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Introduction

Nous présentons les notions et outils nécessaires pour comprendre l’ensemble du manuscrit.

Diffusion

Les diffusions sont des fonctions aléatoires, qui sont très utilisées en physique, chimie, biologie,
statistique et en finance. Leur nature même en fait un outil de modélisation formidable : elle
permet de capter des dynamiques instantanées entachées d’incertitude. Au-delà de leur intérêt
descriptif, elles se prêtent aux utilisations quantitatives. D’un point de vue probabiliste, ce
sont des processus solutions d’équations différentielles stochastiques d’un certain type. Hormis
les processus gaussiens, il n’est pas possible de les décrire en spécifiant les marginales fini-
dimensionnelles. Les diffusions connues peuvent être décrites selon leur dynamique, par exemple
l’équation de Langevin:

dY (t) = σ dB(t)− bY (t) dt.

où σ et b sont des paramètres réels de l’équation tandis que B est un mouvement Brownien.
Pour simplifier nos propos dans cette introduction, on considère que le processus est à valeurs
dans Rd. Il est connu que le mouvement Brownien tout comme les diffusions sont des processus
de Markov. Un processus de Markov Y est caractérisé par son opérateur de semi-groupe P . En
le laissant agir sur une classe suffisamment riche de fonctions f : Rd → R boréliennes bornées :

(Pt f)(x) := E [f(Y (t))|Y (0) = x] .

En général, on considère un espace de Banach séparable, muni de la norme ‖ · ‖∞, de fonctions
continues tendant vers 0 à l’infini sur lesquelles le semi-groupe agit, dénoté C0 = C0(Rd,R).
Nous rappelons le théorème suivant.

Theorem 0.0.1 (Pt, t ≥ 0) est un semi-groupe conjointement continu de contractions sur
C0, i.e.,

1. ‖Pt f‖∞ ≤ ‖f‖∞, ∀t, f

2. Pt+s = Pt ◦ Ps

3. P0 = Id,

4. (t, f) 7→ Pt f est continu de R+ × C0 7→ C0.

Ainsi, on définit le domaine du générateur comme le sous-espace vectoriel

DomL := {f ∈ C0 : lim
t↘0

1

t
(Pt f − f) existe},
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et pour f ∈ DomL, on définit Lf par la valeur de cette limite. L’opérateur linéaire L est appelé
générateurinfinitésimal. Le théorème suivant résulte du théorème de Hille-Yosida (théorème 2.6
dans Ethier and Kurtz (1986)).

Theorem 0.0.2 1. DomL est dense dans (C0, ‖ · ‖∞);

2. Pt laisse stable DomL : Pt(DomL) ⊂ DomL;

3. ∀f ∈ DomL, d
dtPt f = Pt Lf = LPtf.

Puisque Pt est solution de l’équation différentielle d
dtPt f = LPtf , on écrit formellement:

Pt = exp(tL).

Par l’inégalité de Jensen, pour toute fonction convexe φ : R→ R, et tout t ≥ 0, et toute fonction
f ∈ C0,

Pt(φ(f)) ≥ φ(Pt f). (0.0.1)

Par différentiation, en passant à la limite pour t→ 0, on a que:

Lφ(f) ≥ φ′(f)Lf. (0.0.2)

Pour de nombreuses applications sur les processus de Markov, il est commode que (0.0.2) soit
une égalité pour des fonctions φ suffisamment régulières, c’est-à-dire que:

Lφ(f) = φ′(f)Lf + erreur. (0.0.3)

Pour écrire cette erreur dans le cadre d’une diffusion, on se réfère à la formule de transport
suivante : {

Var f(C) = Var(C)f ′2(C)

biais f(C) = (biais C)f ′(C) + 1
2 Var(C)f ′′(C).

(0.0.4)

où C est une quantité aléatoire. L’intuition de Bouleau consiste à identifier le biais et l’erreur
quadratique dans cette formule avec les opérateurs L et Γ défini ci-dessous, qui forment une
structure de Dirichlet. L’opérateur carré du champ est défini par

Γ(f, g) :=
1

2
(L(fg)− gLf − fLg)

pour f, g ∈ A une algèbre dans DomL telle que le produit de fonctions fg est dans le domaine
de L. Un générateur est dit diffusif si:

Lφ(f) = φ′(f)Lf + φ′′(f)Γ(f, f). (0.0.5)

Le monographe Bakry et al. (2013) est dédié à l’étude des semi-groupes associés parmi lesquels
le semi-groupe d’Ornstein-Uhlenbeck, le semi-groupe de Laguerre et le semi-groupe de Jacobi.
D’importantes conséquences en découlent comme l’existence d’une inégalité de Poincaré et des
théorèmes limites. En particulier pour ces derniers, les résultats sont obtenus en considérant
la structure en chaos de l’espace de probabilité d’intérêt. L’approche rejoint celle du calcul de
Malliavin.
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Liens avec le calcul de Malliavin

Le calcul de Malliavin est un outil puissant qui permet d’étudier les propriétés des processus
stochastiques, tels que les processus de Markov, les processus de Lévy et les processus de Wiener
(voir Nualart (2006)). Il est basé sur la notion de dérivée stochastique, qui est une généralisation
de la dérivée ordinaire aux processus stochastiques. Une structure de Malliavin est propre à
l’espace de probabilité dans lequel est défini lesdits processus stochastiques. Nous nous référons
au chapitre 1 de Nourdin and Peccati (2012) pour un exemple de structure de Malliavin dans
le cas unidimensionnel. De manière générale, la construction d’une telle structure passe par la
définition d’un gradient D, d’une divergence δ et de l’opérateur de nombre L̄ = δD sur leurs
domaines respectifs. Les opérateurs D et δ sont liés par la relation de dualité: Introduire

l’espace
de
Malliavin
K

E[〈DF, η〉K] = E[FδU ];

Par l’approche de semi-groupe,
Grâce à la décomposition en chaos, on peut définir la notion d’intégrale stochastique. Sur
l’espace de Wiener, sa définition selon le calcul de Malliavin ne nécessite pas d’hypothèse sur
l’adaptabilité contrairement au calcul d’Itô. Pour notre type d’application, une conséquence
importante de la décomposition en chaos est la formule de multiplication qui se formule dans le
cas gaussien sous cette forme. Multiplication

formulaeA partir de ce résultat, grâce à la méthode de Malliavin-Stein (voir la monographie Nourdin
and Peccati (2012)), on obtient un théorème limite quantitatif en terme de distance de totale
variation:

dTV (F,N (0, 1)) ≤ C
√
E[F 4]− 3.

Structures sans propriété de diffusion

Pourtant, les structures sans propriété de diffusion sont légions. Sans cette propriété de diffusion,
de nombreux résultats connus dans le chaos de Wiener comme le théorème de quatrième moment
(Azmoodeh et al., 2014) ne peuvent pas être étendus. Le point critique dans les preuves est
l’utilisation d’une règle de dérivation (en châıne).
Récemment, il a été question de quand même étendre des résultats à d’autres chaos, qui ne
bénéficie pas de la diffusion du générateur.
C’est là qu’intervient Malliavin.

Faire un parallèle Brownien, Poisson.

Plus que la nature discrète, c’est l’absence de propriété de diffusion sur l’espace qui est un frein
pour dérouler le calcul de Malliavin-Dirichlet.
Les fonctionelles de processus de Poisson rentrent dans ce cadre étant donné que un processus
de Poisson (respectivement une mesure de Poisson) peut être vu comme un élément de l’espace
des configurations sur R+ (respectivement Rd avec d ≥ 1).
Cette thèse se compose de deux parties distinctes.

Calcul de Malliavin pour les variables aléatoires conditionnelle-
ment indépendantes

La première partie de ce travail porte sur l’implémentation de la méthode Malliavin-Stein pour
des variables aléatoires conditionnellement indépendantes avec en vue une application à la
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quantification de théorèmes limites concernant les hypergraphes aléatoires.
Nous nous intéressons aux fonctionnelles F de séquence de variables aléatoires X = (Xa)a∈A
indépendantes conditionnellement à une variables aléatoire Z. Le gradient discret dans notre
structure de Malliavin est défini pour a ∈ A par:

DaF := F − E
[
F |(Xb)b∈A\{a}, Z

]
.

Il constitue avec l’opérateur de divergence δ et l’opérateur d’Ornstein-Uhlenbeck L la bôıte à
outils fournie par la structure de Malliavin. Comme dans les travaux de Decreusefond and
Halconruy (2019), celle-ci découle de la dynamique de Glauber associée à l’opérateur Laplacien
de la structure de Malliavin discrète se rapporte à un échantillonnage de Gibbs étalé dans le
temps.
Nous pouvons effectivement décrire la loi jointe d’une séquence de variables aléatoires indépendantes,
comme la loi liée à la mesure invariante d’un tel processus. Le semi-groupe associé à la dy-
namique permet de déduire une formule de covariance pour montrer des inégalités de concen-
tration. La modification de la dynamique comme présentée dans la première partie du manuscrit
permet d’avoir une version des résultats obtenus pour les séquences de variables aléatoires con-
ditionnellement indépendantes.
Du fait de cette caractérisation supplémentaire de la loi jointe, on obtient des outils supplémentaires
qui complètent la bôıte à outils, venant de la structure de Dirichlet sous-jacente, à savoir
l’opérateur carré du champ et les formes de Dirichlet. Étant donné la relation entre l’un et
l’autre, les résultats seront formulés en terme de l’opérateur carré du champ:

Γ(F,G) :=
1

2
{L(FG)− FLG−GLF}

La formule d’intégration par parties qui en découle est primordiale pour dérouler la méthode
de Stein :

E[Γ(F,G)] = −E[FLG]. (0.0.6)

Nous obtenons des théorèmes limites quantitatifs pour des U-statistics de variables condition-
nellement indépendantes. Des théorèmes de quatrième moment qui prennent appui sur des
articles fondateurs de calcul de Malliavin dans une structure de Dirichlet (Azmoodeh et al.,
2014) peuvent être déduits permettant de fournir des vitesses de convergence d’approximation
normale des statistiques d’hypergraphes aléatoires. Nous l’appliquons pour la preuve de la nor-
malité asymptotique du comptage de motifs dans un hypergraphe aléatoire Tn où les triangles
sont tirés indépendamment avec une certaine probabilité conditionnellement à la présence des
arêtes dans un graphe Erdös-Rényi G(n, pn) avec pn < 1. C’est un résultat nouveau dans le sens
où la structure conditionnellement indépendantes était un frein pour la déduction de vitesse de
convergence. Un théorème central limite conditionnel pouvait être déduit avec les méthodes
usuelles mais pas plus. Avec l’application au comptage de motifs pour un hypergraphe, la
structure avec une couche d’arêtes indépendantes, et de une couche de triangles conditionnelle-
ment indépendantes permet de déduire un vrai théorème central limite pour l’estimateur, qui
est nouveau, car l’hypergraphe aléatoire donné est bien différent de l’hypergraphe aléatoire
Erdös-Rényi Hn = G(3)(n, p′n) (Lovász, 2012, section 23.3). Si on tire les triangles, avec prob-
abilité 1, et que pn = 1/2 et p′n = 1/8, les deux modèles ont la même densité d’arêtes 1/8,
mais Hn est quasi-aléatoire alors que Tn ne l’est pas. Il a une petite intersection avec chaque 3-
uniforme hypergraphe quasi-aléatoire par la proposition 23.10 (Lovász, 2012). Les deux modèles
se ressemblent néanmoins par leur homogénéité, car finalement issu du même modèle de graphe
Erdös-Rényi étendu différemment. Rien qu’avec une famille de graphe aléatoire, on peut créer
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plusieurs sous-familles d’hypergraphes aléatoires, ce qui donne une latitude de modélisation et
de résultats de convergence en loi pour des estimateurs sur ces modèles.

Inversibilité dans le contexte de fonctionnelles de mesure de Pois-
son

La seconde partie porte sur l’extension de la notion d’inversibilité au

Manuscrit

Le manuscrit est organisé comme suit.
Pour la suite du manuscrit, j’ai pris le parti de mettre en valeur les résultats nouveaux avec des
bôıtes colorées, en espérant une lecture plus aisée.
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Part I

Stein-Malliavin-Dirichlet method
and applications to statistics in

hypergraph theory
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Chapter 1

Introduction

1.1 Background

The fundamental example of the type of result we address in the first part is the Berry-Esseen
bound for the central limit theorem. LetX1, . . . , Xn be i.i.d. random variables with E|X1|3 <∞,
E[X1] = 0 and Var(X1) = 1, if Φ denotes the cumulative distribution function of a standard
normal distribution and Wn =

∑n
i=1

Xi√
n

, then there exists C > 0 such that:

|P(Wn ≤ x)− Φ(x)| ≤ C E|X1|3√
n

.

That quantifies the error in the classical central limit theorem. More generally, a central theme of
probability theory is proving distributional limit theorems. For the purpose of approximation it
is of interest to estimate the rate of convergence in such results. The common methods employed
are method of moments, Fourier analysis and martingale theory, but in some important cases
they lead to sub-optimal bound on the rate.

Stein’s method is a technique that can quantify the error in the approximation of one distribution
by another in a variety of metrics. The Stein’s method for normal approximation was invented
in the groundbreaking paper (Stein et al., 1972) published in 1972 and extended for Poisson
convergence (Chen, 1975) a few years later. Stein’s method has proved powerful in particular
for deriving explicit sharp bounds on distributional distances even when the underlying random
element consists of structures with dependence (Arras et al., 2020). Moreover, it has been
developed by a growing community to tackle an enlarging collection of approximation problems
including beta, binomial, gamma, multinomial, variance-gamma, Wishart, and many more.

The common denominator of most of them is the existence of a generator whose invariant
measure is the target distribution. The generator approach was a novel approach to Stein’s
method introduced in Barbour (1990) (see also Barbour (1988); Gotze (1991)). Since then, it
has been a common scheme for approximation. That is one of the first building blocks of the
Malliavin-Stein method in which the semigroup associated to the generator plays an important
role.

The powerful interactions of Malliavin calculus of variations and Stein’s method were highlighted
by Nourdin and Peccati. The seminal paper Nourdin and Peccati (2009) used the combination
of Malliavin calculus and Stein’s approach to obtain a rather simple proof of the striking fourth
moment theorem for normal approximation, established earlier in Nualart et al. (2005). Hence,
that line of search has been popular as the fourth moment phenomenon emerges in many

11



12 1. INTRODUCTION

contexts including free probability, compressed sensing, time series analysis, stochastic geometry
and motif estimation in random graphs.
The latest developments in computational statistics are summarized in Anastasiou et al. (2023).
We also point to a website that regroups the papers using Stein’s method over the years:

https://sites.google.com/site/steinsmethod/articles.

In this manuscript, we deal with a branch of Stein’s method combined with Malliavin calculus
enriched by the structure given by Dirichlet forms, honing on the application to fourth moment
limit theorems.

1.2 Probability distances

For the taxonomy of probability metrics and their history, the essential reference is the mono-
graph (Rachev, 1991) that presents a unified and comprehensive approach to the theory of the
more than seventy known probability metrics and their applications. Many of them are variants,
particular cases or extensions of the Wasserstein and Lévy-Prokhorov metrics. We ponder on
the first type of probability distances. For two probability measures P and Q on a measurable
space (X ,A,P), the probability metrics we consider have the form:

d(P,Q) = sup
h∈H

∣∣∣∣∫ h dP −
∫
h dQ

∣∣∣∣ , (1.2.1)

where H is a space of test functions f : X → R. In the following, we assume X = Rd and
A = B(Rd).

Example 1.2.1. For the Kolmogorov distance, the space is:

H = {1(−∞,x) : x ∈ R}.

The Kolmogorov metric, denoted dK , is the maximum distance between cumulative distri-
bution functions, so a sequence of distributions converging to a fixed distribution in this
metric implies weak convergence, although the converse is not true since weak convergence
only implies pointwise convergence of cumulative distribution function (c.d.f. for short) at
continuity points of the target c.d.f..

Example 1.2.2. For the total variation metric denoted dTV , the space of test functions
is: H = {1A : A ∈ A}. We use it for approximation by discrete distributions, for example
the Poisson distribution.

Example 1.2.3. The Wasserstein distances is defined as the minimum cost of transporting
P to Q, where the cost is measured by the distance that each mass unit must be moved.
Mathematically, the Wasserstein distance is defined as follows:

dWp(P,Q) = inf
γ∈Γ(P,Q)

∫
M×M

c(x, y) γ( dx, dy)

https://sites.google.com/site/steinsmethod/articles


Stein’s method principle 13

where Γ(P,Q) is the set of all couplings between P and Q and c is a cost function. In the
literature, the p-Wasserstein distances refers to the cases where the cost functions are power
of Euclidean distances, i.e. c(x, y) = ‖x − y‖p. By the Kantorovich-Rubinstein duality
formula, the first-order Wasserstein distance can be written in the form (1.2.1) where
the underlying space of functions is a subspace of Lipschitz-continuous functions: H =
{f ∈ Lip(X ,R) : Lip(f) = 1}. It is a common metric, also called Kantorovich-Rubinstein
distance (or norm), occurring in many contexts as optimal transport, partial differential
equations and even surprising ones as quantification of some variants of the uncertainty
principle in quantum physics. In the following, we refer to it as the 1-Wasserstein distance
with the notation dW .

Proposition 1.2.4 Let µ is absolutely continuous with respect to the Lebesgue measure λ.
If the Radon-Nikodym derivative dµ

dλ is bounded by C, then for any random variable W ,

dK(LW , µ) ≤
√

2C dW (LW , µ).

In the remainder, dW is the main distance for our distributional approximations. The following
theorem illustrates the interest in considering that distance between each element of a family
of probability measures (µn)n∈N and a target probability measure µ.

Theorem 1.2.5 Let n ∈ N, the following two properties are equivalent:

1. dW (µn, µ)→ 0.

2.
∫
X f dµn →

∫
X f dµ for all bounded and continuous functions from X to R.

In our case, µn is the law of functionals Fn of sequences of random variables, and µ is the
Gaussian distribution.

1.3 Stein’s method principle

The Stein’s method relies on the characterization of the target distribution in the scheme of
approximation. It consists in the construction of so-called Stein identities or equivalently in our
case Stein operators which act on a space of functions H∗ not to confuse with the starting space
of test functions.

Definition 1.3.1. The Stein operator L is defined such that for a given random variable
Y ,

E[Lf(Y )] = 0 ∀f ∈ H∗ ⇐⇒ Y has distribution Q. (1.3.1)

The key step in Stein’s method is to transform the expression of the quantity
∣∣∫ h dP −

∫
h dQ

∣∣
of which we take the supremum over H in (1.2.1) into a Stein identity of the form E[Lϕh(Y )]
for ϕh ∈ H∗.
For the following, we fix H = {f ∈ Lip(X ,R) : Lip(f) = 1}. We will explain one way to obtain
a Stein operator via the generator approach, using the formalism of Decreusefond (2015) which
uses the underlying Dirichlet structure to characterize both the initial space and the target
space.

The Stein operator turns out to be a piece of a Dirichlet structure.
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Initial space Target space

(X ,P) (R, Q)

(R, F#P)

F

dW (F#P, Q) ?

Figure 1.1: Comparison between F#P and Q.

Let E a metric space equipped with its σ-field A, we recall some definitions.

Definition 1.3.2. A Dirichlet structure on (E,A, µ) is a quadruple (X◦, L◦, (P ◦t , t ≥
0), E◦), where X◦ is a strong Feller process with values in E whose generator is L, and its
semigroup is (Pt, t ≥ 0) for f : E → R sufficiently regular.

In fact, we only need to define a Markov triple since the bilinear form E is not used here.

Definition 1.3.3 (Semigroup). Let (Pt)t∈R+ the family of operators defined on some set
of real-valued measurable functions on (E,A), and satisfying the following conditions:

1. For any t ∈ R+, Pt is a linear operator sending bounded measurable functions on (E,A)
to bounded measurable real functions.

2. P0 = Id where Id is the identity operator (initial condition).

3. For every (s, t) ∈ (R+)2, Pt+s = Pt ◦ Ps.

4. For any t ∈ R+, Pt conserves the mass and preserves positivity (Markov property), i.e.
Pt 1 = 1. For any positive function f , Pt f ≥ 0.

(Pt)t∈R+ is a semigroup associated to a generator L.

Definition 1.3.4 (Invariant measure). Let a family (Pt)t∈R+ of operators defined on
(E,A) and satisfying all the properties above. A positive σ-finite measure ν0 on (E,A) is
said to be invariant for (Pt)t∈R+ , if for every bounded function f : E → R, and t ∈ R+,∫

E
Pt f dν0 =

∫
E
f dν0. (1.3.2)

In the following, we only consider semigroups that have invariant measure.
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Remark 1.3.5. It must be noted that the knowledge of one of L◦, P ◦ or X◦ is equivalent
to the knowledge of the other two.

We can use Dirichlet structures on both sides.

In the case of normal approximation, the associated Stein operator is for f ∈ H∗:

Lf = f(x)− xf ′(x). (1.3.3)

There are several ways to obtain that elementary result. We recall an instructive one from
Decreusefond (2015) which leverages the underlying Dirichlet structure associated to the normal
distribution.

Definition 1.3.6. Let X◦ the Markov process defined as:

X◦(t, x) =

{
X◦(0, x) = x

dX◦(t, x) = −X◦(t, x) +
√

2 dB(t),
(1.3.4)

where B is a standard Brownian motion. The solution to this stochastic differential equa-
tion is the Ornstein-Uhlenbeck process.

By the Itô formula, we have for t ∈ R+:

X◦(t, x) = xe−t +
√

2

∫ t

0
e−(t−s) dB(s).

X◦(·, x) is then a Gaussian process with parameters:

m(t) = xe−t K(s, t) = e−|t−s| − e−(t+s). (1.3.5)

Hence, X◦(t, x) ∼ N (xe−t, 1 − e−2t). We have that X◦(t, x) =⇒ N (0, 1) when t → ∞. The
invariant distribution is the µ = N (0, 1).

Let f ∈ S the set of functions belonging to C∞(R,R) such that f and all its derivatives have
at most polynomial growth, and x ∈ R. By the Mehler representation formula, the associated
semigroup is defined as:

Ptf(x) =

∫
R
f
(
e−tx+

√
1− e−2ty

)
µ( dy). (1.3.6)

We want to compute d
dtPt|t=0, for the Gaussian distribution µ as target. For any f ∈ S,

d

dt
Ptf(x) = −xe−t

∫
f ′(e−tx+

√
1− e2ty)dµ(y) +

e−2t

√
1− e−2t

∫
f ′(e−tx+

√
1− e−2ty)y dµ(y)

= −xe−t
∫
f ′(e−tx+

√
1− e2ty) dµ(y) + e−2t

∫
f ′′(e−tx+

√
1− e−2ty) dµ(y) using lemma.

(1.3.7)
In particular, d

dtPtf(x)|t=0 = −xf ′(x) + f ′′(x). We want to prove that Lf = d
dtPtf(x)|t=0. We Which

lemma?would denote first Ltf(x) = d
dtPtf(x)
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P

Q

P

∞ d
dtPt

P
†#
t P

t
Title for
picture We also write:

Ptf(x)− P0f(x) =

∫ t

0

d

ds
Psf(x) ds = Ptf(x)− f(x). (1.3.8)

lim
t→∞

E[f(N (e−tx, 1− e−2t))]− f(x) =

∫ ∞
0

d

ds
Psf(x) ds. (1.3.9)

Hence, for any measure of probability ν,∫
f(x) dµ(x)−

∫
f(x) dν(x) =

∫ ∫ +∞

0
Lsf(x) ds dν(x). (1.3.10)

One wants to derive under the integral. Thus,

d(µ, ν) = sup
ϕh: h∈H

∣∣∣∣∫ Ltϕh

∣∣∣∣ . (1.3.11)

The upper bound is achieved by functions solutions of Stein equations.
For f ∈ Dom(L†):

L†f(x) = xf(x)− f ′(x). (1.3.12)
Remind
all deriva-
tives
semi-
group
and
rewrite
the space
of test
functions

f † all order derivatives (see Nourdin and Peccati (2012, chapter 3 p.63-69)).
Especially,

d(F,N (0, 1)) ≤ sup
f†∈H∗

|E[L†f †F ]|, (1.3.13)

• HTV = {f † : ‖(f †)′‖∞ ≤
√
π/2, ‖f †′′‖∞ ≤ 2};

• HKol = {f † : ‖f †‖∞ ≤
√

2π/4, ‖(f †)′‖∞ ≤ 1}

Mention
Stein’s
equations
based on
Stein’s
operator

Takeaway message:
Reminder of Malliavin-Stein-Dirichlet method. All roads lead to Rome. (Decreusefond, 2015).
In the following section, we recall the principle of Malliavin-Stein’s method, which is a ram-
ification of Stein’s method with several breakthroughs concerning normal approximation (see
Nourdin and Peccati (2012)).
The first step of Stein’s method relies on the characterization of the target distribution. The
second step boils down to bound (1.3.13). There are various approaches to achieve that, using
the structures of the random variables.

1.4 Malliavin-Stein-Dirichlet

Malliavin calculus is also known as the stochastic calculus of variations. At the very core of it, it
considers a gradient on a measured space. The link between these, the differential geometry and
the measure is made through the so-called integration by parts formula. When the measured
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space is the Wiener space, i.e. the set of continuous functions with the Brownian measure, the
gradient generalizes the usual gradient on RN and the integration by parts yields an extension
of the Itô integral. The intersection with Stein’s method originates from the seminal paper by
Nourdin and Peccati, who were able to associate a quantitative bound to the remarkable fourth
moment theorem on the Wiener space established by Nualart and Peccati (Nualart et al., 2005).

Fourth moment theorems are simplifications of results using the Method of Moments. The
Method of Moments in probability theory is one of the oldest versatile tool used by probabilists
to prove limit theorems in non-standard problems. The principle stems from the property that
the moments of a random variable are determined by the distribution. Although the converse is
not true, we have that the distribution of some random variable X is determined by its moments
if X has finite moments and every random variable with the same moments as X has the same
distribution. The standard version of the method of moments can be stated as follows (Chung,
1974, Theorem 4.5.5).

Theorem 1.4.1 Let Z be a random variable with a distribution that is determined by its
moments. If X1, X2, . . . are random variables with finite moments such that E[Xn

k ] →
E[Zk] as n→∞ for every integer k ≥ 1, then Xn

d−→ Z.

It has been used for results of asymptotic normality of statistics on random graphs (see Jan-
son et al. (2000, chapter 6)), and Poisson convergence as well. Overall, it is well adapted to
combinatorial problems. The drawback is that it usually requires tedious calculations for the
estimations. In some cases, the proofs can be reduced to the control of some moments and not
all of them. This is the case of the fourth limit theorem.

Definition 1.4.2 (Cumulants). Let F be a real-valued random variable such that E[|F |m] <
∞ for some integer m ≥ 1, and write ϕF (t) = E[eitF ], t ∈ R, for the characteristic function
of F . Then, for r = 1, . . . ,m, the r-th cumulant of F denoted by κr(F ), is given by

κr(F ) = (−i)r dr

dtr
logϕF (t) (1.4.1)

Remark 1.4.3. When E[F ] = 0, then the first four cumulants of F are the following:
κ1(F ) = E[F ] = 0, κ2(F ) = E[F 2] = Var(F ), κ3(F ) = E[F 3], and:

κ4(F ) = E[F 4]− 3E[F 2]2.

