
WDDL is Protected Against Setup Time Violation Attacks

Nidhal Selmane, Shivam Bhasin, Sylvain Guilley, Tarik Graba, Jean-Luc Danger

Institut TELECOM, TELECOM ParisTech, CNRS LTCI (UMR 5141)

Departement COMELEC, 46 rue Barrault

75 634 PARIS Cedex 13, FRANCE

Email:{selmane,bhasin,guilley,graba,danger}@telecom-paristech.fr

Abstract—In order to protect crypto-systems against side
channel attacks various countermeasures have been imple-
mented such as dual-rail logic or masking. Faults attacks
are a powerful tool to break some implementations of robust
cryptographic algorithms such as AES and DES. Various kind
of fault attacks scenarios have been published. However, very
few publications available in the public literature detail the
practical realization of such attacks. In this paper we present
the result of a practical fault attack on AES in WDDL and
its comparison with its non-protected equivalent. The practical
faults on an FPGA running an AES encryptor are realized by
under-powering it and further exploited using Piret’s attack.
The results show that WDDL is protected against setup
violation attacks by construction because a faulty bit is replaced
by a null bit in the ciphertext. Therefore, the fault leaks no
exploitable information. We also give a theoretical model for
the above results. Other references have already studied the
potential of fault protection of the resynchronizing gates (delay-
insensitive). In this paper, we show that non-resynchronizing
gates (hence combinatorial DPL such as WDDL) are natively
immune to setup time violation attacks.

Keywords-AES; FPGA; Setup violation fault attacks;
WDDL; Protection against faults.

I. INTRODUCTION

Side channel analysis or attacks (SCA) are attacks based

on the analysis of the secret information (generally the

encryption key) leaked from the physical implementation of

the cryptographic system. The leakage is passively observed

via timing information, power consumption, electromagnetic

radiations, etc. Protection against side channel attacks is

important because the attacks can be implemented quickly

and at a low cost. Differential power analysis (DPA) [1] and

its derivatives such as correlation power analysis (CPA) [2]

correlate the leakages with an internal power model, which

depends on the cryptographic key.

Several countermeasures have been devised to avoid

SCA. Dual-rail with precharge logic (DPL) is one of the

state-of-the-art countermeasure against SCA. In DPL, the

idea is to make the power consumption of the device

uniform, thus hiding the crucial information it conceals.

Each signal is replaced by true and false representations.

Precharge & Evaluation phases are alternated to ensure

exactly one switching event per cycle. Wave Dynamic

Differential Logic (WDDL) [3] is one of the commonly

used DPL. Unlike Sense Amplifier based Logic (SABL) [4],

WDDL uses standard CMOS cells. Owing to this property,

WDDL can be used with any design as no special library

is required. Due to the same reason it can be used in

FPGAs [5], [6]. It is interesting to note that WDDL is

prone to the “early evaluation” vulnerability [7], corrected

from instance in SecLib [8], [9]. Despite this second-order

issue, WDDL is relatively secure for a reasonable overhead.

Hereafter we present our work with respect to WDDL

designs.

Differential fault attacks (DFA) [10], [11], [12] also

referred to as active attacks alter the functional behavior

of the attacked device by injecting one or several faults.

Several techniques are available to inject faults: variations of

the supply voltage or clock frequency, temperature variation

or irradiation by a laser beam which leads to a wrong

computation result that can be exploited to perform DFA.

Some countermeasures for DFA have been introduced. These

countermeasures are generally based on temporal [13] or

spatial [14], [15] redundancy, either in a generic manner or

taking advantage of some peculiarity of the algorithm.

Here in this paper we analyze the security of WDDL

against setup violation fault attacks. We implemented AES

(Singlerail & WDDL). Singlerail refers to simple version

of AES and WDDL the DPL version. The sbox of the AES

is implemented by calculations in composite field GF(24)
as described in [16].

The results presented in this article are obtained with

an EP1S25 Altera Stratix FPGA soldered on a Parallax

evaluation board. As described in [17], [18], faults can

practically be induced in an FPGA by under-powering the

circuit. When we drive the FPGA at a voltage less than the

nominal voltage, the propagation time of the signal increases

as illustrated in figure 1. Such attacks are non-invasive in

nature as the attacker does not need access to the silicon

die and are therefore easy to implement. We recall that

there is no straightforward mechanism to monitor either the

power supply level or the frequency in commodity FPGAs.

The permanent under-powering causes a phenomenon called

“setup time violation” on one of the timing path of the design

causing a faulty byte. We call this fault as a “byte-flip” fault,

which is obtained by flipping of one or more bits in a byte.

The number of bits flipped during a byte-flip is called the

Hamming weight of the fault. Since cryptography involves

2009 Workshop on Fault Diagnosis and Tolerance in Cryptography

978-0-7695-3824-2/09 $25.00 © 2009 IEEE

DOI 10.1109/FDTC.2009.40

73

highly complex computations it is very likely that the critical

path is in the cryptographic part [19]. Such faults can be

exploited using various known attacks [20], [21], [22]. Here

we use Piret’s attack to exploit the faults and retrieve the

secret key using the method described in [20].

Setup violatedSetup met

Q’

QD

Q’

QD

clk clk

V cc ↓ ⇒ Tpropagation ↑

Figure 1. Setup violation.

The rest of the paper is organized as follows. In section II,

we explain the WDDL rationale and the design flow to

implement it. Section III describes the attack setup and the

faults analysis procedure. Section IV presents the compari-

son of a fault acquisition campaign on single-rail and WDDL

version of AES, in terms of spatio-temporal localization of

faults. Section V is devoted to the theoretical demonstration

of the intrinsic immunity of WDDL against setup violation

attack on AES. Finally, the section VI concludes the paper

and opens perspectives for better protecting sensitive cryp-

tographic implementations.

