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1. Introduction

The goal of this paper is to prove, that under mild integrability assump-
tions on a progressively measurable process u, the sample-paths of the
process :

t 7→ M̃V
t (u)

def
=

∫ t

0
V (t, s)us dBs

are a.s. Hölder-continuous even for some singular deterministic kernel
V. The motivation comes from the analysis of the fractional Brownian
motion (see below Section 4) where the corresponding kernel is of the
form :

KH(t, s) = lH(t, s)(t− s)H−1/2s−|H−1/2|1[0,t)(s), (1)

for some H ∈ (0, 1) where lH is a continuous function on [0, 1]2. Several
papers do exist on the sample-paths regularity properties of stochastic
Volterra integrals but always with regular or convolutional kernels (see
for instance [1, 2]), two hypothesis which are clearly not satisfied by the
present kernel.

Formally, the strategy is similar to that of [6] : we prove that there
exists a process, denoted by MVγ (u), which is integrable and satisfies

Iγ
0+

(MVγ (u)) = MV (u), (2)

whereMV (u) is a measurable version of M̃V (u) and Iγ
0+

is the fractional
integral of order γ – see preliminaries below. Once we have proved
that MVγ (u) is sufficiently integrable, the embedding of Besov spaces
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in some space of Hölder continuous functions will give the regularity of
MV and a maximal inequality as well– for another application of these
embeddings to Stratonovitch stochastic differential equations, see [5].

The problems we have to solve are mainly technical and due to the
singularity of the kernels we want to work with in our applications.
Actually, for a given deterministic and borelean kernel {V (t, s), t, s ∈
[0, 1]}, we have to find conditions on u ensuring both the existence of
M̃V
t (u) for each t and the existence of a measurable version, designated

MV (u), of the whole process {M̃V
t (u), t ∈ [0, 1]}. Moreover, we need to

be able to compute the fractional integral of such a process (see Eqn.
(2)). For instance, for the kernel given in Eqn. (1), the very existence
of M̃KH

t (u) requires u to be r-times integrable with r strictly greater
than (1 − H)−1. This turns to be a very restrictive condition as H
goes to 1. This matter of fact is all the more disapointing that as H
goes to 1, the regularity of the linear map canonically associated to KH

(i.e., the map which sends a square integrable function f on KHf
def
=∫ 1

0 KH(., s)f(s) ds) is increasing.
It is thus more fruitful to work with the properties of the map V

than with the expression of the kernel V. Unfortunately, the definition
of M̃V (u) as a stochastic integral with the kernel V inside, is not well
suited to such an approach. The key point is thus to view the process
M̃V (u) as a random kernel on L2 and perform an integration by parts
in order to be able to use the properties of the map V – see Proposition
[3.2]. With this point of view, the proof of the existence of a measurable
version and the computation of the fractional integral become almost
straightforward. It should be noticed that the subsequent integration
by parts are greatly simplified by considering stochastic integrals as
divergences in the sense of the calculus of variation.

The paper is organized as follows : in Section 2, we recall the ba-
sic notions of deterministic fractional calculus and Malliavin calculus
needed later, in Section 3, we give the general result and in Section 4,
we treat the specific case of the fractional Brownian motion.

2. Preliminaries
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2.1. Deterministic fractional calculus

For f ∈ L1([0, 1]; dt), (denoted by L1 for short) the left and right
fractional integrals of f are defined by :

(Iα0+f)(x)
def
=

1

Γ(α)

∫ x

0
f(t)(x− t)α−1dt , x ≥ 0,

(Iα1−f)(x)
def
=

1

Γ(α)

∫ 1

x
f(t)(t− x)α−1dt , x ≤ 1,

where α > 0 and I0
0+ = I0

1− = Id . For any α ≥ 0, any f ∈ Lp and
g ∈ Lq where p−1 + q−1 ≤ α, we have :∫ 1

0
f(s)(Iα0+g)(s) ds =

∫ 1

0
(Iα1−f)(s)g(s) ds. (3)

The Besov space Iα0+(Lp) not= Iα,p is usually equipped with the norm :

‖f‖Iα,p = ‖I−α
0+
f‖Lp . (4)

We then have the following continuity results (see [6, 11]) :