The fourth moment theorem states a rate of convergence in terms of cumulants for a sequence
of multiple stochastic Wiener-Itô integrals of fixed order Iq(f) for q ≥ 2.

Theorem 1.4.4 Let (Fn)n≥1 = (Iq(fn))n≥1 be a sequence of random elements in a fixed
Wiener chaos of order q ≥ 2 such that E[F 2

n ] = q!‖fn‖2 = 1. Then, as n tends to infinity,
the following assertions are equivalent.

1. Fn → N (0, 1) in distribution

2. κ4(F )→ 0 = κ4(N)

where N ∼ N (0, 1).
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A few years later, Nourdin and Peccati (Nourdin and Peccati, 2009) made a huge breakthrough
by providing an error bound in terms of the fourth moment. The fourth moment phenomenon
has since then emerged as a unifying principle governing the central limit theorems for various
non-linear functionals of random fields. It has paved the way for a fruitful line of search,
growing as far as obtaining the universality phenomenon according to which the asymptotic
behavior of large random systems does not depend on the distribution of its components (see the
comprehensive book Nourdin and Peccati (2012)). More precisely, one can use random variables
in Wiener chaos instead of independent random variables in order to prove asymptotic normality
of functionals of those provided some mild assumptions on the functionals. The intuition behind
also led to a connection of the Malliavin-Stein’s method and criterions of asymptotic normality
in the literature such as DeJong’s one (de Jong, 1989) which states a partial fourth moment
theorem concerning multilinear forms, a particular class of functionals of independent random
variables. The additional remainder in the convergence rate is expressed in terms of the maximal
influence of the variables, roughly speaking the maximum over i ∈ N contribution of a random
variable Xi to the overall configuration of the multilinear forms. Due to the discrete nature,
the techniques used for the Wiener chaos do not apply in a straightforward way, although they
can be adapted. It is the object of the remainder and of my contribution detailed in the next
chapter.

1.5 The Markov triple approach

In this section, we introduce a general framework for studying the fourth moment phenomenon
with chaos. The forthcoming approach was first introduced in Ledoux et al. (2012), and then
further developed in Azmoodeh et al. (2014, 2016).
The main assumption is the property of diffusion of the generator L on the initial space.

Definition 1.5.1. A Markov operator L is said to be a diffusive, if for every function
ϕ : R → R, and for every smooth (enough) function ϕ : R → R, and for every function
f ∈ H,

Lϕ(f) = ϕ′(f)Lf + ϕ′′(f)Γ(f, f). (1.5.1)

Equivalently, the associated carré du champ operator Γ is a derivation in the sense that:
Γ(ϕ(X), X) = ϕ′(X)Γ(X,X) for any ϕ ∈ C∞(R).

That is a consequence of the chain rule, which leads to:

Γ(ψ(f), θ(g)) = ψ′(f)θ′(g)Γ(f, g). (1.5.2)

Definition 1.5.2. A fourth moment structure is a triple (E,µ, L) such that:

1. (E,µ) is a probability space;

2. L is a symmetric unbounded operator defined on some dense subset of L2(E,µ) that
we denote DomL, the domain of L◦

3. The associated carré-du-champ operator Γ is a symmetric bilinear operator defined by:

Γ(F,G) :=
1

2
{L(FG)− FLG−GLF}
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4. The Markov operator L is diffusive.

Definition 1.5.3 (Azmoodeh et al. (2014) p.6). An eigenfunction X of the generator −L
with eigenvalue λp is called a chaos eigenfunction of order p, if and only if:

X2 ∈
2p⊕
k=0

ker(L+ λkId). (1.5.3)

That holds in the three most important diffusion structures, namely Wiener, Laguerre and
Jacobi and in discrete setting like the Poisson space (Azmoodeh et al., 2014). Chain

rule for
Stein’s
method1.6 Fourth moment on the Poisson space

We introduce to an emblematic example of non-diffusive structure for which we can state the
fourth moment using an analogous scheme of approximation. The Poisson space The following
reminds some results in Döbler et al. (2018).

We recall the definition of the discrete gradient on the configuration space.

Definition 1.6.1. Let N be a Poisson process with intensity σ. Let F : NE → R be
a measurable function such that E[F (N)2] < ∞. We define DomD as the set of square
integrable random variables such that

E
[∫

E
|F (N ⊕ x)− F (N)|2 dσ(x)

]

This is a review of the existing fourth moment theorems that have been available in the
literature. They have been obtained for most of them in the same manner, leveraging a
chaos decomposition.

Rademacher
settingSee Privault et al. (2008). The following chapter shows how using analogous techniques we can

derive equivalent limit theorems as well as concentration results.
Completion
of Malli-
avin
recipe

Now we define the tools from Nicolas Bouleau, Guillaume Poly that unify Malliavin calculus of
Nourdin, Peccati and Dirichlet computations. The definitions are from another insightful article
about a similar approach (Ledoux et al., 2012). We recall that a Malliavin structure revolves
around a gradient, its associated Ornstein-Uhlenbeck operator, and a formula of integration by
parts.

The integration by parts given by the Dirichlet structure supersedes the integration by
parts at the cornerstone of Malliavin structure. It is actually two ways of writing the
integration by parts, at least in our case. The procedure is:

• Find an Ornstein-Uhlenbeck operator,

• gradient, difference operators that are the crux of the matter in computations.

• Integration by parts.
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1.7 Contributions

The control by the fourth moment in a Wiener chaos and Poisson space to the quality of normal
approximation in that setting is now well understood (Chen, 2021). The next natural random
elements to deal with is the sequence of independent random variables. Lots of works about it
including Decreusefond and Halconruy (2019) and Duerinckx (2021) about Malliavin calculus
in that discrete setting.
There are limit theorems for subhypergraph counts in random hypergraphs (De Jong, 1996).
However, most of them consider simply random hypergraphs as extended random graphs, hence
considering hyperedges as independent random variables. In Austin (2008), the taxonomy of
exchangeable random hypergraphs concern conditionally independent Bernoulli random vari-
ables. Hence, we have focused on the branch of Stein’s method leveraging a Malliavin-Dirichlet
structure for conditionally independent random variables. For an exhaustive overview of theAdd

fourth
moment
theorem
and the
subhy-
pergraph
counts

Malliavin-Stein method, we refer the reader to the website:

https://sites.google.com/site/malliavinstein/home.

In brief, our contributions are:

• A new Malliavin framework for conditionally independent random variables;

• An application to concentration inequalities;

• New bounds on the 1-Wasserstein bounds for U-statistics;

• An application to asymptotic normality of subhypergraph counts in random hypergraphs.

https://sites.google.com/site/malliavinstein/home


Chapter 2

Malliavin calculus for conditionally
independent random variables

On any denumerable product of probability spaces, we extend the discrete Malliavin structure
for conditionally independent random variables. As a consequence, we obtain the chaos decom-
position for functionals of conditionally independent random variables. We also show how to
derive some concentration results in that framework. The Malliavin-Stein method yields Berry-
Esseen bounds for U-Statistics of such random variables. It leads to quantitative statements of
conditional limit theorems: Lyapunov’s central limit theorem, De Jong’s limit theorem for mul-
tilinear forms. The latter is related to the fourth moment phenomenon. The final application
consists of obtaining the rates of normal approximation for subhypergraph counts in random
exchangeable hypergraphs including the Erdös-Rényi hypergraph model. The estimator of sub-
hypergraph counts is an example of homogeneous sums for which we derive a new decomposition
that extends the Hoeffding decomposition.

2.1 Motivation

It is only very recently that, concomitantly, the situation where the measured space is a product
space, i.e. if we deal with independent random variables, has been addressed (see Duerinckx
(2021); Decreusefond and Halconruy (2019); Dung (2018)). By order of complexity, the next
situation which can be analyzed is that of conditionally independent random variables. This
is a very common structure as de Finetti’s theorem says that an infinite sequence of random
variables is exchangeable if and only if these random variables are conditionally independent.
This is the key theorem to develop a theory on random hypergraphs as in Austin (2008).

The first definitions of gradient (denoted by D) and divergence we introduce below for condition-
ally independent random variables, bear strong formal similarities with those of Decreusefond
and Halconruy (2019). The difference lies into the computations which rely heavily on condi-
tional distributions given the latent variable, which is here called Z. We can then follow the
classical development of the Malliavin calculus apparatus: gradient, divergence, chaos, num-
ber operator and Ornstein-Uhlenbeck semi-group (denoted by Pt). We can even describe the
dynamics of the Markov process whose infinitesimal generator is the number operator. At a
formal level, the computations are almost identical to those of Decreusefond and Halconruy
(2019) with expectations replaced by expectations given Z. That notion of gradient is itself the
extension of gradient in the particular discrete setting when X is a sequence of Rademacher
random variables Privault et al. (2008, section 10 proposition 10.1.).

21
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Nevertheless, for more advanced applications, namely functionals identities like the covariance
representation formula, we need to introduce a difference operator (see Definition 2.4.9) which
appears more often that the gradient itself. It is in some sense a finer tool that the original
gradient which is useful to define the Dirichlet structure (the Glauber process, the infinitesimal
generator denoted by L, etc.) but no more. This is due to the fact that DaDa = Da, which
entails that L commutes with D and thus we have DPt = PtD in place of the usual formula
DPt = e−tPtD which is the core formula to derive all functional inequalities in the Gaussian
and Poisson cases. The difference operator ∆ allows to recover the crucial e−t factor (see
Proposition 2.5.1).

The prevailing application of Malliavin calculus is nowadays, the evaluations of convergence
rates via the Stein’s method (Nourdin and Peccati (2012); Decreusefond (2022) and references
therein). The question is to assess a bound of the distance between a target distribution (more
often the Gaussian distribution) and the law of a deterministic transformation of a probability
measure, called the initial distribution.

One of the key difference between the Gaussian case and so-called discrete situations (Poisson,
Rademacher, independent random variables) is the chain rule formula: it is only in the former
framework that Dψ(F ) = ψ′(F )DF . For the other contexts, we need to resort to an approxi-
mate chain rule Reinert et al. (2010). This is the role here of Lemma 2.6.7 and Lemma 2.7.1.
Motivated by the applications to random graphs statistics, we focus here on normal approxima-
tions of U -statistics as in Barbour et al. (1989); Röllin (2022); Krokowski et al. (2017); Privault
and Serafin (2018). In passing, we extend the notion of U -statistics by allowing the coefficients
to depend on the latent variable instead of being only deterministic. Following the strategy of
Azmoodeh et al. (2014), we establish a fourth moment theorem for such functionals.

The rest of the chapter is organized as follows. The section 2.2 lays the foundations of the
Malliavin framework. We define the Malliavin operators and especially the gradient that is re-
lated to the so-called Glauber dynamics. Our focus respectively lies on the independent setting
and the conditional independent setting (i.e. X is a sequence of independent random variables,
respectively conditionally independent random variables). We follow the original approach of
completing it with a Dirichlet structure (see for example Döbler et al. (2018, 2019)) that nat-
urally arises without further assumption that gives us another formula of integration by parts
with the carré du champ operator. We derive some functional identities in section 2.5, specif-
ically conditional versions of Poincaré inequality and McDiarmid’s inequality. The section 2.6
presents results of normal approximation. We will see that using the carré-du-champ operators
instead of the norms of Malliavin gradient will allow us to bypass at once all combinatorial
difficulties, leading to a partial fourth moment theorem for U-statistics under mild assumptions
(see subsection 2.7) in the same vein of Azmoodeh et al. (2014) that shows the fourth moment
theorem on the Wiener space.

2.2 Discrete Malliavin-Dirichlet structure

Let A be an at most denumerable set equipped with the counting measure, and define:

`2(A) :=

{
u : A→ R,

∑
a∈A
|ua|2 <∞

}
and 〈u, v〉`2(A) :=

∑
a∈A

uava.
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Let (Ω, T ,P) be a probability space, E0 be a Polish space and ((Ea,Υa), a ∈ A) be a family of
Polish spaces such that

EA =
∏
a∈A

Ea

Ω = E0 × EA
(2.2.1)

The product probability space EA is endowed with its Borel σ-algebra denoted Υ ⊂ T . Let Z a
E0-valued random variable. By Theorem 10.2.2 (Dudley, 2002), all the subsequent conditional
distributions in the chapter admit regular versions. For any subset B of A, we denote the set
EB :=

∏
b∈B Eb and for x ∈ EA, xB := (xa, a ∈ B) ∈ EB so that for a ∈ B, xa ∈ Ea. We denote

xB = (xa, a ∈ A \ B). Let X := (Xa)a∈A be a sequence defined on (Ω, T ,P) of conditionally
independent random variables given Z such that for all a ∈ A, Xa is an Ea-valued random
variable, i.e.:

Xa⊥⊥
Z

(Xb, b ∈ A \ {a}),

or, equivalently:
P(Xa ∈ · |σ((Xb, b 6= a), Z)) = P(Xa ∈ · |σ(Z)).

We denote by P the law of X and PZ the law L(X|Z). See chapter 5 of Kallenberg (1997)
for a thorough review of conditional independence, and Rao (2009) for some limit theorems
for conditionally independent random variables. We use the notation E for the expectation
of a random variable. By the disintegration theorem, for a ∈ A, the conditional probability
distribution of Xa given σ(X{a}) ∨ σ(Z) admits a regular version Pa. For p ≥ 1, let us denote
Lp(EA → R,P) the set of p-th-integrable functions on EA with respect to the measure P.
It is equipped with the norm ‖ · ‖Lp(EA→R,P) defined for f a measurable function on EA by
‖f‖Lp(EA→R,P) :=

∫
|f(x)|pP( dx). For the sake of notations, Lp(EA) stands for the space of

p-integrable functionals

Lp(EA) :=
{
ω 7→ F (X(ω)) : ω ∈ Ω, F ∈ Lp(EA → R,P)

}
.

In this respect, L∞(EA) is the space of bounded functionals. We shall write F in place of F (X)
for the sake of conciseness. We closely follow the usual construction of Malliavin calculus on
that space.

Definition 2.2.1. A functional F is said to be cylindrical if there exists a finite subset
I ⊂ A and a functional FI in L2(EI) such that E[|FI |2] < +∞ and F = FI ◦ rI , where rI
is the restriction operator:

rI : EA −→ EI

(xa, a ∈ A) 7−→ (xa, a ∈ I).

It is clear that the set of those functionals S is dense in L2(EA). We set L2(A×EA) the Hilbert
space of processes which are square-integrable with respect to the measure

∑
a∈A ∆{a}

′ ⊗P, i.e.

L2(A× EA) = {U :
∑
a∈A

E
[
Ua(X)2

]
< +∞},

equipped with the norm and inner product:

‖U‖L2(A×EA) :=
∑
a∈A

E
[
U2
a

]
and 〈U, V 〉L2(A×EA) :=

∑
a∈A

E [UaVa] .
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Definition 2.2.2. The set of simple processes, denoted S0(l2(A)) is the set of random
variables defined on A× Ea of the form

U =
∑
a∈A

Ua1a,

for Ua ∈ S.

2.2.1 Malliavin operators

Definition 2.2.3 (Discrete gradient). For F ∈ S, DF is the simple process of L2(A×EA)
defined for all a ∈ A by:

DaF := F − E
[
F |X{a}, Z

]
.

In particular, S ⊂ DomD. Define the σ-field σ(X{a}) ∨ σ(Z) by Ga, so that

DaF = F − E [F |Ga] . (2.2.2)

Recall that for K ⊂ A, XK = (Xa, a ∈ K) and XK = (Xa, a ∈ A \ K). We shall write
GK = σ(XK) ∨ σ(Z) and GK = σ(XK) ∨ σ(Z) for K a subset of A.

Lemma 2.2.4 Let (a, b) ∈ A2, a 6= b, for F ∈ DomD,

1. DaDaF = DaF ;

2. DaDbF = DbDaF ;

3. DaE
[
F |Gb

]
= DbE [F |Ga].

Proof of lemma 2.2.4. For (a, b) ∈ A2, with b 6= a,

DaDbF = DbF − E [DbF |Ga]

= F − E
[
F |Gb

]
− E [F |Ga] + E

[
E
[
F |Gb

]
|Ga
]

DbDaF = DaF − E
[
DaF |Gb

]
+ E

[
E [F |Ga]|Gb

]
= F − E [F |Ga]− E

[
F |Gb

]
+ E

[
E [F |Ga]|Gb

]
.

We note that:

E
[
E [F (X)|Ga]|Gb

]
=

∫ ∫
F (XA\{a,b}, xa, xb)Pa((XA\{a,b}, Z), xb, dxa)Pb((XA\{a,b}, Z), dxb)

=

∫ ∫
F (XA\{a,b}, xa, xb)PXb|Z(Z, dxb)PXa|Z(Z, dxa)

= E
[
E
[
F (X)|Gb

]
|Ga
]
.

Hence, the equality follows.
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The key to the definition of the Malliavin framework is the so-called integration by parts.

Theorem 2.2.5 — Integration by parts I. Let F ∈ S, for every simple process U ,

〈DF,U〉L2(EA×A) = E

[
F
∑
a∈A

DaUa

]
. (2.2.3)

Proof of theorem 2.2.5. We get:

〈DF,U〉L2(EA×A) = E

[∑
a∈A

DaFUa

]

= E

[∑
a∈A

(F − E [F |Ga])Ua

]
=
∑
a∈A

E [F (Ua − E [Ua |Ga])]

=
∑
a∈A

E [FDaUa] ,

by self-adjointness of the conditional expectation.

Corollary 2.2.6 — Closability of the discrete gradient. The operator D is closable from
L2(EA) into L2(A× EA).

Proof. The proof is analogous to the proof of closability of the gradient in (Decreusefond and
Halconruy, 2019, corollary 2.5)

The domain of D in L2(EA) is the closure of cylindrical functionals with respect to the norm:

‖F‖1,2 :=
√
‖F‖2

L2(EA)
+ ‖DF‖2

A×L2(EA)
.

The following lemma gives a way to define square-integrable functionals in DomD that are not
in S.

Lemma 2.2.7 If there exists a sequence (Fn)n∈N of elements of DomD such that

1. the sequence converges to F in L2(EA),

2. supn∈N ‖DFn‖L2(EA×A) < +∞,

then F belongs to DomD and DF = limn→+∞DFn.

Proof. Let (Fn)n∈N a sequence in L2(EA) with P-a.s. limit F , then for a ∈ A,

E[|DaF −DaFn|2] ≤ E[|F − Fn|2] + E
[
|E [Fn |Ga]− E [F |Ga] |2

]
≤ E[|F − Fn|2] + E

[
E
[
|F − Fn|2 |Ga

]]
by Jensen’s inequality

= 2E[|F − Fn|2]
n→+∞−−−−−→ 0.

Let (Am)m∈N a family of subsets of A such that
⋃
m≥0Am = A and |Am| = m, then for

all m ∈ N, (
∑

a∈Am DaFn)n∈N converges in L2(EA) to
∑

a∈Am DaF . We denote by Dm the
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operator on L2(EA×A) such that for a ∈ Am, Dm
a = Da and otherwise Dm

a is the null operator.
For m ∈ N, (DmFn)n∈N converges to DmF in L2(EA × A). Because of (2), by the uniform
boundedness principle, DF is in L2(EA ×A), and the result follows.

Definition 2.2.8 (Divergence operator). The domain of the divergence operator Dom δ
in L2(EA) is the set of processes U in L2(EA×A) such that there exists δU satisfying the
duality relation

〈DF,U〉L2(EA×A) = E[FδU ], for all F ∈ DomD. (2.2.4)

Moreover, for any process U belonging to Dom δ, δU is the unique element of L2(EA)
characterized by that identity. The integration by parts formula entails that for every
process U ∈ Dom δ,

δ =
∑
a∈A

DaUa. (2.2.5)

Definition 2.2.9 (Ornstein-Uhlenbeck operator). The Ornstein-Uhlenbeck operator, de-
noted by L is defined on its domain

Dom L =

F ∈ L2(EA) : E

∣∣∣∣∣∑
a∈A

DaF

∣∣∣∣∣
2
 < +∞

 ⊇ S
by

LF := −δDF = −
∑
a∈A

DaF. (2.2.6)

2.3 Chaos decomposition

The lemma 2.2.4 entails a chaos decomposition of L2(EA) similar to the one in Duerinckx (2021).

Theorem 2.3.1 — Chaos decomposition. For any F ∈ L2(EA),

F = E [F |Z] +

+∞∑
n=1

πn(F ), (2.3.1)

where (πn)n∈N is a sequence of orthogonal projectors on L2(EA).

Proof. One can notice that:

E[DaF (X)|Ga] = Da(E[F |Ga])F (X) = 0, for all a ∈ A. (2.3.2)

Let (Am)m∈N a family of finite subsets of A such that |Am| = m and
⋃
m∈NAm = A. Let m ∈ N,

IdL2(EAm ) =
∏
a∈Am(Da + E[·|Ga]). Indeed, for all a ∈ Am, IdDomD = Da + E[·|Ga]. Hence,

by distributivity and by using lemma 2.2.4, the identity also reads off: IdL2(EAm ) =
∑m

n=0 π
m
n ,
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where

πmn :=
∑

J⊂Am, |J |=n

(∏
b∈J

Db

) ∏
c∈Am\J

E[·|Gc]

 ∀n ≤ m. (2.3.3)

Let n ≤ m,

πmn π
m
n =

∑
I⊂Am
|I|=n

∑
J⊂Am
|J |=n

(∏
b∈I

Db

) ∏
c∈Am\I

E[·|Gc]

(∏
d∈J

Dd

) ∏
e∈Am\J

E[·|Ge]



=
∑

I⊂Am, |I|=n

∑
J⊂Am, |J |=n

∏
b∈I

Db

∏
e∈Am\J

E[·|Ge]

 ∏
c∈Am\I

E[·|Gc]
∏
d∈J

Dd


=
∑
I⊂Am
|I|=n

∏
b∈I

Db

∏
e∈A\I

E[·|Gc]

 ∏
c∈Am\I

E[·|Gc]
∏
d∈I

Dd

 by lemma 2.2.4

=
∑

I⊂Am, |I|=n

(∏
b∈I

∏
b∈I

DbDb

) ∏
c∈Am\I

E[·|Gc]E[·|Gc]

 = πmn .

(2.3.4)

By convention πmn (F ) = 0 for n > m. Analogously, for n′ 6= n, πmn π
m
n′ = 0 The operator πmn

is continuous on L2(EA). Hence, (πmn )m∈N is a well-defined family of projectors on L2(EA).
Moreover, for all n ∈ N and F ∈ L2(EA), we have supm∈N ‖πmn (F )‖L2(EA) ≤ ‖F‖L2(EA). Then,
by the uniform boundedness principle,

sup
m∈N

‖F‖L2(EA)

‖πmn (F )‖L2(EA) < +∞.

The pointwise limits of (πmn (F ))m∈N for F ∈ L2(EA) define a bounded linear operator πn on
L2(EA) for n ∈ N. Thus:

L2(EA) =
+∞⊕
n=0

Im πn. (2.3.5)

Given (2.3.3), for a functional F ∈ Dom L, we have π0(F ) = E [F |Z].

Lemma 2.3.2 — Spectral decomposition. Let F ∈ L2(EA) of chaos decomposition

F = E [F |Z] +

+∞∑
n=1

πn(F ).

1. We say that F belongs to Dom L whenever

+∞∑
n=1

n2‖πn(F )‖L2(EA) < +∞.
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2. The operator has a unit spectral gap, i.e. the spectrum of L coincides with N0.

L2(EA) =
+∞⊕
k=0

ker(L + kId). (2.3.6)

3. It is invertible from L2
0(EA) = {F ∈ L2(EA), E [F |Z] = 0} into itself.

Proof of lemma 2.3.2. Let us show that πn is in the domain of L for all n ∈ N. By summability,

|
∑
a∈A

Daπn|2 =

∣∣∣∣∣∣
∑
a∈A

Da

∑
I⊂A, |I|=n

(∏
b∈I

Db

) ∏
c∈A\I

E[·|Gc]

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
a∈A

1I(a)
∑

I⊂A, |I|=n

(∏
b∈I

Db

) ∏
c∈A\I

E[·|Gc]

∣∣∣∣∣∣
2

= n2

∣∣∣∣∣∣
∑

I⊂A, |I|=n

(∏
b∈I

Db

) ∏
c∈A\I

E[·|Gc]

∣∣∣∣∣∣
2

since |I| = n

= n2|πn|2,

(2.3.7)

so for F ∈ L2(EA), πn(F ) ∈ Dom L. Hence, because of the orthogonality of (Im πn)n∈N, F ∈
DomL ⇐⇒

∑+∞
n=1 n

2‖πn(F )‖L2(EA) < +∞. With the same calculations, we get Lπn = −nπn.
The spectrum of −L coincides with N. Then, we deduce that:

L =
+∞∑
n=0

−nπn, (2.3.8)

and Imπn ⊂ ker(L + nId). Because of the orthogonality of the kernels, we get Imπn =
ker(L + nId). Now let us prove the third item. The pseudoinverse L−1 is defined on its do-
main {F ∈ L2(EA) : E [F |Z] = 0} and reads

∑+∞
n=1−

πn
n . Then for F ∈ {G ∈ Dom L :

E [G|Z] = 0}, L−1(LF ) = F .

Corollary 2.3.3 For k > 0 and J a subset of A of cardinal k, let us denote by Ck the space
of functionals φ =

∑
J⊂A,|J |=k ψJ such that:

• for every J ⊂ A, ψJ is FJ -measurable;

• for every K ⊂ A, E [ψJ |GK ] = 0 unless K ⊂ J ;

then Ck = ker(L + kId).

Proof of corollary 2.3.3. From (2.3.3), for J = (a1, . . . , an) ⊂ A, the component ψJ is FJ -
measurable. Let us compute the expression of the iterated gradient for F a FJ -measurable
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function:

∏
a∈J

DaF =

|J |∑
k=0

(−1)k
∑
K⊆J
|K|=k

E
[
F |GK

]
=
∑
L⊆J

(−1)|J |−|L|E [F |GL] ,

where GK = σ(XK) ∨ σ(Z) and GL = σ(XL) ∨ σ(Z). In this view, we have the inclusion
ker(L + nId) = Imπn ⊂ Cn for n ∈ N.

Conversely, let φ for which the properties above hold.

Lφ = −
∑
a∈A

Da

∑
J⊂A,|J |=n

ψJ

= −
∑
a∈A

∑
J⊂A,|J |=n

(ψJ − E [ψJ |Ga])

= −
∑
k∈A

∑
J⊂A,|J |=n

a∈J

ψJ because E
[
ψJ |FA\{a}

]
= 0 for J 6⊂ A \ {a}

= −n
∑

J∈A,|J |=n

ψJ = −nφ.

Therefore, Cn = ker(L + nId) for n ≥ 1.

Remark 2.3.4. It is known that there is no Hoeffding decomposition for functionals of
exchangeable random variables unless we assume weak independence (Peccati, 2004). The
decomposition at hand is not a Hoeffding decomposition since the kernels of the U-statistics
also depend on Z. The first term in the decomposition is not E[F ] as expected.

2.4 Dirichlet structure

The map L can be viewed as the generator of a Glauber dynamics where the index set is a finite
set of random variables indexed by Am for m > 1. For practical term, we introduce a new index
∂ and X∂ = Z P-a.s.

Definition 2.4.1 (Modified Glauber process). Consider (N(t))t≥0 a Poisson process on
the half-line [0,+∞) of rate |Am| + 1. Let (X◦Am(t))t≥0 = (X◦Ama (t), t ≥ 0, a ∈ A) the
process valued in EA starting with X◦Am(0) = X which evolves according to the following
rule. At jump time τ of the process,

• Choose randomly an index a in Am t {∂} with equal probability.