II. WAVE DYNAMIC DIFFERENTIAL LOGIC

Power consumption of a standard CMOS cell is dependent

on the transition of its input. Thus for a DPA-resistant

design, a possible solution could be to introduce a family of

DPA resistant cells. In a WDDL cell [3], one transition per

cycle is observed, which is favourable for a DPA resistant

logic style.

WDDL uses true and false representations of each signal

(I/O of each cell). To make the power consumption fairly

uncorrelated to the processed data, it is necessary that there

should be the same number of transition every cycle. This

condition is fulfilled by alternate cycles of precharge and

evaluation. In the precharge phase all the signals are charged

to the same level (e.g. 0 in WDDL) and during evaluation

exactly one of the two complementary outputs is evaluated

(=1). Figure 2 shows the timing diagram of WDDL AND

gate. We can see that during precharge all signals are

put to logic 0. During evaluation, exactly one of the two

complementary inputs and outputs evaluates to 1.

In DPL, glitches make the design vulnerable to at-

tacks [23]. Indeed, without special attention, if the inputs

arrive at different moments, glitches can be observed. To

avoid glitches it is necessary that all the gates in the design

Precharge Evaluation

bt

yt

bf

yf

af

at

PRE/EV AL

Figure 2. Timing diagram for a WDDL AND gate.

should be positive in nature. To ensure this in WDDL,

the design is synthesized with a library consisting of only

positive gates (like AND, OR) [24]. As shown in figure 3,

a WDDL AND gate consists of an AND gate (G) and a

complementary OR gate (G∗, satisfying G∗(x)
.
= G(x)).

For sequential circuits, each flip-flop is replaced by a pair

a flip-flops. This double flip-flop allows the precharge wave

to propagate through the whole design as all the gates are

positive. It has to be noted that inverters in WDDL are

implemented by crossing the true and false signals of the

same variable.

A point worth noting in figure 3 is that one flip-flop in the

single-rail design is replaced by four flip-flops in the WDDL

design. This is explained as follows. During the precharge

phase, the combinatorial part of the circuit will be discharged

to 0 and this 0 is stored to the first of the two flip-flops. The

second flip-flop will store the result of the last computation.

In the evaluation phase, the value stored in the second flip-

flop serves as input and the output is stored in the first flip-

flop. In the mean while, the zero stored in the first flip-flop

is shifted to the second flip-flop to allow proper precharge

of the circuit ahead in the next cycle. This phenomenon

happens in both true and false rail. Thus the number of flip-

flops is quadrupled in the WDDL design.

G

G

Single−rail

Dual−rail

Q

B

A

Qf

Qt
Bt

At

Af

Bf G
∗

Figure 3. WDDL building block.

In our implementation, we use a different way to ensure

all positive logic. Instead of using positive gates, we use a

74

library containing all look-up tables (LUTs) which imple-

ment a positive function. This technique is called WDDL+

in [25].

A. Design Flow for WDDL Implementation

As every digital system, cryptographic coprocessors can

be separated into control and datapath parts. As the secret

key is used only in the datapath part, leakage from the

control part is not crucial. Thus to assure security of the

design it is sufficient to implement only the datapath in

WDDL. This will also save area as WDDL takes more area

on the FPGA than a single-rail design. The design flow

to implement a cryptographic coprocessor on an FPGA is

shown in figure 4. The datapath is first synthesized using

an ASIC synthesizer taking advantage of a library with only

positive LUTs (the FPGA synthesis tool does not provide

enough options to limit the library therefore we use an ASIC

synthesizer). Then the output netlist is processed using a

custom tool (called vDuplicate in figure 4) which converts

a single-rail netlist into a WDDL netlist. The controller is

then connected to the WDDL datapath using a wrapper.

The FPGA vendor tool does synthesis, mapping, placing &

routing for the whole design on the FPGA.

AES DATAPATH

(RTL)
ASIC

Synthesizer (RC)

DATAPATH Netlist

(.VM)
WDDL Generator

(vDuplicate)

DATAPATH Netlist

(.VQM)
FPGA Vendor Tool

(Quartus)

AES Controller

(RTL)

Synthesis, Map,

Place & Route
BITSTREAM

WDDL Wrapper

(RTL)

Optimised LUT4

Positive Library

Figure 4. WDDL design flow.

B. Dualization of single-rail design

As mentioned earlier, the controller of the cryptoprocessor

is not converted to WDDL technology. To make the same

controller work with the WDDL version of the datapath,

there is a need to introduce an extra input to the controller.

As the WDDL datapath will precharge in one cycle and

evaluate in the next cycle, we require the controller to

work every alternate cycle (evaluation) and freeze during

the precharge phase. A enable signal driven at half the clock

frequency is introduced to provide this functionality.

One more modification is required in the design. The

I/Os of the WDDL datapath are dual-rail, while the signals

from controller to datapath and the global I/Os are single-

rail. Therefore we need to create a wrapper which will

make the single-rail and the WDDL parts compatible. As

shown in figure 5, all the inputs to the datapath (I & C)

are transformed into dual-rail (true and false) signals using

inverters. A signal phase is introduced to make the datapath

inputs compatible with precharge and evaluation phases.

When phase is precharge, both the true and false inputs are

discharged to 0. During the evaluation phase, exactly one

of the complementary input charges to 1. For the output

(O) as shown in figure 5, the true output is ANDed with

the inverted false output. Only taking the true output while

leaving false output unconnected is also an option. The

reason for using both the outputs is to make sure that the

FPGA vendor tool doesn’t remove the unconnected false

output during optimization in placement and routing steps,

as the optimization will create an unbalanced design. After

the wrapper has integrated the WDDL datapath and the

controller, it seems to work as a single-rail design from

the top. Therefore now the design could be simulated,

synthesized or tested as a single-rail design using the same

softwares. In this way, if the results are same for single-

rail and WDDL, we are ensured that the two designs are

functionally equivalent.

