Cost-constrained Viterbi Algorithm for Resource Allocation in Solar Base Stations

Viet Hung Tran and Marceau Coupechoux

Abstract—Solar energy is currently a popular renewable resource, yet limited daily. In green cellular networks, multiple constraints optimization (MCO) problems arise naturally. For example, a typical objective is to control the power transmission of hybrid base stations (connected to both solar panels and electrical grid) in order to maximize user’s average throughput, under the constraints of consumed grid energy and user’s blocking rate. However, such problems have been generally proved to be NP-hard. In this paper, we formulate this generic MCO problem as a quantized Markovian cost-reward model, with no assumption on input data. We then propose a novel algorithm, namely Cost-constrained Viterbi Algorithm, which recursively returns the optimal policy with linear computational complexity for this model. As an application, we provide engineering rules for the design of hybrid base stations through extensive simulations. In comparison with brute force method for a simple scenario, we find that our algorithm does achieve the constrained optimal policy.

Index Terms—Constrained optimization, Viterbi algorithm, energy harvesting, cellular networks, hybrid base station.

I. INTRODUCTION

Renewable energy has been widely considered as next-generation technology for mobile networks [1]. Solar energy in particular offers very good advantages as it is predictable and solar panels are now available at affordable price, with low impact on the environment. The harvested solar energy is however sharply varying during the day time and is daily constrained. Moreover, there is an hourly mismatch in general between the mobile user’s traffic and the incoming solar energy. This mismatch might drain out solar panel’s battery at the time of high traffic, while preserving too much energy at the time of low traffic.

In this paper, we consider a hybrid base station (BS), connected to solar panels and the national electrical grid. For countering the mismatch between harvesting energy and user’s traffic processes, we allow the BS to control its transmit power P_{TX} along the day such that the Quality of Service (QoS) is maximized. We impose a constraint on the amount of energy to be taken from the grid, and possibly on the maximum user blocking rate. To solve this constrained optimization problem, we propose a novel algorithm, namely Cost-constrained Viterbi Algorithm (CVA), which recursively returns the constrained optimal policy for transmit power’s control with linear computational complexity. We illustrate the CVA’s performance in realistic scenarios of solar BSs and European user’s traffic. Note that, because we impose no assumption on data model at the input, CVA also works for arbitrary renewable energy process (for example wind energy [2]).

A. Related Work

Because BSs take more than 50% of operating power of a cellular network [3], several constrained optimization problems involving energy consumption have been studied in recent literature. For example in [4], the optimal criterion is a weighted combination of the consumed grid energy and of the number of dropped packets, while the constraint is the maximum transmitted power. In [5], the optimal criterion is energy efficiency, while the constraints are consumed grid energy and user’s data throughput. In [6], the constraints are transmitted data rate and battery size while consumed grid energy is minimized. In [7], the constraints are defined as user’s blocking rate and user’s data throughput while optimal criterion is to minimize consumed grid energy. In [8], [9], the problem is formulated as sum-rate maximization problem, in which QoS is defined as user’s average throughput and the constraint is consumed energy.

Unfortunately, the sum-rate maximization was proved to be an NP-hard problem in general [3], [4], [10]. To overcome the complexity issue, several papers propose heuristics, e.g. in [3], [5], [11]. They however do not provide any guarantee on the optimality of the proposed solution. Another approach is to transform the original problem into a convex optimization problem. However, this idea is only feasible in simplistic system models. For example in [5], [6], [8], [9], the convexity for constrained sum-rate was achieved, but without considering data traffic process and user’s admission control. Lastly, dynamic programming via discrete Markov Decision Process (MDP) were proposed in [4], [7]. With MDP, the curse of dimensionality remains and requires Markovian models, for example, for traffic or harvested energy [6].

Our MCO problem can also be seen as a special case of the Constrained Shortest Path (CSP) problem in graph theory. CSP problem was proved to be NP-hard [12] and, hence, currently has to rely on heuristics or discretization forms of dynamic programming [12], [13]. Our graph is however a tree because we assumed continuous cost-reward values and thus there are in general no two paths reaching the same node. As a consequence, the current recursive CSP algorithms cannot be efficiently applied to our model. In contrast, we propose a quantization step in CVA, which merely merges...
close vertices and extracts a representative path among the paths reaching these vertices. In other words, CVA groups at each step close-by trajectories and extracts one such that the difference with others can be arbitrarily made small as the number of quantization levels increases. This step is not a rounding as done in recursive CSP algorithms so that the exact value of the path can be returned. This path extraction is the key step to extend CVA from one constraint to multiple constraints with the same computational complexity.

In broader context, our MCO problem is also a special case of constrained MDP problem [14]–[17]. Unlike our CVA, however, the state-of-the-art techniques for solving constrained MDP are based on Lagrangian linear programming, whose computational complexity in this case is inefficient in practice [16], [17]. For faster computation, a Lagrangian dynamic programming method was recently proposed (c.f. [14], [15]), in which linear programming was replaced by dynamic programming in solving Lagrangian unconstrained MDP equations. Nevertheless, the computational complexity of this method is at least a polynomial function dependent on number of constraints and magnitude of cost-reward values [17] and, hence, is very high in practice.

Our CVA can also be considered as a special case of constrained Viterbi algorithms, which were scarcely proposed in inference and decoding context (e.g. in [18], [19]). These algorithms in literature merely differ from traditional Viterbi algorithm by one extra step of validating constraints upon edges of a given Markov chain. In contrast, our CVA does not truncate violating edges on a given Markov chain, but makes truncation (together with quantization and constraint’s validation) a part of establishing Markov chain process.

B. Contributions and Organization

Compared to the literature, we consider a generic multiple constraints optimization (MCO) problem with no assumption on input data. We propose a novel formulation of this problem, namely quantized Markovian cost-reward. This allows us to formulate any deterministic or probabilistic problem, where both optimal reward and constraint costs are independently accumulated over time. For example, all accumulated reward and cost based on L_p-norm fall in this framework. This generalization makes all models proposed in above cited works on hybrid BS become its special cases.