• If a 6= ∂, replace X◦Ama (τ) with a conditionally independent random variable X 8
a dis-

tributed according to Pa((X
◦Am
A\{a}(τ), Z), ·), otherwise do nothing.
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⊥⊥Z

Time0
X∂ = Z

X1

X2

X3

X4

Gibbs sampling: PX3|((Xn,n6=3),Z)(X◦\{3}(τ), ·) = PX3|Z(Z, ·).

X ′1

X ′2

X ′3

X ′4

X ′′1

X ′′2

X ′′3

X ′′4

X◦(t1)

t1

X◦(t2)

t2

Figure 2.1: Modified Glauber dynamics

That Markov process has for infinitesimal generator LAm :

LAmF = −
∑
a∈Am

DaF.

That is referred as Glauber dynamics because one can identify a coordinate, and change the
random variable at this coordinate in function of the other ones. Here it does not simulate the
Ising model, but a more general model. It is mostly known for its application to spin system as
a particular case that involves a probability measure on a product space (Sambale and Sinulis,
2020). These finite spin systems can have a rich dependence structure among the sites. The
algorithm gives us the construction of the Markov process. Our description is similar to the
Glauber dynamics described in Adamczak et al. (2022, section 4.3.). Our aim is to show that the
operator L is an infinitesimal generator, letting m → +∞. We recall the Hille-Yosida theorem
(Yosida, 1995).

Proposition 2.4.2 — Hille-Yosida. A linear operator L on L2(EA) is the generator of a
strongly continuous contraction semigroup on L2(EA) if and only if

1. DomL is dense in L2(EA);

2. L is dissipative, i.e. for any λ > 0, F ∈ DomL,

‖λF − LF‖L2(EA) ≥ λ‖F‖L2(EA).

3. Im(λId− L) is dense in L2(EA).

Theorem 2.4.3 L is an infinitesimal generator on EA of a strongly continuous contraction
semigroup on L2(EA).

Proof of theorem 2.4.3. We know that S is dense in L2(EA). As Dom L ⊃ S, it is also dense
in L2(EA). Let Am an increasing sequence (with respect to ⊂) of subsets of A such that
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⋃
n≥1Am = A ∪ ∂ and |Am| = m. Then (FAm)m∈N is a filtration. For F ∈ L2(EA), let

Fm = E [F |FAm ]. Since (Fm)m∈N is a square-integrable FA-martingale, (Fm)m∈N converges
both almost surely and in L2(EA) to F . For any m ∈ N, Fm depends only on XAm . Because of
the conditional independence of the random variables Xa given X∂ , for all a ∈ A, we get that
DaFm = E [DaF |FAm ]. Using that LAm is dissipative for all m ∈ N, we have:

λ2‖Fm‖2L2(EA) ≤ ‖λFm − LAmFm‖2L2(EA) = E

(λFm +
∑
a∈An

DaFm

)2


= E

(λFm +
∑
a∈A

DaFm

)2
 because DaFm = 0, if a /∈ Am.

= E

E[λF +
∑
a∈A

DaF

∣∣∣∣FAm
]2
 .

It means that the operator L is dissipative. Thus, by the Hille-Yosida theorem, L is the in-
finitesimal generator of a strongly continuous contraction semigroup on L2(EA) denoted P .

Lemma 2.4.4 Let F ∈ L2(EA), then

E
[
F (X◦Am)|X,Z

]
= PAmt F

P−a.s.−−−−→ PtF

and
X◦Am

d−→ X◦.

Proof of lemma 2.4.4. The theorem 17.25 of (Kallenberg, 1997, Trotter, Sova, Kurtz, Mack-
evičius) gives the convergence in distribution ofX◦Am towardsX◦ the Markov process associated
to L, and the almost sure convergence of the semigroup.

These are pieces of the Dirichlet structure with invariant measure P that we complete with the
carré du champ operator. Here, we note that S is an algebra which is a core of Dom L.
By an argument of density, there exists an algebra A ⊃ S maximal in the sense of inclusion
such that the carré du champ operator acts on it.

Definition 2.4.5 (Dirichlet structure). The associated Dirichlet structure defined on
(EA,Υ,P) is given by the quadruple (X◦, L, (Pt)t≥0, E) where X◦ is a Markov process
with values in EA whose infinitesimal generator is L and its semigroup is P , i.e. for any
F ∈ L∞(EA):

d

dt
PtF = (LPt)F.

Furthermore, PZ is the invariant (or stationary) distribution of X◦ given Z and the Dirich-
let form is defined by

E(F,G) = E[Γ(F,G)].

It comes with the classical properties entailed by the spectral decomposition of L, including the
Mehler’s formula.
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Lemma 2.4.6 — Mehler’s formula. For any F ∈ L2(EA),

1.

PtF = E [F |Z] +

∞∑
n=1

e−ntπn(F )

= E [F (X◦(t))|X] ,

(2.4.1)

In particular PtF ∈ Dom L ∩Dom L−1.

2.
lim
t→∞

PtF (X) = E [F (X)|Z]

3. The pseudoinverse of L can be written:

L−1F := −
∫ +∞

0
PtF dt.

Proof of lemma 2.4.6. Since formally Pt = e−tL, we get the first line of (2.4.1) from the spectral
decomposition of L. The second line is deduced from the definition of the Glauber dynamics
and by passing to the limit. Then,

E [F |Z]− F = lim
t→+∞

PtF − P0F

=

∫ +∞

0

d

dt
PtF dt

= L

(∫ +∞

0
PtF dt

)
.

Taking E [F |Z] = 0, we get the expression of the pseudoinverse.

Remark 2.4.7. By the chaos expansion, PtF can be defined as the limit in L2(EA) of
elements (PtFn)n∈N for Fn in S. Hence, it is sufficient to define the semigroup acting on a
functional of some finite vector of random variables XB, using the definition of the Glauber
dynamics entailed by it.

The infinitesimal generator satisfies another integration by parts formula due to the Dirichlet
structure which is the key to investigating the so-called fourth moment phenomenon.

Lemma 2.4.8 — Integration by parts II. For (F,G) ∈ A2,

E(F,G) = −E[FLG]. (2.4.2)

We introduce to the difference operator which is associated to the Malliavin-Dirichlet structure
at hand. That difference operator serves the same purpose as in Lachièze-Rey et al. (2017) and
Dung (2021) for computations in the proofs of the limit theorems.

Definition 2.4.9 (Difference operator). Let F : EA → R, for a ∈ A, we introduce the
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operator

∆{a}F : EA × Ea −→ R

(x, x′a) 7−→ f(x)− f(x{a}, x′a).

For the sake of conciseness, we shall write F {a}
′

= F (X{a}, X ′a).

Lemma 2.4.10 For F a functional in DomD, the gradient also reads as:

DaF = E
[
∆{a}F (X,X ′a)|X,Z

]
, (2.4.3)

where X ′a has the law of Xa given Z and is conditionally independent of X{a} given Z.
Similarly,

Γ(F,G) =
1

2

∑
a∈A

E
[(

∆{a}F (X,X ′a)
)(

∆{a}G(X,X ′a)
)
|X,Z

]
. (2.4.4)

Proof. We have

E [F |Ga] =

∫
F (X{a}, xa)Pa( dxa).

Since σ(Xa) is independent of σ(X{a}) given σ(Z), we obtain

E [F |Ga] =

∫
F (X{a}, xa)PXa|Z( dxa).

Eqn.(2.4.4) is proved similarly.

2.5 Functionals identities

This section is devoted to classical functional identities obtained in the Malliavin framework.
We follow the approach of Houdré et al. (2002) using a covariance identity based on difference
operators to deduce concentration inequalities.

Proposition 2.5.1 For F ∈ L2(EA) and a ∈ A, then:

Da(PtF ) = e−tE
[
∆{a}F (X◦(t), X ′a)|X,Z

]
(2.5.1)

where X ′ has the law of X given Z.

Proof of proposition 2.5.1. We consider the Glauber dynamics with index set a finite subset Am
of A, as the construction of process (X◦Am(t))t∈R+ is explicit in that case. Let a ∈ Am, we
denote by Na the Poisson process of intensity 1 which represents the life duration of the a-th
component in the dynamics of X◦Am(t), so:

X◦Ama (t) = 1{τa≥t}Xa + 1{τa<t}X
8
a,

where τa = inf{t ≥ 0, Na(t) 6= Na(0)} is the life duration of the a-the component of the original
sequence, exponentially distributed with parameter 1 (independent of everything else) and X 8

a
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is conditionally independent of X given Z. Then:

DaP
Am
t F = PAmt F − E

[
PAmt F |Ga

]
= PAmt F − E

[
E
[
F (X◦Am(t))|X,Z

]
1{t≤τa} |Ga

]
− E

[
F (X◦Am(t))1{t>τa}|X,Z

]
= E

[
F (X◦Am(t))1{t≤τa}|X,Z

]
− E

[
E
[
F (X◦Am(t))|X,Z

]
1{t≤τa} |Ga

]
= e−tE

[
∆{a}F (X◦Am(t), X ′a)|X,Z

]
because the law of X 8

a given X is the same as the one of X ′a given X.
On one hand,

DaP
Am
t F

P−a.s.−−−−→ DaPtF.

On the other hand, by the Skorohod’s representation theorem, there exist copies of X◦Am and
X◦ on a common probability space (Ω̃, T̃ , P̃) such that the sequence (X◦Am)m∈N converges to X◦

P̃-a.s. As the whole structure is invariant by copy, we can suppose the almost sure convergence
on (Ω, T ,P), and the relation passes to the limit.

Remark 2.5.2. In the case, we have only one random variable (or one particle), then the
commutation relation simplifies to Da(PtF ) = Da.

Corollary 2.5.3 — Conditional covariance identity. For any F,G ∈ L2(EA), then:

Cov(F,G|Z) =

∫ ∞
0

e−t
∑
a∈A

E
[
(DaF )(∆{a}G(X◦(t), X ′a))|Z

]
dt. (2.5.2)

Proof of corollary 2.5.3. We use the following conditional covariance formula analogous to the
covariance formula:

Cov(F,G|Z) = E [FG|Z] = E
[
F L L−1G|Z

]
(2.5.3)

By the integration by parts I (2.2.3) which also holds with conditional expectation given Z, we
get:

E
[
F L L−1G|Z

]
= −

∑
a∈A

E
[
(DaF )(Da L−1G)|Z

]
= −

∑
a∈A

E
[
(DaF )(Da

∫ ∞
0

PtG dt)|Z
]

= −
∑
a∈A

E
[
(DaF )

(∫ ∞
0

DaPtG dt

)
|Z
]

= −
∫ ∞

0
e−t

∑
a∈A

E
[
(DaF )E

[
∆{a}G(X◦(t), X ′a)|X,Z

]
|Z
]

dt,

using (2.5.1).

As an immediate consequence of the spectral gap, we find another proof of the Efron-Stein
inequality which is of independent interest.
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Proposition 2.5.4 If F ∈ Cp then

Var[F ] =
1

p
E(F ) =

1

p
‖DF‖L2(EA).

Moreover, if there exist F1, . . . , Fm ∈ L2(EA) such that F =
∑m

p=1 Fp with Fp ∈ Cp for
p ∈ J1,mK, then:

Var[F ] ≤ ‖DF‖L2(EA). (2.5.4)

Proof of proposition 2.5.4. Let us use the previous covariance identity, we have:

Var[F ] = Cov(F, F ) = E[Γ(F,−L−1F )]

= E

Γ

 m∑
p=1

Fp,
m∑
q=1

1

q
Fq


=

m∑
p=1

m∑
q=1

1

q
E [Γ (Fp, Fq)]

=

m∑
p=1

1

p
E [Γ (Fp, Fp)] because E[Γ(Fp, Fq)] = 0 for q 6= p

It yields the inequality (2.5.4) noting that Γ(Fp, Fp) ≥ 0 for all p > 0.

We now deduce the conditional first-order Poincaré inequality for functionals of condition-
ally independent random variables. The equivalent for functionals of independent random
variables is rather known as the Efron-Stein inequality in the literature (Efron and Stein,
1981).

Theorem 2.5.5 — Conditional Efron-Stein inequality. For F ∈ L2(EA) such that E [F |Z] =
0,

Var[F |Z] ≤ E [Γ(F, F )|Z] . (2.5.5)

Proof of theorem 2.5.5. The conditional covariance formula yields

Var[F |Z] =

∫ ∞
0

e−u
∑
a∈A

E
[
(DaF )(∆{a}F )(X◦u, X

′
a)|Z

]
du

≤
∫ ∞

0
e−u
√∑
a∈A

E[(DaF )2|Z]

√∑
a∈A

E[E
[
(∆{a}F )(X◦u, X

′
a)|X,Z

]2 |Z] du.

The invariance of PZ under the Glauber dynamics entails that∑
a∈A

E
[
E
[
(∆{a}F )(X◦u, X

′
a)|X,Z

]2
|Z
]

=
∑
a∈A

E[(DaF )2|Z].

Hence,
Var[F |Z] ≤ E[Γ(F, F )|Z],

proving the theorem.
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Remark 2.5.6 (The optimal constant in the Poincaré inequality). As mentioned in Bakry,
Gentil, and Ledoux (2013), if a Poincaré inequality P(C) with constant C holds for the
Dirichlet structure at hand, the spectrum of the symmetric positive operator −L is included
in {0} ∪ [ 1

C ,∞]. The existence of P(C) does not tell whether the spectrum of L is discrete
or not. The consequence of P(C) is the fact that E(F ) = 0 =⇒ F is constant.

We find a version of the McDiarmid’s inequality for conditionally independent random vari-
ables.

Theorem 2.5.7 — Conditional McDiarmid’s inequality. Let F be a square-integrable func-
tional such that for all a ∈ A:

sup
x{a}∈EA\{a}

x′a∈Ea

|F (x{a}, x′a)− F (x)| ≤ da.

For any x > 0, we have the inequality:

P(F (X)− E [F (X)|Z] ≥ x|Z) ≤ exp

(
− x2

2
∑

a∈A d
2
a

)
. (2.5.6)

Our strategy of proof is different from the original McDiarmid’s original proof in McDiarmid
(1989).

Proof of theorem 2.5.7. We assume that F = F (X) is a bounded random variable verifying
E [F |Z] = 0. Using the inequality:

|etx − ety| ≤ t

2
|x− y|(etx + ety) ∀ x, y ∈ R. (2.5.7)

We have:

|∆{a}etF (X,X ′a)| = |etF − etF
{a}′ |

≤ t

2
|∆{a}F (X,X ′a)|

(
etF + etF

{a}′
)
.

Applying the covariance identity, it yields:

E[FetF |Z] =

∫ ∞
0

e−u
∑
a∈A

E[Dae
tF∆{a}F (X◦u, X

′
a)|Z] du

≤
∫ ∞

0
e−u

∑
a∈A

E
[
E
[
|∆{a}etF (X,X ′a)||X,Z

]
∆{a}F (X◦u, X

′
a)|Z

]
du

≤ t

2

∫ ∞
0

e−u
∑
a∈A

E
[
|∆{a}F (X,X ′a)|etF |∆{a}F (X◦u, X

′
a)|Z

]
du

+
t

2

∫ ∞
0

e−u
∑
a∈A

E
[
|∆{a}F (X,X ′a)|etF

{a}′ |∆{a}(X◦u, X ′a)||Z
]

du
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by using the Jensen’s inequality for conditional expectation in the second inequality. Since

|∆{a}F (X,X ′a)|2 ≤ da, |∆{a}F (X◦u, X
′
a)| ≤ da for all u ∈ R+ and E[etF

{a}′ |Z] = E[etF |Z], this
shows that:

E[FetF |Z] ≤

(∑
a∈A

d2
a

)
tE[etF |Z] = tK2E[etF |Z],

where K2 :=
∑

a∈A d
2
a. Thus, in all generality for F bounded:

logE[et(F−E[F ])|Z] =

∫ t

0

E[(F − E[F |Z])es(F−E[F |Z])|Z]

E[es(F−E[F ])]
ds

≤ K2

∫ t

0
s ds =

t2

2
K2,

hence:

etxP(F − E[F |Z] > x|Z) ≤ E[et(F−E[F |Z])|Z]

= et
2K2/2, t ≥ 0,

and:

P(F − E[F |Z] ≥ x|Z) ≤ e
t2

2
K2−tx, t ≥ 0.

The minimum of the right-hand side is obtained for t = x/K2. If F is not bounded, the
conclusion holds for Fn = max(−n,min(F, n)), n ≥ 0, and (Fn)n∈N converges P-a.s. to F .
Hence:

P(F − E[F |Z] ≥ x|Z) ≤ exp

(
− x2

2K2

)
= exp

(
− x2

2
∑

a∈A d
2
a

)
.

The proof is thus complete.

Remark 2.5.8. The McDiarmid’s inequality for conditionally independent random vari-
ables can be recovered from Azuma’s inequality. Malliavin calculus offers an alternative
for proof of concentration results to classical inequalities that use either or the martingale.

Example 2.5.9. See Raginsky and Sason (2014) for applications of such logarithm Sobolev
inequality.

We do not have a second-order Poincaré inequalities (Nourdin et al., 2009), because of the
absence of chain rule. However, we can still proceed with the Stein’s method in the next
section.

2.6 Applications to normal approximation

We deal with the problem of approximations in law for functionals of the form:

F (X) := F (X1, X2, . . .). (2.6.1)
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When the functional only depends on a random vector (X1, . . . , Xn) for a given n ∈ N, the nor-
mal approximation of F (X1, X2, ..., Xn) has been studied by Chatterjee et al. (2008); Lachièze-
Rey et al. (2017). More recently, those methods have been adapted to the infinite case when
n → ∞ (Privault and Serafin, 2018; Dung, 2018, 2019; Arras et al., 2019; Decreusefond and
Halconruy, 2019; Duerinckx, 2021; Privault and Serafin, 2022), explicitly stating quantitative
limit theorems. They use Malliavin calculus for integration by parts in Stein’s method. Earlier,
Chen et al. (2007) derived Berry-Esseen bound for nonlinear statistics such as U-statistics and
L-statistics with an order of magnitude for the bounds which corresponds to the normalizing
rate of central limit theorems. They used a concentration inequality approach by Stein’s method
as to control the non-linear part of the statistics. Still, the derived bounds were non-uniform
except for particular cases, and the sequence requires to be independent identically distributed.
The combination of Stein’s method and Malliavin calculus leads to finer-grained upper bounds
in probability distance for limit theorems of non-linear U-statistics, essentially relying on a
chaos expansion of square-integrable functionals.

2.6.1 Bounds in probability distance
Remove
the def-
inition
of the
distance
defined
in the
previous
chapter

The goal is to bound for instance the 1-Wasserstein distance

dW (L(F (X)),L(Y ))| := sup
h∈H
|E[h(F (X))]− E[h(Y )]|

for H the set of 1-Lipschitz functions and Y the random variable following the target distri-
bution. We recall the lemma 4.2 of Chatterjee et al. (2008) which provides with a standard
implementation of the Stein’s method for this probabilistic distance with respect to the normal
distribution N (0, 1).

Lemma 2.6.1 — Normal approximation. Let L†h(x) := h′(x)− xh(x). Then,

dW (L(F (X)),N (0, 1)) ≤ sup
ϕ∈H∗

∣∣∣E[L†ϕ(F (X))]
∣∣∣ , (2.6.2)

where H∗ := {h ∈ C2(R,R) : ‖h′‖∞ ≤
√

2
π , ‖h

′′‖∞ ≤ 2}

In the following, we denote dW (L(F (X)),N (0, 1)) by dW (F,N (0, 1)). For sake of conciseness,
we denote by ∆{a}

′
F the quantity ∆{a}F (X,X ′a).

2.6.2 Rates in Lyapunov’s conditional central limit

Lemma 2.6.2 For any F ∈ S such that E [F |Z] = 0. Then,

dW (F,N (0, 1)) ≤ sup
ψ∈H∗

∣∣∣∣∣E
[∑
a∈A

ψ(F (X{a}, X ′a))∆
{a}′FDa(−L−1F )− ψ(F )

]∣∣∣∣∣
+
∑
a∈A

E[(∆{a}
′
F )2|DaL

−1F |]. (2.6.3)

Proof of lemma 2.6.2. We compute:

sup
f†∈H∗

|E[F (f †)(F )− (f †)′(F )]|.
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Since F is centered,

E[F (f †)(F )] = E[L(L−1F )f †(F )]

= −
∑
a∈A

E[DaL
−1FDaf

†(F )] by integration by parts

= −
∑
a∈A

E
[
DaL

−1FE
[
(f †)′(F )− f †(F {a}′)|X,Z

]]
= −

∑
a∈A

E[DaL
−1F∆{a}

′
f †(F )]

Then, we use the Taylor expansion taking the reference point to be F {a}
′

instead of F , for all
a ∈ A yielding:

∆{a}
′
f †(F ) = f †(F )− f †(F {a}′)

= (f †)′(F {a}
′
)∆{a}

′
F +Ra,

with |Ra| ≤ ‖(f
†)′′‖∞
2 (∆{a}

′
F )2 = (∆{a}

′
F )2. Then,

|E[Ff †(F )− (f †)′(F )]|

≤

∣∣∣∣∣E
[∑
a∈A

∆{a}
′
F (Da(−L−1F ))

(
(f †)′(F {a}

′
)− (f †)′(F )

)]∣∣∣∣∣
+
∑
a∈A

E[(∆{a}
′
F )2|DaL

−1F |].

Because (f †)′′ has Lipschitz-constant equal to 2, we get the result.

We prove a quantitative Lyapunov’s conditional central limit theorem for random variables with
moments of order 3.

Corollary 2.6.3 — Lyapunov’s conditional central limit theorem. Let (Xn)n∈N be a sequence
of thrice integrable, conditionally independent random variables given a latent random
variable Z. Let us observe that

σ2
j,Z = Var(Xj |Z), s2

n,Z =
n∑
j=1

σ2
j,Z and X̄n =

1

sn,Z

n∑
j=1

(Xj − E [Xj |Z]) .

Then,

dW (X̄n,N (0, 1)) ≤ 2(
√

2 + 1)E

[
1

s3
n,Z

n∑
i=1

|Xi − E [Xi |Z]|3
]
. (2.6.4)

The proof of the corollary follows the same steps as the one of (Decreusefond and Halconruy,
2019, Corollary 5.11), using lemma 2.6.2.
A version of conditional central limit theorem was first stated in Rao (2009) without proof and
then was proved in Grzenda and Zieba (2008) for sequence of conditionally independent random
variables (see Yuan et al. (2014); Bulinski (2017) for more ”stringent” proofs). They also give a
Lindebergh central limit theorem. We rule out a Lyapunov’s conditional central limit theorem,
giving a quantitative limit theorem. Let us note that our approach differs from the use of Stein’s
method for conditional central limit in Dey and Terlov (2023).
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Example 2.6.4 (Conditional Bernoulli random variables). Let (Ui)i∈N independent uni-
form random variables, and Xi = 1{Ui≤Z}, with Z an arbitrary random variable lying
in [0, 1], then (Xi)i∈N forms a sequence of conditionally independent random variables
given Z. The law of L(Xi|X{i}, Z) is a Bernoulli law of parameter Z. We compute the
right-hand side of the Lyapunov theorem in this case.

s2
n,Z = nZ(1− Z)

E
[
|Xi − E [Xi |Z] |3 |Z

]
= Z(1− Z)(1− 2Z).

Hence,

dW (X̄n,N (0, 1)) ≤ 2(
√

2 + 1)E

[
1− 2Z + 2Z2√

Z(1− Z)

]
n−1/2.

It is a classical quantitative theorem in the theoretical Stein’s method, but in some formulations,
one supposes the random variables to have unit variance or normalization (Reinert, 1998; Chen
et al., 2010, corollary 4.2.). There is quite a few papers investigating the lower constant before
the absolute third moments in the upper bound for the Kolmogorov distance (more difficult
to obtain usually because the solution of Stein’s equations has less bounded derivatives) and
various other probability distances (see for example Tyurin (2009) and the references therein).
One can consider the L1-norm of the difference of cumulative function of X̄n and N (0, 1)
(Goldstein et al., 2010). Recently, with the same ambition to find general bounds for functional
of independent random variables, Privault and Serafin (2018) derives a bound in Wasserstein-1
distance for sums of identically distributed independent random variables with a constant 2
which is lower than ours. We note that Dung (2018) uses the same gradient, but the constant
here is better than 4 in his.Hélène

impossi-
ble fourth

Actually the integration by parts with carré du champ operator has been proved powerful to
bypass combinatorial difficulties with Malliavin derivatives (Döbler et al., 2018) when deriving
fourth moment limit theorems. They are not equivalent in our discrete settings (see also Döbler
et al. (2018))

2.6.3 Abstract bounds for U-statistics

The chaos decomposition has a natural interpretation as a decomposition in terms of degenerate
U-statistics.

Definition 2.6.5 (U-statistic (Hoeffding, 1948)). Let a family of measurable functions
hI : EI → R. A U-statistic of degree (or order) p is defined for any n ≥ p by:

U =
∑

I∈(A,p)

hI(XI) =
∑

I∈(A,p)

WI .

Definition 2.6.6 (Degenerate U-statistic). A degenerate U-statistic of order p > 1 is a

U-statistic of order p such that E
[
hI(X

{a}
I , xa)|Z

]
= 0, for all a ∈ A and xa ∈ Ea.

The space of degenerate U-statistics is exactly Cp. Since we consider functionals given Z here-
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after, hI may be σ(Z)-measurable as well.
A convenient assumption in the proofs of quantitative limit theorems is the diffusiveness of the
Markov generator at hand L, i.e. the associated carré du champ ΓL satisfies for (F,G) in a
dense algebra of DomL:

ΓL(φ(F ), G) = φ′(F )ΓL(F,G).

Due to the discreteness of the Malliavin structure, the operator L is not diffusive, but it is close
to. We devise the following pseudo chain rule.

Lemma 2.6.7 — First pseudo chain rule. Let ψ ∈ C1(R,R). Let G ∈ A and F ∈ L2(EA)
such that ψ(F ) ∈ A, then:

Γ(ψ(F ), G) =
1

2

∑
a∈A

ψ′(F )E
[
(∆{a}

′
F )(∆{a}

′
G)|X,Z

]
+Rψ(F,G), (2.6.5)

where:

|Rψ(F,G)| ≤ ‖ψ
′′‖∞
4

∑
a∈A

E
[
|∆{a}′G|(∆{a}′F )2 |X,Z

]
.

Proof of lemma 2.6.7. We write the Taylor expansion of ψ, and:

E
[
(ψ(F {a}

′
)− ψ(F ))(G{a}

′ −G)|X,Z
]

= E
[
ψ′(F )(∆{a}

′
F )(∆{a}

′
G)|X,Z

]
+ E

[
(G{a}

′ −G)rψ(F, F {a}
′ − F )|X,Z

]
.

Then,

2Γ(ψ(F ), G) = ψ′(F )
∑
a∈A

E
[
(∆{a}

′
F )(∆{a}

′
G)|X,Z

]
+
∑
a∈A

E
[
(G{a}

′ −G)rψ(F, F {a}
′ − F )|X,Z

]

where:

rψ(x, y) = ψ(x+ y)− ψ(x)− ψ′(x)y =

∫ y

0
(y − s)ψ′′(x+ s)ds.

