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Abstract

Let (W, µ, H) be an abstract Wiener space and assume that Y is a signal of the form Y = X +w, where
X is an H -valued random variable, w is the generic element of W . Under the hypothesis of independence
of w and X , we show that the quadratic estimate of X , denoted by X̂(Y ) = E[X |Y ], is of the form ∇F(Y ),
where F is an H -convex function on W . We prove also some relations between the quadratic estimate error
and the Wasserstein distance between some natural probabilities induced by the shift IH + ∇F and the
conditional law of Y given X .
c© 2007 Elsevier B.V. All rights reserved.

MSC: 60H07; 60H05; 60G35; 46G12; 47H05; 35J60

Keywords: Gaussian channel; Malliavin calculus; Monge–Kantorovitch (Kantorovich) measure transportation; H -convex
functionals; Wasserstein distance

1. Introduction

This paper is devoted to the problem of estimation of an additive Gaussian channel in the
framework of an infinite dimensional Fréchet space as proposed in a recent work of Zakai [14]
(although in [14], the general setting is a Banach space, everything goes through for a separable
Fréchet space) and its relations to the Monge–Kantorovitch measure transportation problem. Let
W be a separable Fréchet space. We assume that W supports a Gaussian measure µ with a
Cameron–Martin space, denoted by H . Assume that X is an H -valued random variable defined
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on an arbitrary probability space rich enough in such a way that one has also a W -valued random
variable J whose law is equal to µ. Under the assumption of the independence of X and J , one
wants to calculate the quadratic estimate of X with respect to the observation Y defined as

Y = X + J.

Assuming

E[exp ε|X |H ] < ∞,

for some ε > 0, we prove that the Radon–Nikodym density of the law of Y , denoted by µY , is of
the form exp F , where F is an H -analytic Wiener functional on W , besides which it is H -convex
(cf. [3]) and the quadratic estimate of X w.r.t. Y , i.e., E[X |Y ] can be expressed as ∇F(Y ), where
∇ denotes the Sobolev derivative on the abstract Wiener space (W, µ, H). Let us recall that the
solutions of the Monge–Kantorovitch problem on the Wiener space (with respect to the singular
Cameron–Martin distance) are the images of the initial measures under the maps of the form
(IW × ∇K ), where K is a 1-convex Wiener functional (cf. [4–6]). Since H -convexity implies
1-convexity (cf. [3]), it is clear that the estimation problem is related to the Monge–Kantorovitch
problem for some measures. In this paper we expose these measures and also give some further
estimation results which correspond to the situation in which the signal process originates from
a space on which a stochastic analysis in the sense of the Malliavin calculus exists.

2. Preliminaries and notation

Let W be a separable Fréchet space equipped with a Gaussian measure µ of zero mean
whose support is the whole space. The corresponding Cameron–Martin space is denoted by
H . Recall that the injection H ↪→ W is compact and its adjoint is the natural injection
W ? ↪→ H ?

⊂ L2(µ). The triple (W, µ, H) is called an abstract Wiener space. Recall that
W = H if and only if W is finite dimensional. A subspace F of H is called regular if the
corresponding orthogonal projection has a continuous extension to W , denoted again by the same
letter. It is well known that there exists an increasing sequence of regular subspaces (Fn, n ≥ 1),
called total, such that ∪n Fn is dense in H and in W . Let σ(πFn )

1 be the σ -algebra generated by
πFn ; then for any f ∈ L p(µ), the martingale sequence (E[ f |σ(πFn )], n ≥ 1) converges to f
(strongly if p < ∞) in L p(µ). Observe that the function fn = E[ f |σ(πFn )] can be identified
with a function on the finite dimensional abstract Wiener space (Fn, µn, Fn), where µn = πnµ.