In our approach, we rely on quantization, which yields the optimal solution when quantized intervals tends to zero [10]. The drawback is that, however, the number of quantized levels for MCO problem will grow exponentially in this case, which yields impractical computational complexity. In order to avoid this complexity, we adapt the famous Viterbi algorithm in decoding literature to this quantized Markovian model and return the globally constrained optimal trajectory. Owing to this novel algorithm, namely Cost-constrained Viterbi Algorithm, it is sufficient to only quantize one out of multiple constraints in order to asymptotically achieve the optimal policy for original model. Furthermore, the computational complexity of CVA only grows linearly with the number of quantization levels and time points, which makes it completely tractable. This approach is in contrast to the state-of-the-art dynamic programming techniques, which consider the Cartesian product of quantized values of constrained variables and thus see their complexity grow exponentially with the number of variables. To the best of our knowledge, this is the first time Viterbi algorithm is applied to MCO problem.

As an application of CVA in this paper, our aim is to maximize user’s average throughput, subject to constraints of both consumed grid energy and user’s average blocking rate in hybrid BS. We show that our aim is equivalent to maximizing the L_1-norm of user’s throughputs over time, subject to two constraints. The first constraint is L_{∞}-norm between accumulated renewable energy and accumulated station’s operating energy. The second constraint is L_1-norm of user’s blocking rates over time.

In summary, this paper strives for both theoretical and practical solutions to constrained optimization of resource allocation. The contributions are as follows:

- A novel formulation for constrained optimization problem, namely quantized Markovian cost-reward is provided. This formulation is flexible and applicable to both continuous and discrete Markovian cost-rewards, whose special case is based on L_p-norm.
- We then design a novel algorithm CVA, whose contribution is twofold. On one hand, it recursively returns an approximated constrained optimization solution, whose error is arbitrarily small up to quantization level. On the other hand, its computational complexity only grows linearly with coming data, owing to its recursive quantization scheme.
- For the first time, an L_p-norm formulation is provided for energy process in a hybrid BS. Owing to this formulation, our constrained resource allocation problem can be recognized as special case of Markovian cost-reward system, for which CVA can be efficiently used.
- Our simulation is carefully calibrated to fit practical scenarios of a hybrid macro BS in LTE system. The key factors in designing a practical solar BS, e.g. solar panel size, necessary maximum power transmission, optimal trade-off between QoS and consumed power, etc., are illustrated and discussed. Hence, simulation results are of practical use in solar BS design. For example, in reference scenario for solar macro BS in European urban area, 40% of BS’s consumed energy can be typically saved by controlling P_{TX} according to CVA, in comparison with traditional fixed P_{TX} scheme.
- A novel iterative CVA scheme is also proposed for a solar BS network. This iterative scheme, which essentially applies CVA to each BS in a network one-by-one, always converges to local maximum of total reward for the whole network, under the same set of constraints of each BS. Owing to this decentralized approach, iterative CVA is able to optimally reduce (possibly switch-off) BSs’ interference power, achieving both lower grid consumed energy and higher QoS in the network. For example, our simulation shows that, iterative CVA can save up to 85% of consumed grid energy in typical scenario of hexagonal BSs, given the same QoS constraint of fixed P_{TX} scheme.
As CVA can be applied to a broader context than hybrid BS, we first present the theoretical part before focusing on the application. As a consequence, the paper is organized as follows: Section II presents the Markovian approach and CVA for MCO problem in generic form. Section III introduces the mathematical model for solar mobile station. Section IV illustrates the optimality of CVA via simulation. The paper is concluded in section V.

II. MULTIPLE CONSTRAINTS OPTIMIZATION PROBLEM

In this section, we propose a Markovian formulation for solving an MCO problem and present our algorithm.

A. Constrained optimization objective

Let us consider a policy \(\pi_i \triangleq \{a_1, a_2, \ldots, a_i\} \in \mathcal{A}^i \), in which each action \(a_i \) belongs to the same finite action set \(\mathcal{A} \) and the set \(\Pi_i \triangleq \mathcal{A}^i \) is called the policy space up to time point \(i = 1, 2, \ldots, N \). Let us denote \(\text{card}(\cdot) \) as cardinal number operator and define \(K \triangleq \text{card}(\mathcal{A}) \).

We assume that actions generate a sequence of independent rewards and costs. In this typical memoryless system, let us associate with each action \(a_i \) a pair \(\{b_i, c_i\} \) of scalar reward \(b_i \triangleq b_i(a_i) : \mathcal{A} \rightarrow \mathbb{R} \) and an \(L \)-dimensional vector of cost \(c_i = [c_{1,i}, \ldots, c_{L,i}]' \triangleq c_i(a_i) : \mathcal{A} \rightarrow \mathbb{R}^L \). Let us denote \(\{v_i, u_i\} \in \mathbb{R}^{L+1} \) the pair of scalar accumulated reward \(v_i \) and an \(L \)-dimensional vector of accumulated cost \(u_i \), up to time point \(i \), as follows:

\[
\begin{align*}
 v_i &\triangleq v(\pi_i) = \sum_{j=1}^{i} b_j(a_j), \\
 u_i &\triangleq u(\pi_i) = \sum_{j=1}^{i} c_j(a_j),
\end{align*}
\]

(1)

where \(v(\pi) : \mathcal{A}^i \rightarrow \mathbb{R} \) and \(u(\pi) : \mathcal{A}^i \rightarrow \mathbb{R}^L \). Note that the notations \(u_{i} = [u_{1,i}, \ldots, u_{L,i}]' \triangleq u(\pi_i) = [u_{1}(\pi_{i}), \ldots, u_{L}(\pi_{i})]' \) in (1) are element-wise, as follows:

\[
u_{i} = u(\pi_{i}) = \sum_{j=1}^{i} c_{j}(a_{j}), \quad i = 1, 2, \ldots, L.
\]

Let us first define \(\pi_N^* \) as the optimal policy for non-constraint case, i.e., \(\pi_N^* = \arg\max_{\pi_N \in \Pi_N} v(\pi_N) \). Owing to independence and additivity in (1), the solution of the non-constraint case can be easily found, i.e., \(\pi_N^* = \{a_1^*, \ldots, a_N^*\} \) and \(v_i^* = \arg\max_{a_i \in \mathcal{A}} b_i(a_i) \).