We note that rψ satisfies:

|rψ(x, y)| ≤ ‖ψ
′′‖∞
2

y2,

and we obtain the bound on the remainder.

Theorem 2.6.8 — Bounds in 1-Wasserstein distance. Assume that F ∈ L3(EA), such that
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E [F |Z] = 0 and E[F 2] = 1, then we get the bound:

dW (F,N (0, 1)) ≤
√

2

π
E|Γ(F,−L−1F )− 1|

+
1

2

∑
a∈A

E[|∆{a}′L−1F |(∆{a}′F )2]. (2.6.6)

Moreover, if F ∈ L4(EA), then one has the further bound:

dW (F,N (0, 1)) ≤
√

2

π

√
Var(Γ(F, L−1F ))

+

√
2

2

√
−E[FLF ]

√∑
a∈A

E[|∆{a}′F |4]. (2.6.7)

Proof of theorem 2.6.8. We have:

E[L†f †F ] = E[F (f †)′(F )− (f †)′′(F )]

= E[LL−1F (f †)′(F )]− E[(f †)′′(F )]

= E[L−1FL((f †)′(F ))]− E[(f †)′′(F )]

= E[Γ(L−1((f †)′(F )),−L−1F )]− E[(f †)′′(F )]

(2.6.8)

by integration by parts. We use lemma 2.6.7 and obtain that:

E[Γ(L((f †)′(F )),−L−1F )] ≤ E[(f †)′′(F )Γ(F,−L−1F )] + E[R(f†)(3)(F,−L−1F )].

Thus,

E[L†f †F ] ≤
√

2

π
E|Γ(F,−L−1F )− 1|+ 1

2

∑
a∈A

E[|∆{a}′L−1F |(∆{a}′F )2].

By Jensen’s inequality for the first term and Cauchy-Schwarz inequality (for expectation of sum
of random variables) for the second one, then by integration by parts, it yields:

E[L†f †F ] ≤
√

2

π

√
Var(Γ(F, L−1F ))

+
1

2

√∑
a∈A

E[|∆{a}′L−1F |2]

√∑
a∈A

E[(∆{a}′F )4],

and the proof is complete.

Corollary 2.6.9 If F =
∑m

p=1 Fp is four times integrable functional where Fp ∈ ker(L+pId),
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then:

dW (F,N (0, 1)) ≤
√

2

π

m∑
p,q=1

1

q

√
Var [Γ(Fp, Fq)]

+
√

2

m∑
p=1

1

p

√
E[F 2

p ]


m∑
p=1

p1/4

(∑
a∈A

E
∣∣∣∆{a}′F ∣∣∣4)1/4


2

. (2.6.9)

Proof of corollary 2.6.9. We use the decomposition of L−1 as to develop the first and second
terms in (2.6.7). The final result is obtained after using Cauchy-Schwarz inequality.

That is the starting point towards a partial fourth moment limit theorem.

Remark 2.6.10. With that approach, we cannot state a Berry-Esseen bound because of
the lack of smoothness of the solutions of the Stein’s equation for the Kolmogorov distance.

Now, we turn to bounds in Kolmogorov distance which are based on the same computations.
We recall the properties of the Stein’s equation for Kolmogorov bounds (Chen et al., 2010,
lemma 2.3.).

Lemma 2.6.11 — Inequalities for Kolmogorov test functions. Let z ∈ R, the test functions
fz in the Stein equation for Kolmogorov distance is such that:

‖fz‖∞ ≤
√

2π

4
, ‖f ′z‖∞ ≤ 1.

Moreover, for all u, v, w ∈ R,

|(w + u)fz(w + u)− (w + v)fz(w + u)| ≤

(
|w|+

√
2π

4

)
(|u|+ |v|), (2.6.10)

and the following local estimate holds for every x, h ∈ R:

|fz(x+ h)− fz(x)− hf ′z(x)| ≤ h2

2

(
|x|+

√
2π

4

)
+ h(1{[x,x+h)]}(z)− 1{x+h,x)}(z))

=
h2

2

(
|x|+

√
2π

4

)
+ |h|(1{[x,x+h)]}(z) + 1{x+h,x)}(z)).

(2.6.11)

Proposition 2.6.12 — Kolmogorov bounds. Let F ∈ L4(EA), then one has the bound:

dKol(F,N (0, 1)) ≤ E|Γ(F,−L−1F )− 1|+
√

2π

16

∑
a∈A

E
[
|∆{a}′L−1F |(F − F {a}′)2

]
+

1

4

∑
a∈A

E
[
|∆{a}′L−1F ||F |(F − F {a}′)2

]
+

1

2
sup
z∈R

∑
a∈A

E
[
|∆{a}′L−1F |∆{a}′F∆{a}

′
1{F>z}

]
.

(2.6.12)
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Proof. Using (2.6.11) in the case x = F , and h = −∆{a}
′
F , one sees that, for every a ∈ A,

|fz(F {a}
′
)− fz(F )− (F {a}

′ − F )f ′z(F )| ≤ (F − F {a}′)2

2

(
|F |+

√
2π

4

)
+ |F − F {a}′ |(1{[F,F {a}′ )]}(z)− 1{F {a}′ ,F )}(z))

≤ (F − F {a}′)2

2

(
|F |+

√
2π

4

)
+ (F {a}

′ − F )(1{F {a}′>z} − 1{F>z}),

Hence, plugging that into the Stein’s equation:

E[L†f †F ] = E[F (f †)′(F )− (f †)′′(F )]

= E[Ffz(F )− f ′z(F )].

= E[FLL−1(fz(F ))]− E[f ′z(F )]

= E[Γ(−L−1F, fz(F ))]− E[f ′z(F )] using the carré du champ integration by parts.

The integration by parts allows us to express E[L†f †F ] without worrying about integration by
E′, instead of writing L = −δD. Once more, it proves useful as to simplifying the bounds.

2E[Ffz(F )] = E[
∑
a∈A

(L−1F {a}
′ − L−1F )[fz(F )− fz(F {a}

′
)]] because of (??)

≤
∑
a∈A

E
[
|L−1F − L−1F {a}

′
F |(F − F {a}′)f ′z(F )

]
+ E

[
|L−1F − L−1F {a}

′ |(F − F
{a}′)2

2

(
|F |+

√
2π

4

)]
+ E

[
|L−1F − L−1F {a}

′ |∆{a}′F (1{F>z} − 1{F {a}′>z})
]

≤ 2E
[
Γ(−L−1F, F )f ′z(F )

]
+ E

[
|L−1F − L−1F {a}

′ |

(
|F |
2

+

√
2π

8

)
(F − F {a}′)2

]
+ sup

z∈R

∑
a∈A

E
[
|∆{a}′L−1F |∆{a}′F∆{a}

′
1{F>z}

]
.

One also have the further bounds:
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dKol(F,N (0, 1)) ≤ E|Γ(F, L−1F )− 1|

+
1

2

√π
4

(−E[FLF )])1/2 +
1

2

E[F 4]E

(∑
a∈A

(∆{a}
′
L−1F )2

)2
1/4

(∑
a∈A

E[|F {a}′ − F |4]

)1/2

+
1

2
sup
z∈R

∑
a∈A

E
[
|∆{a}′L−1F |∆{a}′F∆{a}

′
1{F>z}

]
≤ E|Γ(F,L◦−1F )− 1|

+

√π
2

(−E[FLF )])1/2 +

√
2

2

1

2

E[F 4]E

(∑
a∈A

(∆{a}
′
L−1F )2

)2
1/4

(3E[F 2Γ(F, F )] + E[F 3LF ]
)1/2

+ sup
z∈R

∑
a∈A

E
[
|∆{a}′L−1F |∆{a}′F∆{a}

′
1{F>z}

]

We use the following inequality to bound E[F 4] given that E[F 2] = 1.

E[F 4] = E[F 2]2 + Var[F 2]

= 1 + E[Γ(F 2,−L−1F 2)].

≤ 1 +
∑
a∈A

E[|DaF
2|2],

using Poincaré’s inequality. Then, we use Jensen’s inequality to bound the other term.

E

(∑
a∈A

(∆{a}
′
L−1F )2

)2
 ≤ E

[∑
a∈A

(∆{a}
′
L−1F )4

]
.

Because of that, we focus exclusively on the Wasserstein-1 distance in the remainder of this
chapter.
Because our chaos decomposition coincides with the one of Döbler et al. (2017) in the case
where (Xi)i∈N is a collection of independent random variables, we can use the theorem 1.3. of
that paper, but we show it with slightly different constants. The use of Mehler’s formula as
in Zheng (2019) yields smaller constant, but cannot be generalized to functionals with finite
chaotic decomposition contrarily to ours (see also Döbler (2023)).
Using the decomposition of the carré du champ operator, we have the following theorem from
Döbler (2023). In the following we assume that it exists p ∈ N such that F ∈ ⊕pm=0Cm.
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Theorem 2.6.13 — (Döbler, 2023). If F =
∑m

p=1 where Fp ∈ Cp, then:

dKR(F,N (0, 1)) ≤
√

2

π

√√√√√Var

 m∑
p,q=1

1

q
Γ(Fp, Fq)


+
√

2
m∑
p=1

1

p

√
E[F 2

p ]


m∑
p=1

p1/4

(∑
a∈A

E
∣∣Fp(XA)− Fp(XA\{a}, X

′
a)
∣∣4)1/4


2

(2.6.13)
or alternatively,

dW (F,N (0, 1)) ≤
√

2

π

√√√√√Var

 m∑
p,q=1

1

q
Γ(Fp, Fq)


+
√

2
m∑
p=1

1

p

√
E[F 2

p ]

 m∑
p=1

p1/4([3E[
1

p
F 2
pΓ(Fp, Fp)]− E[F 4

p ]])1/4

2

.

(2.6.14)
Definition
of maxi-
mal influ-
ence

Theorem 2.6.14 — Döbler (2023). Under the above assumptions, we have the following
general bounds:

dW (F,N (0, 1)) ≤
√

2

π

2p− 1

2p

(
E[F 4]− 3E[F 2]2 + κpE[F 2]ρ2

A

)1/2
+
√

2
2p− 1

p

(
E[F 4]− 3E[F 2]2 + κpE[F 2]ρ2

A + κpE[F 2]ρ2
A

)1/2
≤

(√
2

π
+ 2
√

2

)√
E[F 4]− 3E[F 2] +

(√
2

π
+ 4
√

2

)
E[F 2]

√
κpρA,

(2.6.15)
where κp is a constant that depends only on p.

Corollary 2.6.15 Let F ∈ Cp such that F ∈ L4(EA) with E[F ] = 0 and E[F 2] = 1.

dKR(F,N (0, 1)) ≤

(√
2

π
+ 2
√

2

)√
E[F 4]− 3 +

(√
2

π
+ 4
√

2

)
√
κpρp (2.6.16)

Theorem 2.6.16 — (Döbler et al., 2017). Let F ∈ L4(EA) be a degenerate U-statistic of
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order p (i.e. F ∈ Cp) of independent random variables. Then, it holds that:

dKR(F,N (0, 1)) ≤
√

2

π

(
E[F 4]− 3 + κpρ

2
A

)1/2
+

2
√

2

3

(
2(E[F 4]− 3) + 3κpρ

2
n

)1/2
≤

(√
2

π
+

4

3

)√
|E[F 4]− 3|+√ρA

(√
2

π
+ 2
√

2

)
ρA,

(2.6.17)
where κp is a constant which only depends on p, and ρn = max1≤i≤n

∑
K⊂[n],|K|=p

K3i
σ2
K =

max1≤i≤n
∑

K⊂[n],|K|=p
K3i

E[W 2
K ]. Moreover, we have the following Kolmogorov bounds.

dKol(F,N (0, 1)) ≤
(
E[F 4]− 3 + κpρ

2
n

)1/2
+ 2
√

2
(
2(E[F 4]− 3) + 3κpρ

2
n

)1/2
≤

(√
2

π
+

4

3

)√
|E[F 4]− 3|+√ρp

(√
2

π
+ 2
√

2

)
ρA.

(2.6.18)

To correct

2.7 Partial fourth moment theorems

We adapt the proof of Azmoodeh et al. (2014), requiring a second pseudo chain rule that
expresses the carré du champ operator as an approximation of a derivation operator in its two
arguments.

Lemma 2.7.1 — Second pseudo chain rule. Let ϕ,ψ be twice differentiable functions such
that their second derivative is bounded Lipschitz-continuous. Assume that F a four times
integrable functional such that ϕ(F ) ∈ A, F ∈ A and E [F |Z] = 0, then one has:

Γ(ϕ(F ), ψ(F )) = (ϕ′ψ′)(F )Γ(F, F )

− 1

4
(ϕ′′ψ′ + ϕ′ψ′′)(F )

∑
a∈A

E
[
(∆{a}

′
F )3 |X,Z

]
+
∑
a∈A

Ra, (2.7.1)

with:

Ra =
1

2

(
E
[
R

(4)
a,ϕψ(F )|X,Z

]
− ϕ(F )E

[
R

(4)
a,ψ(F )|X,Z

]
− ψ(F )E

[
R(4)
a,ϕ(F )|X,Z

])
and:

R
(4)
a,ψ ≤

‖ψ(4)‖∞
24

E
[
(∆{a}

′
F )4 |X,Z

]
for any ψ fourth times differentiable.

Proof of lemma 2.7.1. We have:

2Γ(ϕ(F ), ψ(F ))

= 2ϕ′(F )ψ′(F )Γ(F, F )− 3

6
(ϕ′′ψ′ + ϕ′ψ′′)(F )

∑
a∈A

E
[
(∆{a}

′
F )3 |X,Z

]
+
∑
a∈A

E
[
R

(4)
a,ϕψ(F )− ϕ(F )R

(4)
a,ψ(F )− ψ(F )R(4)

a,ϕ(F )|X,Z
]
,

(2.7.2)
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with:

R
(4)
a,φ =

1

6
E

[∫ F {a}
′

F
φ(4)(x)(x− F )4 dx|X,Z

]
,

for φ a four times differentiable function.

We focus on functionals in the p-th chaos for p > 0, as to obtain such kind of bound:

Var[Γ(F, F )] ≤ C(E[F 4]− 3E[F 2]2) + remainder.

Lemma 2.7.2 Let G ∈ ⊕qk=0Ck. Then for any η ≥ q,

E[G(L + ηId)2G] ≤ ηE[G(L + ηId)G] ≤ cE[G(L + ηId)2G], (2.7.3)

where

c =
1

η − q
∧ 1.

Proof of lemma 2.7.2. Since G ∈ ⊕qk=0Ck, we write

G =

q∑
k=0

πk(G) and LG = −
q∑

k=0

kπk(G). (2.7.4)

It follows that

E[G(L + ηId)2G] = E[GL(L + ηId)G] + ηE[G(L + ηId)G]

= E[G

q∑
k=0

k(k − η)πk(G)] + ηE[G(L + ηId)G].

By orthogonality of the chaos,

E[G

q∑
k=0

k(k − η)πk(G)] = −E[

q∑
k=0

k(η − k)πk(G)2] ≤ 0,

and the inequality holds in view on the assumption on η. In the same vein,

E[G(L + ηId)G] =

q∑
k=0

(η − k)E[πk(G)2]

≤ c
q∑

k=0

(η − k)2E[πk(G)2]

= cE[G(L + ηId)2].

Thus, it yields the result.



Partial fourth moment theorems 49

Lemma 2.7.3 For F ∈ Cp ∩ L4(EA) and Q a polynomial of degree two and a > 0,

E[Q(F )(L + apId)Q(F )] = pE
[
aQ2(F )− Q′(F )F

3Q′′(F )

]
− E[RQ(F )], (2.7.5)

where RQ is a remainder term that depends on Q. For Q = H2 = X2 − 1 the second
Hermite polynomial, the remainder reads off:

E[RQ] = E[RH2 ] =
1

6
E

[∑
a∈A
|∆{a}′F |4

]
. (2.7.6)

Proof of lemma 2.7.3. We first integrate by parts, then use the pseudo chain rule of lemma 2.7.1:

E[Q(F )LQ(F )] = −E[Γ(Q(F ), Q(F ))]

= −E[Q′(F )2Γ(F, F )]

+
1

6
(Q2)(3)(F )

∑
a∈A

E
[
(∆{a}

′
F )3 |X,Z

]
− 1

2

∑
a∈A

E
[
E
[
R

(4)
a,Q2(F )|X,Z

]
− 2Q(F )E

[
R

(4)
a,Q(F )|X,Z

]]
.

(2.7.7)

Since Q(3) = 0, we have:

E[Q(F )LQ(F )] = −E
[
[Q′(F )2Γ(F, F )

]
+

1

6
E

[
(Q2)(3)(F )

∑
a∈A

E
[
(∆{a}

′
F )3 |X,Z

]]

− 1

2

∑
a∈A

E
[
E
[
R

(4)
a,Q2(F )|X,Z

]]
.

(2.7.8)

Moreover, (
Q′(F )3

3Q′′(F )

)′
=

3Q′(F )Q′′(F )2

3Q′′(F )2
= Q′(F )2. (2.7.9)

Subsequently, we use the pseudo chain rule of lemma 2.7.1 taking ψ = Id and ϕ = Q′(·)3

3Q′′(·) :

E[Q′(F )2Γ(F, F )] = E
[
Γ

(
Q′(F )3

3Q′′(F )
, F

)]
+

1

4
E

[
(ϕ′′ψ′ + ϕ′ψ′′)(F )

∑
a∈A

E
[
(∆{a}

′
F )3 |X,Z

]]
−
∑
a∈A

E
[
E
[
R

(4)
a,ϕψ(F )|X,Z

]
− ϕ(F )E

[
R

(4)
a,ψ(F )|X,Z

]]
− E

[
FE

[
R(4)
a,ϕ(F )|X,Z

]]
= E

[
Γ

(
Q′(F )3

3Q′′(F )
, F

)]
+

1

4
E

[
(Q′(·)2)′(F )

∑
a∈A

(∆{a}
′
F )3

]

−
∑
a∈A

1

2
E
[
R

(4)
a,ϕψ(F )− FR(4)

a,ϕ(F )
]
.

(2.7.10)
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Finally,

E[Q(F )LQ(F )] = −E
[
Γ

(
Q′(F )3

3Q′′(F )
, F

)]
+ E

[(
1

4
(Q′(·)2)′(F )− 1

12
(Q2)(3)(F )

)∑
a∈A

(∆{a}
′
F )3

]

+
1

2

∑
a∈A

E
[
R

(4)
a,ϕψ(F )−R(4)

a,Q2(F )− FR(4)
a,ϕ(F )

]
= −E

[
Γ

(
Q′(F )3

3Q′′(F )
, F

)]
+ E

[(
1

4
(Q′(·)2)′(F )− 1

12
(Q2)(3)(F )

)∑
a∈A

(∆{a}
′
F )3

]

+
1

2

∑
a∈A

E
[
R

(4)
a,ϕψ(F )−R(4)

a,Q2(F )
]
.

(2.7.11)

Because F ∈ Cp, we have: −E
[
Γ
(
Q′(F )3

3Q′′(F ) , F
)]

= E[ Q
′(F )3

3Q′′(F )LF ] = −pE
[
Q′(F )3

3Q′′(F )F
]
. For Q =

H2 = X2 − 1 the second Hermite polynomial,

Q′(F )3

3Q′′(F )
=

4

3
X3,

so
(
Q′(·)3

3Q′′(·) ·
)(4)

= 32 and (Q2)(4) = 24. Thus,∑
a∈A

E
[
R

(4)
a,ϕψ(F )−R(4)

a,Q2(F )
]

=
(32− 24)

24

∑
a∈A

E
[
|∆{a}′F |4

]
. (2.7.12)

Since (Q′(·)2)′(F ) = 8F , and (Q2)(3)(F ) = 24F , the result follows.

The assumption under which a fourth moment theorem holds, is that F ∈ Cp is a chaos eigen-
function with respect to the Markov generator L i.e.:

F 2 ∈ ⊕2p
k=0Ck. (EGF)

It is analog to the one in Ledoux et al. (2012); Azmoodeh et al. (2014). We show that it holds
for an important class of U-statistics, homogeneous sums. We shall use the notation (A, p) that
stands for the set of p-tuples of distinct elements of A.

Example 2.7.4 (Conditionally independent homogeneous sums). Let p > 0. If
there exists (aI)I⊂A ∈ RP(A) such that

W =

p∑
k=1

∑
I∈(A,k)

aI
∏
i∈I

Xi, (2.7.13)

then

1. W is square-integrable homogeneous sum of order p if Xi are 2p-integrable. In that
case, W ∈ S.
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2.

E [W |Z] =

p∑
k=1

∑
I∈(A,k)

aI
∏
i∈I

E [Xi |Z]

is a homogeneous sum of random variables X̂i = E [Xi |Z] for i ∈ I with I ∈ (A, k) for
k ≤ p.

Remark that (aI)I⊂A may be a sequence of random variables, in which case there exists a
family of functions (gI)I⊂A such that aI = gI(Z).

Lemma 2.7.5 Let W a homogeneous sums of conditionally independent random variables
given Z. Then (EGF) holds.

Proof of lemma 2.7.5. Let us denote by WI the component of F in (2.7.13) proportional to∏
α∈I Xα. We want to prove that there exist G1, . . . , G2p with Gi ∈ Ci∪{0} such that WIWJ =∑2p
i=1Gi. Note that if I ∩ J = ∅, and a ∈ I, then a is not in J and vice versa. Therefore,

WIWJ ∈ C|I|+|J |. In general,

WIWJ ∝
∏
α∈I

Yα
∏
β∈J

Yβ

=
∏

γ∈(I\J)∪(J\I)

Yγ
∏
δ∈I∩J

Y 2
δ

=
∏

γ∈(I\J)∪(J\I)

Yγ
∏
δ∈I∩J

(Y 2
δ − E

[
Y 2
δ |Z

]
+ E

[
Y 2
δ |Z

]
)

=
∑

K⊂I∩J

∏
γ∈(I\J)∪(J\I)

Yγ
∏
δ∈K

(Y 2
δ − E

[
Y 2
δ |Z

]
)

∏
δ∈(I∩J)\K

E
[
Y 2
δ |Z

]
.

For a ∈ A:

E

 ∏
γ∈(I\J)∪(J\I)

Yγ
∏
δ∈K

(Y 2
δ − E

[
Y 2
δ |Z

]
)

∏
δ∈(I∩J)\K

E
[
Y 2
δ |Z

]
|GZa


=


0 if a ∈ K ∪ ((I \ J) ∪ (J \ I))∏
γ∈(I\J)∪(J\I)

Yγ
∏
δ∈K

(Y 2
δ − E

[
Y 2
δ |Z

]
)

∏
δ∈(I∩J)\K

E
[
Y 2
δ |Z

]
otherwise.

Hence, we get ∏
γ∈(I\J)∪(J\I)

Yγ
∏
δ∈K

(Y 2
δ − E

[
Y 2
δ |Z

]
)

∏
δ∈(I∩J)\K

E
[
Y 2
δ |Z

]
∈ C|K∪(I\J)∪(J\I)|

with |K ∪ ((I \ J) ∩ (J \ I))| ≤ |I ∪ J | ≤ 2p. Thus, (EGF) holds.
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Proposition 2.7.6 For F ∈ Cp ∩ L2(EA) such that E[F 2] = 1 and (EGF) holds, one has:

E[(Γ(F, F )− p)2] ≤ p2

3
(E[F 4]− 3) +

p

12
E

[∑
a∈A
|∆{a}′F |4

]
. (2.7.14)

Proof of proposition 2.7.6. By the very definition of Γ, one has:

Γ(F, F )− p =
1

2
L(F 2)− FLF − p =

1

2
L(F 2) + pF 2 − p for F ∈ Cp

=
1

2
(L + 2pId)(F 2 − 1).

It follows that:

E[(Γ(F, F )− p)2] =
1

4
E[
(
(L + 2pId)(F 2 − 1)

)2
].

Since L is a self-adjoint operator, this yields:

E[(Γ(F, F )− p)2] =
1

4
E[H2(F )(L + 2pId)2H2(F )].

As (EGF) holds, we are in position to apply lemma 2.7.2 with q = 2p and η = 2p:

E[(Γ(F, F )− p)2] ≤ p

2
E[H2(F )(L + 2pId)H2(F )]. (2.7.15)

According to lemma 2.7.3, with a = 2,

p

2
E[H2(F )(L + 2pId)H2(F )] =

p2

2
E
[
2(F 2 − 1)2 − 4

3
F 4

]
+
p

2
E[RH2(F )]

=
p2

6
E
[
6(F 2 − 1)2 − 4F 4

]
+
p

2
E[RH2 ]

=
p2

3
E[F 4 − 6F 2 + 3] +

p

2
E[RH2 ].

Thus, it yields

E[(Γ(F, F )− p)2] ≤ p2

3
E[F 4 − 6F 2 + 3] +

p

2
E[RH2 ], (2.7.16)

and the proof is complete, using again lemma 2.7.3.

The remainder is also a fourth moment term.
Many papers are devoted to find the optimal conditions for the asymptotic normality of U-
statistics. The criterion established in De Jong (1990) is related to the fourth moment phe-
nomenon. The extra assumption is a negligibility condition also known as the Lindeberg-Feller
condition. Fix Am a finite subset of cardinal m such that F = F (XAm) and E[F 2] = 1, that
means:

ρ2
Am = max

i∈Am

∑
I3i, I⊆Am, |I|=p

E[W 2
I ]

m→+∞−−−−−→ 0. (2.7.17)

In some papers Döbler et al. (2017), the term ρAm is called maximal influence of the random
variables on the total variance of the degenerate U-statistics F . In the following, we shall denote
it by ρ. The condition (2.7.17) is not necessary for asymptotic normality to hold, but there
exist counterexamples for which the sequence of fourth cumulants of functionals of independent
Rademacher random variables converges to 0 while (2.7.17) does not hold (see Döbler et al.
(2019)).
We show that the quantity is related to the remainder above.
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Definition 2.7.7 (Connectedness of subsets). The r-tuple (I1, . . . , Ir) subsets of A is
connected if the intersection graph of {I1, . . . , Ir} is connected, i.e. the graph G with
vertex set {I1, . . . , Ir} and edge set E(G) = {{Ii, Ij}| i 6= j, Ii ∩ Ij 6= ∅} is connected.

In the case where r = 4, there are exactly six simple connected graphs with only four vertices
(up to isomorphisms). There are listed in the figure below. The edges mean that the intersection
between two vertices is non empty.

II J J

KK L L

II J J

KK L L

II J J

KK L L

II J J

KK L L

II J J

KK L L

II J J

KK L L

In that order, they are respectively: linear (4-path), 4-star, square, kite (tadpole), diag (dia-
mond), and 4-complete graph K4.