Since the translations of µ with the elements of H induce measures equivalent to µ, the
Gâteaux derivative in the H direction of the random variables is a closable operator on L p(µ)-
spaces and this closure will be denoted by ∇; cf., for example, [2,11,12]. The corresponding
Sobolev spaces (the equivalence classes) of the real random variables will be denoted as Dp,k ,
where k ∈ N is the order of differentiability and p > 1 is the order of integrability. If the random
variables have values in some separable Hilbert space, say Φ, then we shall define similarly
the corresponding Sobolev spaces and they are denoted as Dp,k(Φ), p > 1, k ∈ N. Since
∇ : Dp,k → Dp,k−1(H) is a continuous and linear operator its adjoint is a well-defined operator
which we represent by δ. In the case of classical Wiener space, i.e., when W = C(R+,Rd), then
δ coincides with the Itô integral of the Lebesgue density of the adapted elements of Dp,k(H)
(cf. [11,12]).

1 For notational simplicity, in the sequel we shall denote it by πn .
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For any t ≥ 0 and measurable f : W → R+, we define

Pt f (x) =

∫
W

f (e−t x +

√
1 − e−2t y)µ(dy),

and it is well known that (Pt , t ∈ R+) is a hypercontractive semigroup on L p(µ), p > 1,
which is called the Ornstein–Uhlenbeck semigroup (cf. [2,8,11,12]). Its infinitesimal generator
is denoted by −L and we call L the Ornstein–Uhlenbeck operator (sometimes called the number
operator by physicists). The norms defined by

‖φ‖p,k = ‖(I + L)k/2φ‖L p(µ) (2.1)

are equivalent to the norms defined by the iterates of the Sobolev derivative ∇. This observation
permits us to identify the duals of the space Dp,k(Φ); p > 1, k ∈ N by Dq,−k(Φ′), with
q−1

= 1 − p−1, where the latter space is defined by replacing k in (2.1) by −k; this gives
us the distribution spaces on the Wiener space W (in fact we can take as k any real number).
An easy calculation shows that, formally, δ ◦ ∇ = L, and this permits us to extend the
divergence and the derivative operators to the distributions as linear, continuous operators. In
fact δ : Dq,k(H ⊗ Φ) → Dq,k−1(Φ) and ∇ : Dq,k(Φ) → Dq,k−1(H ⊗ Φ) continuously, for any
q > 1 and k ∈ R, where H ⊗ Φ denotes the completed Hilbert–Schmidt tensor product (cf., for
instance, [11,12]).

Let us recall some facts from convex analysis. Let K be a Hilbert space; a subset S of
K × K is called cyclically monotone if any finite subset {(x1, y1), . . . , (xN , yN )} of S satisfies
the following algebraic condition:

〈y1, x2 − x1〉 + 〈y2, x3 − x2〉 + · · · + 〈yN−1, xN − xN−1〉 + 〈yN , x1 − xN 〉 ≤ 0,

where 〈·, ·〉 denotes the inner product of K . It turns out that S is cyclically monotone if and only
if

N∑
i=1

(yi , xσ(i) − xi ) ≤ 0,

for any permutation σ of {1, . . . , N } and for any finite subset {(xi , yi ) : i = 1, . . . , N } of S. Note
that S is cyclically monotone if and only if any translate of it is cyclically monotone. By a theorem
of Rockafellar, any cyclically monotone set is contained in the graph of the subdifferential of a
convex function in the sense of convex analysis [9] and even if the function may not be unique
its subdifferential is unique.

Let now (W, µ, H) be an abstract Wiener space; a measurable function f : W → R ∪ {∞} is
called 1-convex if the map

h → f (x + h)+
1
2
|h|

2
H = F(x, h)

is convex on the Cameron–Martin space H with values in L0(µ). Note that this notion is
compatible with the µ-equivalence classes of random variables thanks to the Cameron–Martin
theorem. It is proven in [4] that this definition is equivalent to the following condition: Let
(πn, n ≥ 1) be a sequence of regular, finite dimensional, orthogonal projections of H ,
increasing to the identity map IH . Denote also by πn its continuous extension to W and define



A.S. Üstünel / Stochastic Processes and their Applications 117 (2007) 1316–1329 1319

π⊥
n = IW − πn . For x ∈ W , let xn = πn x and x⊥

n = π⊥
n x . Then f is 1-convex if and only if

xn →
1
2
|xn|

2
H + f (xn + x⊥

n )

is π⊥
n µ-almost surely convex.