When both the designs are synthesized, the single-rail

design works at a frequency of 54.5 MHz using 10% of

the FPGA logic. On the other hand, the WDDL design as

expected works at a frequency of 22.01 MHz which is less

than the half of the single-rail frequency due to two phase

operation in WDDL. The WDDL design uses 51% of the

logic blocks i.e. 5 times more than the single-rail design. The

overhead of 5 times is due to the fact that 20 instantiations

of sbox is used and each sbox is replaced by a true and false

sbox which makes the design huge.

’0’’0’

’0’

’0’

OI

C

phase

DATAPATH

CONTROLLERenable

OT

CFCT

IF

IT

OF

Figure 5. Basic architecture of WDDL wrapper.

75

III. SETUP FOR FAULT ATTACKS ON FPGAS

In order to induce faults during the execution of the

algorithm we drive the core of the FPGA at a non-nominal

continuous voltage V cc. The power supply is remotely

controlled using GPIB cable.This feature allows us to test

various values of input voltage successively. For each value

of V cc, the triples {message, key, ciphertext} are recorded

for 1,000 encryptions at each 100 values of V cc. Figure 6

sketches the experimental setup. The testing platform is a

stratix FPGA soldered on a parallax board. The FPGA is

powered by the progarammable power supply. The rest of

the board is powered by a 5V constant supply.

RS232

GPIB
V cc

Figure 6. Experimental platform.

Once acquisition is done, we use a software for an offline

analysis of the collected ciphertext in order to detect single

byte errors that occur during the encryption. A modified

RTL description of AES where faults can be injected at

any byte of the ten rounds is used to generate a dynamic

database. The database consists of all possible ciphertexts

generated only by single faults for each key, message pair.

Then we test if the faulty ciphertext matches an entry in the

database. If so, the fault is said “covered” otherwise the fault

is said “uncovered” and the ciphertext is affected by multiple

byte faults. If a fault is covered, the software provides the

location, the value of the faulty byte, its corresponding

correct byte and the Hamming weight of the fault. The

purpose of this implementation is to identify the typology

of single faults that occurs in the FPGA.

If the fault is ”covered” then we can identify the round

and the sbox affected by the fault. This concludes that the

voltage reduction generates random single faults that most

differential attack models are based on. In this experiment

we use a global non-invasive fault injection technique. The

propagation time increases with the decrease of the power

supply and faults are caused by an early latching of a

combinatorial function as shown in figure 1.

IV. EXPERIMENTAL RESULTS

In this section, the fault analysis is used to find the

occurrence of a single byte fault that affects the state matrix

of AES. Both single-rail and WDDL versions are tested

against setup violation faults. Faults detected are those

occurring only in the datapath, while the key schedule is

assumed here to be fault-free. Indeed, in our design, the key

schedule block is not critical in timing.

Figure 7a shows the occurrence of faults in single-rail

implementation. We can see that the graph of single faults

has a bell-shaped distribution. As we decrease the voltage

beyond a certain threshold, setup time is violated on multiple

paths and faults become multiple (uncovered). The max-

imum percentage of single faults is 39% at a voltage of

1.256 V as shown in figure 7a. All single faults are analyzed

in terms of spatio-temporal locality: Figure 8a and figure 9a.

26% of single faults occur in round 8 and 12% of them occur

in round 9 (refer figure 8a). Such faults are exploitable using

Piret’s Attack. Thus the single-rail implementation of AES

with SBOX in LUT is not protected against “setup violation”

attacks.

For the WDDL version of AES, the results are shown in

the figure 7b. Since we use only positive LUTs to implement

WDDL, there are no glitches in the circuit. When we run

the fault attack campaign on WDDL design, less than 2%
of the detected faults are single and all of them fall in the

last round of AES as shown in figure 8b. These faults are

not exploitable and thus the key cannot be retrieved using

Piret attack. The software for fault analysis allows us to see

faulted bytes and its corresponding correct value (value of

byte if not faulted). We find that everytime a fault occurs,

the faulted value C∗ is less than its corresponding correct

value C, in a bitwise sense: C & C∗ = C∗. This comes

down to using the partial order �, defined bit by bit in the

following truth table:

C C∗ C∗ � C

0 0 1

0 1 0

1 0 1

1 1 1

This means that all the faults are caused when an expected

‘1’ takes a value equal to ‘0’.

The reason why all the faults are seen in the last round

is as follows. When an XOR gate is implemented using

76

positive logic, it is a combination of AND, OR gates

and inverters (for inverted inputs). These inverters yield a

mixture of true and false part of the design as per the

definition of XOR. Thus a fault occurring in a true part

is further corrupted by mixing with the false part and

vice versa. The MixColumns operation involves a lot of

XOR operations. Therefore a MixColumns operation after a

fault will corrupt the fault which cannot be detected. Since

the last round does not have MixColumns, the faults are

detected but not exploitable. One interesting observation was

that every time a byte is affected by a fault, a null byte

in the ciphertext was reflected at its expected place. This

means that even after successfully injecting the fault during

encryption and precisely knowing the location of the fault,

the output does not give any information which can be acted

upon to retrieve the hidden secrets. The results observed are

easily reproducible. This means that for a particular voltage

lower than the nominal voltage, if the ciphertext and input

message are constant, the fault is often in the same sbox.

