sin(⇡H)
r
H�1/2

+
1

2� (H + 1/2)
(t � r)H�1/2

F (1/2 � H, 1, 2 � 2H,
r

t
).

If H < 1/2 then the hypergeometric function of the latter equation is contin-
uous with respect to r on [0, t] because 2 � 2H � 1 � 1/2 + H = 1/2 � H is
positive. Hence, for H < 1/2, KH(t, r)(t � r)1/2�H

r
1/2�H is continuous with

respect to r on [0, t]. For H > 1/2, the hypergeometric function is no more
continuous in t but we have [NU88] :

F (1/2 � H, 1, 2 � 2H,
r

t
) = C1F (1/2 � H, 1, H + 1/2, 1 � r/t)

+ C2(1 � r/t)1/2�H(r/t)2H�1
.

Hence, for H � 1/2, KH(t, r)rH�1/2 is continuous with respect to r on [0, t].
Fix � 2 [0, 1/2) and t 2 (0, 1], we have :

|KH(t, r)|  Cr
�|H�1/2|(t � r)�(1/2�H)+1[0,t](r)

where C is uniform with respect to H 2 [1/2 � �, 1/2 + �]. Thus, the two
functions defined on {H 2 C, |H � 1/2| < 1/2} by

H 7�! RH(s, t) and H 7�!

Z
1

0

KH(s, r)KH(t, r) dr

are well defined, analytic with respect to H and coincide on [1/2, 1), thus
they are equal for any H 2 (0, 1) and any s and t in [0, 1].

In the previous proof we proved a result which is so useful in its own that it
deserves to be a theorem :

Theorem 4.4. For any H 2 (0, 1), for any t, the function

[0, t] �! R

r 7�! KH(t, r)r|H�1/2|(t � r)(1/2�H)+

is continuous on [0, t].
Moreover, there exists a constant cH such for any 0  r  t  1

|KH(t, r)|  cH r
�|H�1/2|(t � r)�(1/2�H)+ . (4.14)

These continuity results are illustrated by the following pictures.
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We made some progress with this new description of HH . However, for a
given element of L

2([0, 1 ! ]; R)�, it is stil di�cult to determine whether it
belongs to HH . Since

Z
1

0

Z
1

0

K(t, r)2 dt dr =

Z
1

0

RH(t, t) dt < 1,

we already known that the integral map of kernel KH is Hilbert-Schmidt
from L

2([0, 1] ! R; �) into itself. Thanks to [SKM93, page 187], we are in
position to give a fully satisfactory description of HH .

Theorem 4.5. Consider the integral transform of kernel KH , i.e.

KH : L
2([0, 1] ! R; �) �! L

2([0, 1] ! R; �)

f 7�!

✓
t 7!

Z
t

0

KH(t, s)f(s) ds

◆
.

The map KH is an isomorphism from L
2([0, 1] ! R; �) onto IH+1/2,2 and

KHf = I
2H

0+
x
1/2�H

I
1/2�H

0+
x
H�1/2

f for H  1/2,

KHf = I
1

0+
x
H�1/2

I
H�1/2

0+
x
1/2�H

f for H � 1/2.

Note that if H � 1/2, r ! KH(t, r) is continuous on (0, t] so that we can
include t in the indicator function.

Remark 4.1. We already know that the fBm is all the more regular than its
Hurst index is close to 1. However, we see that the kernel KH is more and
more singular when H goes to 1. This means that it is probably a bad idea
to devise properties of BH using the properties of KH . On the other hand,
as an operator KH is more and more regular as H increases. This indicates
that the e�cient approach is to work with KH as an operator. We tried to
illustrate this line of reasoning in the next results.

To summarize the previous considerations, we get

Theorem 4.6. The Cameron-Martin of the fractional Brownian motion is
HH = {KH ḣ; ḣ 2 L

2([0, 1] ! R; �)}, i.e., any h 2 HH can be represented
as
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h(t) = KH ḣ(t) =

Z
1

0

KH(t, s)ḣ(s) ds,

where ḣ belongs to L
2([0, 1] ! R; �). For any HH–valued random variable u,

we hereafter denote by u̇ the L
2([0, 1] ! R; �))-valued random variable such

that

u(w, t) =

Z
t

0

KH(t, s)u̇(w, s) ds.

The scalar product on HH is given by

(h, g)HH
= (KH ḣ, KH ġ)HH

= (ḣ, ġ)L2([0,1]!R;�).

Remark 4.2. Theorem 4.5 implies that as a vector space, HH is equal to
IH+1/2,2 but the norm on each of these spaces are di↵erent since

kKH ḣkHH
= kḣkL2([0,1]!R;�)

and kKH ḣkIH+1/2,2
= k(I�H�1/2

0+
� KH)ḣkL2([0,1]!R;�).

4.3 Wiener space

We can now construct the fractional Wiener measure as we did for the ordi-
nary Brownian motion.

Theorem 4.7. Let (ḣm, m � 0) be a complete orthonormal basis of L
2([0, 1] !