2.1. Preliminaries concerning the Monge–Kantorovitch measure transportation problem

Definition 1. Let ξ and η be two probabilities on (W,B(W )). We say that a probability γ on
(W × W,B(W × W )) is a solution of the Monge–Kantorovitch problem associated with the
couple (ξ, η) if the first marginal of γ is ξ , the second one is η and if

J (γ ) =

∫
W×W

|x − y|
2
H dγ (x, y) = inf

{∫
W×W

|x − y|
2
H dβ(x, y) : β ∈ Σ (ξ, η)

}
,

where Σ (ξ, η) denotes the set of all the probability measures on W × W whose first and second
marginals are respectively ξ and η. We shall denote the Wasserstein distance between ξ and η,
which is the positive square root of this infimum, as dH (ξ, η).

Remark: By the weak compactness of probability measures on W × W and the lower semi-
continuity of the strictly convex cost function, the infimum in the definition is attained even if
the functional J is identically infinity. In this latter case we say that the solution is degenerate.

The next result, which is an extension (cf. [4–6]) of the finite dimensional version due to
Talagrand [10], gives a sufficient condition for the finiteness of the Wasserstein distance in
the case where one of the measures is the Wiener measure µ and the second one is absolutely
continuous with respect to it. We give a short proof for the sake of completeness:

Theorem 1. Let L ∈ L log L(µ) be a positive random variable with E[L] = 12 and let ν be the
measure dν = Ldµ. We then have

d2
H (ν, µ) ≤ 2E[L log L]. (2.2)

Proof. Let us remark first that we can take W as the classical Wiener space W = C0([0, 1])

and, using the stopping techniques of the martingale theory, we may assume that L is upper and
lower bounded almost surely. Then a classical result of the Itô calculus implies that L can be
represented as an exponential martingale

L t = exp
{
−

∫ t

0
u̇τdWτ −

1
2

∫ t

0
|u̇τ |2dτ

}
,

with L = L1, where (u̇t , t ∈ [0, 1]) is a measurable process adapted to the filtration of
the canonical Wiener process (t, x) → Wt (x) = x(t). Let us define u : W → H as
u(t, x) =

∫ t
0 u̇τ (x)dτ and U : W → W as U (x) = x + u(x). The Girsanov theorem implies

that x → U (x) is a Brownian motion under ν; hence the image of the measure ν under the map
U × IW : W → W × W denoted by β = (U × I )ν belongs to Σ (µ, ν). Let γ be any optimal

2 In the sequel we denote the expectation w.r.t. the Wiener measure by E .
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measure; then

J (γ ) = d2
H (ν, µ) ≤

∫
W×W

|x − y|
2
H dβ(x, y)

= E[|u|
2
H L]

= 2E[L log L],

where the last equality follows also from the Girsanov theorem and the Itô stochastic
calculus. �

The next two theorems which explain the existence and several properties of the solutions of the
Monge–Kantorovitch problem and the transport maps have been proven in [1,5–7].

Theorem 2 (General Case). Suppose that ρ and ν are two probability measures on W such that

dH (ρ, ν) < ∞.

Let (πn, n ≥ 1) be a total increasing sequence of regular projections (of H, converging to the
identity map of H). Suppose that, for any n ≥ 1, the regular conditional probabilities ρ(·|π⊥

n =

x⊥) vanish π⊥
n ρ-almost surely on the subsets of (π⊥

n )
−1(W ) with Hausdorff dimension n − 1.