This feature gives us better flexibility for complete analysis

of these faults. Therefore, a WDDL design is naturally

secure against setup violation faults. This has been further

explained in the section V-A.

V. THEORETICAL FAULT ANALYSIS

The purpose of this section is to show that the fault model

corresponding to a setup violation time has the consequence

that all DFAs on AES in WDDL are impractical.

A. Fault Analysis on AES in WDDL with SubBytes in LUTs

1) Fault Model: In an under-powering or overclocking

attack, faults arise from a setup time violation [17], [18].

Authors of paper [26] argue that the effect of a glitch on

the power supply increases the propagation times of all the

signals, which makes this disturbance similar in effect to the

global chip under-powering. As the WDDL protocol with a

(0, 0) spacer starts in evaluation step with all the nodes

voltage equal to zero, the evaluation consists in propagating

rising transitions along exactly half of the wires. If by any

means, an attacker manages to trigger a setup time violation,

the consequence is an asymmetric bit flip: only 1 to 0 errors

are considered. Therefore, the consequence of the fault is to

leave (at least) one dual-rail signal in its (0, 0) precharge

state, while the others couples of wire are in legal (0, 1) or

(1, 0) evaluation state.

As already discussed in Sec. IV, the error is likely to

happen for a few dual-rail signals if the stress level is low.

This invalid data representation will then propagate through

the next round logic. Four cases are possible:

1) the protocol error can turn into functional errors on

the data or not, and

2) the protocol errors can vanish while flowing through

the combinatorial logic (self protocol healing), or, at

the opposite, be amplified.

Table I
MODIFIED FUNCTIONALITY OF AN AND GATE IN THE PRESENCE OF

ERASURE FAULTS.

Correct computation

a b at af bt bf ct cf c

0 0 0 1 0 1 0 1 0

0 1 0 1 1 0 0 1 0

1 0 1 0 0 1 0 1 0

1 1 1 0 1 0 1 0 1

Faulted computation

a b at af bt bf ct cf c

NULL 0 0 0 0 1 0 1 0

NULL 1 0 0 1 0 0 0 NULL

Table II
MODIFIED FUNCTIONALITY OF AN XOR GATE IN THE PRESENCE OF

ERASURE FAULTS.

Faulted computation

a b at af bt bf ct cf c

NULL 0 0 0 0 1 0 0 NULL

NULL 1 0 0 1 0 0 0 NULL

The next section shows that functional errors occur, cor-

responding to bits erasure. In addition, the erasure rate

increases: one single error at the entrance of a round will

trigger many invalid precharge bits to be generated, and

we show that in a reasonable cryptographic algorithm (no

computation is done uselessly), the erasure rate increases.

The consequence is that, after some percolation in the

combinatorial logic, most of the values are erased.

2) Propagation of Faults: We start this analysis by the

example of two representative gates: the AND and the XOR

functions each having two inputs that we note a and b. We

assume in this study that the fault occurs on input a. In

evaluation, instead of having (at, af) = (0, 1) when a =
0 and (at, af) = (1, 0) otherwise, we simply have at =
af = 0, which can also be expressed as a=NULL. The logic

that implements the AND gate is (ct, cf) = (at · bt, af +
bf). When a is faulty, the Tab. I function degenerates to

AND(a∗, b) = 0 if b = 0, and NULL otherwise.

The same analysis can be carried out for the WDDL XOR

gate in figure 10. The logic that implements the WDDL XOR

gate is (ct, cf) = (at · bf +af · bt, (af + bt) · (at + bf)). This

equation shows that if we have a faulty input (at = af = 0)
then the output will be NULL (ct = cf = 0) . Thus the

XOR gate has a maximum error propagation since the error

is propagated for any value of b as shown in table II.

Now, for any function f , we have this property:

Definition Let f be a positive Boolean function with inputs

77

 0

 20

 40

 60

 80

 100

 1230 1240 1250 1260 1270 1280

O
c
c
u

rr
e

n
c
e

 [
%

]

Voltage [mV]

Majority of
single errors

Majority of
multiple errors

Faults
Single errors

Multiple errors

Figure 7a. Occurrence of Fault — Singlerail.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1900 1910 1920 1930 1940 1950 1960

O
c
c
u

rr
e

n
c
e

 [
%

]

Voltage [mV]

Faults
Single errors

Multiple errors

Figure 7b. Occurrence of fault — WDDL.

 0

 5

 10

 15

 20

 25

 30

 R
1

0

 R
9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f
fa

u
lt
s

Round

Temporal localization

Figure 8a. Temporal localisation — Singlerail.

 0

 20

 40

 60

 80

 100

 R
1

0

 R
9

 R
8

 R
7

 R
6

 R
5

 R
4

 R
3

 R
2

 R
1

%
 o

f
fa

u
lt
s

Round

Temporal localization

Figure 8b. Temporal localization of fault — WDDL.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 S
1

5

 S
1

4

 S
1

3

 S
1

2

 S
1

1

 S
1

0

 S
9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f
fa

u
lt
s

Sbox

Spatial localization

Figure 9a. Spatial localisation — Singlerail.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 S
1

5

 S
1

4

 S
1

3

 S
1

2

 S
1

1

 S
1

0

 S
9

 S
8

 S
7

 S
6

 S
5

 S
4

 S
3

 S
2

 S
1

 S
0

%
 o

f
fa

u
lt
s

Sbox

Spatial localization

Figure 9b. Spatial localization of fault — WDDL.

78

True

False
Cf

Bf

Af

Bt

At

Ct

Figure 10. WDDL implementation of the XOR gate.

(a, b) then its WDDL equivalent F can be defined as:

{

Ft(at, bt) = f(at, bt) ,

Ff (af , bf) = f(af , bf) .