R; �) and hm = KH ḣm. Consider the sequence

S
H

n
(t) =

nX

m=0

Xmhm(t)

where (Xm, m � 0) is a sequence of independent standard Gaussian random
variables. Then, (SH

n
, n � 0) converges, with probability 1, in W↵,p for any

↵ < H and any p > 1.

Proof. The proof proceeds exactly as the proof of Theorem 1.5. The trick is
to note that

(hm(t) � hm(s))2 = hKH(t, .) � KH(s, .), ḣmi
2

HH
,

so that

1X

m=0

(hm(t) � hm(s))2 = kKH(t, .) � KH(s, .)k2
L2([0,1]!R;�)

= RH(t, t) � RH(s, s) � 2RH(t, s) = VH |t � s|
2H

.
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Moreover,
Z

[0,1]2

|t � s|
pH�1�↵p ds dt < 1 if and only if ↵ < H.

This means, by dominated convergence, that

sup
n�M

E
h
kS

H

n
� S

H

M
k
p

W↵,p

i

=

ZZ

[0,1]2

� 1X

m=M+1

(hm(t) � hm(s))2
�p/2

|t � s|
�1�↵p ds dt

M!1
����! 0,

provided that ↵ < H. The proof is finished as in Theorem 1.5.

In what follows, W may be taken either as C0([0, 1],R) or as any of the
spaces W�,p with

p � 1, 0 < � < H.

For any H 2 (0, 1), µH is the unique probability measure on W such that
the canonical process (BH(s); s 2 [0, 1]) is a centered Gaussian process with
covariance kernel RH :

EH [BH(s)BH(t)] = RH(s, t).

The canonical filtration is given by F
H

t
= �{Ws, s  t}_NH and NH is the

set of the µH–negligible events. The analog of the diagram 1.1 reads as

W
⇤

HH
⇤ = (IH+1/2,2)

⇤

L
2

HH = IH+1/2,2 W

e⇤

'
KH e

Fig. 4.2 Embeddings and identification for fractional Brownian motion.

We can as before, search for the image of "t by e⇤. We have, for h 2 HH ,
on the one hand,

h(t) = h"t, e(h)iW⇤,W = he⇤(✏t), hiHH
.

On the other hand,

h(t) = KH ḣ(t) = hKH(t, .), ḣiL2([0,1]!R;�) = hRH(t, .), hiH .

Hence,
e⇤("t) = RH(t, .) and K

�1

H
(e⇤("t)) = KH(t, .).
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Recall that for the ordinary Brownian motion, we have

e⇤("t) = t ^ . = R1/2(t, .) and K
�1

H
(e⇤("t)) = 1[0,t](.) = K1/2(t, .).

Theorem 4.8. For any z in W
⇤,

Z

W

e
ihz,!i

W⇤,W dµH(!) = exp
⇣
�

1

2
ke⇤(z)k2

HH

⌘
. (4.15)

Proof. By dominated convergence, we have

Z

W

e
ihz,!i

W⇤,W dµH(!) = lim
n!1

E

"
exp

 
i

nX

m=0

Xm

D
z, e(KH ḣm)

E

W⇤,W

!#

= lim
n!1

exp

 
�

1

2

nX

m=0

D
e⇤(z), KH ḣm

E2
H

!

= exp

 
�

1

2

1X

m=0

D
e⇤(z), KH ḣm

E2
H

!

= exp
⇣
�

1

2
ke⇤(z)k2

HH

⌘
,

according to the Parseval identity.

The Wiener integral is constructed as before as the extension of the map

�H : W
⇤

⇢ I1,2 �! L
2(µH)

z 7�! hz, BHi
W⇤,W

.

By construction of the Wiener measure, the random variable hz, BHi
W⇤,W

is

Gaussian with mean 0 and variance kRH(z)k2
HH

. For z = "t, we have

BH(t) = h"t, BHi
W⇤,W

= �H

�
RH(t, .)

�
.

Eqn. (4.15) is the exact analog of Eqn. (1.7) hence the Cameron-Martin
Theorem can be proved identically:

Theorem 4.9. For any h 2 HH , for any bounded F : W ! R,

E [F (BH + e(h)] = E


F (BH) exp

✓
�H(h) �

1

2
khk

2

HH

◆�
. (4.16)

For the Brownian motion, it is often easier to work with elements of
L
2([0, 1] ! R; �) instead of their image by K1/2, which belongs to I1,2.

If we try to mimick this approach for the fractional Brownian motion, we
should write:
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BH(t) = �H

�
RH(t, .)

�
= �H

�
KH(KH(t, .))

�
=

Z
1

0

KH(t, s) �BH(s),

which has to be compared to

B(t) = W
1/2(t) =

Z
1

0

1[0,t](s) dW
1/2(s),

where the integral is taken in the Itô sense. Remark that these two equations
are coherent since K1/2(t, .) = 1[0,t].