Then there exists a unique solution of the Monge–Kantorovitch problem, denoted by γ ∈ Σ (ρ, ν)
and γ is supported by the graph of a Borel map T which is the solution of the Monge problem.
T : W → W is of the form T = IW + ξ , where ξ ∈ H almost surely. Besides we have

d2
H (ρ, ν) =

∫
W×W

|T (x)− x |
2
H dγ (x, y)

=

∫
W

|T (x)− x |
2
H dρ(x),

and for π⊥
n ρ-almost almost all x⊥

n , the map u → ξ(u + x⊥
n ) is cyclically monotone on

(π⊥
n )

−1
{x⊥

n }, in the sense that

N∑
i=1

(
ξ(x⊥

n + ui ), ui+1 − ui

)
H

≤ 0

π⊥
n ρ-almost surely, for any cyclic sequence {u1, . . . , uN , uN+1 = u1} from πn(W ). Finally,

if, for any n ≥ 1, π⊥
n ν-almost surely, ν(·|π⊥

n = y⊥) also vanishes on the n − 1-Hausdorff
dimensional subsets of (π⊥

n )
−1(W ), then T is invertible, i.e., there exists S : W → W of the

form S = IW + η such that η ∈ H satisfies a similar cyclic monotonicity property to ξ and that

1 = γ {(x, y) ∈ W × W : T ◦ S(y) = y}

= γ {(x, y) ∈ W × W : S ◦ T (x) = x} .

In particular we have

d2
H (ρ, ν) =

∫
W×W

|S(y)− y|
2
H dγ (x, y)

=

∫
W

|S(y)− y|
2
H dν(y).
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Remark 1. In particular, for all the measures ρ which are absolutely continuous with respect
to the Wiener measure µ, the second hypothesis is satisfied, i.e., the measure ρ(·|π⊥

n = x⊥
n )

vanishes on the sets of Hausdorff dimension n − 1.

The case where one of the measures is the Wiener measure and the other is absolutely continuous
with respect to µ is the most important one for the applications. Consequently we give the related
results separately in the following theorem where the tools of the Malliavin calculus give more
information about the maps ξ and η of Theorem 2:

Theorem 3 (Gaussian Case). Let ν be the measure dν = Ldµ, where L is a positive random
variable, with E[L] = 1. Assume that dH (µ, ν) < ∞ (for instance L ∈ L log L). Then there
exists a 1-convex function φ ∈ D2,1, unique up to a constant, such that the map T = IW + ∇φ

is the unique solution of the original problem of Monge. Moreover, its graph supports the unique
solution of the Monge–Kantorovitch problem γ . Consequently

(IW × T )µ = γ.

In particular T maps µ to ν and T is almost surely invertible, i.e., there exists some T −1 such
that T −1ν = µ and that

1 = µ{x : T −1
◦ T (x) = x}

= ν{y ∈ W : T ◦ T −1(y) = y}.

Remark 2. Assume that the operator ∇ is closable with respect to ν; then we have η = ∇ψ . In
particular, if ν and µ are equivalent, then we have

T −1
= IW + ∇ψ,

where is ψ is a 1-convex function. ψ is called the dual potential of the MKP (µ, ν) and we have
the following relations:

φ(x)+ ψ(y)+
1
2
|x − y|

2
H ≥ 0,

for any x, y ∈ W , and

φ(x)+ ψ(y)+
1
2
|x − y|

2
H = 0

γ -almost surely.

Remark 3. Let (en, n ∈ N) be complete, orthonormal in H ; denote by Vn the sigma algebra
generated by {δe1, . . . , δen} and let Ln = E[L|Vn]. If φn ∈ D2,1 is the function constructed in
Theorem 3, corresponding to Ln , then, using the inequality (2.2), we can prove that the sequence
(φn, n ∈ N) converges to φ in D2,1.

3. Calculations of estimates and their regularity, and relations with the Monge–Kantoro-
vitch measure transportation

Assume that X is an H -valued random variable defined on some probability space
(Ω ′,A′, P ′); take Ω = Ω ′

× W , P = P ′
× µ and J (θ, w) = w so that X is independent

of J . In the sequel, for typographical reasons, we shall denote the r.v. J (θ, w) with the same
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notation as the generic element of W , i.e., as w, since J (θ, ·) is equal to the identity IW of W ;
this should not create any ambiguity. Y denotes the observation defined as

Y = X + w.