In an MCO problem with threshold \(\tau \), the solution is much harder to find. The objective is to find the constrained optimal policy \(\pi_N^{(\tau)} \), which maximizes the accumulated reward over a finite horizon, subject to \(L \) constrained conditions:

\[
\pi_N^{(\tau)} = \arg\max_{\pi_N \in \Pi_N^{(\tau)}} \left\{ v(\pi_N) \right\},
\]

with \(\pi_N \in \Pi_N^{(\tau)} : \begin{cases} \tau_{1,1} \leq u_1(\pi_N) \leq \tau_{1,2} \\ \vdots \\ \tau_{L,1} \leq u_L(\pi_N) \leq \tau_{L,2} \end{cases} \),

(2)

where \(\Pi_N^{(\tau)} \) denotes the constrained subspace in policy space \(\Pi_N \), the two \(L \)-dimensional vectors of thresholds \(\tau = \{\tau_{1,1}, \tau_{1,2}, \ldots, \tau_{L,1}, \tau_{L,2}\} \) are lower and upper bound of constraints, respectively, and inequalities are element-wise. This problem can be illustrated via Venn diagram in Fig. 2.

B. Curse of dimensionality

In this constrained case, we can see that the action \(a_i^{(\tau)} \) has to belong to a constrained action set \(\mathcal{A}^{(\tau)} \subseteq \mathcal{A} \) at time \(i \), such that the policy \(\pi_i^{(\tau)} = \{a_1^{(\tau)}, \ldots, a_i^{(\tau)}\} \in \Pi_N^{(\tau)} \) satisfies the constraint (2). Hence, in general, the choice of \(u_i^{(\tau)} \) depends on both constrained policies in the past, \(\pi_{i-1} \in \Pi_i^{(\tau)} \), and future, \(\pi_{i+1:N} \in \Pi_{i+1:N}^{(\tau)} \). Owing to this lack of independence property, the constrained optimal policy \(\pi_N^{(\tau)} \) can only be found brute-forcedly at time \(N \), after computing and verifying all \(K^N \) values of \(\pi_N \) with the constraint in (2).

This computational complexity \(O(K^N) \) grows exponentially with time \(N \) and, hence, yields the curse of dimensionality for this constrained optimization problem.

In literature, the exact optimal solution for this constrained sum-rate problem was also proved to be NP-hard [3], [10].

C. Markov chain formulation

From (1), we can recognize the natural Markovian property of \(\{v_i, u_i\} \) as follows:

\[
\begin{align*}
v(\pi_i) &= b_i(a_i) + v(\pi_{i-1}), \\
u(\pi_i) &= c_i(a_i) + u(\pi_{i-1}),
\end{align*}
\]

(3)

Figure 1. Markovian recursions for independent cost-reward scheme. Parameter \(\tau \) denotes constrained threshold.

Figure 2. Venn diagram for constrained optimization space. \(\Pi_N \) is the set of unconstrained policies, \(\Pi_N^{(\tau)} \) is the set of constrained policies and \(\Pi_N^{(\tau)} \) is the set of policies explored by CVA. In every set, there is an optimal policy represented by the dots.
By this way, the accumulated quantization error is bounded instead of minimal and maximal values in (4), respectively. That the quantization of q is explained in section II-E. Note that, this categorization is not an approximate procedure, but the goal is merely to reformulate the original Markovian model into a Markov chain form over time. Note that, this categorization might be set as thresholds $l_i, i=1,2,...,N$. Otherwise, if $\text{card}(\Pi_i) = K_i < M$, we do not really need quantization step because the exact values $q(\pi_i)$ for all values of π_i, under sorting technique, can be regarded as levels themselves. Otherwise, if $\text{card}(\Pi_i) = K_i > M$, at any i, we can assign:

$$\tilde{q}_{k,i} = \begin{cases}
\min_{\pi_i \in \Pi_i} q(\pi_i) & , k = 0 \\
\max_{\pi_i \in \Pi_i} q(\pi_i) & , k = M \\
\tilde{q}_{0,i} + \frac{k}{M} (\tilde{q}_{M,i} - \tilde{q}_{0,i}) & , 0 < k < M
\end{cases} \quad (4)$$

Note that, in the case of quantizing scalar constraint value $u_l = u_l(\pi_i)$, $l = 1,2,\ldots,L$, the extremum values $\tilde{q}_{0,i}$ and $\tilde{q}_{M,i}$ might be set as thresholds τ_1 and τ_2 in constraint-space, instead of minimal and maximal values in (4), respectively. By this way, the accumulated quantization error is bounded by τ_1 and τ_2. However, this online thresholding approach can only be applied if functional form of $u_l(\pi_i)$ is monotonic, as explained in section II-E.

In practice, choosing which variable should be used for quantization step generally depends on two factors: its potential reduction on computational load and its potential gain in the approximation step. From our experience, we noticed that the quantization of v_i may not be preferable with respect to the computational reduction because maximizing operator in (2) already reduced all values of v_i to a single optimal one.

2) Trajectory segmentation: We say that $q(\pi_i)$ belongs to state k if $q(\pi_i)$ belongs to kth interval $[\tilde{q}_{k-1,i}, \tilde{q}_{k,i}]$, $k = 1,2,\ldots,M$. By this way, we can divide the policy space Π_i into M separated subspaces $\pi_i \in \Pi_i = \{\Pi_{1,i},\ldots,\Pi_{M,i}\}$, in which $\Pi_{k,i}$ is the set of all trajectories $\pi_i = \pi_i^k \in \Pi_{k,i}$ making $q(\pi_i^k)$ hit state k at time i. If there is no such trajectory, we assign $\Pi_{k,i} = \emptyset$. This is similar to the case of Markov chain with no visited state k at time i. We also divided each policy subspace $\Pi_{k,i} = \{\Pi_{1,k,i},\ldots,\Pi_{M,k,i}\}$ into further M separated subspaces, where $\Pi_{j,k,i}$ is the set of all trajectories $\pi_i = \pi_i^{j,k}$ hitting state j at time $i-1$ and state k at i.