The output of f is correct when f does not depend on the

faulty input, and erased otherwise.

The proof is straightforward. If the output does not

depend on the faulty input, the computation is correct for

both the true and the false outputs, because the protocol

violation does not impact the result. On the contrary, for the

configuration of non-faulty inputs b such as F depends on

the faulty input bit, then we have four cases:

1) Ft = Ff = 1: impossible since F is positive and the

inputs are lower than a legal value, that is either (1,

0) or (0, 1),

2) Ft = 1 and Ff = 0. In this case, 1 = f(0, b) [equation

for Ft] and 0 = f(0, b) = f(1, b) [equation for Ff] ,

i.e. 1 = f(1, b). Therefore f(0, b) = f(1, b). However,

we assumed that F does depend on the first faulty

input, hence a contradiction.

3) Ft = 0 and Ff = 1: for the same reason, this case is

incompatible with the input configuration such that F

does depend on the faulty input.

4) Consequently, the only possibility is that Ft = Ff =
0, hence a NULL propagation.

Let us now study a random function, modeling the byte

substitution table (SubBytes) of the AES. If there is a NULL

fault at the input, then:

• for one half of the input data, a specific output bit will

depend on this input, and

• for the other half, the targeted output bit does not

depend on the input.

Therefore, statistically, one half of the output bits are erased

to NULL. Notice that this result is independent of the exact

functional decomposition in a positive dual gates netlist.

Similarly, if two inputs are erased, then 3/4 of the outputs

will also be NULL. And of course, when seven or eight

Table III
EQUATIONS FOR THE BYTES TRANSFORMATIONS ×01, ×02 AND ×03.

a′ a × 01 a × 02 a × 03

a′

7
a7 a6 a7 ⊕ a6

a′

6
a6 a5 a6 ⊕ a5

a′

5
a5 a4 a5 ⊕ a4

a′

4
a4 a3 ⊕ a7 a4 ⊕ a3 ⊕ a7

a′

3
a3 a2 ⊕ a7 a3 ⊕ a2 ⊕ a7

a′

2
a2 a1 a2 ⊕ a1

a′

1
a1 a0 ⊕ a7 a1 ⊕ a0 ⊕ a7

a′

0
a0 a7 a0 ⊕ a7

Table IV
TRUTH TABLE FOR THE UNIVERSAL GATE AND.

AND ’0’ ’1’ ’U’

’0’ ’0’ ’0’ ’0’

’1’ ’0’ ’1’ ’U’

’U’ ’0’ ’U’ ’U’

errors are presented at the input, all the output bits become

NULL.

We have already shown in section V-A2 that with XOR

gates the fault propagation is maximal. The MixColumns

transformation is a multiplication of a polynomial over

GF (28) with the fixed polynomial a(x)[1], reduced modulo

x4 + 1.

a(x) = (0x03)x3 + (0x01)x2 + (0x01)x + (0x02) (1)

The equations for the byte multiplications involved in this

multiplication are written down in Tab. III. Hence we see

that the MixColumns operation is implemented as a tree of

XOR gates. This ensures a maximum propagation of NULL.

In an SPN (substitution permutation network) like AES,

the fault number can only grow at each step. Indeed,

for every block f , if a fault is stopped, then: f(’U’, x)
is certain, for a given input x. Now, this means that

f(’0’, x) = f(’1’, x), and this implies that f is not

bijective. Therefore, differential attacks become difficult as

the attacker observes an erased value, and cannot backtrack

from the faulty ciphertext. The best case being when all the

output bits are erased and thus no information that can be

useful to generate the key is available.

Unlike byte-flips induced by a laser, the setup time

violation on WDDL causes no computation to be wrong.

Instead, when an input is partially NULL, the logic evaluates

the bits that can be correct for sure, but answers NULL if

it cannot decide. Therefore, the propagation model is that

of ’U’ in VHDL [27]. The logic tries to evaluate bits that

would not be wrong if any correct value (’0’ or ’1’) were

used instead of ’U’. We recall in Tab. IV the extended truth

table of the universal gate AND over {’0’,’1’,’U’}
2
.

79

xf

xt x

Figure 11. Dual-to-single rail circuitry usable in the case of a NULL0
spacer.

As shown in Fig. 11, the conversion of the dual-rail signals

to single-rail turns a NULL into a ’0’. This circuit makes

use of both true and false signal halves, so as to prevent the

CAD tool from simplifying half of the logic and balance the

true and false networks. Therefore, if a fault occurs during

the computation, it can be observed. This difference could

be exploited by an attack, as done in the attack of Gilles

Piret. However, the computed differential will not disclose

any information about the last round key, since the XOR

function used to mix it propagates a NULL.

All the considerations detailed regarding WDDL rely on

the fact the gates are positive. Indeed, the gates will stick

to zero unless valid values are produced. This is not true

for delay insensitive gates which stay in a zero state and

jam the computation. Notice that in WDDL the results are

independent of the type of spacer used. It can be NULL0
.
=

(0, 0), NULL1
.
= (1, 1), used as constants or interleaved

alternatively or randomly.

3) Generalization to Arbitrary Fault Models: We con-

sider two categories of faults:

1) Asymmetric faults, where bits can only be flipped

from 1 to 0. This type of faults is typical encountered

in WDDL circuits stressed by a global perturbation,

such as under-voltage or over-clocking. Glitch attacks

can lead to the same symptom, because it manifests

in adding a delay globally to all wires. Flash of white

light have been reported in [28, §12, page 163] to zero

selectively the output of some operations. Equally,

laser shots on SRAM-based FPGAs tend to favor

1 → 0 bit-flips over 0 → 1 [29]. Notice that in DPL

with a (1, 1) spacer, the opposite transition occurs

when trying non-invasive attacks. We do not detail this

situation as it is the exact opposite of the 1 to 0 case.