Note that the law of Y , denoted by µY , is absolutely continuous with respect to µ (in fact they
are equivalent) and the corresponding Radon–Nikodym derivative is given as

l(w) =
dµY

dµ
(w)

=

∫
H

exp
{
(x, w)H −

1
2
|x |

2
H

}
α(dx),

where (x, w)H is defined as the limit in probability of the random variables ((πnw, x)H , n ≥ 1),
where the probability is the product measure α×µ, α being the law of X , and (x, w)H is defined
as the limit in probability.

In the sequel we shall assume that X is exponentially integrable, i.e., the existence of an ε > 0
for which∫

H
exp[ε|x |H ]dα(x) < ∞,

holds true.

Proposition 1. The density l has a modification which is almost surely real H-analytic.

Proof. Let us denote by L(x, w) the conditional density

L(x, w) = exp
[
(x, w)H −

1
2
|x |

2
H

]
.

We have

l(w) =

∫
H

L(x, w)α(dx),

and therefore

E[|∇
kl|H⊗k ] ≤ E

∫
H

|x |
k
H L(x, w)dα(x)

=

∫
H

|x |
k
H dα(x).

Hence
∞∑

k=0

1
k!

‖∇
kl‖L1(µ,H⊗k ) < ∞.

This implies that the map Z(h, w), defined on H × W by

(h, w) →

∞∑
k=0

1
k!
(∇kl(w), h⊗k)H⊗k

is almost surely well defined and Z(h, w) = l(w + h) almost surely. �

The following result is proven in [14]; for the sake of completeness, we give a short proof
here:
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Proposition 2. Let X̂ be defined as X̂(Y ) = E[X |Y ] where E[X |Y ] denotes the conditional
expectation of X given Y . Then, for any n ≥ 1, we have

∇
nl = X̂⊗nl,

almost surely, where X̂⊗n is defined as X̂⊗n(Y ) = E[X⊗n
|Y ] and l(w) is defined as the

expectation of L(x, w) w.r.t. the measure α(dx).

Proof. Let ξ ∈ D(H) be any test function; it follows then from the Cameron–Martin formula for
µ that

E [(∇l(Y ), ξ(Y ))H ] = E [l(∇l, ξ)H ]

= E
[

l(w)
∫
(x, ξ(w))H L(x, w)α(dx)

]
= E [l(X + w)(X, ξ(X + w))H ]
= E [l(Y )(X, ξ(Y ))H ]
= E [l(Y )(E[X |Y ], ξ(Y ))H ] ,

where

L(x, w) = exp
{
(x, w)H −

1
2
|x |

2
H

}
.

For the higher order derivatives, the proof is similar. �

Corollary 1. The density l is an H-convex function.

Proof. It suffices to show that the second derivative of l is a positive operator-valued distribution.
This follows easily from the fact that

(∇2l, h ⊗ h)2 = l(X̂⊗2, h ⊗ h)2
= l E[(X, h)2H |Y ] ≥ 0

almost surely for any h ∈ H , where (·, ·)2 denotes the Hilbert–Schmidt scalar product. �

It follows from Proposition 2 that, µ-almost surely, ∇ X̂ is a symmetric positive operator. In
fact we have

Theorem 4. There exists an H-convex and H-analytic function

F ∈ D =

⋂
p>1

⋂
k∈N

Dp,k,

such that X̂(w) = ∇F(w)µ-almost surely.

Proof. It follows from Proposition 2 that ∇l = X̂l; taking the Sobolev derivative of both sides
we get

∇
2l = ∇ X̂l + X̂ ⊗ ∇l

= ∇ X̂l + X̂ ⊗ X̂l. (3.3)

Again from Proposition 2, we have

∇
2l = X̂⊗2l, (3.4)
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and since l > 0µ-almost surely, we obtain from the relations (3.3) and (3.4)

∇ X̂ = X̂ ⊗ X − X̂ ⊗ X̂ , (3.5)

and hence ∇ X̂ is in the intersection of the spaces {L p(µ, H⊗H), p > 1}; iterating this procedure
we see that, for any k ∈ N, ∇

k X̂ is in all L p spaces, and hence it is in D(H). Moreover, from the
Jensen inequality and from the equality (3.5), we see that