Lemma 2.7.8 If F ∈ Cp ∩ L4(EA), then:∑
a∈A

E[|∆{a}′F |4] ≤ 16p
∑

(I,J,K,L) connected

|E[WIWJWKWL]|. (2.7.18)

Moreover, assuming the hypercontractivity condition, i.e.

sup
J∈(A,p)

E[W 4
J ]

E[W 2
J ]2

< +∞, (HC)

there exists a constant cp that depends only on p such that:∑
a∈A

E[|∆{a}′F |4] ≤ cpρ2. (2.7.19)

Proof of lemma 2.7.8. Because (a+ b)4 ≤ 8(a4 + b4), one has:

∑
a∈A

E
∣∣∣∆{a}′F ∣∣∣4 ≤ 8

∑
a∈A

E

 ∑
I3a,|I|≤p

W
{a}′
I

4

+

 ∑
I3a,|I|≤p

WI

4
= 16

∑
a∈A

E

 ∑
I3a,|I|≤p

WI

4
≤ 16

∑
I∩J∩K∩L6=∅

|I ∩ J ∩K ∩ L|E[WIWJWKWL]

≤ 16p
∑

I∩J∩K∩L6=∅

|E[WIWJWKWL]|

≤ 16p
∑

I,J,K,L connected

|E[WIWJWKWL]|
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Then, we bound it by the maximal influence, using the generalized Hölder inequality:

|E[WIWJWKWL]| ≤
(
E[W 4

I ]E[W 4
J ]E[W 4

K ]E[W 4
L]
)1/4

≤ max
J∈A,|J |=p

E[W 4
J ]

E[W 2
J ]2
(
E[W 2

I ]2E[W 2
J ]2E[W 2

K ]2E[W 2
L]2
)1/4

with σ2
I = E[W 2

I ]. Then the proposition 2.9 of Döbler et al. (2017) can be extended for func-
tionals of conditionally independent random variables and implies that:∑

I∩J∩K∩L6=∅

σIσJσKσL ≤ Cpρ2,

where the finite constant Cp only depends on p. It yields the existence of cp > 0 such that the
inequality (2.7.19) holds true.

We are now in position to state a partial fourth moment limit theorem.

Theorem 2.7.9 — Quantitative De Jong’s limit theorem I. Let F ∈ L4(EA) a degenerate U-
statistics of order p of conditionally independent random variables such that E [F |Z] = 0
and E[F 2] = 1. If we suppose the hypercontractivity condition (HC) and the assumption
(EGF), then one has the bound:

dW (F,N (0, 1)) ≤
√

2

3π

√
E [F 4]− 3 + C̃pρ, (2.7.20)

with C̃p a positive constant that only depends on p.

Proof. By corollary 2.6.9,

dW (F,N (0, 1)) ≤
√

2

π

1

p

√
Var [Γ(F, F )] +

√
2
√
E[F 2]

(∑
a∈A

E
[∣∣∣∆{a}′F ∣∣∣4])1/2

.

The combination of (2.7.14) and lemma 2.7.8 yields the final upper bound.

The upper bound of the remainder expressed in terms of maximal influence is not used in the
subsequent applications, so we drop the (HC) condition.
A related result to the fourth moment phenomenon appears in De Jong (1996) in the particular
case that is the topic of the next chapter. We prove the associated quantitative statement
for functionals of conditionally independent random variables. We prepare the proof with the
following proposition.

Proposition 2.7.10 If F =
∑m

p=1 Fp where Fp =
∑
|I|=pWI ∈ Cp, assuming there exists

C ∈ R+ such that for all I, J ⊂ A, and a ∈ A, that

E [WIWJ |Ga]
WI\{a}WJ\{a}

< C P-a.s., (H1)
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then for p 6= q: √
Var [Γ(Fp, Fq)] .

√ ∑
(I,J,K,L) connected

|E[WIWJWKWL]|, (2.7.21)

for I, J,K,L sets of size less than max(p, q).

Proof of proposition 2.7.10. The carré du champ reads for p 6= q:

Γ(Fp, Fq) = Γ(
∑
|I|=p

WI ,
∑
|J |=q

WJ)

=
∑

|I|,|J |=p,q

Γ(WI ,WJ)

Hence,

2Γ(Fp, Fq) =
∑

|I|,|J |=p,q

(L(WIWJ) + (p+ q)WIWJ)

=
∑

|I|,|J |=p,q

(
(p+ q)WIWJ −

∑
a∈A

Da(WIWJ)

)

=
∑

|I|,|J |=p,q

(
(p+ q)WIWJ −

∑
a∈I∪J

Da(WIWJ)

)

= (p+ q)
∑

|I|,|J |=p,q
I∩J=∅

WIWJ +
∑

|I|,|J |=p,q
I∩J 6=∅

(|I|+ |J | − |I ∪ J |)WIWJ

+
∑
a∈I∪J

E [WIWJ |Ga] .

Because of the spectral decomposition, E [WI |Ga] = 0 for a ∈ I. Let J such that a /∈ J , then
E [WIWJ |Ga] = WJE [WI |Ga] = 0.

2Γ(Fp, Fq) = (p+ q)
∑

|I|,|J |=p,q
I∩J=∅

WIWJ +
∑

|I|,|J |=p,q
I∩J 6=∅

∑
a∈I∩J

(WIWJ + E [WIWJ |Ga]) .

Then for p 6= q, using the convexity of x 7−→ x2,

Var(Γ(Fp, Fq)) ≤
1

2
Var

(p+ q)
∑

|I|,|J |=p,q
I∩J=∅

WIWJ



+
1

2
Var

 ∑
|I|,|J |=p,q
I∩J 6=∅

∑
a∈I∩J

(WIWJ + E [WIWJ |Ga])





56 2. MALLIAVIN CALCULUS FOR CONDITIONALLY INDEPENDENT RANDOM VARIABLES

Var(Γ(Fp, Fq)) ≤
1

2
E


(p+ q)

∑
|I|,|J |=p,q
I∩J=∅

WIWJ


2

+
1

2
Var

 ∑
|I|,|J |=p,q
I∩J 6=∅

∑
a∈I∩J

(WIWJ + E [WIWJ |Ga])



2 Var(Γ(Fp, Fq)) ≤
∑

|I|,|J |=p,q
I∩J=∅

∑
|K|,|L|=p,q
K∩L=∅

E[WIWJWKWL]

+ E

 ∑
|I|,|J |=p,q
I∩J 6=∅

∑
|K|,|L|=p,q
K∩L6=∅

∑
a∈I∩J

∑
b∈K∩L

WIWJWKWL



+ E

 ∑
|I|,|J |=p,q
I∩J 6=∅

∑
|K|,|L|=p,q
K∩L6=∅

∑
a∈I∩J

∑
b∈K∩L

WIWJE [WKWL |Gb]



+ E

 ∑
|I|,|J |=p,q
I∩J 6=∅

∑
|K|,|L|=p,q
K∩L6=∅

∑
a∈I∩J

∑
b∈K∩L

E [WIWJ |Ga]WKWL



+ E

 ∑
|I|,|J |=p,q
I∩J 6=∅

∑
|K|,|L|=p,q
K∩L6=∅

∑
a∈I∩J

∑
b∈K∩L

E [WIWJ |Ga]E [WKWL |Gb]

 .
We shall write

|CI,J,a| =
∣∣∣∣ E [WIWJ |Ga]
WI\{a}WJ\{a}

∣∣∣∣ for all I, J, a

with the convention W∅ = 1.
Let us deal with each term one by one:

• If I ∩ J = ∅, K ∩ L = ∅, and if there is more than 2 other pairs with null intersection, the
contribution of the term is 0, hence the first term is non-zero if (I, J,K,L) is connected,
then: ∑

|I|,|J |=p,q
I∩J=∅

∑
|K|,|L|=p,q
K∩L=∅

E[WIWJWKWL] ≤
∑

I,J,K,L connected

|E[WIWJWKWL]|.

• The second term consists of the sums of product of factors indexed by connected sets since
there are at least two pairs that have non-null intersection. Since p 6= q, E [WIWJ |Z] = 0 for
|I| = p and |J | = q, so if the terms are non-zero, WIWJ and WKWL are not conditionally
independent.
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• For the third term, using self-adjointness, the terms are non-zero if b ∈ I ∩ J , hence it is
equivalent to:

|CI,J,aE[WI\{b}WJ\{a}WKWL]| = |CI,J,a||E[WI\{b}WJ\{a}WKWL]|.

If b is the unique element that lies in the intersection, the contribution is 0, otherwise
I, J,K,L are connected or the contribution is

E [WIWJ |Z]E [WKWL |Z] = 0

because |I| 6= |J |.

• For the last term, it is the same argument.

Then, there exists a constant C independent of others such that

Var(Γ(Fp, Fq)) ≤ (1 +m2 + 2Cm2 + C2m2)
∑

I,J,K,L connected

|E[WIWJWKWL]|.

Remark 2.7.11. It si clear that the constant Cm depends on the distributions of the
random variables, hence it is not a universal constant as found in Döbler et al. (2017);
Döbler (2023). It is a generalization of the main result for normal approximation in Bhat-
tacharya et al. (2022) to homogeneous sums. In the case where the random variables are
identically distributed, the conditions for the result are convenient. However, in the case
of homogeneous sums, the (H1) condition additionally requires that the random variables
are square-integrable. Moreover, the constant depends on the order of the U-statistic
which can detrimental to the convergence rate for U-statistics with non-finite Hoeffding
decomposition.

In Privault and Serafin (2022), Privault and Serafin proves a partial fourth moment theorem for
F a functional of independent random variables sum of element in the first and second chaos of
their own Malliavin structure. To that end, we devise another strategy which is to reexpress the
remainder in the partial fourth moment theorem as a fourth order term.

Theorem 2.7.12 — Quantitative De Jong’s theorem II. If F =
∑m

p=1 Fp where Fp ∈ Cp and
let us assume:

• Fp are chaos eigenfunctions (EGF);

• the condition (H1);

•

κ = sup
I,J⊂A

E[W 2
I ]E[W 2

J ]

E[W 2
IW

2
J ]

<∞ (H2)

is independent of A.

Then:

dW (F,N (0, 1)) ≤ Cm
√ ∑

(I,J,K,L) connected

|E[WIWJWKWL]|, (2.7.22)
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where the constant Cm grows quadratically with m, independent of all others.

Proof of theorem 2.7.12. Let us prove the upper bound of Var [Γ(Fp, Fp)] by bounding the fourth
cumulant:

E[F 4
p ] = 3

∑
I,J,K,L∈(A,p)

(I∪J)∩(K∪L)=∅

E[WIWJ ]E[WKWL] +
∑

I,J,K,L∈(A,p)
I,J,K,L connected

E[WIWJWKWL]

= 3
∑

I,J∈(A,p)

E[W 2
I ]E[W 2

J ]− 3
∑

I∩J 6=∅6=

E[W 2
I ]E[W 2

J ]

+
∑

I,J,K,L∈(A,p)
I,J,K,L connected

E[WIWJWKWL]

= 3E[F 2
p ]2 +

∑
I,J,K,L∈(A,p)

I,J,K,L connected

E[WIWJWKWL]− 3
∑
I∩J 6=∅
I 6=J

E[W 2
I ]E[W 2

J ]

Then, one has:

|E[F 4
p ]− 3|E[F 2

p ]2| ≤ (1 + 3κ)
∑

I,J,K,L connected

|E[WIWJWKWL]|. (2.7.23)

The assumptions may seem cumbersome, but as shown in lemma 2.7.5 concerning (EGF), they
are valid for homogeneous sums.

2.8 Comments

The Malliavin structure at hand is the extension of the one for independent random variables.
As all the strategies for tackling the problem of approximation of independent random variables
share the same use of underlying properties of the random variables such as the existence of
exchangeable pairs, they complete each other in the range of applications across the literature. In
the next chapter, we consider one of the applications in motif estimation in random hypergraphs.



Chapter 3

Motif estimation

Graphs are used in a lot of areas such as social network analysis, bio informatics, and telecom-
munication networks. Networks are a versatile mathematical tool for representing the structure
of complex systems and have been the subjects of large volume of work Knoke and Yang (2019);
Borgatti et al. (2009); Newman et al. (2006). Graphs that represent network can have directed
edges, weighted edges or vertices, have several kinds of vertices like in bipartite networks. Our
work focus on non-directed graph.

But some of those graphs are really huge in size, and learning about the structure of those
graphs leads to lots of challenging questions. Indeed, we cannot store the whole information of
some graphs in memory of a computer. For instance, in October 2012, Facebook reported to
have 1 billions users. Using 8 bytes for user ID, 100 friends per user, storing the raw edges will
take 1 Billions ×100× 8 bytes = 800 GB. Today, the size of the Facebook graph is not likely to
be processed offline. And that is only for the storage of basic information about users. Network
analysis also involves going through users’ media.

Some fields such as routing protocols require running simulation algorithms on those large
graphs. Unfortunately, in addition to the occupation of space, the run time of algorithms on
the whole set of nodes turns out to be too long as it scales in polynomial time with the number
of nodes.

Then, instead of studying the wholeness of a given graph, we consider subgraphs or sampling of
graph. In the latter case, the sampling process is often random. Even though some questions
arise about obtaining good samples of graphs, we do not pursue in that approach.

Most often in network analysis, the observed data is a sample from a much larger parent net-
work. The central statistical question in such studies is to estimate global features of the parent
network with a control of the approximation made by sampling. Counting motifs (patterns
of subgraphs) in a large network is a prominent statistical and computational problem. The
overarching goal of this effort is to find sharp bounds of normal approximation in various sub-
graph counting problems, and extend the results to hypergraphs. We resort to fourth moment
theorems.

3.1 Subhypergraph counting in random hypergraphs

Random graph models are various, but in the context of dense graphs, they all share a common
property.

59
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Introduce the notion of exchangeability small paragraph

The vertices of those random graphs are indistinguishable. That is to say, that they are infor-
mative of the structure of the random objects. It is related to the fact that the graph can be
considered unlabelled in non-combinatorics applications.
The random hypergraphs are natural extensions of random graphs. A vast majority of the liter-
ature deals with the Erdös-Rényi model and its generalization. It is an example of exchangeable
random hypergraphs.

Definition 3.1.1. A k-uniform exchangeable random hypergraph of vertex set [n] =

{1, . . . , n} is defined by the set of {0, 1}-valued random variables (Xα, α ⊂
([n]
k

)
). One

associates each realization of the random variables a hypergraph ([n], E) with α ∈ E if
and only if Xα = 1.

We can formulate a recipe for exchangeable random hypergraphs as done in (Austin, 2008,
definition 2.8). Fix a sequence of ingredients

({∗}), (V, P1), ({0, 1}, P2), ({0, 1}, P3), . . . , ({0, 1}, Pk−1), ({0, 1}, Pk)

where (Pk)k∈N a family of probability kernels such that for all k ∈ N, Pk is a probability kernel
from

(
V
k−1

)
to
(
V
k

)
.

• Colour each vertex s ∈ V by some zs ∈ {0, 1} chosen independently according to P1(z∅, ·);

• Colour each edge a = {s, t} ∈
(
V
2

)
by some za ∈ {0, 1} chosen independently according to

P2(z∅, zs, zt, ·);

...

• Colour each (k−1)-hyperedge u ∈
(
V
k−1

)
by some zu ∈ {0, 1} chosen independently according

to Pk−1(z∅, (zs)s∈([u]
1 ), . . . , (zv)v∈( [u]

k−2)
, ·);

• Colour each k-hyperedge e ∈
(
V
k

)
by some colour ze ∈ {0, 1} chosen independently according

to Pk(z∅, (zs)s∈([e]
2 ), . . . , (zu)

u∈( [e]
k−1)

, ·).

It consists in sampling first edges, then 3-hyperedges, and so on up to the rank k.

Remark 3.1.2. We have relative independence, as the the choices of hyperedges are
independent relatively to the previous stages.

Example 3.1.3 (Erdös-Rényi random model). The randomness intervenes at the level of
edges. We colour each edge a = {s, t} ∈

(
V
2

)
by some za ∈ Z2 = {0, 1} chosen indepen-

dently according to P2(z∅, zs, zt, ·)
d
= B(p) for some p ∈ [0, 1].

Example 3.1.4 (Stochastic block model). A stochastic block model corresponds to a
model where there are communities, and each edge has a probability of belonging to the
model according to the community of the vertices that the edge links. Likewise, the
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randomness intervenes at the level of the edges. Let a partition V = C1 t . . . t Cq. Let
(pi,j)i,j∈J1,qK2 a sequence of reals in [0, 1]. We can assign a community to each vertex s, let
call it c(s). Then:

• P1(z∅, c(s)) = 1{s∈Cc(s)};

• P2(z∅, c(s), c(t), ·)
d
= B(pc(s),c(t)).

The natural extension of the Erdös-Rényi model denoted G(3)(n, pn) consists of having

P3(z∅, zst, ztu, zus)
d
= B(pn),

i.e. we draw every triangle of the hypergraph with probability pn. We also consider another ran-
dom model based on the recipe. Let (T(3)(n, qn, pn))n∈N the sequence of 3-uniform hypergraphs
such that for (s, t, u) ∈ V 3:

•
P2(z∅, zs, zt)

d
= B(qn);

•
P3(z∅, zst, ztu, zus)

d
= B(pn).

It differs from G(3)(n, pn) in many ways as pointed out by (Lovász, 2012, Example 23.11), but we
note that G(3)(n, pn) and T(3)(n, 1, pn) have the same law. The case qn < 1 has not been much
studied in the literature. The functional identities in 2.5 can be applied to random hypergraphs
in the same way as for random graphs (Janson et al., 2000, corollary 2.27).
One of the oldest problem of motif estimation is subgraph counting in random graphs or random
hypergraphs. Central limit theorems for U-statistics suffice to prove conditions for asymptotic
normality, but we can also derive convergence rates and a little more than convergence in law
in general.
We also recall some definitions for sets and hypergraphs.

Definition 3.1.5. Let E a set (a vertex set for example), and denote Er the set of all

r-tuples with distinct indices. Thus, if E is finite, the cardinality of Er is |E|!
(|E|−r)! .

Definition 3.1.6. The set Aut(H) is the automorphism group of H a r-uniform hyper-
graph that is, the number of permutations σ on the vertex set V (H) such that (x1, x2, . . . , xr) ∈
E(H) if and only if (σ(x1), σ(x2), . . . , σ(xr)) ∈ E(H).

Small subgraph counts can be used as summary statistics for large random graphs.

3.2 Poisson approximation

The Poisson approximation of subgraph count has been extensively studied (see Janson et al.
(2000, example 6.26 p.161)) using Stein-Chen method and the well-known theorem for Poisson
approximation that can be found for example in Janson et al. (2000, theorem 6.22. p.159) (see
also the earlier reference Barbour et al. (1992)).
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Theorem 3.2.1 — (Arratia, Goldstein, Gordon, et al., 1989; Barbour, Holst, and Janson, 1992).

Suppose that X =
∑

α∈A, where Iα are the random indicator variables with pα = E[Iα],
and λ = E[X] =

∑
α pα. Suppose that there exists a family of random indicators Jβα,

β ∈ A \ {α}, such that:
Jβα = Iβ|Iα = 1.

Then,

dTV(L(X), Po(λ)) = (1 ∧ λ−1)

∑
α∈Λ

p2
α +

∑
α∈Λ

∑
β 6=α

pαE[|Iβ − Jαβ|]

 . (3.2.1)

One way to apply that theorem without explicit construction of the variables Jβα is via a
dependency graph. In fact, if the family {Iα} has a dependency graph G, then there exists
random variables Jβα with the right distribution such that Jβα = Iβ when αβ /∈ E(G), so it
suffices to consider |Jβα − Iβ| ≤ Jβα + Iβ together with the general relation

παE[Jβα] = παE [Iβ |Iα = 1] = P(Iα = Iβ = 1) = E[IαIβ], (3.2.2)

which yields:
παE|Jβα − Iβ| ≤ E[IαIβ] + παβ. (3.2.3)

That leads to Janson et al. (2000, theorem 6.23. p.160), and even Janson et al. (2000, theorem
6.24. p.160).

Theorem 3.2.2 Suppose that X =
∑

α∈A Iα where the Iα are positively related random
indicator variables. Then, with pα = E[Iα] and λ = E[X] =

∑
α∈A pα.

dTV (X,Pois(λ)) ≤ 1 ∧ λ−1

(
Var(X)− E[X] + 2

∑
α∈A

p2
α

)

≤ Var[X]

E[X]
− 1 + 2 max

α∈A
pα.

(3.2.4)

Example 3.2.3 (Poisson approximation of the number of copies of a fixed pattern in
Erdös-Rényi model). Consider NH the number of copies of a fixed r-uniform hypergraph
H in G(n, pn), and suppose H is strictly balanced (i.e. connected). Let us write the
estimator as:

NH =
∑

G∈([n]
2 )

G'H

IG,

where the random indicator variable is IG = 1{G⊂G(n,pn)}. We note that: pG = peGn . The
sums have (1 + o(1))nvH/|Aut(H)| terms, each having expectation peH . Thus,

E[NH ] = nvHpeHn /|Aut(H)| =
(
npeH/vHn

)vH
=
(
npd(H)

n

)vH n→+∞−−−−−→ λ.

Moreover, since H is strictly balanced, we have that for every proper subhypergraph H ′
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of H: d(H ′) < d(H), then E[NH′ ]
n→+∞−−−−−→ +∞.

Var[NH ] = Var

 ∑
G∈([n]

2 )
G'H

IG


=

∑
G1,G2∈([n]

2 )
G1,G2'H

Cov(IG1 , IG2)

=
∑

E(G1)∩E(G2)6=∅

(E[IG1IG2 ]− E[IG1 ]E[IG2 ])

We use the computations in Nowicki and Wierman (1988, section 5). Let us denote for
d = 2, . . . , eH , fd = |{(A,B) : |E(A)∩E(B)| = d,A,B ∼ H}| i.e. fd is the number of pairs
of subgraphs isomorphic to G with exactly d common edges. To compute fd, decompose
the set according to the number of common vertices, defining:

fd(i) = |{(A,B) : |E(A) ∩ E(B)| = d, |V (A) ∩ V (B)| = i, A,B ∼ H}|,

for i = 3, 4, . . . , vH (since A and B share two or more common edges, they have at least 3
common vertices). Then,

fd =

vH∑
i=3

fd(i).

For each i = 3, . . . , vH , we choose the i common vertices and the vH − i additional vertices
in each A and B, so:

fd(i) =

(
n

i, vH − i, vH − i

)
ed(i),

where ed(i) denotes the number of pairs (A,B) which can be obtained on two fixed sets of
vertices V1 = V (A) and V2 = V (B) such that: |V1 ∩ V2| = i and |E(A)∩E(B)| = d. Since
ed(i) =, i = 3, 4, . . . , vH is a sequence of constants independent of n,

fd =

vH∑
i=3

(
n

i, vH − i, vH − i

)
ed(i)

=

vH∑
i=3

(
n

2vH − i

)(
2vH − 1

i

)(
2vH − 2i

vH − 1

)
ed(i)

= O

( ∑
H′⊂H

n2vH−vH′

)
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So, one deduces that, as n→∞:

Var[NH ] �
∑
H′⊂H
eH′>0

n2vH−vH′p
2eH−eH′
n (1− peH′n )

/ (1− peHn )
∑
H′⊂H
eH′>1

n2vH−vH′p
2eH−eH′
n (1− peH′n )

� (1− peHn )E[NH ] + o(1).
Conclusion

Remark 3.2.4. It is mentioned in Ruciński (1988, theorem 1) that the Poisson approx-
imation is easier to derive than normal approximation as for a long time, asymptotic
normality of that type of U-statistics has been proven using method of moments.

In Coulson et al. (2016), it is more or less the same theorem as previously but applied
astutely.

More recently, using the Cramér-Wold device, Coulson et al. (2016) derived Poisson approxi-
mation of subgraph counts for model with conditional independence.

3.3 Normal approximation

The asymptotic normality of subgraph count in Erdös-Rényi model is well-known, as well as the
convergence rate Janson and Nowicki (1991). The asymptotic normality of subgraph counting
of random graphs is, in fact, a mere application of normal approximation of U-Statistics and ho-
mogeneous sums (Janson and Nowicki, 1991; De Jong, 1990). It is one of the main applications
of discrete Stein-Malliavin method, but surprisingly the proofs for that problem of estimation
has not been tackled until recently (Krokowski et al., 2017; Privault and Serafin, 2018; Pri-
vault et al., 2020; Privault and Serafin, 2022). In the light of those papers, it seems one can
find such results of convergence rates for various statistics on random graphs. More involved
applications are extensively described in Janson and Nowicki (1991). Interestingly enough, re-
cently, Döbler, Kasprzak, and Peccati (2022) expresses the condition for asymptotic normality
in terms of contractions which are of better use than moments in that particular application of
normal approximations of U-Statistics. Surprisingly, the works for subgraph counting in ran-
dom hypergraphs are even scarcer (De Jong, 1996), whereas the results are slightly different in
that general case. There are many extensions that revolve around the definition of a random
graph as a sequence of independent random variables, for example a clique complex of Bernoulli
random graphs. That section also aims at putting forward new examples of applications of
approximation theorems for U-Statistics.

Historically, normal approximation for subgraph counting had been dealt with method of mo-
ments (Ruciński, 1988), which requires tedious computations, but is quite adapted to this
application. Later, Barbour et al. (1989) used Stein’s method to derive convergence rates of the
number of subgraph counting in random graphs, only in the Wasserstein-1 distance as pointed
out by Röllin (2022). The latter derived Kolmogorov bounds for the normal approximation
of the number of triangles in the Erdös-Rényi model. It is also an application of Krokowski
et al. (2017). We present here a different approach using our partial fourth moment theo-
rem for normal approximation in the Wasserstein-1 distance. We note that Privault and Serafin
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(2018); Privault et al. (2020) manages to obtain Kolmogorov bounds in full generality leveraging
integration by parts given by Malliavin calculus.

The overarching goal is to determine threshold functions for normal approximation of subghy-
perraph counts. We follow DeJong’s approach to the problem, that leverages the Hoeffding
decomposition. That would prove useful for more general hypergraph statistics.
We take the special case of r-uniform random hypergraphs for a given r ≥ 2.

Example 3.3.1 (Subgraph counting in Erdös-Rényi model (De Jong, 1996)). The number
of subhypergraphs of G(3)(n, pn) isomorphic to H is

MH =
∑

I∈([n]
3 )

I'H

∏
α∈I

X̂α, (3.3.1)

where ' stands for hypergraph isomorphism. We denote by Aut(H) the automorphism
group of H, that is the set of permutation on vertices. For σ ∈ Aut(H), (x, y, z) ∈ E(H)
if and only if (σ(x), σ(y), σ(z)) ∈ E(H). The random variable MH has a finite Hoeffding
decomposition (De Jong, 1996, p.11(115)). Since Xα = pn + (X̂α − pn), MH admits the
decomposition:

MH =
∑

I∈([n]
3 )

I'H

∑
J⊆I

p|I|−|J |n

∏
α∈J

(X̂α − pn), (3.3.2)

where the summation extends over all subsets J of I. By interchanging the sums, we find
the chaotic decomposition of MH − E[MH ] that is:

MH − E[MH ] =
∑

I∈([n]
3 )

I'H

∑
J⊆I
J 6=∅

p|I|−|J |n

∏
α∈J

(X̂α − pn),

=
∑

I∈([n]
3 )

I'H

|E(H)|∑
j=1

p|E(H)|−j
n

∑
J⊂I
|J |=j

∏
α∈J

(X̂α − pn)

=

|E(H)|∑
j=1

p|E(H)|−j
n

∑
|J |=j

∏
α∈J

(X̂α − pn)

 ∑
I∈([n]

3 )
I'H,I⊇J

1


=

|E(H)|∑
j=1

πj(NH),

where:

πk(NH) = p|E(H)|−j
n

∑
|J |=j

 ∑
I∈([n]

3s)
I'H,I⊇J

1

∏
α∈J

Ŷα (3.3.3)
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with Ŷα is the centered version of X̂α for all α hyperedges of Kn. We note that the
decomposition above corresponds to the Hoeffding decomposition of the U-statistics with

WJ ∝

 ∑
I∈([n]

3 )
I'H,I⊇J

1

∏
α∈J

Ŷα. (3.3.4)

We proceed in the same manner in T(3)(n, qn, pn). Let NH the number of pattern isomor-
phic to H

NH =
∑

I∈([n]
3 )

I'H

∏
α∈I

Xα, (3.3.5)

Here, (Xα)
α∈([n]

3 ) is a sequence of conditionally independent Bernoulli random variables

given Z = G(n, qn). The chaos decomposition yields:

NH =
∑

I∈([n]
3 )

I'H

∑
J⊆I

∏
β∈I\J

E [Xβ |G(n, qn)]
∏
α∈J

(Xα − E [Xα |G(n, qn)])

=
∑

I∈([n]
3 )

I'H

∑
J⊆I

p|I|−|J |n 1{(I\J)(2)⊂G(n,qn)}
∏
α∈J

(Xα − E [Xα |G(n, qn)]).
(3.3.6)

Hence, NH − E [NH |G(n, qn)] reads off:∑
I∈([n]

3 )
I'H

∑
∅6=J⊆I

p|I|−|J |n 1{(I\J)(2)⊂G(n,qn)}
∏
α∈J

(Xα − E [Xα |G(n, qn)]). (3.3.7)

The corresponding degenerate U-statistics in the decomposition are given for J ⊂
(

[n]
3

)
by

WJ ∝

 ∑
I∈([n]

3 )
I'H,I⊇J

1

∏
α∈J

Yα, (3.3.8)

where Yα is the centered version of Xα given G(n, qn).