Lemma 4.4. The process B = (�H(KH(1[0,t])), t 2 [0, 1]) is a standard
Brownian motion. For u 2 L

2([0, 1] ! R; �),

Z
1

0

u(s) dB(s) = �H(KHu). (4.17)

In particular,

BH(t) =

Z
t

0

KH(t, s) dB(s). (4.18)

Proof. It is a Gaussian process by the definition of the Wiener integral. We
just have to verify that it has the correct covariance kernel. For, it su�ces to
see that kKH(1[0,t])k

2

HH
= t. But,

kKH(1[0,t])k
2

HH
= k1[0,t]k

2

L2([0,1]!R;�)
= t.

This means that (4.17) holds for u = 1[0,t], hence for all piecewise constant
functions u and by density, for all u 2 L

2.

Remark 4.3. Eqn. (4.18) is known as the Karuhnen-Loeve representation. We
could have started by considering a process defined by the right-hand-side of
(4.18) and called it fractional Brownian motion. Actually, (4.18) is a stronger
result: It says that starting from an fBm, one can construct a Brownian
motion on the same probability space such that the representation (4.18)
holds.

The following theorem is an easy consequence of the properties of the
maps KH .

Theorem 4.10. The operator KH = KH � K
�1

1/2
is continuous and invertible

from I↵,p into W↵+H�1/2,p, for any ↵ > 0.

Formally, we have BH = KH(Ḃ) = KH � K
�1

1/2
(B) so we can expect that

Theorem 4.11. For any H, we have

BH

dist
= KH(B) and B

dist
= K

�1

H
(BH) (4.19)
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Proof. Let (ḣm, m � 0) be a complete orthonormal basis of L
2([0, 1] !

R; �). The series, which defines B,

B =
1X

m=0

XmI
1(ḣm),

converges with µ1/2-probability 1, in any W↵,p, provided that 0 < ↵� 1/p <

1/2. By continuity of KH ,

KH

 
1X

m=0

XmI
1(ḣm)

!
=

1X

m=0

XmKH(ḣm)
dist
= BH

converges on the same set of full measure in I↵+H�1/2,p. Note that when
↵� 1/p runs through (0, 1/2), ↵+ H � 1/2 � 1/p varies along (0, H). Hence,
we retrieve the desired regularity of the sample-paths of BH .

The same proof holds for the second identity.

Since the operator involved in the previous relation are all lower triangular,

4.4 Gradient and divergence

The gradient is defined as for the usual Brownian motion. The only modifi-
cation is the Cameron-Martin space.

Definition 4.3. A function F is said to be cylindrical if there exists an in-
teger n, f 2 Schwartz(Rn), the Schwartz space on Rn, (h1, · · · , hn) 2 HH

n

such that
F (!) = f(�Hh1, · · · , �Hhn).

The set of such functionals is denoted by SHH
.

Definition 4.4. Let F 2 S, h 2 HH , with F (!) = f(�Hh1, · · · , �Hhn). Set

rF =
nX

j=1

@jF (�Hh1, · · · , �Hhn) hj ,

so that

hrF, hi
HH

=
nX

j=1

@jF (�Hh1, · · · , �Hhn) hhj , hi
HH

.

Example 4.2. This means that

rf(BH(t)) = f
0(BH(t))RH(t, .)

and if we denote ṙ = K
�1

H
r (which corresponds for H = 1/2 to take the

time derivative of the gradient), we get
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ṙsf(BH(t)) = f
0(BH(t))KH(t, s).

We can now improve Theorem 4.11.

Theorem 4.12. Let

BH(t) = �H

�
RH(t, .)

�
and B(t) = �H

�
KH(1[0,t])

�
.

For any H, we have

µH

⇣
B = K

�1

H
(BH)

⌘
= 1. (4.20)

Proof. To prove such an identity, it is necessary and su�cient to check that

E


 

Z
1

0

B(t)g(t) dt

�
= E


 

Z
1

0

K
�1

H
(BH)g(t) dt

�
(4.21)

for any g 2 L
2([0, 1] ! R; �) and any  2 SH . Indeed, L

2([0, 1] ! R; �)⌦SH

is a dense subset of L
2([0, 1] ! R; �) ⌦ L

2(W ! R; µH) ' L
2([0, 1] ⌦ W !

R; �⌦ µH) and (4.21) entails that B = K
�1

H
(BH) �⌦µH -almost-surely. This

means that for there exists A ⇢ [0, 1] ⇥ W such that

Z

[0,1]⇥W

1A(s,!) ds dµH(!) = 0,

and
B(!, s) = K

�1

H
(BH)(!, s) for (s,!) /2 A.

Hence, for any s 2 [0, 1], the section of A at s fixed, i.e. As = {!, (s,!) 2 A},
is a µH -negligeable set.

The sample-paths of B are known to be continuous and that of BH belong
to WH�",p for any p � 1 and " su�cently small. Hence, according to Theo-
rem 4.10, K

�1

H
(BH) almost-surely belongs to I1/2�",p for any p � 1. Choose

p > 2 so that I1/2�",p ⇢ C0([0, 1],R) to conclude that K
�1

H
(BH) has µH -a.s.

continuous sample-paths. Consider

AQ =
[

t2[0,1]\Q

At.