(∇ X̂h, h)H = E[(X, h)2H |Y ] − E[(X, h)H |Y ]
2

≥ 0

for any h ∈ H almost surely. Hence it is, µ-almost surely, a positive, symmetric operator on H .
The Poincaré decomposition of vector fields on (W, H, µ) (which is also valid for the elements
of D′(H); cf. [11]) says that

X̂ = ∇F + α,

where F ∈ D, α ∈ D(H) with δα = 0. Hence

∇ X̂ = ∇
2 F + ∇α.

Since, from the equality (3.5), ∇ X̂ is symmetric and since ∇
2 F is also symmetric, it follows

that ∇α is a symmetric operator; hence ∇α = ∇α?, where ∇α? denotes the adjoint of ∇α in H .
Therefore

E[(δα)2] = E[|α|
2
H ] + E[trace (∇α · ∇α)]

= E[|α|
2
H ] + E[trace (∇α? · ∇α)]

= 0.

Since all the terms are positive, we should have ∇α = 0; hence α is a constant, and hence it
is null. Consequently X̂ = ∇F ; moreover ∇

2 F is a positive operator, and therefore F is an
H -convex function, i.e., h → F(w + h) is convex on H almost surely. �

Remark 4. We have also the following important information which is a consequence of
Theorem 4:

1. It follows from ∇l = l ∇F that LF = L log l; hence log l = F − c and

l = exp{F − c},

where c = log E[eF
].

2. Note that, if we replace in the model Y = X + w with Y = λX + w, where λ ∈ R is a
parameter, the same reasoning implies that the function λF is convex.

3. It follows from [3] that F has a modification with respect µ, which is a convex function on W
in the ordinary sense.

Here are some further remarks:

Proposition 3. We have the following identities:

E[|X |
2
H ] − E[|X̂ |

2
H ] =

∫
d2

H (µ,µY |X )µX (dx)− d2
H (µ, (IW + X̂)µ)

= 2
∫

L(x, w) log L(x, w)dµdα − d2
H (µ, (IW + X̂)µ),
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and

E[|X |
2
H ] − E[|X̂(Y )|2H ] =

∫
d2

H (µ,µY |X )µX (dx)− d2
H (lµ, (IW + ∇F)lµ).

Proof. Since X̂ = ∇F , it is clear from [5] that the measure on W × W defined by (IW × (IW +

X̂))µ is the unique solution of the MKP on the set Σ (µ, (IW + X̂)µ). Hence we have

E[|X̂ |
2
H ] = d2

H (µ, (IW + X̂)µ).

Moreover, we have (cf. [5])

d2
H (µ,µY |X ) = |X |

2
H

= 2
∫

W
L(X, w) log L(X, w)µ(dw),

where the last equality follows from the Cameron–Martin theorem. Consequently

E[|X |
2
H ] =

∫
d2

H (µ,µY |X )dµX . �

Proposition 4. We have

d2
H (µ,µY ) ≤

∫
H

|x |
2
Hα(dx) < ∞,

and consequently, by Theorem 3, there exists a 1-convex function A ∈ D2,1 such that µY =

l · µ = (IW + ∇ A)µ and the measure defined on W × W as (IW × (IW + ∇ A))µ is the unique
solution of the MKP(µ,µY ).

Proof. Recall that µY = l · µ (i.e., dµY = ldµ). It follows from the inequality of Theorem 1,
Jensen’s inequality and the Cameron–Martin theorem that

d2
H (µ, l · µ) ≤ 2E[l log l]

≤ 2
∫

H×W

[
(w, x)H −

|x |
2
H

2

]
L(x, w)α(dx)µ(dw)

= 2
∫

H×W

[
(w + x, x)H −

|x |
2
H

2

]
α(dx)µ(dw)

=

∫
H

|x |
2
Hα(dx) < ∞.