Proposition 2.1. i. If 0 < α < 1, 1 < p < 1/α, then Iα0+ is a
bounded operator from Lp into Lq with q = p(1− αp)−1.

ii. For any 0 < α < 1 and any p ≥ 1, Iα,p is continuously embedded in
Hol(α−1/p) provided that α−1/p > 0. Hol(ν) denotes the space of
Hölder-continuous functions, null at time 0, equipped with the usual
norm.

iii. For any 0 < α < β < 1, Hol(β) is compactly embedded in Iα,∞.

iv. Let 0 < α < 1, ϕ ∈ Lp for some p > 1 and µ > −1 + 1/p. There
exists φ ∈ Lp such that

Iα0+(sµϕ)(t) = tµIα0+(φ)(t) and ‖φ‖Lp ≤ c‖ϕ‖Lp .

v. By I−α
0+
, respectively I−α

1− , we mean the inverse map of Iα0+ , re-
spectively Iα1− . The relation Iα0+I

β
0+
f = Iα+β

0+
f holds whenever β >

0, α+ β > 0 and f ∈ L1.

2.2. Probabilistic setting

We work on the standard Wiener space (Ω,H, IP ) where Ω is the Banach
space of continuous functions from [0, 1] into IR, null at time 0, equipped
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with the sup-norm. H is the Hilbert space of absolutely continuous
functions vanishing at time 0, with the norm ‖h‖H = ‖ḣ‖L2 , where ḣ
is the (time) derivative of h. A mapping φ from Ω into some separa-
ble Hilbert space X is called cylindrical if it is of the form φ(w) =
f(〈v1, w〉, · · · , 〈vn, w〉) where f ∈ C∞0 (IRn, X) and (vi, i = 1 . . . n) is
sequence of Ω∗ such that (ṽi, i = 1 . . . n) (where ṽi is the image of vi
under the injection Ω? ↪→ H ) is an orthonormal system of H. For such
a function we define ∇φ as

∇φ(w) =
n∑
i=1

∂if(〈v1, w〉, · · · , 〈vn, w〉)ṽi.

From the quasi-invariance of the Wiener measure, it follows that ∇ is
a closable operator on Lp(Ω;X), p ≥ 1, and we will denote its closure
with the same notation. The powers of ∇ are defined by iterating this
procedure. For p > 1, k ∈ IN , we denote by Dp,k(X) the completion of
X-valued cylindrical functions under the following norm

‖φ‖p,k =

k∑
i=0

‖∇iφ‖Lp(Ω;X⊗H⊗i) .

Let us denote by ∇∗ the formal adjoint of ∇ with respect to Wiener
measure. Since it is often more appealing to work with L2-valued in-
tegrand, we introduce the map δ which is such that for any H -valued
process v, belonging to Dom∇∗, we have δ(v̇) = ∇∗(v). A classical
result stands that δ is an extension of the Itô integral thus we have

E

[∫ t

0
us dBs ϕ

]
= E

[∫ t

0
us∇̇sϕds

]
(5)

for any u adapted in L2(Ω;L2) and any ϕ ∈ D2,1, where {Bt
def
=

δ(1[0,t]), t ∈ [0, 1]} is a standard Brownian motion on (Ω, IP ).We denote
by F the complete σ-field generated by the sample-paths of B up to
time 1 and by B([0, 1]) the set of Borel sets of [0, 1].

3. General result

In this section, we deal with a fixed deterministic borelean function
V (t, s) defined on [0, 1] × [0, 1]. We also denote by V the linear map
canonically associated to V (t, s) by V f(t) =

∫ 1
0 V (t, s)f(s) ds. We set :

θ(x)
def
=

2x

2− x
for x ≤ 2 and ψ(x)

def
=

2x

2 + x
so that θ ◦ ψ = Id .
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Hypothesis I. We assume that there exists α > 0 such that V is
continuous from L2 into Iα+1/2,2.

Hypothesis II. We assume that for the same α, there exists η ≤ 2
such that V is continuous from Lη into Iα,θ(η).

Proposition 3.1. Under hypothesis I, for any 0 ≤ γ < α, the maps V
and Vγ

def
= I−γ

0+
◦ V are Hilbert-Schmidt from L2 into itself.