It is a µH -negligeable set and for ! 2 A
c

Q, for t 2 [0, 1] \ Q, B(!, s) =

K
�1

H
(BH)(!, s). Thus, by continuity, this identity still holds for any t 2 [0, 1]

and any ! 2 A
c

Q. This means that Eqn. (4.20) holds.
We now prove (4.21),
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E


 

Z
1

0

K
�1

H
(BH)g(t) dt

�
=

Z
1

0

E [ BH(t)] (K�1

H
)⇤(g)(t) dt

=

Z
1

0

E [ �H(RH(t, .))] (K�1

H
)⇤(g)(t) dt

= E

Z
1

0

(K�1

H
)⇤(g)(t)

Z
1

0

ṙs KH(t, s) ds dt

�

= E

Z
1

0

ṙs 

Z
1

0

KH(t, s)(K�1

H
)⇤(g)(t) dt ds

�

= E

Z
1

0

ṙs K
⇤

H
(K�1

H
)⇤(g))(s) ds

�

By the very definition of KH ,

K
⇤

H
� (K�1

H
)⇤ = K

⇤

H
� (K�1

H
)⇤ � K

⇤

1/2
= K

⇤

1/2
.

Thus, we have

E


 

Z
1

0

K
�1

H
(BH)g(t) dt

�
= E

Z
1

0

ṙs K
⇤

1/2
g(s) ds

�

= E

Z
1

0

ṙs 

Z
1

s

g(t) dt ds

�

= E

Z
1

0

Z
1

0

ṙs g(t)1[s,1](t) dt ds

�

= E

Z
1

0

Z
1

0

ṙs g(t)1[0,t](s) dt ds

�

= E

Z
1

0

g(t)

Z
1

0

ṙs 1[0,t](s) ds dt

�
.

On the other hand, B(t) = �H

�
KH(1[0,t])

�
hence,

E


 

Z
1

0

B(t)g(t) dt

�
= E


 

Z
1

0

�H

�
KH(1[0,t])

�
g(t) dt

�

= E

Z
1

0

g(t)

Z
1

0

ṙs 1[0,t](s) ds dt

�
.

Then, (4.21) follows.

We can even go further and show that B and BH generate the same filtration.

Definition 4.5. Recall that (⇡̇t, t 2 [0, 1]) are the projections defined by
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⇡̇t : L
2([0, 1] ! R; �) �! L

2([0, 1] ! R; �)

f 7�! f1[0,t).

Let V be a closable map from Dom V ⇢ L
2([0, 1] ! R; �) into L

2([0, 1] !

R; �).
Then, V is ⇡̇-causal if Dom V is ⇡̇-stable, i.e. ⇡̇t Dom V ⇢ Dom V for any

t 2 [0, 1] and if for any t 2 [0, 1],

⇡̇tV ⇡̇t = ⇡̇tV.

Consider also ⇡H

t
defined by

⇡
H

t
: HH �! HH

h 7�! KH

�
⇡tK

�1

H
(h)
�

= KH

�
ḣ1[0,t]

�
.

Remark 4.4. An integral operator, i.e.

V f(t) =

Z
1

0

V (t, s)f(s) ds

is ⇡̇-causal if and only if V (t, s) = 0 for s > t. For V1, V2 two causal operators,
their composition V1V2 is still causal:

⇡tV1V2⇡t = (⇡tV1⇡t)V2⇡t = ⇡tV1(⇡tV2⇡t)

= ⇡tV1(⇡tV2) = (⇡tV1⇡t)V2 = ⇡tV1V2.

Corollary 4.1. The filtrations generated by BH and B do coincide.

Proof. From the representation

BH(t) =

Z
t

0

KH(t, s) dB(s),

we deduce that

� {BH(s), s  t} ⇢ � {B(s), s  t} .

We have K
�1

H
= K1/2K

�1

H
. From Theorem 4.5, K

�1

H
appears as the composi-

tion of fractional derivatives and multiplication operators:

f 7! x
↵
f.

Time derivatives of any order (as in Definition 4.10) are local operators and
as such are causal. It is straightforward that multiplication operators are also
causal. Thus, K

�1

H
appears as the composition of causal operators hence it is

causal. This means that
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B(t) =

Z
t

0

V (t, s)BH(s) ds

for some lower trianguler kernel V . Hence,

� {BH(s), s  t} � � {B(s), s  t} ,

and the equality of filtrations is proved.

We can now reap the fruits of our not so usual presentation of the Malliavin
calculus for the Brownian motion, in which we cautiously sidestepped chaos
decomposition. The Theorem 4.9 entails the integration by parts formula,
pending of (2.3): For any F and G in SH , for any h 2 HH ,

E
⇥
G hrF, hi

HH

⇤
= �E

⇥
F hrG, hi

HH

⇤
+ E [FG �Hh] . (4.22)

Definition 4.4 is formally the very same as Definition 2.1 so that the definition
of the Sobolev spaces are identical.

Definition 4.6. The space DH

p,1
is the closure of SH for the norm

kFkp,1,H = E [|F |
p]1/p + E

⇥
krFk

p

HH

⇤1/p
.