Consequently µ and µY are at finite Wasserstein distance from each other and the proof is then
completed by an application of Theorem 3. �

Let us calculate also the image of the measure l · µ under the map T = IW + ∇F :

Theorem 5. There exists some G ∈ D2,2, which is 1-convex and H-concave such that, for any
f ∈ Cb(W ), one has∫

W
f ◦ T ldµ =

∫
W

f (w) l ◦ T −1(w)
dTµ
dµ

(w)dµ(w),
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where

dTµ
dµ

= Λ(G) = det2(IH + ∇
2G) exp

(
−LG −

1
2
|∇G|

2
H

)
.

Besides, G satisfies the following relations:

F(w)+ G(y)+
1
2
|w − y|

2
H ≥ 0

for any (x, y) ∈ W × W and

F(w)+ G(y)+
1
2
|w − y|

2
H = 0

γ -almost surely, where γ is the measure (IW × T )µ. Consequently

dT (l.µ)
d(l.µ)

= Λ(G)
l ◦ (IW + ∇G)

l
.

Proof. Since F is H -analytic and H -convex, we know already that T is invertible and its inverse
is of the form IW + ∇G, where G ∈ D2,1 is the dual potential function of the MKP for
Σ (µ, Tµ). Hence G is a 1-convex function; besides, the facts that F is H -analytic and that
h → h + ∇

2 F(w)h is invertible for almost all w ∈ W , where the negligible set is independent
of the choice of h ∈ H , imply that G is a C H∞-map. The H -convexity of F implies that ∇

F is
a positive operator; hence

∇
2G(y) = (IH + ∇

2 F)−1
◦ T −1(y)− IH

is a negative operator. Consequently G is H -concave (cf. [3]); this implies in particular that ∇G
is a 1-Lipschitz map in the H -direction (cf. [13]). The rest of the proof follows from the change
of variables formula on the Wiener space (cf. [13], Chapter 3). �

4. Estimations of divergence

Assume that the signal X is defined on another Wiener space on which the Sobolev derivative
and the divergence operator are denoted respectively by ∇̃ and δ̃. In this setting it is useful to
have an expression for E[δ̃m|Y ], for m ∈ D̃p,1(H), where the latter denotes the Sobolev space
on this new Wiener space.

Proposition 5. Let m be as above; then we have the following identity:

E[δ̃m|Y ] = E[(∇̃m X, Y − X)H |Y ],

almost surely.

Proof. Let a ∈ D and denote by θ the generic point of the Wiener space on which X is defined.
Using the partial integration by parts formula, we have

E[δ̃ma(Y )] = E[δ̃m(θ)a(X (θ)+ w)]

= E[δ̃m(θ)L(X (θ, w))a(w)]

= E[(m(θ), ∇̃L(X (θ, w)))H a(w)]

= E
[(

m(θ), (∇̃ X (θ), w)H −
1
2
∇̃|X (θ)|2H

)
H

L(X (θ), w)a(w)
]
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= E[((∇̃m X (θ), w)H − (∇̃m X (θ), X (θ))H )L(X (θ), w)a(w)]

= E[((∇̃m X (θ), w + X (θ))H − (∇̃m X (θ), X (θ))H )a(w + X (θ))]

= E[((∇̃m X, Y )H − (∇̃m X, X)H )a(Y )]

= E[(∇̃m X, Y − X)H a(Y )]

and the proof follows. �

Remark 5. Note that in the last line of the above equalities, the term with the scalar product is
defined in the probabilistic sense as the limit

(∇̃m X, Y − X)H = lim
n→∞

(∇̃m X, πnw)H

which is independent of the choice of the sequence (πn, n ≥ 1) due to the independence.

It is also interesting to calculate an estimate of the divergence of the vector fields which are
defined with respect to the initial Wiener measure:

Proposition 6. Let η ∈ Dp,1 for some p > 1 and denote the estimate of η as η̂(Y ) = E[η|Y ].
We then have the following relation:

E[δη|Y ] = (δη̂)(Y )− (∇F(Y ), η̂(Y ))H

= (δη̂)(Y )− (X̂(Y ), η̂(Y ))H ,

almost surely.