Various quantitative limit theorems exist in the literature. Ours leverage the fourth moment
phenomenon.

The ancestor of fourth moment theorem was introduced by De Jong (1990), and was applied
to problem of subgraph counting (De Jong, 1996). More recently, Bhattacharya et al. (2022)
derived bounds in Wasserstein distance for the analogous problem of motif estimation. The
fourth moment phenomenon that arise in there is the convergence of the fourth cumulant of the
normalized (reduced) graph statistics to the fourth cumulant of the standard reduced normal
distribution, which is 3. However, in the case of the subgraph counting, it seems that the appro-
priate bound is an ersatz of the fourth cumulant as it has been shown that the convergence of
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the fourth cumulant is not enough to prove asymptotic normality for functionals of Rademacher
random variables (Döbler et al., 2019).

Repeat maximal influence

The index set of the random variables is here, the discrete set of (hyperedges).

We look for an upper bound of |E[WIWJWKWL]| for I, J,K,L ∈
(

[n]
r

)
. That will give us the

convergence rate.

Theorem 3.3.2 — Central Limit theorem De Jong (1996). Let X = (X1, X2, . . .) a sequence
of independent random variables. Suppose Z is F[n] measurable, with finite Hoeffding
decomposition such that Var[Z] = 1 (Z is a degenerate U-statistics of order d):

Z =
∑

I⊂[n],|I|≤d

WI , (3.3.9)

satisfies the two conditions:

1. maxi∈J1,nK
∑

I3i E[W 2
I ]→ 0, for n→ +∞;

2.
∑

I,J,K,L connected |E[WIWJWKWL]| → 0 for n→ +∞.

De Jong applied that theorem to subgraph counting in random hypergraphs, with edges defined
as random subsets of a vertex set.

Remark 3.3.3. If pn is bounded away from 0, the condition is not sharp.

The first condition is not very severe. It is Lindeberg-Feller type condition as for d = 1 it is the
crucial assumption in the Lindeberg-Feller central limit theorem (see for example theorem 5.12
in Kallenberg (2002)). In the homogeneous case where |I| = d, the fourth moment condition is
sufficient, but otherwise it is not.

3.4 Application of Malliavin-Stein’s method

We generalize the main theorem of Bhattacharya et al. (2022) for random multilinear forms in
Bernoulli variables by using Proposition 2.7.10.

Theorem 3.4.1 Let H a hypergraph without isolated vertices. Then, we have

dW (M̄H ,N (0, 1)) .

(1− pn)eH min
H′⊂H
eH′>1

{nvHpeHn }

−1/2

(3.4.1)

and

dW (ÑH ,N (0, 1)) .

(1− pn)eH min
H′⊂H
eH′>1

{nvHpeHn q
e
(2)
H
n }

−1/2

, (3.4.2)

where e
(2)
H is the number of edges included in the hyperedges of H.

Proof of theorem 3.4.1. We proceed as in the previous proof given the decomposition of MH
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and borrow the previous notations. The (EGF) assumption holds. By conditional independence
of (Xα)α, we have:

E[W 2
I ]E[W 2

J ]

E[W 2
IW

2
J ]
∝

E
[∏

α∈I E[Y 2
α |Z]

∏
α∈J E[Y 2

α |Z]
]∏

I\J E[Y 2
α ]
∏
J\I E[Y 2

α ]
∏
I∩J E[Y 2

α ]

= (pn(1− pn))|I|+|J |−|I∪J | q|I
(2)|+|J(2)|−|I(2)∪J(2)|

n ≤ 1.

Let us note that for all a, WI\{a} is non-zero with the definition of MH − E [MH |Z]. Let
WI = wI

∏
i∈I Xi, then for a ∈ I ∩ J :

E [WIWJ |Ga] = wIwJ
∏

i∈I\{a}

Yi
∏

j∈J\{a}

YjE
[
Y 2
a |Z

]
=

wIwJ
wI\{a}wJ\{a}

E
[
Y 2
a |Z

]
WI\{a}WJ\{a}

= CI,J,aWI\{a}WJ\{a},

with
CI,J,a =

wIwJ
wI\{a}wJ\{a}

E
[
Y 2
a |Z

]
< +∞ P-almost surely.

We are then left to upper bound the quantity:∑
(I,J,K,L) connected

|E[WIWJWKWL]|

=
∑

(I,J,K,L) connected

∣∣∣∣∣E
[
E

[∏
α∈I

Yα
∏
α∈J

Yα
∏
α∈K

Yα
∏
α∈L

Yα |Z

]]∣∣∣∣∣ .
The terms are non-zero if only if α lies in at least two elements of the quadruple, i.e. if α does
not lie in I \ (J ∪K ∪L), etc. Then, the number of non-zero terms is I ∪ J ∪K ∪L. We recall
that:

E[Yα|Z] = 0

E[Y 2
α |Z] = pn(1− pn)1{α(1)∈Z}

3∏
i=1

1{α(i)∈Z}

E[Y 3
α |Z] = pn(1− pn)(1− 2pn)

3∏
i=1

1{α(i)∈Z} . pn(1− pn)2
3∏
i=1

1{α(i)∈Z}

E[Y 4
α |Z] = pn(1− pn)(1− 3pn(1− pn))

3∏
i=1

1{α(i)∈Z} . pn(1− pn)

3∏
i=1

1{α(i)∈Z}.

Thus, ∑
(I,J,K,L) connected

|E[WIWJWKWL]|

.
∑

(I,J,K,L) connected

(pn(1− pn))|I∪J∪K∪L| q|I
(2)∪J(2)∪K(2)∪L(2)|

n
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Now, we remark I, J,K,L are respectively isomorphic to A,B,C,D subhypergraphs of H. We
say that I ∼H A, etc. Hence, we can sum first over (A,B,C,D). and then over all the
quadruples (I, J,K,L) whose components are respectively isomorphic to the ones of the fixed
quadruple (A,B,C,D). We shall write:

∑
I,J,K,L

· =
∑

A,B,C,D

∑
I∼HA,J,∼HB
K∼HC,L∼HD

· :=
∑

A,B,C,D

∗A,B,C,D∑
I,J,K,L

·

v(A) denotes the number of vertices in A. We have that |{I, J,K,L ∈
(

[n]
r

)
: I ' A, J ' B,K '

C,L ' D}| is bounded by the number of collection of vertices of cardinal v(A ∪ B ∪ C ∪ D).
By a counting argument, we see that is of order nv(A∪B∪C∪D). Because (I, J,K,L) is connected
and copies of subhypergraphs of H, we also have that |I ∪ J ∪K ∪ L| = |A ∪ B ∪ C ∪D| and
|I(2) ∪ J (2) ∪K(2) ∪ L(2)| = |A(2) ∪B(2) ∪ C(2) ∪D(2)|. Hence,∑

(I,J,K,L) connected

|E[WIWJWKWL]|

=
∑

A,B,C,D

∗A,B,C,D∑
(I,J,K,L) connected

p|A∪B∪C∪D|n q|A
(2)∪B(2)∪C(2)∪D(2)|

n

≤
∑

A,B,C,D

nv(A∪B∪C∪D)p|A∪B∪C∪D|n q|A
(2)∪B(2)∪C(2)∪D(2)|

n

Let us bound the variance of NH − E [NH |G(n, qn)]:

Var2[NH − E [NH |G(n, qn)]] =

 ∑
I∩J 6=∅

E[WIWJ ]

2

=
∑
I∩J 6=∅

(
E[W 2

I ] + E[W 2
J ]
)2

=
1

22

∑
A,B⊂H

( ∗A∑
I

E[W 2
I ] +

∗B∑
J

E[W 2
J ]

)2

.

For a fixed connected quadruple (A,B,C,D),

Var2[NH − E [NH |G(n, qn)]]

≥ 1

16

( ∗A∑
I

E[W 2
I ] +

∗B∑
J

E[W 2
J ] +

∗C∑
K

E[W 2
K ] +

∗D∑
L

E[W 2
L]

)2

≥ 1

16

( ∗A∑
I

E[W 2
I ]×

∗B∑
J

E[W 2
J ]×

∗C∑
K

E[W 2
K ]×

∗D∑
L

E[W 2
L]

)1/2

,

applying repeatedly the inequality a2+b2 ≥ 2ab. Then we use that E[W 2
I ] = q

|I(2)|
n (1−pn)|I|p

|I|
n =

q
|A(2)|
n (1− pn)|A|p

|A|
n , so

∗A∑
I

E[W 2
I ] =

∗A∑
I

(1− pn)|A|p|A|n q|A
(2)|

n = nv(A)(1− pn)|A|p|A|n q|A
(2)|

n
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In particular, one has:

Var2[NH − E [NH |G(n, qn)]] ≥
1

16

(
nv
∗(A,B,C,D)(pn(1− pn))e

∗(A,B,C,D)qe
(2)∗(A,B,C,D)
n

)1/2
(3.4.3)

where v∗(A,B,C,D) = v(A) + v(B) + v(C) + v(D) and e∗(A,B,C,D) = |A|+ |B|+ |C|+ |D|
and e(2)∗(A,B,C,D) = |A(2)|+ |B(2)|+ |C(2)|+ |D(2)|. It yields the result. Using the lemma 9
of De Jong (1996), (3.4.2) follows. The first result for MH is obtained with qn = 1.

We now explore general U-Statistics on random hypergraphs and their applications in the scope
of the taxonomy of random hypergraphs presented in the first chapters. There is already study
of asymptotic normality in the subgraph count in Stochastic Block Model in Janson and Nowicki
(1991) which is a random graph with conditionally independent edges, without the associated
threshold functions. We propose to extend that, and consider random hypergraphs generated
by hypergraphons.

Example 3.4.2. Subgraph counting in Erdös-Rényi egdes + Rips
Conditionally on drawing the edges, select every triangle with probability pn. We want to
count the number of hypergraph motifs (or triangles for example). The random variables
are independent conditionally given the graph G(n, qn) following Ber(qn). The estimator
reads off:

N(H,G(n, qn, pn)) :=
1

|Aut(H)|
∑

e∈([n]
2 )

1{e1,}
∏

α∈E(H)

X̂eα , (3.4.4)

where X̂eα ∼ B(pn) conditionally i.i.d. given (Xeu,v , Xev,w , Xew,u) for α = (u, v, w), having

Xβ ∼ B(qn), with e a function that sends the hyperedges of H into ([n],
(

[n]
2

)
). We can

also write like Privault and Serafin (2018):

NH ∝H
∑

b1,...,beH

1{(b1,...,beH )∈E(H)}(Yb1 + 1) . . . (YbeH + 1) (3.4.5)

where Ye is a Rademacher random variable with parameter pn. (Ye)e∈N is a conditionally
independent Rademacher sequence given G(n, qn). We first compute the expectation and
variance of NH . If pn = 1, we know from Elek and Szegedy (2012, p.12 example 2.) that
the almost sure limit of the homomorphism density of H in the random hypergraph is

q
|E(2)(H)|
n where E(2)(H) is the set of edges in the simplicial complex associated to H. As

a consequence, because of concentration results,

E[NH ] = n|V (H)|q|E
(2)(H)|

n .

More generally, we have:

E[NH ] ∝ p|E(H)|
n q|E

(2)(H)|
n .

Let us compute the variance of the estimator. To see this, recall that if: |e1 ∩ e2| = K,
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and |(e1 ∩ e2)(2)| = J (the number of edges in the intersection of hyperedges) then:

Cov(
∏

α∈E(H)

Xe1α
,
∏

α∈E(H)

Xe2α
) = E

 ∏
α∈E(H)

Xe1α
Xe2α

− E[
∏

α∈E(H)

Xe1α
]E[

∏
α∈E(H)

Xe2α
]

= E

 ∏
α∈E(H)

Xe1α
Xe2α

− p2|E(H)|
n q2|E(2)(H)|

n

= E

E
 ∏
α∈E(H)

Xe1α
Xe2α
|G(n, qn)

− p2|E(H)|
n q2|E(2)(H)|

n

= q2|E(2)(H)|−J
n p2|E(H)|−K

n − q2|E(2)(H)|
n p2|E(H)|

n

So, using that for each H ′ ⊂ H, there are Θ(nv
′
Hn2(vH−vH′ )) = Θ(n2vH−vH′ ) pairs (H1, H2)

copies of H in the complete graph Kn with H1∩H2 isomorphic to H ′ (here the hyperedge
sets).

Var[NH ] ∝H
∑

e1,e2∈([n]
2 )

Cov

 ∏
α∈E(H)

Xe1α
,
∏

α∈E(H)

Xe2α


=

∑
e1,e2∈([n]

2 )
e1∩e2 6=∅

Cov

 ∏
α∈E(H)

Xe1α
,
∏

α∈E(H)

Xe2α



=

|E(H)|∑
K=1

|E(2)(H)|∑
J=1

∑
e1,e2∈([n]

2 )
|e1∩e2|=K
|(e1∩e2)(2)|=J

(
q2|E(2)(H)|−J
n p2|E(H)|−K

n − q2|E(2)(H)|
n p2|E(H)|

n

)

�
∑
H′⊂H
eH′≥1

n2vH−vH′ q2|E(2)(H)|−|E(2)(H′)|
n p2|E(H)|−|E(H′)|

n − q2|E(2)(H)|
n p2|E(H)|

n

=
∑
H′⊂H
eH′≥1

n2vH−vH′ q2|E(2)(H)|−|E(2)(H′)|
n p2|E(H)|−|E(H′)|

n

(
1− q|E(2)(H′)|

n p|E(H′)|
n

)

We consider the case where pn → 0 and/or qn → 0 for n → +∞. So asymptotically
(extension of Lemma 3.5. in Janson et al. (2000) to random hypergraphs), we have:

Var[NH ] �H (1− pnqn) max
H′⊂H
eH′≥1

n2vH−vH′ q2|E(2)(H)|−|E(2)(H′)|
n p2|E(H)|−|E(H′)|

n . (3.4.6)

In the view of this expression, pn and qn share the same role for the convergence.

We need a modified Hoeffding decomposition for such statistics.
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3.5 A modified Hoeffding decomposition

We shall write the sequence of conditionally independent random variables X = (X̂α, . . . , Xβ, . . .)α,β∈A.

Since σ(Z) = σ(X̂a, a ∈ A), we adopt a sightly different approach by leveraging the Malliavin-
Dirichlet structure in Decreusefond and Halconruy (2019), whose underlying Markov process is
the classical Glauber dynamics starting from X. The structure is similar to ours if the expecta-
tion are taken conditionally with respect to Z for the operators and conditional distributions in
section 2.2. The following lemma shows the commutation relation on DomD in that Malliavin
framework.

Lemma 3.5.1 For F ∈ L2(EA) and α, β ∈ A,

1.
E
[
E
[
F |X̂{β}, X

]
|X{α}, X̂

]
= E

[
E
[
F |X{α}, X̂

]
|X, X̂{β}

]
; (3.5.1)

2. for α 6= β

E
[
E
[
F |X̂{α}

]
|X̂{β}

]
= E

[
E
[
F |X̂{β}

]
|X̂{α}

]
. (3.5.2)

Proof. Since Xβ =
1{Uβ≤pn}

pn
X̂β, we have:

E
[
X̂β |X̂{β}, X

]
= E

[
Xβ |X̂{β}, X

]
= Xβ,

where Uβ is a uniform random variable independent of the rest for β ∈ A. Thus, we get that

E
[
F |X̂{β}, X

]
= F , hence the relations using lemma 3.5.1.

Those commutation relations of lemma 3.5.1 and lemma 2.2.4 entail a modified Hoeffding de-
composition of NH similar to (3.3.6) that this time the conditional mean has the chaotic de-
composition:

E [MH |Z] =

|E(H)|∑
j=1

(pnq
3
n)|E(H)|−j

∑
|J |=j

∏
α∈J

Ŷα

 ∑
I∈([n]

r )
I'H,I⊇J

1


where Ŷα = X̂α − E[X̂α] with X̂α = E [Xα |Z]. Thus,

πj(NH) = p|E(H)|−j
n

∑
|J |=j

 ∑
I∈([n]

3 )
I'H,I⊇J

1

∏
α∈J

Ỹα

+ (pnq
3
n)|E(H)|−j

∑
|J |=j

∏
α∈J

Ŷα

 ∑
I∈([n]

r )
I'H,I⊇J

1

 (3.5.3)

All the previous bounds are still valid in that context by taking out Z of the conditioning and
can be applied given that chaotic decomposition.
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Theorem 3.5.2 Let H a hypergraph without isolated vertices. Then, let pn
n→+∞−−−−−→ 0 and

qn
n→+∞−−−−−→ 0:

dW (N̄H ,N (0, 1)) .

(1− pn)eH min
H′⊂H
eH′>1

{nvHpeHn q
e
(2)
H
n }

−1/2

. (3.5.4)

Proof of theorem 3.5.2. We follow the same lines as the previous proof, with the difference that
π0(NH) = E[F ], leading to the quantitative central limit theorem.

While in Kaur and Röllin (2021); Temčinas et al. (2022), the probability of keeping a hyperedge
does not depend on the number of vertices, we let pn tend to 0. As a consequence, we can
state thresholds for subhypergraph containment that complement the ones in (Janson et al.,
2000, p.61). As done in Zhang (2022); Kaur and Röllin (2021) for random graphs, it should be
possible to derive with our method the convergence rates considering an arbitrary exchangeable
random hypergraph generated by a hypergraphon, the analog of graphon in graph limit theory.

3.6 Limit theorems for homomorphism densities of random hy-
pergraphs

See Delmas et al. (2021).
A result for bivariate homomorphism densities (for simple patterns) by Fang and Röllin (2015).
We want to derive bounds in probability distances for smooth functions (ideally Kolmogorov
bounds) as to get a test for confidence interval.
We still use the derived limit theorem found earlier.
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Invertibility of functionals of marked
point processes
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The starting point for our second work is the existence of a new construction of Hawkes processes
as a functional of an underlying Poisson process.
Based on the extension of the invertibility framework introduced by Üstünel (2009) and recently
in the Poisson space by Coutin and Decreusefond (2023), we find an entropic criterion under
which a random change of mark of marked Poisson point process is invertible using the Girsanov
theorem.



Chapter 4

Invertibility of functionals of Poisson
measures

The Skorokhod theorem on invariance of measures Skorokhod (1957) gives the density with
respect to Poisson measures of deterministic shifts of configuration. This theorem has an exten-
sion to random transformation of marks of a marked Poisson process N . In that case, the key
property is quasi-invariance with respect to anticipative transformation Albeverio and Smoro-
dina (2006); Privault (1996) which is given by a classical application of the Girsanov theorem.
The specificity of the Poisson setting is the identification of M the space of random measures
and the configuration space (see the detailed definition below). Namely, let Γ the transforma-
tion applied on a Poisson measure N under a probability measure π on M. As N can also
be considered a marked point process, Γ transposes to a random transformation of an element
ω ∈ N, namely the marks Zn of ω = (Tn, Zn)n∈N are changed to γ(Tn, Zn) for n ∈ N. Under
some assumptions on Γ detailed in the following, there exists a probability measure π′ under
which both marked point processes Γ(N) and N share the same law. The Girsanov theorem
also gives the proof of the existence of weak solution of stochastic differential equation driven
by Brownian motion or Poisson measures or both under weak assumptions. The stochastic
differential equation (SDE for short) that we consider in this chapter, is of the form:{

Y (0) = 0

dY (t) =
∫
b(Y (t−), x) dN(t, x).

(4.0.1)

where N is a Poisson measure with control measure ν( dx) ⊗ dt. Denote by M the space of
random counting processes on R+ × R. By identification of random measures and random
counting processes, N is an element of M. Let π a probability on the space M such that N
is the canonical counting process on it, namely IdM. Let D the space of cadlag functionals.
Consider the map

V : M −→ D

N 7−→
(
t 7→

∫ t

0

∫
x dN(s, x)

)
.

(4.0.2)

Let Υ a perturbation of the sample path and by identification of ω ∈ N such that:Not an
esay in-
troduc-
tion with-
out in-
troducing
properly
marked
processes

Υ(ω)(t, z) = (Tn, b(
∑

n∈N:Tn<t

Zn(ω), z)),

76
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A solution of the SDE (4.0.1) is
Y = V ◦Υ(N).

It induces a map Y on D such that Y ◦ V (N) = Y . Let Z a map on D of the form V ◦ Γ for Γ
some random transformation, we have:

Y ◦ Z = IdD ⇐⇒ Υ ◦ Γ(N) = IdM .

Solving (4.0.1) revolves to invert the map Υ. That formulation of the problem puts the focus
on the map Υ on M instead of Y ∈ D. To the best of our knowledge, this approach has been
seldom addressed in the literature.
The framework for invertibility of Poisson functionals was introduced in Coutin and Decreuse-
fond (2023). The key is the quasi-invariance property from the Girsanov theorem. On the real
line, the consequences of the quasi-invariance property have been studied with respect to ”antic-
ipative” (predictable) transformations in Privault (1996) and in the general case of metric spaces
in Albeverio and Smorodina (2006). In the Wiener case, random non-adapted transformations
of Brownian motion have been considered by several authors in the context of Malliavin cal-
culus, cf. Üstünel and Zakai (2000) and references therein. The study of invertibility concerns
perturbations of the sample path.

4.1 Preliminaries

In the following, let M a metric space and B(M) its Borel σ-algebra. We recall the construction
of marked point processes which is a sequence of points drawn at random in R+ ×M in the
configuration space N endowed with the vague convergence, its Borel σ-algebra B(N) and a
probability measure µ.

Definition 4.1.1 (Marked point process). A marked point process (MPP for short) is a
sequence

ω = (Tn(ω), Zn(ω))n∈N of R+ ×M defined on (N,B(N), µ)

such that for each n ≥ 1, Tn(ω) < Tn+1(ω), Tn(ω) tends to infinity µ-a.s. as n tends to
infinity. The random variable Tn represents the n-th jump time and Zn is the location
associated to the n-th jump. It can be completely identified with a random counting
measure ξ, viz.

ξ =
∑

n∈N:Tn(ω)<∞

ε(Tn,Zn) (4.1.1)

where ε(Tn,Zn)(ω) = ε(Tn(ω),Zn(ω)) is the Dirac mass on the product space ((0,+∞)×M) at
the point (Tn(ω), Zn(ω)). We denote M the space of counting random measures that can
be written in such form. We endow this Lusin space with the vague convergence as a family
of positive integer-valued Radon measures (ξ(ω, ·) : ω ∈M) on (R+×M,B(R+×M)). The
random measure can be identified to a random counting process X. For A ∈ B(M), we
shall write the process

X(ω, t, A) = ξ(ω, (0, t]×A)

that counts the number of events on [0, t] matching a mark belonging to the set A. We
define the ground process.

Xg(ω, t) = X(ω, t,M).
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Note that ω can be retrieved as:

Tn(ω) = inf{t ≥ 0 : Xg(ω, t) = n}

(Zn(ω) ∈ A) =
∞⋃

K′=1

∞⋂
K=K′

∞⋃
k=1

(
Xg(ω, (k − 1)/2k = n− 1, Xg(ω, k/2

K , A)−Xg(ω, (k − 1)/2K , A) = 1)
)
.

That means that we can identify a sample-path X of M with an element ω of N, and more
generally elements of B(M) and B(N). We redefine µ as a probability on (M,B(M)).
Moreover, dX(s, z) = dξ(s, z).

Let (Ft)t∈R+ be an increasing and right-continuous family of sub-algebras of B(M) such that
each Tn is a stopping time, and each Zn, is FTn-measurable such that B(M) = ∨t≥0Ft. We
denote the following subsets of P(F) by:

• P+(F) the set of predictable non-negative real-valued processes
(Y (t, z))(t,z)∈R+×M defined on (M,F∞, µ);

• P++(F) the set of predictable positive real-valued processes
(Y (t, z))(t,z)∈R+×M defined on (M,F∞, µ).

We recall the version of Theorem 2.1 of Jacod (1975) for counting processes.

Theorem 4.1.2 Let µ be a probability measure on (M,F∞). Let a random measure ξ on
R+×M such that t 7→ ξ([0, t], ·) is adapted. Then there exists a unique predictable random
measure denoted ξp such that(

ξ([0, t], A)− ξp([0, t], A)
)
t≥0

is a (F , µ)-local martingale.

The random measure ξp is called the dual predictable projection of ξ along F . Equivalently,
it means that for each A ∈ B(M), the process t 7→ ξp([0, t], A) is the so-called compensator
of t 7→ ξ([0, t], A). We denote by ξ̃ the random measure ξ − ξp.

Definition 4.1.3. Let ξ a random measure. We introduce F1(P(F), ξ) the space of all
functions f in P(F) such that for each t ∈ R+,

Eµ

[∫ t

0

∫
M
|f(·, s, z)|ξ( ds, dz)

]
< +∞.

The Bochner integral
∫ t

0

∫
M f(·, s, z)ξ( ds, dz) is a Lebesgue integral with respect to the

measure ξ(ω, ) for every ω ∈M and is equal to the convergent sum∫ t

0

∫
M
f(·, s, z)ξ( ds, dz) =

∑
s∈(0,T ]∩{s:∆X(s)6=0}

f(·, s,∆X(s)).
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The stochastic integral of r with respect to ξ denoted by δξr, is the process on R+

δξr(t) =

∫ t

0

∫
M
r(s, z) dξ(s, z). (4.1.2)

If f ∈ F1(P(F), ξp)∩ F1(P(F), ξ), we define the integral with respect to the compensated
random measure N by∫ t

0

∫
f(s, z)ξ̃( ds, dz) =

∫ t

0

∫
M
f(s, z)ξ( ds, dz)−

∫ t

0

∫
M
f(s, z)ξp( ds, dz) µ-a.s.

(4.1.3)

Remark 4.1.4. In general, the stochastic integral cannot be divided as the difference of
two integrals as in (4.1.3).

Proposition 4.1.5 If f ∈ F1(P(F), ξp), then we have f ∈ F1(P(F), ξ) and for each t ≥ 0,

Eµ

[∫ t

0

∫
M
f(s, z)ξ( ds, dz)

]
= Eµ

[∫ t

0

∫
M
f(s, z)ξp( ds, dz)

]
.