The iterated gradient are defined likewise and so do the Sobolev of higher
order, Dp,k,H . We sill clearly have

r(FG) = FrG + GrF

r�(F ) = �
0(F )rF

for F 2 Dp,1,H , G 2 Dq,1,H and � Lipschitz continuous. As long as we
do not use the temporal scale, there is no di↵erence between the identities
established for the usual Brownian motion and that relative to the fractional
Brownian motion.

Theorem 4.13. For any F in L
2(W ! R; µH),

� (⇡H

t
)F = E

⇥
F | F

H

t

⇤
,

in particular,

E
⇥
Wt | F

H

r

⇤
=

Z
t

0

KH(t, s)1[0,r](s) �B(s), and

E
⇥
exp(�Hu � 1/2kuk

2

HH
) | F

H

t

⇤
= exp(�H⇡

H

t
u � 1/2k⇡

H

t
uk

2

HH
),

for any u 2 HH .

Proof. Let {hn, n � 0} be a denumerable family of elements of HH and
let Vn = �{�Hhk, 1  k  n}. Denote by pn the orthogonal projection on
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span{h1, . . . , hn}. For any f bounded, for any u 2 HH , by the Cameron–
Martin theorem we have

E [⇤u

1
f(�Hh1, . . . , �Hhn)]

= E [f(�Hh1(w + u), . . . , �Hhn(w + u))]

= E [f(�Hh1 + (h1, u)HH
, . . . , �Hhn + (hn, u)HH

)]

= E [f(�Hh1(w + pnu), . . . , �Hhn(w + pnu))]

= E [⇤pnu

1
f(�Hh1, . . . , �Hhn)] ,

hence
E [⇤u

1
| Vn] = ⇤

pnu

1
. (4.23)

Choose hn of the form ⇡
H

t
(en) where {en, n � 0} is an orthonormal basis of

HH , i.e., {hn, n � 0} is an orthonormal basis of ⇡H

t
(HH). By the previous

theorem,
W

n
Vn = F

H

t
and it is clear that pn tends pointwise to ⇡H

t
, hence

from (4.23) and martingale convergence theorem, we can conclude that

E
⇥
⇤
u

1
| F

H

t

⇤
= ⇤

⇡
H

t
u

1
= ⇤

u

t
.

Moreover, for u 2 HH ,

� (⇡H

t
)(⇤u

1
) = ⇤

⇡
H

t
u

1
,

hence by density of linear combinations of Wick exponentials, for any F 2

L
2(µH),

� (⇡H

t
)F = E

⇥
F | F

H

t

⇤
,

and the proof is completed.

Definition 4.7. For the sake of notations, we set, for u̇ such that KH u̇ be-
longs to Domp �H for some p > 1,

Z
1

0

u̇(s)�B(s) = �H(KH u̇) and

Z
t

0

u̇(s)�B(s) = �H(⇡H

t
KH u̇). (4.24)

Note that, for any  2 Dp/(p�1),1

E


 

Z
1

0

u̇(s)�B(s)

�
= E

Z
1

0

ṙs u̇(s) ds

�
.

The next result is the Clark formula. It reads formally as (3.11) but we should
take care that the ṙ does not represent the same object. Here it is defined
as ṙ = K

�1

H
r.

Corollary 4.2. For any F 2 L
2(W ! R; µH),

F = E [F ] +

Z
1

0

E
h
ṙsF | Fs

i
�B(s).
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Proof. With the notations at hand, Theorem 4.13 implies that

E
⇥
⇤
h

1
| Ft

⇤
= exp

✓
�H(⇡H

t
h) �

1

2
k⇡

H

t
hk

2

HH

◆

= exp

✓Z
t

0

ḣ(s) �B(s) �
1

2

Z
t

0

ḣ
2(s) ds

◆
.

This means that we have the usual relation

⇤
h

t
= 1 +

Z
t

0

⇤sḣ(s) �B(s) = E
⇥
⇤
h

1

⇤
+

Z
1

0

E
h
ṙs⇤

h

1
| Fs

i
�B(s).

By density of the Doléans exponentials, we obtain the result.

Should we want to obfuscate everything, we could write

F = E [F ] + �H

�
KH

�
E
⇥
(K�1

H
r).F | F.

⇤��
.

4.5 Itô formula

Definition 4.8. Consider the operator K defined by K = I
�1

0+
� KH .

For H > 1/2, it is a continuous map from L
p([0, 1] ! R; �) into IH�1/2,p,

for any p � 1. Let K
⇤

t
be its adjoint in L

p([0, t] ! R; �), i.e. for any f 2

L
p([0, 1] ! R; �), any g su�cently regular,

Z
t

0

Kf(s) g(s) ds =

Z
t

0

f(s) K
⇤

t
g(s) ds.

The map K
⇤

t
is continuous from (IH�1/2,p)

⇤ into L
q([0, t] ! R; �), where

q = p/(p � 1).