2) Symmetric faults, where bits are susceptible of tog-

gling in both directions. Laser shots can trigger both

1 to 0 and 0 to 1 transitions. This fault is thus semi-

invasive, as opposed to the previous ones. Therefore,

it models a more powerful attacker, at least able to

chemically prepare the sample to attack.

In the context of asymmetric faults, DPL circuits are

natively protected as such. In this respect, it is interest-

ing to compare the pros and the cons of synchronous

and asynchronous circuits. When exposed to under-voltage,

asynchronous circuits will continue to work, down to a

voltage value where the gates will not be supplied enough

to produce a strong one. Below this threshold, errors of

type ”stuck at zero” will manifest, exactly as in the case

of synchronous circuits. Overclocking is not an attack that

applies to asynchronous circuits that are, by definition,

clockless. However, we have noticed that this perturbation

is ineffective is exposing secrets. Therefore, a synchronous

circuit will be less reliable in the presence of non-invasive

faults, but as secure as an asynchronous circuit. A trade-off

between the two approaches can be reached by considering

synchronous circuits with jitter on the clock. The jitter can

have a large variance, since even if it conducts to a setup

time violation, the secrets remain safe. Therefore, with DPL,

it is secure when used in addition with aggressive clock jitter.

If the attacker has the means to inject symmetric faults,

then three types of protections must be considered:

1) When the fault induction is gentle, single bit flips is the

most likely fault model. In this case, even if the fault

is a 0 to 1 transition occurring during the evaluation

stage, the only risk is to create a (1, 1), also called

NULL1. However, in a dual way of the case study of

the propagation of NULL0 values, we can show that

the propagation of NULL1 consist in an erasure of the

data, so that the syndrome does not convey any single

bit of information about the faulty circuit internal state.

DPL style thus forces the attacker to be less furtive.

2) With a more intense stress, the attacker will start to

induce multiple faults with low multiplicity. In this

case, a DPL gate can output completely false values.

For instance, an AND gate for which the inputs are

NULL0 and NULL1 evaluates to the correct value 0

(with respect to WDDL valid states), even if the two

unfaulty inputs were both equal to 1. To protect the

implementation against those attacks, additional detec-

tion hardware must be added so as to cross-check the

computation. A little gain can however be obtained:

As the DPL style is protected against single faults, a

datapath of n bits can be checked with code words of

only n− 1 bits without risking to weaken the security

level. A protection method at the technological level

such as the one presented in [30] could be extended

from SRAM points to DFFs and combinatorial gates.

By using high-VT P transistors (those that compute the

’1’) and low-VT N transistors (those that compute

the ’0’), the designer could make the faults 1 → 0
much more likely than the opposite 0 → 1.

3) When the stress is very strong, then we expect the

faults to be very frequent. Hence the recommendation

to use physical captors spread on the chip surface.

Now, if we consider only asymmetric faults, we could

think that power analysis could be made possible by the

fault injection. Indeed, if DFA does not expose the key, it

at least indicate to the attacker that a fault has happened.

More precisely, we could imagine to correlate the amount

of detected faults to a side-channel, in a view to establish

80

correlations. Indeed, in nominal operation conditions, the

activity is constant: half of the gates commute in each clock

cycle. When a fault is injected, the activity will become

lower:

• in a fault position dependent fashion (for sure), as

illustrated in Fig. 12,

• but perhaps also in a data dependent fashion.

Time

Time

Fault

Time

Fault

S
id

e-
ch

a
n
n
el

S
id

e-
ch

a
n
n
el

S
id

e-
ch

a
n
n
el

Figure 12. Power dependence of a WDDL circuit in the faults.

However, such an attack cannot be mounted, since if a

sensible variable is faulty, irrespectively of its value, the

fault will generate a NULL0. Therefore, after the fault, the

system has forgotten its value, and computation (in terms

of number of toggles) will continue in similar ways. This

argument is confirmed by the practical observation of power

consumption of WDDL AES as shown in figure 13. We can

see that the power consumption of the device is abruptly

reduced as soon as the fault occurs approximately at time

2130 ps. The power consumption further reduces after two

cycles and remains constant till the end of encryption. It

takes exactly 2 cycles (1 ShiftRows and 2 MixColumns) for

NULL0 to diffuse through the whole design. This holds even

if the DPA protection has a second order flaw, such as early

evaluation. The only way to take advantage of such a flaw

is to exploit it without faults. Indeed, to rephrase why DFA

does not help the DPA, with faults, the distinctions of power

curves at second order simply disappear. We cannot show

any experimental curve to illustrate this point since we have

no mean to deduce the bit concerned with the fault based

on the sole knowledge of the ciphertext.

Finally, we attract the reader’s attention to the fact that

vulnerability analysis of WDDL against faults exploitation

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1500 2000 2500 3000 3500 4000 4500

vo
lta

g
e

 (
m

V
)

time (ps)

correct

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1500 2000 2500 3000 3500 4000 4500
vo

lta
g

e
 (

m
V

)
time (ps)

faulty

Figure 13. Practical power consumption of a WDDL circuit in the faults.

or DPA in the presence of faults has been argued in the

precharge to evaluation step. However, it can be transposed

without any change to the case of evaluation to precharge

step. Indeed, the circuit’s behavior is unchanged, except that

0 → 1 transitions are replaced with 1 → 0. And the attacker

has less insight, since he cannot observe the faults occurring

in the precharge stage, that are filtered out by the WDDL

circuit wrapper described in Sec. II-B.