Proof. Since α−γ > 0, Vγ is continuous from L2 into I1/2+α−γ,2 and
the embedding of I1/2+α−γ,2 in L2 is Hilbert-Schmidt (see [12])and so
is Vγ from L2 into itself. The same holds for V ≡ V0.

Remark 3.1 (Comments on the hypothesis). Since the map Vγ is
Hilbert-Schmidt, there exists a borelean kernel {Vγ(t, s), t, s ∈ [0, 1]}
such that Vγf =

∫ 1
0 Vγ(., s)f(s) ds. Since ε def

= α − γ > 0, the space
Iε+1/2,2 is continuously embedded (see Proposition 2.1) in the space of
continuous functions on [0, 1], null at time 0, hereafter designated C0.
Accordingly, the adjoint V ∗γ of Vγ is continuous from C∗0 into L2, hence,
for any t ∈ [0, 1],

∫ 1
0 Vγ(t, s)2 ds is finite. It follows that for u progres-

sively measurable and bounded, the stochastic integral
∫ 1

0 Vγ(t, s)us dBs

is well defined. The same holds a fortiori for
∫ 1

0 V (t, s)us dBs since
V = V0.

Under hypothesis II, for any 0 ≤ γ ≤ α, the map Vγ is continuous
from Lη into Lθ(η) and we set

cγ,η
def
= sup

g:‖g‖Lη=1
‖Vγg‖Lθ(η) .

Proposition 3.2. For V a Hilbert-Schmidt map from L2 into itself,
for any bounded and progressively measurable process u, there exists a
F ⊗ B([0, 1])-measurable process, denoted by MV

t (u), such that for any
f ∈ L2,

δ(V ∗f.u) =

∫ 1

0
MV
t (u)f(t) dt IP ⊗ dt a.e.. (6)

Moreover,

E

[∫ 1

0
|MV

t (u)|2 dt
]

is finite. (7)

Proof. Consider the map

Θu : L2 → L2(Ω)

f 7→ δ(V ∗f.u).
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Θu is a Hilbert-Schmidt operator : Let (ϕn, n ≥ 1) be an CONS of L2,
we have ∑

n≥1

‖Θuϕn‖2L2(Ω) =
∑
n≥1

E

[∫ 1

0
V ∗ϕn(s)2u2

s ds

]
≤ ‖u‖2∞‖V ∗‖2HS .

Hence there exists (see [4]) a F ⊗ B([0, 1])-measurable kernel MV
t (u)

such that (6) and the integrability condition (7) hold.

Remark 3.2. Note that the existence of
∫ 1

0 V (t, s)us dBs as a stochastic
integral requires that V ∗(εt).u belongs to L2(Ω × [0, 1]). On the other
hand, for f ∈ L2, the existence of δ(V ∗fu) requires V ∗(f).u to belong
to L2(Ω × [0, 1]). This latter condition is likely to be weaker than the
former because V ∗f is a priori more regular (with respect to the time
variable) than V ∗εt. This means that for a given u, MV (u) may exist
whereas M̃V (u) may not.

Proposition 3.3. Under assumptions I and II; for any bounded and
progressively measurable process u, MVγ (u) belongs to Lr(Ω;Lr) where
r = θ(η) and

‖MVγ (u)‖Lr(Ω;Lr) ≤ cγ,η‖u‖Lr(Ω;Lr). (8)

Note that since η is assumed to be less than 2, r is greater than 2
(in particular not equal to 1) so that Lr(Ω × [0, 1]) can be viewed as
the strong dual of Lr∗(Ω× [0, 1]).