Theorem 4.14. Assume H > 1/2. For f 2 C
2

b
,

f(BH(t)) = f(0)+

Z
t

0

K
⇤

t

�
f
0
�BH

�
(s) �B(s)+H VH

Z
1

0

f
00
�
BH(s)

�
s
2H�1 ds.

Proof. Introduce the function g as

g(x) = f(
a + b

2
+ x) � f(

a + b

2
� x).

This function is even, satisfies

g
(2j+1)(0) = 2f

(2j+1)((a + b)/2) and g(
b � a

2
) = f(b) � f(a).

Apply the Taylor formula to g between the points 0 and (b � a)/2 to get
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f(b) � f(a) =
nX

j=0

2�2j

(2j + 1)!
(b � a)2j+1

f
(2j+1)(

a + b

2
)

+
(b � a)2(n+1)

2

Z
1

0

�
2n+1

g
(2(n+1))(�a + (1 � �)b)d�.

For any  2 E of the form  = exp(�Hh�
1

2
khk

2

HH
) with h 2 C

1

b
⇢ HH . Note

that  satisfies r =  h 2 L
2(W ! R; µH). Since C

1

b
is dense into HH ,

these functionals are dense in L
2(W). We thus have

E
⇥�

f
�
BH(t + ")

�
� f

�
BH(t)

��
 
⇤

= E

�
BH(t + ") � BH(t)

�
f
0

✓
BH(t) + BH(t + ")

2

◆
 

�

+
1

2
E

�
BH(t + ") � BH(t)

�2
Z

1

0

r g
(2)(rBH(t) + (1 � r)BH(t + "))dr  

�

= A0 +
1

2
A1. (4.25)

For A0, we have

A0 = E

�
BH(t + ") � BH(t)

�
f
0

✓
BH(t) + BH(t + ")

2

◆
 

�

= E

Z
1

0

�
KH(t + ", s) � KH(t, s)

�
�B(s) f

0

✓
BH(t) + BH(t + ")

2

◆
 

�

= E

Z
1

0

�
KH(t + ", s) � KH(t, s)

�
ṙs

✓
f
0

✓
BH(t) + BH(t + ")

2

◆
 

◆
ds

�
.

Since ṙ is a true derivation operator

ṙs

✓
f
0

✓
BH(t) + BH(t + ")

2

◆
 

◆
= f

0

✓
BH(t) + BH(t + ")

2

◆
ṙs 

+ f
00

✓
BH(t) + BH(t + ")

2

◆�
KH(t + ", s) + KH(t, s)

�
.

Thus,
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A0 = E


f
0

✓
BH(t) + BH(t + ")

2

◆Z
1

0

�
KH(t + ", s) � KH(t, s)

�
ṙs ds

�

+ E


 f

00

✓
BH(t) + BH(t + ")

2

◆

⇥

Z
1

0

�
KH(t + ", s) � KH(t, s)

��
KH(t + ", s) + KH(t, s)

�
ds

�

= B1 + B2.

By the very definition of ṙ,

1

"

Z
1

0

�
KH(t + ", s) � KH(t, s)

�
ṙs ds =

1

"

�
r (t + ") � r (t)

�

"!0
���!

d

dt
r (t) = I

�1

0+
� KH(ṙ )(t) = K(ṙ )(t).

Moreover, since r belongs to L
2(W ; IH+1/2,2),

E
h
|r (t + ") � r (t)|2

i
 c kKṙ kL2(W ;IH�1/2,2)

|"|.

Hence,

"
�1

B1

"!0
���! E

h
f
0(BH(t)) Kṙ (t)

i
.

Simple calculations give that

B2 = E


 f

00

✓
BH(t) + BH(t + ")

2

◆ ⇣
RH(t + ", t + ") � RH(t, t)

⌘�

and that

"
�1

⇣
RH(t + ", t + ") � RH(t, t)

⌘
= VH

(t + ")2H � t
2H

"

"!0
����! 2H VH t

2H�1
.

The dominated convergence theorem then yields

"
�1

B2

"�!0
����! H VHE

⇥
 f

00(BH(t)) t
2H�1

⇤
.

If H > 1/2, "�1
A1 does vanish. Actually, recall that BH(t + ") � BH(t) is a

centered Gaussian random variable of variance proportional to "2H , hence

"
�1

|A1|  cE
⇥
|BH(t + ") � BH(t)|2

⇤
kf

(2)
kL1  c "

2H�1
kf

(2)
kL1

"!0
���! 0,

since 2H � 1 > 0.
We have proved so far that
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d

dt
E
⇥
 f

0
�
BH(t)

�⇤
= E

⇥
f
�
BH(t)

�
r (t)

⇤
+ H VHE

⇥
 f

00
�
BH(t)

�
t
2H�1

⇤
.

(4.26)
It is straightforward that the right-hand-side of (4.26) is continuous as a
function of t on any interval [0, T ]. Hence we can integrate the previous
relation and we get

E
⇥
 f
�
BH(t)

�⇤
� E

⇥
 f
�
BH(0)

�⇤
= E

Z
t

0

f
0
�
BH(s)

�
Kṙ (s) ds

�

+ H VH E


 

Z
t

0

f
00
�
BH(s)

�
s
2H�1 ds

�
.