B. Counter-Measures against Non-Invasive Attacks

A straightforward countermeasure against non-invasive at-

tacks on various circuits (not only DPL) consists in inserting

into the circuit some logic in charge of detecting abnormal

situations before the critical parts of the designs become

faulty. For instance, in Fig. 14, a setup consisting of an

even number of inverters between two registers is presented.

The source register invert its value every cycle and the

combinatorial chain of even number of inverters computes

always the same value. At the end of the chain, a destination

register checks that the value computed by the chain. The

setup time of the invertor chain is violated if the monitored

(output) value is different than the input. Hopefully, if the

chain is designed to be longer than the critical path, an alarm

is raised before the cryptographic parts of the design become

faulty.

81

OI

tchain (2N invertors) > tcrit

1 0 1 00

Monitoring DFF;

I 6= O ⇒ ∃ error

Figure 14. Counter-measure based on the insertion of a monitoring logic
with a propagation time larger than the critical path of the rest of the circuit.

VI. CONCLUSION

Information masking and hiding are two concurrent pro-

tection techniques against side-channel attacks. Last year

at FDTC, Arnaud BOSCHER and Helena HANDSCHUH

showed that masking does not protect against fault at-

tacks [31]. On the contrary, we have demonstrated the-

oretically and shown practically that information hiding

(such as DPL) makes it difficult to mount fault attacks,

since faulty outputs reveal no information about the keys.

Unlike the ”differential behavioral attack” (DBA), where a

simultaneous observation of the faulty message and of the

power curve empowers an attacker into mounting an attack,

in the case of WDDL the attacker cannot learn anything

from power curve corresponding to a faulty encryption.

We show, for the first time, that asymmetric fault attacks

in general being not a threat for DPL circuits. As a perspec-

tive, we can study whether or not more traditional faults

model (such as the byte-flip caused by a laser spot) also

leads to unsuccessful attacks. Provided this analysis turns

out to be correct, all previously proposed countermeasures

against DFA for WDDL would be useless: for instance, the

alarm (namely the (’1’, ’1’) state) propagation scheme

presented in [32] warns of a possible attack against which

the circuit is already natively immune.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of

French National Research Agency (ANR) SeFPGA https:

//sefpga.enst.fr/ project for this study. Some precious advices

also came from the outputs of the MARS (http://projects.

comelec.enst.fr/mars/) ANR project. Finally, we are very

grateful to the collaboration with STMicroelectronics AST

division (Rousset, France) dealing with hardware crypto-

processors security improvements.

REFERENCES

[1] P. Kocher and J. Jaffe and B. Jun, “Differential Power
Analysis,” in Proceedings of CRYPTO’99, ser. LNCS, vol.
1666. Springer-Verlag, 1999, pp. 388–397.

[2] É. Brier, C. Clavier, and F. Olivier, “Correlation Power
Analysis with a Leakage Model,” in CHES, ser. LNCS, vol.
3156. Springer, August 11–13 2004, pp. 16–29, Cambridge,
MA, USA.

[3] K. Tiri and I. Verbauwhede, “A Logic Level Design Method-
ology for a Secure DPA Resistant ASIC or FPGA Imple-
mentation,” in DATE’04. IEEE Computer Society, February
2004, pp. 246–251, Paris, France.

[4] K. Tiri, M. Akmal, and I. Verbauwhede, “A Dynamic and
Differential CMOS Logic with Signal Independent Power
Consumption to Withstand Differential Power Analysis on
Smart Cards,” in European Solid-State Circuits Conference
(ESSCIRC), September 2002, pp. 403–406, florence, Italy.
[Online]. Available: http://citeseer.ist.psu.edu/tiri02dynamic.
html

[5] K. Tiri and I. Verbauwhede, “Secure Logic Synthesis,” in
FPL, ser. LNCS, vol. 3203, August 2004, pp. 1052–1056.

[6] ——, “Synthesis of Secure FPGA Implementations,” in Inter-
national Workshop on Logic and Synthesis (IWLS’04), June
2004, pp. 224–231.

[7] D. Suzuki and M. Saeki, “Security Evaluation of DPA
Countermeasures Using Dual-Rail Pre-charge Logic Style,”
in CHES, ser. LNCS, vol. 4249. Springer, 2006, pp. 255–
269, http://dx.doi.org/10.1007/11894063 21.

[8] S. Guilley, F. Flament, R. Pacalet, P. Hoogvorst, and Y. Math-
ieu, “Security Evaluation of a Balanced Quasi-Delay Insen-
sitive Library,” in DCIS. Grenoble, France: IEEE, nov
2008, 6 pages, Session 5D – Reliable and Secure Archi-
tectures, ISBN: 978-2-84813-124-5, full text in HAL: http:
//hal.archives-ouvertes.fr/hal-00283405/en/.

[9] S. Guilley, S. Chaudhuri, L. Sauvage, P. Hoogvorst,
R. Pacalet, and G. M. Bertoni, “Security Evaluation of WDDL
and SecLib Countermeasures against Power Attacks,” IEEE
Transactions on Computers, vol. 57, no. 11, pp. 1482–1497,
nov 2008.

[10] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Impor-
tance of Eliminating Errors in Cryptographic Computations,”
Journal of Cryptology, vol. 14, no. 2, pp. 101–119, 2001.

[11] E. Biham and A. Shamir, “Differential Fault Analysis of
Secret Key Cryptosystems,” in CRYPTO, ser. LNCS, vol.
1294. Springer, 1997, pp. 513–525.

[12] J. Blömer and J.-P. Seifert, “Fault based cryptanalysis of the
Advanced Encryption Standard,” in Financial Cryptography,
ser. LNCS, Springer, Ed., vol. 2742, 2003, pp. 162–181.