3) Markovian trajectory model: The original Markovian model can be re-formulated via segmented trajectory model, as follows:

$$v(\pi_i^{j,k}) = b_j(a_i^{j,k}) + v(\pi_i^{j-1})$$

$u(\pi_i^{j,k}) = c_i(a_i^{j,k}) + u(\pi_i^{j-1})$, \quad (5)

$\forall j,k \in \{1,\ldots,M\}, i = 1,2,\ldots,N$. Each action $a_i^{j,k}$ represents a transition of policy from state j to state k (i.e. from π_i^{j-1} to $\pi_i^{j,k}$), as illustrated in Fig. 3. Let us substitute the objective function (2) to Markovian trajectory model (5). For clarity, let us divide this substitution step into three consecutive sub-steps, as follows:

$$\max_{\pi_i} v(\pi_i) = \max_k \left(\max_{\pi_i} v(\pi_i^k) \right)$$

$$\max_{\pi_i} v(\pi_i^k) = \max_j \left(\max_{\pi_i} v(\pi_i^{j,k}) \right)$$

$$\max_{\pi_i} v(\pi_i^{j,k}) = \max_{\pi_i^{j-1}} \left(\max_{a_i^{j,k}} \left(b_j(a_i^{j,k}) + v(\pi_i^{j-1}) \right) \right)$$

In which, $j,k \in \{1,\ldots,M\}, i = 1,2,\ldots,N$ and max-operators are taken over constrained policy spaces: $\pi_i \in \Pi_i^{(7)}$, $\pi_i^k \in \Pi_{k,i}^{(7)}$, $\pi_i^{j,k} \in \Pi_{j,k,i}^{(7)}$ and $\pi_i^{j-1} \in \Pi_{j-1,i}^{(7)}$. Because our trajectory segmentation via quantization is not an approximate step, the curse of dimensionality discussed in subsection II-B remains the same. However, we will use right below this Markovian formulation to reduce the computational load from K_i original trajectories up to time i to M by replacing all trajectories in $\Pi_{k,i}$ with the best policy at time i in state k.

D. Forward-Backward recursion

In order to achieve a tractable recursion for \tilde{v}, our idea is to approximate (6) by bringing operators $\max_{\pi_i^{j-1}}$ into parentheses via plug-in substitution technique. This means we relax all policies π_i, except a single representative policy $\tilde{\pi}_i$ (see Fig. 2), corresponding to the highest accumulated reward among remaining policies up to time i. In the same way, we define $\tilde{\pi}_i^k$ as the representative policy at state k at time i and

\[\tilde{\pi}_i^k = \arg \max_{\pi_i} v(\pi_i)
\]
\[
\hat{\pi}_i \triangleq \hat{\pi}^{k=\hat{k}}, \\
\hat{\pi}_i^k \triangleq \hat{\pi}^{j=j_i(k),k}, \\
\hat{\pi}_i^{j,k} \triangleq \{\hat{a}_i^{j,k}, \hat{\pi}_i^{j-1}\},
\]

where \(\hat{a}_i^{j,k} \triangleq \arg\max_{a^{i,j,k}} v(\hat{\pi}_i^{j,k})\).

1) **Forward recursion for optimization function:** We now show that the representative policies can be computed recursively. Substituting (7) into (6), we can deduce consecutive relationships for (7), as follows:

\[
v(\hat{\pi}_i) = \max_k v(\hat{\pi}_i^k), \\
v(\hat{\pi}_i^j) = \max_{k} v(\hat{\pi}_i^{j,k}), \\
v(\hat{\pi}_i^{j,k}) = b_i(\hat{a}_i^{j,k}) + v(\hat{\pi}_i^{j-1}),
\]

in which \(\hat{\pi}_0 = \pi_0\) and then the value \(v(\hat{\pi}_i^k), k=1,2,\ldots,M\), can be evaluated recursively from \(v(\hat{\pi}_i^{j-1}), j=1,2,\ldots,M\). For later use, we provide the following definitions:

\[
\hat{k}_i \triangleq \arg\max_k v(\hat{\pi}_i^k), \\
\hat{j}_i(k) \triangleq \arg\max_j v(\hat{\pi}_i^{j,k}), \\
\hat{a}_i^{j,k} \triangleq \arg\max_{\hat{a}_i^{j,k}} b_i(\hat{a}_i^{j,k}).
\]

2) **Forward recursion for constraint space:** Given the representative policies \(\hat{\pi}_i^k\) found in (6), the forward recursion for accumulated cost can be feasibly computed, as follows:

\[
u(\hat{\pi}_i^k) = c_i(\hat{a}_i^{j=j_i(k),k}) + u(\hat{\pi}_i^{j-1}),
\]

\(\forall k=1,2,\ldots,M, i=1,2,\ldots, N\). At time \(N\), the values \(u(\hat{\pi}_N^k)\), computed via (11), will be used for verifying constraint condition (2), as shown below.

3) **Backward recursion:** At time \(N\), the forward recursion step provides \(M\) representative policies \(\hat{\pi}_N^k, k=1,\ldots,M\), from which we return the highest reward policy \(\hat{\pi}_N^{(1)}\) not violating the constraints \(\tau\) in (2). Policy \(\hat{\pi}_N^{(1)}\) can be found via a fast back-tracking step from stored values of reverse jumps \(\hat{j}(k)\), already computed and memorized in forward step (4). The optimal state jumps will be traced back recursively, as follows:

\[
\hat{k}_N^* = \arg\max_k u(\hat{\pi}_N^k), \\
\hat{k}_{i-1} = \hat{j}_i(\hat{k}_i^*), i = N, \ldots, 2.
\]

Finally, from (10), the Viterbi’s constrained optimal policy \(\hat{\pi}_N^{(1)} \triangleq [\hat{\pi}_1^{(1)}, \ldots, \hat{\pi}_N^{(1)}]\) in (2) is:

\[
\hat{a}_i^{(1)} = \hat{a}_i^{j=j_i(k_i^*), k=k_i^*},
\]

If there is no \(k\) satisfying the condition on \(u\) in (12), it means that CVA could not find any policy satisfying the constraint condition (2).

4) **Complexity:** The complexity of the linear quantization step is \(O(MN)\) for \(N\) time points (see section II-C1). The complexity of the forward recursion step in (10) is \(O(KMN)\), since total number of forward transitions that need updating at each time is \(O(KM)\). Owing to fast memory-retrieving step, the complexity of the backward recursion is \(O(N)\). The complexity of CVA is hence \(O(KMN)\), which is dominated by that of forward recursion.
E. Monotonic constraint class

There is a special class of constraints, in which the accuracy of the CVA solution increases by exponentially reducing the number of explored policies. Indeed, if constraints are monotonic, at any time point \(i \), we can reject trajectories that violate the constraints without being forced to wait until the end of the horizon for rejecting such trajectories. More formally, by definition, the accumulated cost \(u \) is called monotonic if it either never decreases nor increases:

\[
 u(\pi_1) \leq \ldots \leq u(\pi_N) \quad \text{or} \quad u(\pi_1) \geq \ldots \geq u(\pi_N), \tag{14}
\]

in which, by our convention, the inequalities are element-wise for all \(L \)-dimensional vectors \(u(\pi_i) \), \(\forall i \). Assuming without loss of generality the non-decreasing property \((14) \), the constraint \((2) \) can be found violated immediately if, at any time \(i = 1, 2, \ldots, N \), we find that \(u(\pi_i) > \tau_2 \) for some specific \(\tau_2 \).