Proof. For any g ∈ L2 ⊂ Lr∗ and any ϕ ∈ Lr∗(Ω), using (6), Hölder
inequality, the isometry property of stochastic integrals and assumption
II, we have :∣∣∣∣E [∫ 1

0
M

Vγ
t (u)g(t) dt ϕ

]∣∣∣∣ =

∣∣∣∣E [δ(V ∗γ (g).u)ϕ
]∣∣∣∣

≤ ‖ϕ‖Lr∗‖δ(V
∗
γ (g).u)‖Lr

= ‖ϕ‖Lr∗‖V
∗
γ g.u‖Lr(Ω;L2)

≤ ‖ϕ‖Lr∗‖V
∗
γ g‖L2(r/2)∗‖u‖Lr(Ω;Lr) (a)

≤ cγ,η‖ϕ‖Lr∗‖g‖Lr∗‖u‖Lr(Ω;Lr). (b)

The key points from line (a) to line (b) are that

2
(r

2

)∗
=

2r

r − 2
= ψ(r)∗ = η∗,
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and that a map and its adjoint have the same operator norm. By the
density of L2 in Lr∗ , it follows that MVγ (u) belongs to Lr(Ω;Lr) and
(8) follows.

Proposition 3.4. Under assumption I, for any bounded, progressively
measurable, process u, we have

Iγ
0+

(MVγ
. (u))(t) = MV

t (u) IP ⊗ dt− a.e.. (9)

Proof. For f ∈ L∞, by Proposition [2.1], Iγ
1−(f) belongs to L2.

Moreover, since Vγ is Hilbert-Schmidt, according to (7),MVγ (u) belongs
IP -a.s. to L2 hence to the domain of Iγ

0+
, so that we have :∫ 1

0
Iγ

0+
(MVγ (u))(t)f(t) dt =

∫ 1

0
M

Vγ
t (u)Iγ

1−(f)(t) dt

=δ(V ∗γ ◦ I
γ
1−(f).u)

=δ(V ∗f.u) =

∫ 1

0
MV (u)(t)f(t) dt,

where we have twice used (6).

Theorem 3.1. Assume that hypothesis I and II hold. Let r = θ(η)
where η is given by hypothesis II. Let u be a progressively measurable
process belonging to Lr(Ω;Lr) and satisfying

E

[∫ 1

0
V (t, s)2u2

s ds

]
<∞, for all t ∈ [0, 1]. (10)

Then {M̃V
t (u), t ∈ [0, 1]} has a version which belongs to

⋂
γ<α Iγ,r

Moreover, we have, for any γ < α :

‖M̃V (u)‖Lr(Ω;Iγ,r) ≤ cγ,η ‖u‖Lr(Ω;Lr) (11)

Proof. Let 0 ≤ γ < α be fixed. In a first step, assume that u
is bounded; according to remark 3.1, condition (10) is satisfied thus
M̃V
t (u) exists for all t. By Proposition [3.3], MVγ (u) belongs almost

surely to Lr hence, according to (9), this means that MV (u) belongs
almost surely to Iγ,r. By Proposition [2.1], part (ii), s 7→MV

s (u) is thus
an almost surely continuous function.

We now consider the following sequence of embeddings :

C0 ⊆
id
L2 ≈ L2∗ ⊆

id∗
C∗0 ,
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where ≈ denotes the canonical isomorphism between L2 and its dual.
For (fn, n ≥ 1) a L2∗-sequence weakly-∗ converging in C0, to εt, we
have :

MV
t (u) = 〈εt,MV (u)〉C∗0 ,C0 = lim

n→∞
< id∗(fn), MV (u) >C∗0 ,C0

= lim
n→∞

< fn, id(MV (u)) >L2,L2= lim
n→∞

δ(V ∗fn.u),

according to the definition of MV (u). Since V is continuous from L2 in
C0, the sequence (V ∗fn, n ≥ 1) is weakly convergent in L2 and thus is
bounded. For u bounded and progressively measurable,

sup
n

E
[
δ(V ∗fn.u)2

]
≤ ‖u‖2∞ sup

n
‖V ∗fn‖2L2 <∞.

This entails that the sequence (δ(V ∗fn.u), n ≥ 1) is uniformly inte-
grable and hence that for ϕ bounded, we have :

E
[
MV
t (u)ϕ

]
= lim

n→∞
E [δ(V ∗fn.u)ϕ] (12)

It remains to prove that MV (u) is a version of M̃V (u). For, consider
a cylindrical functional ϕ with bounded Gross-Sobolev derivative, we
have on one hand :

E
[
M̃V
t (u)ϕ

]
= E

[∫ 1

0
V (t, s)us∇̇sϕds

]
, by (5)

and on the other hand :

E
[
MV
t (u)ϕ

]
= lim

n→∞
E [δ(V ∗fn.u)ϕ] , by (12)

= lim
n→∞

E

[∫ 1

0
V ∗fn(s)us∇̇sϕds

]
, by (5)

= E

[∫ 1

0
V (t, s)us∇̇sϕds

]
,

according to hypothesis I and the dominated convergence theorem. Thus
the theorem is proved provided that u is bounded.