Proof. Let a ∈ D; since δ is the adjoint of ∇ with respect to µ, we have

E [δη(w)a(Y )] = E
[
(η,∇a(Y ))H

]
= E

[
(E[η|Y ],∇a(Y ))H

]
= E

[(
η̂(Y ),∇a(Y )

)
H

]
= E

[
l
(
η̂,∇a

)
H

]
= E

[
aδ(lη̂)

]
= E

[
al

{
δη̂ − (η̂,∇ log l)H

}]
= E

[
a(Y )

{
δη̂(Y )− (η̂(Y ),∇F(Y ))H

}]
,

and since a is arbitrary, the proof is completed. �

Since the scalar product in Proposition 5 is a divergence with respect to µ, we have the
following

Corollary 2. Under the hypothesis and with the notation of Proposition 5, we have

E[δ̃m|Y ] = E[(∇̃m X, Y − X)H |Y ]

= E[δ(∇̃m X)|Y ]

= δ(
̂̃
∇m X)(Y )− (∇F(Y ), E[∇̃m X |Y ])H ,

almost surely, where ̂̃
∇m X(Y ) denotes E[∇̃m X |Y ].



1328 A.S. Üstünel / Stochastic Processes and their Applications 117 (2007) 1316–1329

5. The Girsanov measures

Let T be the transformation T (w) = w + ∇F(w), where ∇F = X̂µ- and µY -almost surely.
Since F is a smooth H -convex function (it can be chosen even H -analytic if µX has exponential
moments), it follows immediately from [13] that T is an invertible and absolutely continuous
map. Let Λ = ΛT be defined by

Λ = det2(IH + ∇
2 F) exp

{
−LF −

1
2
|∇F |

2
H

}
.

We have

Proposition 7. The paths {T (y), y ∈ W } are Gaussian distributed under the measure

dν =
Λ
l

dµY .

In other words the law of the path y → T (y) under the probability ν is equal to the Wiener
measureµ. This means in particular that the law of the random variable ω → Y (ω)+∇F(Y (ω))
is Gaussian under the initial probability measure.

Proof. Note that T = IW +∇F is a 1-monotone, H–C1-shift on the Wiener space W . It follows
from Chapter VI of [13] that Tµ is equivalent to µ and T has a two-sided inverse S such that

µ ({w ∈ W : T ◦ S(w) = S ◦ T (w) = w}) = 1.

Since µY is equivalent to µ, the same relation holds also when we replace µ with µY . Let
f ∈ Cb(W ); then, it follows again from Chapter VI of [13] that

EY

[
f ◦ T

Λ
l

]
= E[ f ◦ TΛ]

= E[ f ],

where EY denotes the expectation with respect to the measure µY . �

Remark 6. Note that the function F is also the unique convex (up to a constant) solution of the
Monge–Ampère equation with transformation T = IW + ∇F :

Λ(M ◦ T ) = 1

µ-almost surely, where

M =
dTµ
dµ

.

Without loss of generality, we may assume that we are working on the classical Wiener
space (cf. [13], to see how to insert the notion of time on an abstract Wiener space), i.e.,
W = C0([0, 1],R). Let us denote by (FT

t , t ∈ [0, 1]) the filtration generated by T , i.e.,
FT

t = σ {Tτ (Y ), τ ≤ t}. Here it is important to note that Y represents the observation process.
We have, using the Itô–Clark representation theorem for the Brownian motion (t, y) → Tt (y),
where y represents the paths of Y ,
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f ◦ T (Y ) = Eν[ f ◦ T (Y )] +

∫ 1

0
Eν[(Dt f ) ◦ T (Y )|FT

t ]dTt (Y )

= E[ f ] +

∫ 1

0
Eν[(Dt f ) ◦ T (Y )|FT

t ]dTt (Y ),

for any f ∈ Dp,1, p > 1.
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[12] A.S. Üstünel, Analysis on Wiener space and applications. Electronic text at the site: http://www.finance-research.

net/.
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