We define the Doléans-Dade exponential associated to a random measure ξ.

Definition 4.1.6. For f ∈ F1(P(F), ξ̃), additionally supposed to be non-negative, the
Doléans-Dade exponential Jacod (1975), denoted by E(δξ̃f), is defined as the solution of

M(t) =

∫ t

0

∫
M(s−)f(s, z) dξ̃(s, z),

explicitly given by

Ẽ (δξ̃f) (t) = exp

(∫ t

0

∫
(1− f(s, z)) dξ̃(s, z)

) ∏
Tn≤t

f((Tn, Zn)) (4.1.4)

In the case r > −1 and r ∈ F1(P(F), ξp), it is explicitly given by:

E (δξ̃f) (t) = exp

(∫ t

0

∫
log(f(s, z)) dξ(s, z)−

∫ t

0

∫
(f(s, z)− 1) dξp(s, z)

)
(4.1.5)

= exp

(
δξ̃

(
log(f)

)
(t) +

∫ t

0

∫ (
log
(
f(s, z)

)
− f(s, z) + 1

)
dξp(s, z)

)
.

An important assumption in the remainder is that F is the minimal filtration to which X is
adapted, viz. F is the filtration on M× R+

FX = σ(X(t, A), t ∈ R+, A ∈ B(M)). (A1)

The following result is the converse of Theorem 4.1.2 (see Proposition 3.41 of Jacod (1979)).
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Theorem 4.1.7 For any nonnegative random measure ξp on (0,∞) × M, there exists a
unique probability measure on (M,FX) such that X has ξp as dual predictable projection.

4.2 Background

4.3 Quasi-invariance

4.3.1 Random change of marks

Following the Bismut’s approach Bismut (1983), we devise a perturbation γ of the jump sizes
such that the map Γ = Γ(N) under π has the same law as N under πφ, i.e. Γ#π = πφ. We
name the map triggers the perturbation a random change of marks in analogy to the random
change of time for point process Coutin and Decreusefond (2023).

Definition 4.3.1 (Random transformation of mark). On
(
M,F∞, µ

)
, a random change

of mark is a process (γ(s, z), (s, z) ∈ R+ ×M) such that:

• for any z ∈M ν-a.s., s 7−→ γ(s, z) ∈ P(F);

• ∀(s, u) ∈ R+ ×M, γ(s, u) ∈M.

For any s ∈ R+, we say that γ is µ-invertible with inverse denoted γ∗ : M×R+×M→M
if given z ∈M, for almost all ω ∈M, s ∈ R+:

γ(ω, s, γ∗(ω, s, z)) = γ∗(ω, s, γ(ω, s, z)) = z for all s ∈ R+ dt⊗ µ-a.s.

The transformation of mark is a very common operation on Poisson measures. It has been
an important development in the theory of Malliavin calculus for perturbation analysis (see
Bichteler and Jacod (1983)).

Remark 4.3.2. The random transformation of mark is a particular case of random trans-
formation of marked point processes that shifts each point of a configuration ω ∈ N in
some direction τ .

Definition 4.3.3. Let X a random process on R+ ×M and γ invertible transformation
of mark. Then, the changed random process is defined by

Γ(X)(t, A) =

∫ t

0

∫
1A(γ(s, z))X( ds, dz) for (t, A) ∈ R+ × B(M).

If X ∈M, Γ(X) ∈M.

Lemma 4.3.4 Let γ an invertible transformation, we have:

FΓ(X)
t ∨ σ(γ∗(s, z), s ≤ t, z ∈M) = FXt (4.3.1)

Proof. We have by construction of Γ(X), FΓ(X)
t = σ(Γ(X)(s,A), s ≤ t, A ∈ B(M)) ⊂ FXt
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relative to the Poisson measure X. By predictability of γ∗, FΓ(X)
t ∨ σ(γ∗(s, z), s ≤ t, z ∈M) ⊂

FXt . Conversely, for A ∈ FNt , there exists a sequence of measurable functions (χq)q∈N such that
for any q, χq is measurable function from (R+ ×M)q to {0, 1}:

1A =
∞∑
q=0

χq(T1(X), . . . , Tq(X), Z1(X), . . . , Zq(N))1{Tq(X)<t≤Tq+1(X)}

=
∞∑
q=0

χΓ(X)
q 1{Tq(Γ(X))<t≤Tq+1(Γ(X))}

where

χΓ(X)
q = χq(T1(Γ(X)), . . . , Tq(Γ(X)), γ∗(X,T1(Γ(X)), Z1(Γ(X))),

. . . , γ∗(X,Tq(Γ(X)), Zq(Γ(X)))).

Because γ∗(N, ·) is measurable from R+ ×M to R+, it is a limit of simple functions:

γ∗(X,Tk(Γ(X)), Zk(Γ(X)))

= lim
n→∞

2n−1∑
i=0

2m−1∑
j=0

γ∗(X,
i

2n
,
j

2m
)1

[
(i−1)

2n
, i
2n

)
(Tk(Γ(X)))1

[
(j−1)
2m

, j
2m

)
Zk(Γ(X)).

Hence the result.

In the remainder, we consider as canonical marked point processes which is a stationary marked
Poisson point process N with intensity measure ds⊗ν( dz) for a σ-finite measure ν on (M,B(M))
where ds is the Lebesgue measure on R and the associated probability measure π on (M,F∞)
by Theorem 4.1.7. We denote Γ the process Γ(N). Under π, we identify ω and the canonical
process N . We denote by πσ the unique probability measure on (M,FN∞) such that Np =
σ(s, z)ν( dz) ds for σ a random process on M. When σ = 1, we recover π = πId. We keep the
notation π for sake of simplicity.

4.3.2 Change of measures and Girsanov theorem

Here we consider a probability π′ with the basic hypothesis that π′ is locally absolutely con-
tinuous with respect to π along F . We write it π′ �loc,F π. Our aim is to compute the dual
predictable projection of N under π′. This is the object of the so-called Girsanov theorems.
The next theorem is a combination of (Decreusefond, 1998, p.500) and (Jacod, 1975, theorem
4.5). The proof of the criterion for the Radon-Nikodym derivative to be non-zero can found
in the comprehensive book (Jacod and Shiryaev, 2003, Theorem 5.19 p.195 and Corollary 5.22
p.195).

Theorem 4.3.5 Consider a filtration F = (Ft, t ≥ 0) on M, and assume that under π, the
process

Ñ : t 7−→ N
(
t, A
)
−
∫ t

0

∫
1A(z)ν(dz) ds

is a F-local martingale. If a probability measure π′ on (M,FN∞) is locally absolutely
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continuous with respect to π along F then there exists a unique process φ on R+ × M
which is non-negative π-a.s. and F-predictable such that

∀t ≥ 0, π′
(∫ t

0

∫
M

(
1−

√
φ(s, z)

)2
ν(dz) ds <∞

)
= 1 (4.3.2)

and for any A ∈ B(M),

t 7−→ N
(
t, A
)
−
∫ t

0

∫
A
φ(s, z)ν(dz) ds is a (F , πφ)-local martingale. (4.3.3)

We refer to φ as the Girsanov factor of π′ := πφ with respect to π. Moreover, assume
(A1), for any integer m ≥ 1, let

Sm = inf

{
t ∈ R+,

∫ t

0

∫
M

(
1−

√
φ(s, z)

)2
ν(dz) ds ≥ m

}
.

Then, with the previously introduced notations,

Λφ(t) : =
dπφ
dπ

∣∣∣∣
Ft

=

{
E (δÑφ) (t) if t ≤ Sm,
0 if t ≥ lim supm Sm.

If πφ is absolutely continuous with respect to π on F∞ then

πφ

(∫ ∞
0

∫ (
1−

√
φ(s, z)

)2
ν(dz) ds <∞

)
= 1. (4.3.4)

For the converse part, let us suppose (A1). Consider φ a non negative F-predictable
process and πφ the probability measure on (M,FN ), which satisfies (4.3.2) and (4.3.3).
Then, πφ is locally absolutely continuous with respect to π along F .
Finally, the probability measure πφ is absolutely continuous with respect to π on (M,F∞)
if and only if (4.3.4) is satisfied.

Definition 4.3.6. Let F a filtration relative to N , we introduce the following subset of
F1(P(F), ν ⊗ ds) denoted F1

2(P(F), ν ⊗ ds;π) such that the following properties hold for
an element φ:

1. πφ �loc,F π

2. πφ

(∫∞
0

∫ (
1−

√
φ(s, z)

)2
ν(dz) ds <∞

)
= 1.

We recall from Coutin and Decreusefond (2023) some necessary and sufficient conditions for the
equivalence of π and πφ, see also Proposition (7.11) of Jacod (1979).



Quasi-invariance 83

Lemma 4.3.7 Let µ′ a measure absolutely continuous with respect to µ on F∞ and set

Λ(t) =
dµ′

dµ

∣∣∣∣
Ft
. (4.3.5)

Then µ′ and µ are equivalent if and only the following two conditions are satisfied:

i) The local martingale (Λ(t), t ≥ 0) is uniformly integrable, i.e. there exists Λ ∈ L1(M×
R→ R;µ) such that

Λ(t) = Eµ [Λ | Ft] .

ii) The random variable Λ is positive µ-a.s.

We fix M = R+ endowed with the Lebesgue measure. The central notion introduced by Bismut
is the Girsanov transform which is key to our investigations.

Definition 4.3.8 (Girsanov transform). Let φ ∈ P++(F). Define γρφ, for π⊗ ds all ω ∈M
and u ≥ 0 as a Lebesgue integral:

γρφ(ω, s, z) =

∫ z

0
φ(ω, s, u)ρ(u) du.

Then, setting r(z) =
∫ z

0 ρ(u) du, the random transformation of mark

γφ(ω, s, ·) = r−1 ◦ γρφ(ω, s, ·).

is a C1-diffeomorphism and called Girsanov transform. Moreover, it is π-invertible in the
sense of Definition 4.3.1 with inverse denoted γ∗φ. In the same vein, we define the process:

φ†(ω, s, z) =
1

φ(ω, s, γ∗φ(ω, s, z))
.

Using the Definition 4.3.3, given φ, we have the triplet (γφ,Γφ, φ
†) that characterizes the

Girsanov transform.

According to Fujisaki Fujisaki and Komatsu (2021), the Girsanov transform refers to
absolutely continuous transform of laws of stochastic processes. There is no formal
definition in Bichteler et al. (1987) which dedicates a paragraph to it.

Remark 4.3.9. We have for s ∈ R+:

(γφ(s, ·))′(u) =
φ(s, u)ρ(u)

ρ(γφ(s, u))
.

and

(γ∗φ(s, ·))′(u) =
ρ(u)

ρ(γ∗φ(s, u))φ(s, γ∗φ(s, u))
=
ρ(u)φ†(s, u)

ρ(γ∗φ(s, u))
. (4.3.6)
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For instance, if ρ = 1, we have:

(γφ(s, ·))′(z) = φ(s, z) and (γ∗φ(s, ·))′(z) = φ†(s, z).

Remark 4.3.10. The generalization of the Girsanov transform to Rd for d ≥ 2 is immedi-
ate as the remark 4.3.9 still holds. The difference with the case d = 1 lies in the stochastic
integration rules. Because φ > 0, π-a.s., it corresponds for any ω ∈ M π-a.s. and each
s ∈ R+ to:

γ′φ(ω, s, x) = |det(Dγφ(ω, s, ·))(x)|

for U an open set in Rd and γ∗φ(s, ·) : U → Rd an injective differentiable function with
continuous partial derivatives, the Jacobian of which is nonzero for x ∈ U . We notice that
not all the components of γ∗φ need to be nonnegative for d ≥ 2. For sake of readability,
this generalization is omitted.

Denote
better the
multi-
dimensional
derivative

Lemma 4.3.11 For f ∈ F1(P(F), ν ⊗ dt), then we have:

Γφ

(∫ .

0

∫
f(N, s, z)ν( dz) ds

)
=

∫ .

0

∫
f(N, s, γ∗φ(N, s, z))φ†(N, s, z)ν( dz) ds. (4.3.7)

and:

Γφ

(∫ .

0

∫
f(N, s, z)N( ds, dz)

)
=

∫ .

0

∫
f(N, s, γ∗φ(N, s, z)) dΓφ(s, z). (4.3.8)

Proof. For t ∈ R+ and A ∈ B(R+),

Γφ

(∫ .

0

∫
f(N, s, z)ν( dz) ds

)
(N, t,A) =

∫ ·
0

∫
1A(γφ(N, s, z))f(N, s, z)ν( dz) ds.

In particular, for a, b ∈ R+ with a < b, C ∈ B(M) and B ∈ Fa, let

f(N, s, z) = B(N)1(a,b](s)1C(z).

We have by the theorem of change of variables in terms of Lebesgue measure on R, with
u = γφ(N, s, z) for each s ∈ [0, t]:∫

1A(γφ(N, s, z))1C(z)ν( dz) =

∫
1A(u)1C(γ∗φ(N, s, u))φ†(N, s, u)ν( du) ds

since (γ∗φ)′(N, s, ·)(u)ρ(γ∗φ(N, s, u)) = 1
φ(N,s,γ∗φ(N,s,u))ρ(u). Then,

∫
1A(γφ(N, s, z))f(N, s, γ∗φ(s, u))ν( dz) ds

=

∫
1A(u)f(N, s, γ∗φ(s, u))φ†(N, s, u)ν( du) ds.
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By density of simple processes in F1(FN , ν⊗ ds), this yields (4.3.7). We apply the same change
of variable for the proof of the second identity.

Γφ

(∫ .

0

∫
f(N, s, z)N( ds, dz)

)
(t, A) =

∫ t

0

∫
1A(γφ(N, s, z))f(N, s, z)N( ds, dz)

=

∫ t

0

∫
1A(u)f(N, s, γ∗φ(N, s, u))Γ( ds, du).

Since it holds for each A ∈ B(R+), it yields (4.3.8).

Corollary 4.3.12 Let φ ∈ P++(FN ), then φ† ∈ P++(FΓφ).

Remark 4.3.13. The factor φ† is a Girsanov factor as well as φ.

4.3.3 Main theorem

Theorem 4.3.14 — Girsanov theorem for Poisson measures. Let π′ �loc,FN π and φ ∈
P(FN ) denote its Girsanov factor, i.e. π′ = πφ. Assume that φ belongs to F1

2(P++(FN ), ν⊗
dt, πφ). Then, with our previous notations, the distribution of the process Γφ under πφ is
the distribution of N under π. This means that for any bounded measurable f : M→ R,
for any t ∈ R+,

Eπ

[
f(Γtφ) Λφ(t)

]
= Eπ

[
f(N t)

]
, (4.3.9)

where Xt is the process X stopped at time t.

Proof. The Radon-Nikodym derivative is given by Theorem 4.3.5.

Λφ(t) =
dπφ
dπ

∣∣∣∣
FNt

= exp

(∫ t

0

∫
log (φ(s, z)) dN(s, z)−

∫ t

0

∫ (
φ(s, z)− 1

)
ν(dz) ds

) (4.3.10)

We recall that for each A ∈ B(M), the compensator of Γφ(·, A) under π is
∫ ·

0 1A(γφ(s, z))ν( dz).
Thus by Lemma 4.3.11 and Remark 4.3.9,

R(t) =

∫ t

0

∫
1A(γφ(s, z))φ(s, z)

(
N( ds, dz)− ν( dz) ds

)
=

∫ t

0

∫
1A(γφ(s, z))φ(s, z)N( ds, dz)− t

∫
1A(z)ν( dz)

is a (FN , π) local martingale. The standard Girsanov’s theorem for local martingales (Schuppen
and Wong, 1974, Theorem 3.2.) says that

R(t)−
∫ t

0

1

Λφ(s)
d[R,Λφ](s)
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is a (FN , πφ)- local martingale. Note that R and Λφ have the same jump times as Γφ, hence∫ t

0

1

Λφ(s)
d[R,Λφ](s) =

∑
s≤t,∆N(s) 6=0

1

Λφ(s)
∆R(s) ∆Λφ(s)

=
∑

s≤t,∆N(s) 6=0

(
1−

Λφ(s−)

Λφ(s)

)
∆R(s)

=
∑

Tn≤t, Zn 6=0

(
1− 1

φ(Tn, Zn)

)
1A(γφ(Tn, Zn))φ(Tn, Zn)·

=

∫ t

0

∫
1A(γφ(s, z))φ(s, z) dN(s, z)− Γφ(t, A).

Thus, we have

R(t)−
∫ t

0

1

Λφ(s)
d[R,Λφ](s) = Γφ(t, A)− t

∫
1A(z) dz.

This means that the random measure associated to Γφ has (FN , πφ)-dual predictable projection
ν(dz)⊗ ds. According to Theorem 4.1.2 by the characterization of homogeneous Poisson mea-
sure, the random measure is an FN -adapted homogeneous Poisson measure of control measure
ν( dz) ds under πφ.

The version of the quasi-invariance theorem that we use subsequently is the following.

Theorem 4.3.15 — Quasi-invariance. Let πφ �loc,FΓ π. Then the distribution of Γφ under
πφ is the distribution of N under π, i.e.:

Eπ

[
f(Γtφ) Λ†

φ†
(t)
]

= Eπ

[
f(N t)

]
, (4.3.11)

with

Λ†
φ†

(t) =
dπφ
dπ

∣∣∣∣
FΓ
t

(4.3.12)

= exp

(
−
∫ t

0

∫
log
(
φ†(s, u)

)
dΓφ(s, u) +

∫ t

0

∫ (
φ†(s, u)− 1

)
ν(du) ds

)
(4.3.13)

Proof. The Girsanov theorem yields for any bounded measurable f : M→ R, for any t ∈ R+:

Eπφ [f(Γφ) Λφ(t)] = Eπ [f ] .

We proceed with the change of variable z = γφ(s, u) over R+. By Lemma 4.3.11,

log Λφ(t) =

∫ t

0

∫
log
(
φ(s, γ∗φ(s, u))

)
dΓφ(s, u)−

∫ t

0

∫ (
φ(s, γ∗φ(s, u))− 1

)
φ†(s, u)ν( du) ds

= −
∫ t

0

∫
log
(
φ†(s, u)

)
dΓφ(s, u) +

∫ t

0

∫ (
φ†(s, u)− 1

)
ν(du) ds.

By Lemma 4.3.12, Λ†
φ†

(t) is FΓφ
t -measurable. The proof is thus complete.

We now prove that well behaved mark changes induce locally absolutely continuous probability
on M.
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Theorem 4.3.16 Let φ belong to P++(FN ) such that πφ is equivalent to π on F∞. Then
Γφ#π is equivalent to π on F∞.

Proof. According to Lemma 4.3.7, the martingale

(Λφ(t), t ≥ 0)

is uniformly integrable and we can let t go to infinity in (4.3.9) to obtain

Γφ#πφ = π.

Since πφ is equivalent to π on F∞, Γφ#πφ is equivalent to Γφ#π. As a consequence,

π = Γφ#πφ ∼ Γφ#π.

The proof is thus complete.

We conclude this section by introducing a sufficient condition such that the equivalence between
probability measures holds.

Definition 4.3.17. The most restricted class we consider is F∞(P++(F), πσ) of processes
ϕ ∈ P++(F) for which there exist c ∈ (0, 1) such that

c ≤ ϕ(s, z) ≤ 1

c
, ∀s ≥ 0, z ∈M πσ − a.s.

Remark 4.3.18. Note that if φ belongs to F∞(P++(FN ), πσ) then there exists C < +∞
such that π − a.s., 0 < Λφ(N, t) ≤ C. Hence, (Λφ(N, t), t ≥ 0) is uniformly integrable.

4.4 Invertibility

Those definitions are analog to the ones of Üstünel (2014) relative to the Wiener space. We add
the absolute continuity condition as we consider Girsanov transforms as absolute continuous
transformations.

Definition 4.4.1. For a probability µ on (M,F∞), a map Y : M→M is µ-left invertible
if and only if Y#µ � µ along F∞ and there exists Z : M → M such that Z ◦Y = IdN,
µ-a.s.
The map Y : M → M is µ-right invertible if and only if there exists Z : M → M such
that Z#µ� µ along F∞ and Y ◦ Z = IdN, µ-a.s.
The map Y is µ-invertible if it is both µ-left and µ-right invertible.

Because the invertibility of sample path remains with respect to π, we omit to mention it.

Lemma 4.4.2 If there exists Z such that Z ◦Y = IdM, π-a.s. then Y ◦ Z = IdM, Y#π-a.s.
If additionally, Y#π is equivalent to π and Z#π � π, then Y is invertible and Z#π is
equivalent to π.
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Proof. We have

Y#π
(
Y ◦ Z = IdM

)
= π

(
Y ◦ Z ◦Y = Y

)
= π

(
Y = Y

)
= 1.

The first assertion follows.

If the two measures Y#π and π are equivalent, then Y ◦ Z = IdM π-almost-surely thus Y is
invertible. Let A such that Z#π(A) = 0. This means

Eπ [1A ◦ Z] = 0.

Since Y#π is equivalent to π, we get

0 = Eπ [1A ◦ Z ◦Y] = Eπ [1A]

hence π � Z#π and the equivalence follows.

We begin by a technical lemma which states the composition by the change of marks Γφ.

Lemma 4.4.3 For ψ ∈ P++(FN , π), we define the Girsanov transform γψ according to
Definition 4.3.8. Then, we have

(Γψ ◦ Γφ(N))(t, A) =

∫ ∫
1[0,t](s)1A(γψ(Γφ, s, γφ(N, s, z))) dN(s, z). (4.4.1)

Moreover, for f ∈ F1(P(F), ν ⊗ dt),(∫ .

0

∫
f(N, s, z)ν( dz) ds

)
◦ Γφ =

∫ .

0

∫
f
(
Γφ, s, z

)
ν( dz) ds. (4.4.2)

and (∫ .

0

∫
f(N, s , z) dN(s, z)

)
◦ Γφ =

∫ .

0

∫
f(Γφ, s, z) dΓφ(s, z). (4.4.3)

Proof. For t ≥ 0 and A ∈ B(M), we have by definition:

(Γψ ◦ Γφ)(X) (t, A) =

∫ ∫
1[0,t](s)1A(γψ(Γφ(X), s, z))κγ(X)( ds, dz) (4.4.4)

=

∫ ∫
1[0,t](s)1A(γψ(Γφ(X), s, γφ(X, s, z))) dX(s, z).

(4.4.5)

Because of the density of simple processes in F1(FN , ν ⊗ ds), we can apply the composition
rule (4.4.4) to processes

(t, A) 7→
∫ t

0

∫
1A(z)f(N, s, z) dNp(s, z)
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and

(t, A) 7→
∫ t

0

∫
1A(z)f(N, s, z) dN(s, z)

evaluated at (t, M) as to obtain (4.4.2) and (4.4.3).

Corollary 4.4.4 For ψ ∈ P++(FN , π), Γψ is the π-left inverse of Γφ if and only if Γφ#π �
π and:

γψ(Γψ, s, γφ(N, s, z)) = z ∀(t, z) ∈ R+ ×M π-a.s. (4.4.6)

or equivalently either of those equations:

•
γ∗ψ(Γφ, s, z) = γφ(N, s, z) ∀(t, z) ∈ R+ ×M π-a.s. (4.4.7)

•
ψ(Γφ, s, γφ(N, s, z))× φ(N, s, z) = 1 ∀(t, z) ∈ R+ ×M π-a.s.. (4.4.8)

Proof. We have:

Γψ ◦ Γφ = IdM π-a.s. ⇐⇒ γψ(Γφ, s, γφ(N, s, z)) = z π ⊗ ds⊗ dz-a.s.

(4.4.9)

Since γψ is π-invertible, it is equivalent to

γ∗ψ(Γφ, s, z) = γφ(N, s, z) π ⊗ ds⊗ dz-a.s..

Let us show that it is also equivalent to (4.4.8). By differentiation of (4.4.6), we obtain(
γψ
(
Γφ, s, ·

))′(
γφ(N, s, z)

)
× (γφ(N, s, ·))′(z) = 1, π − a.s.

Using Remark 4.3.9, we obtain

(
γψ
(
Γφ, s, ·

))′(
γφ(N, s, z)

)
× (γ∗φ(N, s, ·))′(z)

=
ρ(γφ(N, s, z))ψ(Γφ, s, γφ(N, s, z))

ρ(γψ(Γφ, s, γφ(N, s, z)))
× ρ(z)φ(N, s, z)

ρ(γφ(N, s, z))

= ψ(Γφ, s, γφ(N, s, z))φ(N, s, z) = 1

Conversely, assume there exists ψ ∈ P++(FN ) such that

ψ(Γφ, s, γφ(N, s, z))φ(N, s, z) = 1 ∀(t, z) ∈ R+ ×M π-a.s..

Given γψ defined according to Definition 4.3.8, it yields:

(
γψ
(
Γφ, s, ·

))′(
γφ(N, s, z)

)
× (γφ(N, s, ·))′(z) =

ρ(γφ(N, s, z))ρ(z)

ρ(γψ(Γφ, s, γφ(N, s, z)))ρ(γφ(N, s, z))

=
ρ(z)

ρ(γψ(Γφ, s, γφ(N, s, z)))
.
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Hence,

γψ(Γφ, s, ·)′(γφ(N, s, ·))× ρ(γψ(Γφ, s, γφ(N, s, z))) = ρ(z)

(r ◦ γψ(Γφ(N), s, γ∗φ(N, s, ·)))′ = r′.

By integration,
r ◦ γψ(Γφ, s, γφ(N, s, ·)) = r.

Because r is a bijection from M onto itself, it follows that

γψ(Γφ, s, γφ(N, s, ·)) = IdM .

By definition, FN is smaller than FΓ. If we assume left invertibility of the map Γ, we have a
stronger result.

Theorem 4.4.5 Let φ ∈ P++(FN ). Then, FΓ = FN if and only if Γφ admits a left
inverse.

Proof. If Γφ is left invertible then there exists γψ such that (4.4.7) holds:

γψ(Γ(ω), s, z) = γ∗φ(ω, s, z) π ⊗ ds⊗ ν-a.s.

This means that:
γ∗φ(N, t, ·) is FΓ

t -measurable.

Hence, by lemma 4.3.4 FΓ = FN .
Conversely, if, for all t ∈ R+, FNt = FΓ

t , then for all t ∈ R+ there exists a sequence of predictable
processes (γ̄tψ)t∈R+ such that:

γ̄tψ(Γ, z) = γ∗φ(N, t, z), π ⊗ dz − a.s.

Denoting γ̄ψ(Γ(ω), t, z) = γ̄tψ(Γ, z) for all t ∈ R+, there exists a full probability set B such that

γ̄ψ(Γ(ω), t, z) = γ∗φ(ω, t, z),∀t ∈ Q, ∀z ∈ Q, ∀ω ∈ B. (4.4.10)

Let

γψ(Γ, t, z) =

{
γ∗φ(N, t, z) if t ∈ Q

limrn→t,rn∈Q∩[0,t] γ
∗
φ(N, t, z) if t /∈ Q.

π ⊗ dz − a.s.

By the sample-path left-continuity of γ∗φ in the time variable, (4.4.10) holds for any t ∈ R+ with
probability 1. Hence, Corollary 4.4.4 implies that Γ admits a left inverse.

The construction of an invertible mapping is straightforward in a specific case. We recall the
notation Xt which stands for the process X stopped at time t for t ∈ R+.