[13] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri,
“”Error Analysis and Detection Procedures for a Hardware
Implementation of the Advanced Encryption Standard”,”
IEEE Transactions on Computer-Aided Design, vol. 52, no. 4,
April 2003.

[14] P. Maistri and R. Leveugle, “Double-data-rate computation
as a countermeasure against fault analysis,” IEEE Trans.
Comput., vol. 57, no. 11, pp. 1528–1539, 2008.

[15] M. Karpovsky, K. J. Kulikowski, and A. Taubin, “”Robust
Protection against Fault-Injection Attacks on Smart Cards
Implementing the Advanced Encryption Standard”,” IEEE
Transactions on Computer-Aided Design, vol. 21, no. 2, may
2004.

82

[16] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC
Implementation of the AES SBoxes,” in CT-RSA, ser. Lecture
Notes in Computer Science, B. Preneel, Ed., vol. 2271.
Springer, 2002, pp. 67–78.

[17] N. Selmane, S. Guilley, and J.-L. Danger, “Setup Time
Violation Attacks on AES,” in EDCC, The seventh Euro-
pean Dependable Computing Conference, Kaunas, Lithua-
nia, may 2008, pp. 91–96, iSBN: 978-0-7695-3138-0, DOI:
10.1109/EDCC-7.2008.11.

[18] F. Khelil, M. Hamdi, S. Guilley, J.-L. Danger, and N. Sel-
mane, “Fault Attack on AES FPGA Encryption Platform,” in
NTMS. Tangier, Morocco: IEEE, nov 2008, pp. 1–5.

[19] O. Faurax, A. Tria, L. Freund, and F. Bancel, “Robustness
of circuits under delay-induced faults: test of AES with the
PAFI tool,” IEEE International On-Line Testing Symposium,
pp. 185–186, July 8-11 2007, heraklion, Crete, Greece.

[20] G. Piret and J.-J. Quisquater, “A Differential Fault At-
tack Technique against SPN Structures, with Application to
the AES and KHAZAD,” in CHES, ser. LNCS, vol. 2779.
Springer, September 2003, pp. 77–88, cologne, Germany.

[21] C.-N. Chen and S.-M. Yen, “Differential fault analysis on
AES key schedule and some countermeasures,” in Information
Security and Privacy, ser. LNCS, Springer, Ed., vol. 2727,
2003, pp. 118–129.

[22] H. Bar-El, H. Choukri, D. Naccache, M. Tunstal, and C. Whe-
lan, “The Sorcerer’s Apprentice Guide to Fault Attacks,”
Proceedings of the IEEE, vol. 94, no. 2, pp. 370–382, 2006,
dOI: 10.1109/JPROC.2005.862424.

[23] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully
Attacking Masked AES Hardware Implementations,” in Pro-
ceedings of CHES’05, ser. LNCS, LNCS, Ed., vol. 3659.
Springer, September 2005, pp. 157–171., Edinburgh, Scot-
land, UK.

[24] S. Guilley, L. Sauvage, J.-L. Danger, T. Graba, and Y. Math-
ieu, “Evaluation of Power-Constant Dual-Rail Logic as a Pro-
tection of Cryptographic Applications in FPGAs,” in SSIRI.
Yokohama, Japan: IEEE Computer Society, jul 2008, pp. 16–
23, dOI: 10.1109/SSIRI.2008.31, http://hal.archives-ouvertes.
fr/hal-00259153/en/.

[25] S. Guilley, L. Sauvage, J.-L. Danger, and P. Hoogvorst, “Area
Optimization of Cryptographic Co-Processors Implemented in
Dual-Rail with Precharge Positive Logic,” in FPL (18th IEEE
International Conference on Field-Programmable Logic and
Applications), Heidelberg, Germany, sep 2008, pp. 161–166,
ISBN: 978-1-4244-1961-6.

[26] J. Francq and O. Faurax, “Security of several AES Im-
plementations against Delay Faults,” in Proceedings of the
12th Nordic Workshop on Secure IT Systems (NordSec 2007),
October 2007, reykjavı́k, Iceland.

[27] IEEE, “IEEE Standard VHDL (Very High Speed Integrated
Circuits Description Language) Reference Manual,” pp. 1–
300, ISBN: 0-7381-3247-0 2002.

[28] C. Clavier, “De la Securite des Cryptosystemes Embarques,”
Ph.D. dissertation, (french) Universite de Versailles Saint-
Quentin-en-Yvelines, November 2007.

[29] V. Maingot, F. J., R. Leveugle, P. V., and D. A., “Configu-
ration errors analysis in SRAM-based FPGAs: software tool
and practical results,” Microelectronics Reliability, vol. 47,
no. 9-11, pp. 1836–1840, 2007.

[30] G. Torrens, B. Alorda, S. Barceló, J. L. Rosselló, S. Bota, and
J. Segura, “An SRAM SEU Hardening Technique for Multi-
Vt Nanometric CMOS Technologies,” in DCIS, November
12–14 2008, iSBN: 978-2-84813-124-5, Grenoble, France.

[31] A. Boscher and H. Handschuh, “Masking Does Not Protect
Against Differential Fault Attacks,” in FDTC, 5th Workshop
on Fault Detection and Tolerance in Cryptography, IEEE-CS,
aug 2008, pp. 35–40, dOI: 10.1109/FDTC.2008.12, Washing-
ton, DC, USA.

[32] S. W. Moore, R. J. Anderson, R. D. Mullins, G. S. Taylor,
and J. J. A. Fournier, “Balanced self-checking asynchronous
logic for smart card applications,” Microprocessors and Mi-
crosystems, vol. 27, no. 9, pp. 421–430, 2003.

83