Remark now that

E

Z
t

0

f
0
�
BH(s)

�
Kṙ (s) ds

�
= E

Z
1

0

f
0
�
BH(s)

�
1[0,t](s) Kṙ (s) ds

�

= E

Z
1

0

K
⇤

1

�
f
0
� BH 1[0,t]

�
ṙs ds

�
= E


 

Z
1

0

K
⇤

1

�
f
0
� BH 1[0,t]

�
(s) �B(s)

�
.

Note that

K
⇤

1
(f 01[0,t])(s) =

d

ds

Z
1

s

K(r, s)f 0(r)1[0,t](r) dr = 0 if s > t.

This means that
⇡
H

t

�
K

⇤

t
(f 01[0,t])

�
= K

⇤

t
(f 01[0,t])

and by the definition (4.24),

Z
1

0

K
⇤

t

�
f � BH 1[0,t]

�
(s) �B(s) =

Z
t

0

K
⇤

t

�
f � BH

�
(s) �B(s).

Consequently, we have

E
⇥
 f
�
BH(t)

�⇤
� E

⇥
 f
�
BH(0)

�⇤
= E


 

Z
t

0

K
⇤

t
(f � BH)(s)�B(s)

�

+ H VH E


 

Z
t

0

f
00
�
BH(s)

�
s
2H�1 ds

�
.

Since the functionals  we considered form a dense subset in L
2, we have

f
�
BH(t)

�
� f

�
BH(0)

�
=

Z
t

0

K
⇤

t
(f � BH)(s)�B(s)

+ H VH

Z
t

0

f
00
�
BH(s)

�
s
2H�1 ds, dt ⌦ µH -a.s. (4.27)
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Admit for a while that

t �!

Z
t

0

K
⇤

t
(f 0

� BH)(s)�B(s)

has almost-surely continuous sample-paths. It is clear that the other terms
of (4.27) have also continuous trajectories. Let A be the negligeable set of
W ⇥ [0, 1] where (4.27) does not hold. According to the Fubini theorem, for
any t 2 [0, 1], the set

At = {! 2 W, (!, t) 2} 2 A}

is negligeable and so does AQ = [t2[0,1]\QAt. For any t 2 Q \ [0, 1], Eqn.
(4.27) holds on A

c

Q, i.e. holds µH -almost surely. By continuity, this is still
true for any t 2 [0, 1].

Theorem 4.15. For any H 2 [1/2, 1). Let u belong to Dp,1(Lp) with Hp > 1.

The process

U(t) =

Z
t

0

K
⇤

t
u(s)�B(s), t 2 [0, 1]

admits a modification with (H � 1/p)-Hölder continuous paths and we have
the maximal inequality :

E

2

6664
sup

r 6=t2[0,1]2

����
Z

1

0

(K⇤

t
u(s) � K

⇤

r
u(s)) �B(s)

����
|t � r|pH

p
3

7775

1/p

 ckK
⇤

1
kH,2kukDp,1 .

Proof. For g 2 C
1 and  a cylindric real-valued functional,

E

Z
1

0

Z
t

0

K
⇤

t
u(s)�B(s) g(t) dt 

�
= E

"ZZ

[0,1]2

K
⇤

1
(u1[0,t])(r)g(t)ṙr dt dr

#

= E

Z
1

0

K
⇤

1
(uI

1

1�
g)(r)ṙr dr

�
= E

⇥
�(K⇤

1
(u.I

1

1�
g) 

⇤
.

Thus,

Z
1

0

Z
t

0

K
⇤

t
u(s) �B(s) g(t) dt =

Z
1

0

K
⇤

1
(u.I

1

1�
g)(s) �B(s) µH � a.s. (4.28)

Since H > 1/2, it is clear that K is continuous from L
2([0, 1] ! R; �) into

IH�1/2,2 thus that K
⇤

1
is continuous from I

⇤

H�1/2,2
in L

2([0, 1] ! R; �). Since

IH�1/2,2 is continuously embedded in L
(1�H)

�1

([0, 1] ! R; �), it follows that

L
1/H([0, 1] ! R; �) = (L(1�H)

�1

([0, 1] ! R; �))⇤ is continuously embedded
in I1/2�H,2. Since u belongs to Dp,1(Lp), the generalized Hölder inequality
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implies that
kuI

1

1�
gkL1/H  kukLpkI

1

1�
gk

L(H�1/p)�1 .

It follows that U belongs to L
p(W ! I

+

1,(1�H+1/p)�1 ; µH) with

kUk
Lp(W!I

+

1,(1�H+1/p)�1 ;µH)
 ckK

⇤

1
kH,2kukDp,1 .

The proof is completed remarking that 1 � 1/(1 � H + 1/p)�1 = H � 1/p so
that I

+

1,(1�H+1/p)�1 is embedded in Hol(H � 1/p).

4.6 Exercises

Exercise 4.1. Let V be a causal operator from L
2([0, 1] ! R; �) into itself.