Now, let u be not bounded but belong to Lr(Ω;Lr) and satisfy (10).
Consider the sequence (un, n ≥ 1) defined by un(s) = u(s)1{|u(s)|≤n};
un converges clearly to u in Lr(Ω;Lr) by dominated convergence. Ap-
plying (11), (Zn

def
= MV (un), n ≥ 1) is a Cauchy sequence in Lr(Ω; Iγ,r),

thus converges to some process Z, the sample-paths of which belonging
to Iγ,r and satisfying

‖Z‖Lr(Ω;Iγ,r)≤ cγ‖u‖Lr(Ω;Lr).
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Furthermore, for fixed t, by the first part of the proof, Zn(t) = M̃V
t (un)

for any n, almost surely and by (10) and dominated convergence, M̃V
t (un)

converges in L2(Ω) to M̃V
t (u), hence Z is a Iγ,r-valued version of

M̃V (u).

4. Application

We now apply the previous result to some integrals related to the
fractional Brownian motion. In the same vein, note that the Besov
regularity of stochastic integral with respect to the standard Brownian
motion is studied in [6, 7, 10, 13]. Namely there are two processes which
deserve the name of fractional Brownian motion. One is the process
defined by :

BH
t =

∫ t

0
JH(t, s) dBs with JH(t, s) =

1

Γ(H+1/2)
(t− s)H−1/2

+ , (13)

where x+ = max(x, 0). The parameter H which belongs to (0, 1), is the
so-called Hurst index. The other one is the process defined by WH

t =∫ t
0 KH(t, s) dBs where

KH(t, s) =
(t− s)H−1/2

+

Γ(H+1/2)
F (H − 1/2, 1/2−H,H + 1/2, 1− t/s). (14)

The Gauss hyper-geometric function F (α, β, γ, z) (see [9]) is the ana-
lytic continuation on C×C×C\{−1,−2, . . .}×{z ∈ C, Arg|1−z| < π}
of the power series

+∞∑
k=0

(α)k(β)k
(γ)kk!

zk. (15)

Here (α)k is defined by

(a)0 = 1 and (a)k
def
=

Γ(a+ k)

Γ(a)
= a(a+ 1) . . . (a+ k − 1).

Note that WH is more widely used in applications than BH because it
has stationary increments (see [3, 8] for some other features of BH and
WH), in fact the covariance kernel of WH is given by :

E
[
WH
s W

H
t

] def
=

VH
2

(s2H + t2H − |t− s|2H),

regularite6.tex; 5/01/2020; 15:02; p.9



10

where,

VH
def
=

Γ(2− 2H) cos(πH)

πH(1− 2H)
.

It has been shown in [3] that for any regular f, we have

f(WH
t )−E

[
f(WH

t )
]

=

∫ t

0
KH(t, s)us dBs,

where u is a progressively measurable process. Since the same can be
done for BH , this justifies our interest in stochastic Volterra integrals
with singular kernel.

Theorem 4.1 (fBm with non stationary increments). Assume that u
belongs to Lr(Ω;Lr) for some r > 1/H and r ≥ 2 then M̃JH (u) has
a modification which is Hε

r
def
= (H−1/r−ε)-Hölder continuous for any

0 < ε ≤ H − 1/r and

E
[
‖MJH (u)‖rHol(Hε

r )

]
≤ crεE

[∫ 1

0
|us|r ds

]
, (16)

where cε is the operator norm of I1/2+ε
0+

from Lψ(r) to Lr.

Remark 4.1. As a byproduct, choosing any ε ∈ (0, H − 1/r] yields to

E

[
sup
t≤1

∣∣∣∫ t

0
JH(t, s)us dBs

∣∣∣r] ≤ cE [∫ 1

0
|us|r ds

]
. (17)

The value of c depends on ε but the other terms of (17) don’t, so we
have as many inequalities as many choices of ε.