From this remark, we can verify the constraint \((2) \) in tandem with forward recursion of optimization function \((8) \). For later use, let us consider three examples of monotonic constraints. Firstly, if the cost \(c_i \) is always non-negative or non-positive, the accumulated cost satisfies the monotonic property \((14) \). Secondly, a special case of the first is when the accumulated cost can be written as the \(L_p \)-norm of the cost vector: \(u_i = \sum_{j=1}^{M} |c_j|^p \). The third example is when \(u_i \) takes the form of a maximum of the sequence of possibly negative costs:

\[
 u_i = \max(c_1, \ldots, c_1) = \max(c_1, \max(c_{i-1}, \ldots, c_{2}, c_i))) \tag{15}
\]

where \(x \ominus y \triangleq \max(x, y) \) and max operator is element-wise for vectors. Written in this way, \(u_i \) still appears as an accumulated cost because the max is a special case of ring-sum in ring theory \([23, 24] \). Note that this form includes the classical \(L_{\infty} \)-norm.

F. Pseudo-code of Cost-constrained Viterbi Algorithm

In literature, the traditional Viterbi algorithm \([24, 25] \) involves two steps: the first step is to define a max-recursion similar to \((8-10) \), the second step is the back-tracking step similar to \((12) \). The key differences in CVA are the plug-in substitution \((7) \) and the constraint verification step \((11, 14) \). We provide the pseudo-code of CVA in Algorithm \([1] \).

III. CONSTRAINED RESOURCE ALLOCATION FOR SOLAR BASE STATION

A. System model

In this section, we consider a solar BS as an input-output system (see Fig. \(4a \)). The consumed energy of the BS at the input comes from either solar battery system or electricity grid. The BS consumes in priority the solar energy stored in the battery. At the output, the BS’s transmitted power will affect the user’s QoS. Because cellular operators have to pay for grid energy, its amount of usage is desired to be kept under a daily threshold, while QoS needs to be maximized.

Algorithm 1 Cost-constrained Viterbi Algorithm

Inputs:
- a set of actions \(a \in A \) over \(K \) choices.
- the reward-cost \(b \) upon action (Fig. \(1 \))
- constraint thresholds \(\{\tau_1, \tau_2\} \)

Precompute:
- pick quantization variable \(q \) (section II-C1)
- set number \(M \) of quantization levels

Forward recursion:
For \(i = 1, 2, \ldots, N \) {
- evaluate linear quantization \((4) \)
- evaluate plug-in substitution \((7) \)
- verify constraint condition \((11, 14) \)
- evaluate max-recursion \((8-10) \)
}

Backward recursion:
For \(i = N, \ldots, 1 \) {
- evaluate back-tracking from memory \((12) \)
}

Output:
- return the approximate \((13) \) for constrained optimal policy \(2 \)

Computational complexity: \(O(KMN) \)

1) Energy process: For studying energy process in BS, let us define the following notations:
- \(t \): time (in hours)
- \(P_V \): harvested solar power, i.e., output power of photovoltaic (PV) panel
- \(P_{BS} \): BS’s operational power, an affine function of the transmitted power \(P_{TX} \)
- \(E_G \): accumulated energy taken from grid \(E_G(t) \geq 0 \)
- \(E_B \): accumulated energy stored in battery, \(E_B(t) \geq 0 \)
- \(E_0 \): initial energy stored in battery, i.e., \(E_0 = E_B(0) \geq 0 \)
- \(E_V \): accumulated harvested solar energy, i.e., \(E_V(t) = \int_0^t P_V(t) dt \)
- \(E_{BS} \): accumulated BS’s operational energy, i.e., \(E_{BS}(t) = \int_0^t P_{BS}(t) dt \)
- \(E_U \): accumulated saving energy level, \(E_U(t) = E_0 + E_V(t) - E_{BS}(t) \), i.e., the difference between input and output energy

A typical process is illustrated in Fig. \(4b \). We have the following relationship:

\[
 \frac{dE_U(t)}{dt} = \left\{ \begin{array}{ll}
 \frac{dE_B(t)}{dt}, & \text{if } E_U(t) > E_{min}(t),
 \frac{dE_G(t)}{dt}, & \text{if } E_U(t) = E_{min}(t),
 \end{array} \right. \tag{16}
\]

in which \(\frac{dE_B(t)}{dt} = P_V(t) - P_{BS}(t) \), the reference point is defined as \(E_{min}(t) \triangleq \min_{0 \leq \omega \leq \frac{1}{T}} E_U(\omega) \) with operator \([x]^- \triangleq \min(0, x) \), and we start with initial energy \(E_0 \) stored in battery at \(t = 0 \), i.e., \(E_U(0) = E_0 \geq 0 \). The explanation of \((16) \) is given as follows:

- The case \(E_U(t) > 0 \): Because from 0 to \(t \) the system harvested more energy than it consumed, the grid is not active at time \(t \). Hence, at that time the BS’s energy comes only from the battery, i.e., \(\frac{dE_B(t)}{dt} = \frac{dE_G(t)}{dt} \). Also, battery is charged if \(\frac{dE_B(t)}{dt} \geq 0 \) and discharged if \(\frac{dE_B(t)}{dt} < 0 \). By definition, \(E_U(t) > 0 \geq E_{min}(t) \) in this case.
- The case \(E_U(t) \leq 0 \): Because from 0 to \(t \) the energy process is deficient, the BS has consumed some energy
from the grid up to the time $t_0 \in [0, t]$ where $E_U(t_0) = E_{\text{min}}(t_0)$. If $t_0 < t$ and therefore $E_U(t) > E_{\text{min}}(t)$, more energy has been harvested than consumed in the interval $[t_0, t]$. Thus, the BS consumes energy from the battery and this case is similar to the first one. If $t_0 = t$, then $E_U(t)$ is decreasing such that $E_U(t) = E_{\text{min}}(t)$, the system keeps setting up new reference point and hence, the grid is active, i.e., $dE_U(t)/dt = -dE_G(t)/dt$.