Let

Vt = ⇡̇t � V � ⇡̇t : L
2([0, 1] ! R; �) �! L

2([0, t] ! R; �)

f 7�! V (f1[0,t])1[0,t].

Let V
⇤

t
be the adjoint of Vt.

1. Show that V
⇤

t
is continuous from L

2([0, t] ! R; �) into L
2([0, 1] ! R; �).

(We here identify L
2([0, 1] ! R; �) with its dual)

Consider the situation where

V f(r) =

Z
t

0

V (r, s)f(s) ds

with V (r, s) = 0 whenever s > r. Note that this is the case of KH for H > 1/2.

2. Show that
V

⇤

t
f = V

⇤

1
(⇡̇tf).

3. Derive the same identity using solely the causality of V .

V = KH for H < 1/2 corresponds to this last situation.

Exercise 4.2. One approach to define a stochastic integral with respect to
BH for H > 1/2 is to look at Riemann like sums:

RSn(U) =
n�1X

i=0

U(i/n)
⇣
BH

✓
i + 1

n

◆
� BH

✓
i

n

◆⌘

Consider that U(s) = �Hh u(s) where u is deterministic and continuous on
[0, 1] and h is C

1, hence belongs to HH .
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1. Show that
ṙrU(s) = u(s)ḣ(r).

where ḣ = K
�1

H
(h).

2. Derive �
K

�1

1/2
� KH � ṙ

�
r
U̇(s) = u(s)h0(r).

3. Show that

RSn(U) =

Z
1

0

n�1X

i=0

U(
i

n
)
⇣
KH(

i + 1

n
, r) � KH(

i

n
, r)
⌘
�B(r)

+
n�1X

i=0

u(
i

n
)

✓
h(

i + 1

n
) � h(

i

n
)

◆
.

4. Assume for the next two questions only that KH is a regular as it needs
to be. Show that

n�1X

i=0

U(
i

n
)
⇣
KH(

i + 1

n
, r) � KH(

i

n
, r)
⌘

n!1
����!

Z
1

0

U(s)
d

ds
KH("r)(s) ds

where "r is the Dirac measure at r.
5. Derive the following identity:

Z
1

0

U(s)
d

ds
KH("r)(s) ds = dKH

⇤

U(r),

where dKH = K
�1

1/2
� KH .

6. Show that

n�1X

i=0

u(
i

n
)

✓
h(

i + 1

n
) � h(

i

n
)

◆
n!1
����!

Z
1

0

u(s)h0(s) ds = trace
�dKHṙU

�
.

The map dKH = K
�1

1/2
� KH is a continuous map from L

2([0, 1] ! R; �)

into IH�1/2,2 so that a possible definition of a stochastic integral (in the sense
of Riemann integrals) could be

�H(dKH

⇤

U) + trace(dKHṙU)

provided that U has the necessary regularity for these terms to make sense.
For some other definitions of a stochastic integral with respect to BH , see

[Dec05] and references therein.
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Deterministic fractional calculus

We now consider some basic aspects of the deterministic fractional calculus
– the main reference for this subject is [SKM93].

Definition 4.9. Let f 2 L
1([a, b] ! R; �), the integrals

(I↵
a+f)(x) =

1

� (↵)

Z
x

a

f(t)(x � t)↵�1
dt , x � a,

(I↵
b�

f)(x) =
1

� (↵)

Z
b

x

f(t)(x � t)↵�1
dt , x  b,

where ↵ > 0, are respectively called right and left fractional integral of the
order ↵.

For any ↵ � 0, any f 2 L
p([0, 1] ! R; �) and g 2 L

q([0, 1] ! R; �) where
p
�1 + q

�1
 ↵, we have :

Z
t

0

f(s)(I↵
0+

g)(s) ds =

Z
t

0

(I↵
t�

f)(s)g(s) ds. (4.29)

Moreover, the family of fractional integrals constitute a semi-group of trans-
formations: For any ↵,� > 0,

I
↵

0+
� I

�

0+
= I

↵+�

0+
. (4.30)

Definition 4.10. For f given in the interval [a, b], each of the expressions

(D↵

a+f)(x) =

✓
d

dx

◆[↵]+1

I
1�{↵}

a+ f(x),

(D↵

b�
f)(x) =

✓
�

d

dx

◆[↵]+1

I
1�{↵}

b�
f(x),

are respectively called the right and left fractional derivative (proved they
exist), where [↵] denotes the integer part of ↵ and {↵} = ↵� [↵].

Theorem 4.16. We have the following embeddings and continuity results:

1. If 0 < � < 1, 1 < p < 1/�, then I
�

0+
is a bounded operator from

L
p([0, 1] ! R; �) into L

q([0, 1] ! R; �) with q = p(1 � �p)�1
.

2. For any 0 < � < 1 and any p � 1, I
+

�,p
is continuously embedded in

Hol(� � 1/p) provided that � � 1/p > 0.

3. For any 0 < � < � < 1, Hol(�) is compactly embedded in I�,1.