Proof. Since, JH is simply I
H+1/2
0+

, hypothesis I is clearly satisfied
with α = H. As to assumption II, it is sufficient to observe that in view
of Proposition [2.1] point (i), we have :

IH+1/2,η ⊂ IH,θ(η) for any η ≤ 2.

To conclude, it remains to show that the integrability condition on u
entails condition (10) which reads here as :

E

[∫ t

0
(t− s)2H−1u2

s ds

]
<∞,

or equivalently,
I2H

0+ (E
[
u2
.

]
)(t) finite for any t.

Actually, since u belongs to Lr(Ω;Lr), (s 7→ E
[
u2
s

]
) belongs to Lr/2

and thus I2H
0+ (E

[
u2
.

]
) belongs to Hol(2(H − 1/r)) ⊂ L∞.
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Theorem 4.2 (fBm with stationary increments). Assume that u is
a progressively measurable process which belongs to Lr(Ω;Lr) for some
r > 1/H and r ≥ 2. Assume also that u satisfies (10) then M̃KH (u) has
a modification which is Hε

r -Hölder continuous for any 0 < ε ≤ H − 1/r
and

E
[
‖MKH (u)‖rHol(Hε

r )

]
≤ crεE

[∫ 1

0
|us|r ds

]
,

where cε is the operator norm of Iε−H
0+

◦KH from Lψ(r) to Lr.

Proof. It is proved in [11, Table 10.2, page 188] thatKH is continuous
from Lη into IH+1/2,η so that the situation is very similar to what it is
in the previous theorem. The proof follows.

Remark 4.2. To examplify how necessary it is to work with the prop-
erties of the maps rather than the expression of the kernel, consider at
which condition on r, the integrability condition u ∈ Lr(Ω;Lr) entails
(10) in the case of the kernel KH . It is proved in [3] that :

0 ≤ KH(t, s) ≤ c(t− s)H−1/2s−|H−1/2|1[0,t)(s). (18)

Let H0 = |H − 1/2|. For any p < H−1
0 , since from its very definition

(see (14)) KH(t, s) is (H − 1/2)–homogeneous,∫ t

0
|KH(t, s)|p ds = tp(H−1/2)+1

∫ 1

0
|KH(1, s)|p ds,

hence, by (18),∫ t

0
|KH(t, s)|p ds ≤ tp(H−1/2)+1B(1− pH0, 1− pH0) if H < 1/2,

where B is the usual Beta function, and∫ t

0
|KH(t, s)|p ds ≤ tp(H−1/2)+1 1

1− pH0
if H > 1/2.

Hence, applying the Hölder inequality, we see that
∫ .

0 KH(., s)2f(s)2 ds is
bounded provided that f belongs to L2(1−2H0)−1

. Note that 2(1−2H0)−1

is equal to H−1, respectively (1 − H)−1, when H ≤ 1/2, respectively
H ≥ 1/2. Thus for H ≤ 1/2, the conditions r > 1/H and u ∈ Lr(Ω;Lr)
entail that the function u satisfies (10) hence the result is very much
same as it is for the fBm with non-stationary increments. Meanwhile,
for H > 1/2 to ensure (10) with the only constraint u ∈ Lr(Ω;Lr)
requires r to be greater than (1 − H)−1. Unfortunately, for H > 1/2,
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(1−H)−1 is strictly greater than 1/H, hence, all the more H is close to
1, all the more the condition on u becomes stringent. Meanwhile, WH

has more and more regular sample-paths when H increases : the sample-
paths are (H−ε)-Hölder continuous for any ε > 0 (Theorem [4.2] for
u bounded). One could thus expect that for a fixed regularity condition
like u ∈ Lr(Ω;Lr), MKH (u) would become all the more regular as H
increases. The reason for which this does not happen is that the kernel
KH(t, s) is more and more singular (see Eqn. (1)), al though the map
KH is a more and more regularizing operator, and the existence of the
stochastic integral M̃V (u) can only be expressed in terms of the kernel
(see (10)). Hence, whenever r is only greater than 2, MKH (u) is still
well defined for u ∈ Lr(W ;Lr) whereas M̃KH (u) may not exist.
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