By integration of (16), this formulation is equivalent to:

$$E_G(t) = |E_{\text{min}}(t)|,$$

$$E_B(t) = E_U(t) + |E_{\text{min}}(t)|.$$ \hspace{1cm} (17)

In literature, the above energy process was studied for the case of $E_U(t) > 0$ in [11], in which the grid is not available. To the best of our knowledge, this is the first time reference point concept E_{min} is applied to evaluation of both E_G and E_B. In Fig. 4(b), we also illustrate the case of limited battery with capacity E_B^* by dotted version of E_U process, called E_U^*.

In the case of unlimited battery, the E_U process keeps going up at the time of charging battery $dE_U(t)/dt \geq 0$. In contrast, E_U^* stays constant after battery energy level E_B reaches its limit at E_B^*, and all harvested solar energy during this period will be lost. During the time of discharging battery, however, both E_U and E_U^* processes decrease with the same rate, hence the same decreasing slope during this period. Limited battery may or may not increase the consumed energy from the grid. If E_B^* is too low, the E_U^* process may go below the reference point E_{min} of E_U and, hence, extra grid energy is required. On the contrary, if E_B^* is high enough, E_U^* process will not set up a new reference point E_{min} and, hence, no extra grid energy is consumed.

2) Harvested energy model: In this section, we compute P_V. Let us assume that photovoltaic (PV) panel is set up parallel with earth’s surface. We then employ the well-known Hottel’s [25] and Liu-Jordan’s [27] models in order to estimate solar irradiance G (in W/m2) perpendicular to earth’s surface,

![Solar panel diagram](image)

Figure 4. (a) Solar base station model. (b) Illustrative example for power and energy processes. Harvested energy is maximum at noon. There are peaks of user’s traffic corresponding to peaks of P_{TX}. Both E_G, the total energy taken from the grid, and E_B, the battery energy level, are computed with respect to E_{min}, the minimum of the non-positive part of E_U. E_0 is battery’s initial energy. (c) Average solar irradiance estimated for Rome and average percentage $\chi(\%)$ of active subscribers in Europe.

At any time during a day and at any place on earth, as follows [28]–[30]:

$$P_V = \zeta P_{\text{solar}} = \zeta G \times A_V,$$ \hspace{1cm} (18)

$$G = G_{\text{ET}} \times (0.271 + 0.706 \beta \cos(\theta_\beta))^+,\]$$

in which the generated electric power P_V of PV is proportional to absorbed solar power P_{solar}, A_V is PV panel’s area (in m2), θ_β is the solar zenith angle and $[x]^+ \triangleq \max(0, x)$. In state-of-the-art PV modules, solar efficiency ζ varies from about 10% to about 30% at standard condition [31]. For detail calculation of $\zeta = \frac{I_P \times V_P}{G}$, in which I_P and V_P are respectively current and voltage in operation of PV module, we will employ the characteristics I_P-V_P of simplified single-diode circuit of semiconductor PV module [32], [33]. The reason is that calculation for this simplified circuit is tractable and only requires PV module’s parameters at standard condition, which are available in most of manufacturer’s datasheet. Owing to availability of maximum power point tracking (MPPT) algorithms in commercial products [34], let us assume that $V_P = V_{\text{mpp}}$, where V_{mpp} is standard maximum power point voltage, given by manufacturer’s datasheet. Then, from Photovoltaic PW1650-24V datasheet and formula I_P of solar single-diode circuit, both given in [32], the theoretical solar coefficient for PW1650-24V is $\zeta = 17.52\%$. We use this value of ζ in our simulations.

The Hottel’s atmospheric transmittance β is a function of θ_β and local altitude H (in km). For calculation of β, we will apply the empirical Hottel’s 23 km visibility haze model, given in [26], [30], which is reasonable for PV panel set up on top of buildings in a city. The extra-terrestrial solar irradiance, $G_{\text{ET}} \triangleq G_{\text{ET}}(\mathcal{T})$, is a function of day number of the year $\mathcal{T} \in \{1, \ldots, 365\}$, as given in [30], [35]. The value of $\cos(\theta_\beta)$ can be geometrically calculated via day number \mathcal{T}, latitude ϕ, longitude φ and time-zone T_{GMT}, as given in [28], [35]. Let us consider the case of Rome, Italy on 15th August. Substituting $\{\phi, \varphi, H, T_{\text{GMT}}, \mathcal{T}\} = \{42^0, 12.5^0, 0.024, 1, 227\}$ into
formulae in above cited references, we can feasibly calculate hourly values of G via \([18] \), as plotted in Fig. [4]. Note that, this hourly curve of solar irradiance is consistent with experimental measures at University of Rome Tor Vergata in mid-summer \([36], [37] \).

3) Consumed energy model for mobile station: According to a recent study of FP7 program EARTH \([38] \), BS can operate in two separating modes: operating and sleep-mode. The necessary power P_{BS} for operating BS can be approximately regarded as a linear function of transmitted power P_{TX}, as follows \([38], [39] \):

$$P_{BS} = \begin{cases} N_{TRX}(P_0 + \text{slope} \times P_{TX}) & , 0 < P_{TX} \leq P_{max}^{TX} \\ N_{TRX}P_{sleep} & , P_{TX} = 0 \end{cases}$$

(19)

The notation is defined as follows: N_{TRX} is total number of transceiver chains, which is a product of number of BS sectors, antennas and carriers. P_0 is constant power for equipment’s operation. slope is linear coefficient of load-dependent power transmission. P_{sleep} is sleep-mode power consumption. $P_{sleep} < P_0$. P_{max}^TX is maximum transmitted power per antenna. Note that, sleep-mode is regarded as the key for energy-saving schemes. In state-of-the-art BS, the operating power is set independent of load, which leaves the potential of saving energy to future BS \([38], [40] \). For macro BS, the estimated values of these parameters are \([38] \): $P_0 = 130$ W, $\text{slope} = 4.7$, $P_{sleep} = 75$ W and $P_{max}^TX = 20$ W. $N_{TRX} = 1$ and $N_{TX} = 2$ for SISO and MIMO 2×2, respectively. In our simulations, the range of P_{TX} value is equally divided into K levels, i.e. $P_{TX,k} \triangleq \frac{k}{K}P_{max}^TX$, $k = 1, \ldots, K$. Time period T for switching P_{TX} level is one hour.