Lemma 4.4.6 Let φ ∈ F∞(P++(FN ), π) be defined by time cases, viz. consider a partition
of R+, 0 = t0 < t1 < . . . < tk < tk+1 = +∞ and assume that there exist positive functions
gj : M×M→M such that

φ(N, s, z) =
k∑
j=0

1(tj ,tj+1](s)gj(N
tj , z), gj : M×M→M.
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Then, Γφ is invertible.

Proof. Let φ ∈ P++(FN ) be defined by time cases. We recall that it is associated to the triplet
(γφ, Γφ, φ

†) with γφ π-invertible and defined by time cases. Hence, there exist positive functions
g̃j : M×M→M such that:

max(‖g̃j‖∞, ‖
1

g̃j
‖∞) < +∞

and

φ†(N, s, z) =
k∑
j=0

1(tj ,tj+1](s)g̃j(N
tj , z).

Let us construct ĝj such that for z ∈M:

ĝ0(N t0 , u) =
1

g0(Γt0φ , z)
.

and for j = 1, . . . , k − 1

ĝj(N, u) =
1

g̃j(Γ
tj−1

φ , z)

Then,

ψ(N, s, z) :=

k∑
j=0

1(tj ,tj+1](s)ĝj(N, z) =
1

φ(Γφ, s, γ
∗
φ(s, z))

is defined by time cases in P++(FN ). It follows by Corollary 4.4.4 that Γψ ◦ Γφ = IdM π-a.s..
As in Remark 4.3.18, πφ and π are equivalent which entails, by Theorem 4.3.16, that Γφ#π is
equivalent to π on F∞, and its left invertibility follows. With the same argument as for Γφ,
Γψ# is equivalent to π. By Lemma 4.4.2, Γφ ◦ Γψ = IdM Γψ#π-a.s., hence π-a.s.. Thus Γφ is
also right invertible, which concludes the proof.



Chapter 5

Applications

As a consequence of the new framework, we devise a new proof of the variational representation
of the entropy on the extended Poisson space. Finally, we establish a new criterion for solutions
of stochastic differential equations driven by Poisson measures.

5.1 Entropic applications

The left invertibility has important consequences on the relative entropy of Γφ#π with respect
to the probability measure of reference.

Definition 5.1.1. For µ and µ′ two probability measures on (M,F∞), the relative entropy
of µ′ with respect to µ is given by

H(µ′ |µ) =

Eµ′

[
log

(
dµ′

dµ

∣∣∣∣
F∞

)]
if µ′ � µ

+∞ otherwise.

Consider m, the smooth, convex, non-negative function defined on [−1,∞) by

m(x) =

{
(x+ 1) log(x+ 1)− x if x > −1,

1 if x = −1.

and Lm, the corresponding Orlicz space Adams and Fournier (2003):

Lm = {f : R+ → [−1,∞),

∫ ∞
0

m(f(s)) ds <∞}.

Since m(2x) ≤ 4m(x), Lm is a separable Banach space when equipped with the Luxemburg
norm, see Adams and Fournier (2003).
In the same vein of (Lassalle, 2012, Proposition 2.1), we obtain the following lemma.

Lemma 5.1.2 Let ψ ∈ P++(FN ), the following assertions are equivalent:

(i) There exists φ ∈ F1
2(P++(FN ), ν ⊗ ds, πψ) such that Γφ is left invertible.

92
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(ii) Γφ#π = πψ on FN∞ and we have the following identity:

log
(
Λψ ◦ Γφ

)
= − log Λ†φ π − a.s.. (5.1.1)

Proof. The left invertibility of Γφ entails that Γφ◦Γψ = IdN Γφ#π-a.s. according to Lemma 4.4.2.
Recall that the Girsanov theorem says that Γψ#πψ = π hence Γφ#π = πψ. According to
Lemma 4.4.3, consider Λψ as a process indexed on R+ ×M evaluated at (t,M). For t ≥ 0, by
linearity of Γφ and Lemma 4.4.3,

log Λψ ◦ Γφ(N)(t,M)

=

∫ t

0

∫
log
(
ψ
(
Γφ, s, z

))
dΓφ(s, z)−

∫ t

0

∫ (
ψ
(
Γ, s, z

)
− 1
)
ν( dz) ds

=

∫ t

0

∫
log
( 1

φ(N, s, γ∗φ(N, s, z))

)
dΓφ(s, z)−

∫ t

0

∫ ( 1

φ(N, s, γ∗φ(N, s, z))
− 1
)
ν( dz) ds,

=

∫ t

0

∫
log
(
φ†(N, s, z)

)
dΓφ(s, z)−

∫ t

0

∫ (
φ†(N, s, z)− 1

)
ν(dz) ds.

using Corollary 4.4.4 and invertibility of γ∗φ. Hence (5.1.1) follows.

For the converse, by (5.1.1), taking the conditional expectation with respect to FNt in both
sides of the equality:∫ t

0

∫ (
log
(
ψ
(
Γ, s, z

))
+ log

(
φ
(
N, s, γ∗φ(s, z)

)))
dN(s, z)

=

∫ t

0

∫ (
ψ
(
Γ, s, z

)
+ φ

(
N, s, γ∗φ(s, z)

))
ν( dz) ds

Equating the jumps yields:

ψ
(
Γ, s , z

)
= φ

(
N, s, γ∗φ(s, z)

)
∀(s, z) ∈ [0, t]×M π-a.s.

By (4.4.6), it is equivalent to Γψ ◦ Γφ = IdM π-a.s.. t → ∞
at the
end and
equiva-
lence at
once?

It remains to show that Γφ#π � π along FN . Eqn (5.1.1) amounts to:

Λ†φ =
1

Λψ
◦ Γφ.

Since Γφ#π = πψ, we have:

Eπ

[
Λ†φ

]
= Eπψ

[
1

Λψ

]
= Eπ

[
1

Λψ
Λψ

]
by the definition of the Radon-Nikodym density Λψ

= 1

Hence, by lemma 4.3.7, Γφ#π = π′φ is equivalent to π.
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Lemma 5.1.3 Let φ ∈ F1
2(P(FN ), ν ⊗ ds;π) such that Eπ [Λφ] = 1 and

Eπ

[∫ ∞
0

∫
m
(
φ†(s, z)− 1

)
ν( dz) ds

]
<∞.

Then,

Eπ

[
− log Λ†

φ†

]
≤ Eπ

[∫ ∞
0

∫
m
(
φ†(s, z)− 1

)
ν( dz) ds

]
. (5.1.2)

Proof. From Proposition 4.1.5, as t 7→ Γ(·, A) has compensator

t 7→
∫ t

0

∫
φ†(s, z)ν( dz) ds,

we have:

Eπ

[
− log Λ†

φ†
(t)
]

= Eπ

[∫ t

0

∫
log
(
φ†(s, z)

)
dΓφ(s, z)−

∫ t

0

∫ (
φ†(s, z)−1 − 1

)
ν( dz) ds

]
= Eπ

[∫ t

0

∫ (
log
(
φ†(s, z)

)
φ†(s, z)− φ†(s, z) + 1

)
ν( dz) ds

]
≤ Eπ

[∫ ∞
0

∫
m
(
φ†(s, z)− 1

)
ν( dz) ds

]
.

It remains to prove that we can pass to the limit in the left-hand-side. Consider the non-negative,
convex function ψ(x) = x− log x. From Fatou’s Lemma, we have

Eπ

[
ψ
(
Λ†
φ†

)]
≤ lim inf

t→∞
Eπ

[
ψ
(
Λ∗φ†(t)

)]
≤ 1 + E

[∫ ∞
0

∫
m
(
φ†(s, z)− 1

)
ν( dz) ds

]
.

This means that the non-negative submartingale (ψ(Λ†
φ†

(t)), t ≥ 0) is uniformly integrable.
Thus,

− log Λ†
φ†

(t)
L1

−−−→
t→∞

− log Λ†
φ†
.

This means that

1 + Eπ

[
− log Λ†

φ†

]
≤ 1 + Eπ

[∫ ∞
0

∫
m
(
φ†(s, z)− 1

)
ν( dz) ds

]
.

The proof is thus complete.

Theorem 5.1.4 Let φ ∈ F1
2(P++(FN ), ν( dz)⊗ ds) such that Eπ [Λφ] = 1 and

Eπ

[∫ ∞
0

∫
m
(
φ†(s, z)− 1

)
ν( dz) ds

]
<∞.

If Γφ#π � π, we always have

H(Γφ#π |π) ≤ Eπ

[∫ ∞
0

∫
m
(
φ†(s, z)− 1

)
ν( dz) ds

]
. (5.1.3)
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Moreover, the map Γφ is left invertible if and only if

H(Γφ#π |π) = Eπ

[∫ ∞
0

∫
m
(
φ†(s, z)− 1

)
ν( dz) ds

]
. (5.1.4)

Proof. Assume that Γφ#π is absolutely continuous with respect to π on F∞. According to
Theorem 4.3.5, there exists ψ ∈ F1

2,loc(P++(FN ), ν ⊗ ds,Γφ#π) such that

dΓφ#π

dπ

∣∣∣∣
FNt

= Λψ(N, t).

hence for t ∈ R+

Eπ

[
f ◦ Γtφ(N)

]
= Eπ

[
f(Γt)

]
= Eπ [fΛψ(N, t)] .

By applying the quasi-invariance Theorem, for f : M → R bounded and continuous, we have
that fΛψ(·, t) is bounded and continuous, then

Eπ

[
f ◦ Γtφ(N)

]
= Eπ

[
f ◦ Γtφ(N) Λψ ◦ Γtφ(N) Λ†

φ†
(N, t)

]
.

Since |f ◦ Γtφ(N)| ≤ |f ◦ Γφ| which is L1(M→ R, π) then, for t→∞, we obtain

Eπ

[
f ◦ Γtφ Λψ ◦ Γφ Λ†

φ†

]
≤ Eπ [f ◦ Γφ] .

Hence, π-a.s. we have

Λψ ◦ Γφ × Λ†φ ≤ 1. (5.1.5)

It follows that

0 ≤ H(Γφ#π |π) = EΓφ#π [log Λψ]

= Eπ [log Λψ ◦ Γφ]

≤ −Eπ

[
log Λ†

φ†

]
. (5.1.6)

Then the first part holds.

Assume now that (5.1.4) holds. Then (5.1.6) is an equality as a consequence of (5.1.5), which
in turn is an equality. According to lemma 5.1.2, Γφ is left invertible.

Conversely, if Γφ is left invertible. According to the Definition 4.4.1, Γφ#π is absolutely con-
tinuous with respect to π. Let us denote by Z the map such that

Z ◦ Γφ = IdM, π − a.s.

The lemma 5.1.2 entails that:

log Λψ ◦ Γφ = − log Λφ. (5.1.7)

Let

R =
dΓφ#π

dπ
·
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For any f : M→ R continuous and bounded, for any t > 0, we have

Eπ [fR] = Eπ [f ◦ Γφ]

= Eπ

[
(fΛψ) ◦ Γφ Λ†

φ†

]

according to (5.1.7) and by the quasi-invariance Theorem.

Eπ [fR] = Eπ [fΛψ]

It follows that R = Λψ, π − a.s. Plug this identity into (5.1.7) to obtain

H(Γφ#π |π) = Eπ [logR ◦ Γφ]

= Eπ [log Λψ ◦ Γφ]

= Eπ

[
− log Λ†

φ†

]
= Eπ

[∫ ∞
0

m
(
φ†(s, z)− 1

)
ν( dz) ds

]
,

using Lemma 5.1.3. The entropic criterion is thus satisfied.

We reuse the previous notations of Girsanov factor φ and associated triplet (γφ,Γφ, φ
†). Let

P++
m (FN ) =

{
φ ∈ P++(FN ) and (φ† − 1) ∈ L1(M→ R, π) ∩ Lm

}
P++
∞,pc(FN ) = P++

∞ (FN , π) ∩ {φ piecewise constant}
Mm(FN ) =

{
µ, ∃φ ∈ P++

m (FN ) such that µ = Γφ#π
}
.

It is well known that there is a Legendre duality between relative entropy and logarithmic
Laplace transform Lehec (2013).

Proposition 5.1.5 Let f : M→ R such that

Eπ

[
|f |(1 + ef )

]
<∞. (B1)

Then,

log Eπ

[
ef
]

= sup
µ∈M�π

(Eµ [f ]−H(µ |π)) (5.1.8)

where M�π is the set of probability measures on M which are absolutely continuous with
respect to π on F∞. Furthermore, the supremum is attained at the measure µf whose
π-density is given by

dµf
dπ

=
ef

Eπ [ef ]
· (5.1.9)

The theorem of representation of the entropy reads as follows:

Theorem 5.1.6 — Variational representation of the entropy. Let f : M → R satisfying
(B1). Then,

log Eπ

[
ef
]

= sup
φ∈P++

m (FN )

(
Eπ [f(Γφ)]−Eπ

[∫ ∞
0

∫
m(φ†(s, z)− 1)ν( dz) ds

])
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where (γφ,Γφ, φ
†) is the triplet given by Definition 4.3.8.

Proof. In view of (5.1.8), we evidently have

log Eπ

[
ef
]
≥ sup

µ∈Mm(FN )

(Eµ [f ]−H(µ |π)) .

and

sup
µ∈M�π

Eµ [f ]−H(µ |π) ≥ sup
φ∈P++

m (FN )

EΓφ#π [f ]−H(µ |π).

≥ sup
φ∈P++

∞,pc(FN )

EΓφ#π [f ]−H(Γφ#π |π)

= sup
φ∈P++

∞,pc(FN )

EΓφ#π [f ]−Eπ

[∫ ∞
0

∫
m(φ†(s, z)− 1)ν( dz) ds

]

by using Theorem 5.1.4 as such Γφ is left invertible in virtue of Lemma 4.4.6. It remains to
prove that we can find (φn, n ≥ 1), a sequence of elements of P++

∞,pc(FN , π) such that

EΓφn#π [f ]
n→∞−−−→ Eµf [f ]

H(Γφn#π |π)
n→∞−−−→ H(µ |π)

to conclude. The proof of those limits is analogous to the ones in the proofs of Lemma 2.2. and
Theorem 4.11 Zhang (2009-03).

Remark 5.1.7. Zhang showed a similar result with a different point of view. In his work,
the supremum is taken with respect of the Girsanov factor φ instead of φ†. Moreover,
f is only bounded. Moreover, we prove that the equality holds if and only if Γφ is left
invertible whereas Zhang states a sufficient condition.

5.2 Solutions of SDEs

5.2.1 SDEs driven by Poisson measures

In this section, we specialize the result of right invertibility to characterizing solutions of SDEs
under mild assumptions.

Remark 5.2.1. We can in fact start from a ”Girsanov factor” to define φ† as to define
the associated Girsanov transform γ∗φ, and then γφ as inverse. This point of view will be
preferred in that section.

Lemma 5.2.2 Let φ ∈ P++(FN ) such that:

φ†(ω, s, z) =
ρ((b ◦ α)(ω, s, z))

ρ(z)
× ((b ◦ α)(ω, s, ·))′(z)
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with b : D×M→ R a differentiable and increasing function in z and:

α(ω, s, z) =

 ∑
(Tn(ω),Zn(ω)): Tn(ω)<t

Zn(ω), z

 .

Then,

1. The process

Y (t) =

∫ t

0

∫
x dΓψ(s, x) (5.2.1)

is a solution of the SDE

Z(t) =

∫ t

0

∫
b(Z(t−), x) dN(s, x) (5.2.2)

if and only if Γψ is the right inverse of Γφ.

Proof. Let assume Γφ is right invertible with right inverse Γψ. Then for t ∈ R+,∫ t

0

∫
x dΓψ(s, x) =

∫ t

0

∫
γψ(s, x) dN(s, x)

=

∫ t

0

∫
γ∗φ(Γψ, s, x) dN(s, x).

Since
(r ◦ γ∗φ(ω, ·))′(s, u) = φ†(s, u)ρ(u),

we have:
γ∗φ(ω, s, z) = b ◦ α(ω, s, z).

Hence rewriting Eqn (5.2.1), we get:

Y (t) =

∫ t

0

∫
b(Y (t−), x) dN(s, x).

Conversely, let assume that there exists a process Y for which (5.2.1) and (5.2.2) hold. Then
there exists a predictable process U such that:∫ t

0

∫
x dΓψ(s, x) =

∫ t

0

∫
U(Γψ, s, x) dN(s, x).

As Γψ is a marked point process, we have: γ∗ψ(N, s, x) = U(Γψ, s, x) π ⊗ ds ⊗ dx-a.s.. Hence,

it admits a left inverse, i.e. there exists φ ∈ P++(FN ) such that γφ = U .

We can generalize this characterization of solutions of SDEs as integrals with respect to a
marked point process.

Lemma 5.2.3 Let (γφm)m∈N a sequence of Girsanov transform of the form:

γ∗φm(ω, s, z) =
∑

(Tmn (ω),Zmn (ω)): Tmn (ω)<s

υm(Zmn , z)g(s, Zmn ).
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with g a deterministic function and (υm)m∈N a family of differentiable functions with
simple limit (Zn, z) 7→ υ(s, Zn)g(s, Zmn ). , such that Γφm admits a right inverse Γψm for
m ∈ N, then:

1. (γ∗φm)m∈N and (γ∗ψm)m∈N admit limits γφ and γψ respectively.

2. the process Y indexed on R+:

Y (t) =

∫ t

0

∫
g(s, z) dΓψ(s, z).

is solution of the SDE:

Z(t) =

∫ t

0

∫
g(s, z)

Proof. Let m ∈ N. If Γψm is the right inverse of Γφm , then Γφm is the π-left inverse of Γψm and
according to (4.4.7), we have

γψm(ω, s, z) = γ∗φm(Γψ, s, z) π ⊗ ds dz-a.s.

so that for U ∈ P(FN ),∫ t

0

∫
g(s, z) dΓψ(s, z) =

∫ t

0

∫
g(s, γ∗φ(Γψ, s, z)) dN(s, z).

With the same technique, we show another result related to right invertibility.

5.2.2 Markov jump processes

It may be suitable for Markov jump processes and even for the lookalike compensated
version, but there are too much involved map compositions to go through with without
mentioning the limiting procedure due to the use of indicator which is not differentiable
and not necessarily increasing. The huge advantage is that the unicity of SDE solution
might be ensured by the abstract notion of invertibility of sample path. Nevertheless, the
Girsanov transform should be increasing in z. The curious derivation is that originally
the Bismut’s approach was designed to tackle non-Markovian processes.

There are 3 ways to characterize a Markov process:

• infinitesimal generator;

• sum of Poisson point processes with a time change;

• use Poisson measure.

We focus on the last interpretation as we can represent almost all Markov processes with a finite
number of jump times in this way.
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Definition 5.2.4 (Representation of processes in MP).

Y n(t) = Y n(0) +

∫ t

0

∫ ∞
0

1{z≤σ0(n−Y n(s−))}dN
n
+(s, z)

−
∫ t

0

∫ ∞
0

1{z≤σ1Y n(s−)}dN
n
−(s, z)

where N+ and N− are independent Poisson measures. They count for the sign of the
increment.

The d-dimensional Markov processes investigated here can be represented as a linear combina-
tion of stochastic integrals with respect to a number of Poisson measures. Fix a horizon time
T > 0 throughout. For any m ∈ N, any family (ζ1, . . . , ζm) of elements of Rd and any array
(ρk)1≤k≤m of mappings from R+ × Rd to R, consider the Rd-valued process X defined as the
solution of the SDE

Y (t) = Y (0) +
m∑
k=1

(∫ t

0

∫
R

1{z≤ρk(s,Y (s−))} dNk(s, z)

)
· ζk, t ≤ T,

where X(0) ∈ Rd is fixed, and (Nk)1≤k≤m denote m independent Poisson measures of unit
intensity ds⊗ dz.

Interpretation of right invertibility as another definition of Markov processes, general
form (see Decreusefond (1998)). We should highlight in which way it is auto-excitement.

Theorem 5.2.5 Let φn ∈ P++(FN ) for n ≥ 0 such that

γφn(ω, s, z)
n→∞−−−→ γφ(ω, s, z) = %(s,

∫ s−

0

∫
1{u≤z} dω(s, u))

Then, if for n ≥ 1, Γφn admits a right inverse Γψn, the following process

Y (t) =

∫ t

0

∫
1{z≤c0} dΓψ(s, z)

limit of (Y n(t))n∈N is a jump Markov process.

Proof. For g(s, z) = 1[0,s](s
′)1(−∞,c0](z), we denote by:

Y n(t) =

∫ t

0

∫
g(s, z) dΓψn(s, z).

Then, we have:Prove we
can pass
to limit Y n(t) =

∫ t

0

∫
1{z≤γφn (Γψn ,s,c0)} dN(s, z)

n→∞−−−→
∫ t

0

∫
1{z≤%(s,Y (s−))} dN(s, z).
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The limit Y is hence solution of the stochastic differential equation:

Y (t) =

∫ t

0

∫
1{z≤%(s,Y (s−))} dN(s, z). (5.2.3)

The Yamada-Watanabe for Poisson measures was proven in Proppe et al. (2014). The
Yamada-Watanabe here cannot use the Poisson structure because of the coupling of a
random measure and an element of D. In the manuscript, it may be of interest to write
a paragraph about the involved techniques. We may need to recall that obtaining strong
Markov processes is done through martingales, and more specifically through what is
known as martingale problem.

5.3 Strong and weak marked Hawkes processes

5.3.1 Applications

Definition 5.3.1 (Spatial Hawkes process). A family (Zt)i∈S,t≥0 of cadlag (Ft)t≥0-adapted
processes is called a Hawkes process with parameters (G, ϕ,h) if a.s. for all i ∈ S, all t ≥ 0

Zit =

∫ t

0

∫
M
1
{z≤hi(

∑
j→i

∫ s−
0 φji(s−u)dZju)}

πi(dsdz). (5.3.1)

5.4 Further works

Can we solve that type of equation?

X(t) =

∫ t

0
u(Xs) ds+W (t) + Z(t), (5.4.1)

where W is a Brownian motion and Z is a point process of compensator y(X, t).
What is the criterion for invertibility in that case?
We recall that a Lévy process can be decomposed according to the Lévy-Itô décomposition:

X = X(1) +X(2) +X(3)

where X(1) is a Brownian motion, X(2) is a compound Poisson process and X(3) is a jump
process, square-integrable martingale with almost surely a countable number of jumps on every
compact (finite interval). All three processes are independent.
We focus on the case where the components consist only in the non-absolute continuous com-
ponents for now.
How to handle the jump process?
There are exciting applications of it in the last chapter of Applebaum (2009).
The contribution of a Brownian component on the perturbation γ on the Poisson space is studied
in Privault (2003), even without assumption of independence of the Brownian motion and the
Poisson measure.

5.5 Future research directions
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Résumé : Cette thèse a pour sujet l’étude de
structures sans propriété de diffusion. Nous nous
intéressons à deux classes de telles structures.
Le premier sujet traite du calcul de Malliavin
pour les variables aléatoires conditionnellement
indépendantes qui est un cas de calcul de Malliavin
discret. Il généralise aussi celui théorisé sur des pro-
duits dénombrables d’espaces de probabilité, pour les
variables aléatoires indépendantes. Dans notre cas,
l’intérêt d’un tel calcul est de venir compléter des
résultats d’analyse stochastique avec des preuves
d’inégalités fonctionnelles (inégalité de Poincaré,
inégalité de McDiarmid) et de théorèmes limites. Une
des applications phares est la détermination de la vi-
tesse de convergence de théorèmes centraux limites
via la méthode de Stein. En combinant le calcul de
Malliavin avec la structure de Dirichlet sous-jacente
aux variables aléatoires, nous obtenons une formule
d’intégration par parties cruciale pour déterminer des

bornes supérieures sur les vitesses de convergence.
Nous montrons des théorèmes limites quantitatifs,
dont un théorème de quatrième moment avec reste.
En particulier, nous discutons d’une application à la
normalité asymptotique du comptage de motifs dans
des hypergraphes aléatoires échangeables.
Le deuxième sujet étudie les fonctionnelles d’une
mesure de Poisson en utilisant la notion d’inversi-
bilité de transformations de cette mesure sur l’es-
pace échantillon des mesures aléatoires. Nous utili-
sons l’identification de ces mesures et des processus
ponctuels marqués associés. Les transformations in-
versibles sont obtenues via le théorème de Girsanov,
en respectant l’absolue continuité par rapport à la me-
sure de référence. Il en résulte un critère entropique
pour l’inversibilité des transformations. Enfin, nous fai-
sons le lien avec les équations différentielles stochas-
tiques dirigées par des mesures de Poisson.

Title : Contributions to stochastic analysis for non-diffusive structures

Keywords : Malliavin calculus, Stein’s method, Conditionally independent random variables, Poisson mea-
sure, Girsanov’s theorem, Entropic criterion, Stochastic differential equations

Abstract : This thesis is concerned with the study of
non-diffusive structures. We focus on two classes of
such structures.
The first subject deals with Malliavin calculus for
conditionally independent random variables, which is
a special case of discrete Malliavin calculus. It also
generalizes the calculus that has been developed for
countable products of probability spaces, for inde-
pendent random variables. In our case, the interest of
such a calculus is to complement results in stochas-
tic analysis with proofs of functional inequalities (Poin-
caré inequality, McDiarmid’s inequality) and limit theo-
rems. One of the main applications is the determina-
tion of the convergence rate of central limit theorems
via the Stein method. By combining Malliavin calcu-
lus with the underlying Dirichlet structure of the ran-
dom variables, we obtain an integration by parts for-

mula which is key to the derivations of so-called Stein
bounds of the rates of convergence. We show quanti-
tative limit theorems, including a fourth moment theo-
rem with remainder. In particular, we discuss an appli-
cation to the asymptotic normality of motif counting in
exchangeable random hypergraphs.
The second subject studies functionals of a Poisson
measure using the notion of invertibility of transforma-
tions of that measure on the sample space of random
measures. We use the identification of these mea-
sures and the associated marked point processes.
Invertible transformations are obtained via the Gir-
sanov’s theorem, respecting absolute continuity with
respect to the reference measure. This results in an
entropy criterion for the invertibility of transformations.
Finally, we make the connection with stochastic diffe-
rential equations driven by Poisson measures.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Remerciements
	Introduction
	I Stein-Malliavin-Dirichlet method and applications to statistics in hypergraph theory
	Introduction
	Background
	Probability distances
	Stein's method principle
	Malliavin-Stein-Dirichlet
	The Markov triple approach
	Fourth moment on the Poisson space
	Contributions

	Malliavin calculus for conditionally independent random variables
	Motivation
	Discrete Malliavin-Dirichlet structure
	Malliavin operators

	Chaos decomposition
	Dirichlet structure
	Functionals identities
	Applications to normal approximation
	Bounds in probability distance
	Rates in Lyapunov's conditional central limit
	Abstract bounds for U-statistics

	Partial fourth moment theorems
	Comments

	Motif estimation
	Subhypergraph counting in random hypergraphs
	Poisson approximation
	Normal approximation
	Application of Malliavin-Stein's method
	A modified Hoeffding decomposition
	Limit theorems for homomorphism densities of random hypergraphs


	II Invertibility of functionals of marked point processes
	Invertibility of functionals of Poisson measures
	Preliminaries
	Background
	Quasi-invariance
	Random change of marks
	Change of measures and Girsanov theorem
	Main theorem

	Invertibility

	Applications
	Entropic applications
	Solutions of SDEs
	SDEs driven by Poisson measures
	Markov jump processes

	Strong and weak marked Hawkes processes
	Applications

	Further works
	Future research directions

	Bibliography