4) Physical data rates: By Shannon’s theorem, the user’s maximum data rate depends on channel bandwidth B and signal-to-noise ratio, as follows:

$$C(x) = kB \log_2(1 + SNR(x)),$$

$$SNR(x) = N_{TRX} \frac{P_{TX}/PL(x)}{N_0 B},$$

(20)

in which B is channel bandwidth, k is coefficient gap between practical and optimal coding schemes, SNR is signal-to-noise ratio dependent on transmitted power P_{TX} and user’s path-loss $PL(x)$ to BS, and N_0 is standard thermal noise power spectral density. Coding coefficient in \([20] \) was estimated as $k \approx 0.5$, $k \approx 0.58$ and $k \approx 0.54$ for SISO, SIMO 1×2 and MIMO 2×2 systems, respectively \([41] \). These figures have been obtained by fitting \([20] \) with the outputs of an operator simulator compliant with 3GPP recommendations \([42] \) and in particular take into account fast fading and MIMO multiplexing gain. The path-loss $PL(x)$ for non-line-of-sight (NLOS) macro BS in urban area and carrier frequency f_c = 2.6 GHz can be evaluated from 3GPP technical report \([42] \): $PL(x) = 39.11 \log_{10}(x) + 21.8$ (dB), where $10 < x < 5000$ in meter. The channel bandwidth $B = 20$ MHz is also assumed in our simulations. We first consider a single-cell scenario without shadowing and then show results with 6 interferers and shadowing with standard deviation of 6 dB.

5) User’s traffic model: In this paper, the coverage area S of BS is considered as a ring, whose coverage radius is assumed to be between $r_a = 10$ m and $r_b = 1000$ m. Mobile user’s location is assumed to be fixed during the call and users appear uniformly inside S. In queueing theory, our user’s traffic can be modeled as $M/G/1/\kappa$ processor-sharing queue (i.e. with admission control), in which κ is maximum number of users being served \([43], [44] \). The utilization factor ρ in this case can be calculated as follows \([45], [46] \):

$$\rho = \frac{\int_{x \in S} \rho(x) dx}{\int_{x \in S} \lambda(x) dx} = \frac{\xi}{\mu(x)},$$

(21)

where λ (user/s) is mean rate of arrival users, ξ (user/s/km2) is mean arrival rate per surface unit, μ (user/s) is mean value of serving rate of BS and σ (Mbit/user) is mean size of transmitted data per user. From Shannon’s rate expression \([20] \), it is difficult to provide solution for integral \([21] \) in closed form. We calculate \([21] \) via discretization of area S in our simulations. The blocking probability Prob_b, and the mean throughput per user in this case are \([45], [47] \):

$$\text{Prob}_b = \rho^\kappa \frac{1 - \rho}{1 - \rho^\kappa + 1},$$

$$R = \psi_S \frac{(1 - \rho)}{\rho} \frac{1 - \rho^\kappa}{1 - (\kappa + 1)\rho^\kappa + \kappa \rho^{\kappa+1}},$$

(22)

where ψ_S (Mbps) is total data traffic demand inside S and $\psi_S = \int_{x \in S} \lambda(x) dx = \sigma \xi \pi(r_b^2 - r_a^2)$, respectively. In our simulations, the admission control is based on the maximum number κ of active users, such that data rate for any active user is at least $C_{min} = 0.1$ Mbps, i.e., we set $\kappa = \left\lfloor \frac{C_{RF}}{C_{min}} \right\rfloor$, with floor function $\lfloor \cdot \rfloor$, as done in \([47] \) section 4.1. Then, we adopt the scenario #1 (ordinary traffic) and scenario #2 (heavy traffic) in EARTH project \([38] \) for average mobile traffic demand in European urban area. All mobile users equally subscribe to 3 operators. However, only active subscribers require data traffic from operator. As extracted from \([38] \) Fig. 4, the population density for urban deployment is assumed 1000 people per km2 and the hourly percentage χ of active subscribers in average is shown in Fig. [4], whose maximum is 16% at peak hour. From those numbers in \([38] \), we can calculate the hourly user’s traffic demand $\sigma \xi$. The maximum value of user’s traffic demand $\sigma \xi$ for scenario #1 and #2 is 9.2 Mbps/km2 and 17.25 Mbps/km2 at peak hour, respectively. For simplicity, we only consider scenario #2 in subsection IV-C8.

B. Markovian model for base station

1) Action and policy definitions: Let us assume that transmitted power P_{TX} cannot be changed during the fixed time period T. If we consider the decision on transmitted power value $P_{TX,k}$, at ith time period, as an action $a_i = [P_{TX,k}]$ within a finite set of K possible values $A = \{P_{TX,1}, P_{TX,2}, \ldots, P_{TX,K}\}$, the policy in this case is a sequence of P_{TX}, as follows: $\pi_i = \{a_1, a_2, \ldots, a_T\} = \{P_{TX,1}^{[i]}, P_{TX,2}^{[i]}, \ldots, P_{TX,K}^{[i]}\} \in \Pi_i$.

2) Quality of service as a reward: We assume that the reward for our system is a measure of the user’s Quality of Service (QoS). In this paper, for a given policy π_N, we consider the user’s average throughput $\bar{R}(\pi_N)$ (in Mbps/user) as the QoS. For this purpose, let us assume that, during its time period, BS has served totally z_i mobile users, whose
average throughput per user is $R_i(a_i)$ (in Mbps/user) given by (22). The number z_i of served users is then a function of the blocking rate $\text{Prob}_b(a_i)$ given by (22), i.e. we have $z_i = (1 - \text{Prob}_b(a_i))\mathbb{N}_i$, where \mathbb{N}_i denotes the number of arrival mobile users during ith time period. In practice, blocking probabilities $\text{Prob}_b(a_i)$ are kept sufficiently small. Then, in this case, we can approximate $z_i \approx \mathbb{N}_i$. Moreover, \mathbb{N}_i is proportional to χ_i in Fig. [I], so that:

$$R(i) = \sum_{i=1}^{N} R_i(a_i) z_i \approx \sum_{i=1}^{N} R_i(a_i) \chi_i = \sum_{i=1}^{N} R_i(a_i) \chi_i. \quad (23)$$

In our Markovian model, the reward b_i can be defined as $b_i(a_i) = R_i(a_i) \chi_i$, so that the accumulated reward v_N, as defined in (11), is equal to the overall average throughput $\bar{R}(\pi_N)$:

$$v(\pi_N) = \sum_{i=1}^{N} b_i(a_i) = \bar{R}(\pi_N). \quad (24)$$

Note that, in admission control scenario, the approximation for average throughput (23) was proposed in order to achieve the recursive property for $\bar{R}(\pi_N)$ (24). With this approximation, the reward can be written as a sum of independent rewards at every time period, so that the reward definition has the desired Markov property.

3) Blocking rate and grid energy as costs: In our model, we assume that blocking rate and consumed grid energy are two costs that must be constrained. We will thus consider cost vectors $c_i = [c_{1,i}, c_{2,i}]$ of $L = 2$ dimensions, $i = 1, 2, \ldots, N$. The first cost series $c_1 = [c_{1,1}, \ldots, c_{1,N}]$ is then defined as a sequence of saving energy amount during ith time period: $c_{1,i}(a_i) = E_U[a_i]$ and $E_U[a_i] \equiv (P_{V} - P_{BS}) \times T$, in which P_{V} and P_{BS} via (18) are the average harvested solar power and BS power during period i respectively. The accumulated cost $u_1 = [u_{1,1}, \ldots, u_{1,N}]$ in this case is equal to accumulated saving energy level:

$$u_1(\pi_N) = E_0 + \sum_{i=1}^{N} c_{1,i}(a_i) = E_0 + E_U(\pi_N). \quad (25)$$

From (17), the total consumed grid energy is:

$$E_G(\pi_N) = -\min(0, u_1(\pi_1), \ldots, u_1(\pi_N)) \quad (26)$$

The second cost vector $c_2 = [c_{2,1}, \ldots, c_{2,N}]$ is defined as $c_{2,i}(a_i) = \text{Prob}_b(a_i) \chi_i$. The accumulated cost u_2 in this case is equal to the total average blocking rate:

$$u_2(\pi_N) = \sum_{i=1}^{N} c_{2,i}(a_i) = \bar{P}_b(\pi_N). \quad (27)$$

From equations (25), (26) and (27), we see that costs can be written as the sums of independent costs at every time period and have thus the desired Markov property.

4) Constrained optimization formulation for BS: From the Markovian model for BS (24-27), let us consider following optimization problem:

$$\pi^*_N = \arg \max_{\pi_N} \bar{R}(\pi_N), \quad \pi_N \in \Pi_N^*$$

under two constraints $\pi_N \in \Pi_N^*$:

$$E_G(\pi_N) \leq \tau_E, \quad \bar{P}_b(\pi_N) \leq \tau_b, \quad (28)$$

where τ_E and τ_b are desired thresholds of total consumed grid energy and average blocking rate, respectively. If grid energy is not available in practice, we can simply set $\tau_E = 0$. This problem can be feasible solved via Forward-Backward recursion of CVA in section II-D. Also, we recognize that the cost sequences $E_G(\pi_i)$ and $\bar{P}_b(\pi_i)$ are monotonic. Hence, we can verify these constraints in tandem with CVA’s forward recursion, as explained in section II-D. Note that, we can regard the min operators in (25) as special cases of ring-sum operator, as illustrated in (15), when applying (11).

IV. Simulations

In this section, we will consider a macro BS in a European urban environment. The BS consumes energy in hybrid scheme, which includes solar battery and grid energy. The adopted simulation parameters (e.g., channel model, carrier frequency, etc.) are given in section III-A. Our purpose is then to control transmitted power P_{TX} in order to maximize user’s average throughput under two constraints: total consumed grid energy and total blocking rate. Two approaches will be compared to each other: the traditional one keeping P_{TX} fixed all the time versus our novel CVA presented above.

A. Allocation methods for transmitted power level

Two approaches (fixed P_{TX} and CVA) for allocating P_{TX} level over time will be considered. In fixed P_{TX} scheme, the P_{TX} is kept at chosen level for the whole time horizon, regardless of whether there is any active user in the cell. The fixed P_{TX} level is chosen so as to meet the energy constraint. In CVA scheme, we study three rejection strategies, namely free-blocking-rate, blocking-rate-constraint and minimum-blocking-rate.

- In free-blocking-rate strategy, there is no constraint on the blocking rate.CVA will maximize user’s average throughput under constraint of consumed grid energy E_{G}. For quantization step in CVA, the energy process E_U in section III-A is uniformly quantized up to $M = 100$ levels.
- In blocking-rate-constraint, CVA will maximize user’s average throughput under two constraints, one for E_{G} and the other is 5% for total blocking rate. We quantize the energy process in 100 levels and the blocking rate in 10 levels, i.e., $M = 1000$.
- In minimum-blocking-rate, CVA will minimize blocking rate under constraint of consumed grid energy E_{G}. The

Nevertheless, the blocking rate is still computed in order to serve as a tie-breaking rule for policies leading the same user’s average throughput.
energy process is quantized with $M = 1000$ levels. User’s throughput is ignored. For illustration, in CVA scheme, there are $K = 10$ levels of P_{TX}, while in fixed P_{TX} there are $2K$ levels.

B. Reference scenario

Reference scenario is a practical and typical case where optimization technique, i.e., CVA, is performing much better than fixed P_{TX} scheme. In this scenario, SISO system is adopted; the observation’s time-length constraint is one day; the size of solar panel is assumed to be 4 m2. The effect of these parameters will be investigated in subsequent scenarios. The fixed P_{TX} scheme and CVA with free-blocking-rate strategy are then applied and results are shown in Fig. 5.

In Fig. 5 and throughout the paper, the dotted lines are of CVA scheme, the marks without line are of fixed P_{TX} scheme. Rectangles correspond to the average throughput of accepted users while the crosses correspond to all users (assuming zero throughput for blocked users). The difference between these two curves show the impact of the blocking rate. We can see that CVA yields significant improvement, compared to fixed P_{TX} when E_G constraint is tight. CVA is able to meet the constraint with respect to E_G.

Fig. 5 shows the evolution of accumulated saving energy across the day for CVA and two fixed P_{TX} schemes (namely with minimum and maximum power). The five curves of CVA correspond to five energy constraints taken from Fig. 5. CVA curve’s slopes vary between the fixed minimum and maximum P_{TX} curve’s slopes according to the chosen P_{TX} level. At first hours of the day (from 0:00 to 07:00), energy is mostly consumed from the grid and hence P_{TX} is adjusted according to the constraint. During daylight (from 07:00 to 18:00), energy is harvested from the sun and is sufficient to transmit at higher power levels or even full power. At night (from 18:00 to 24:00), the energy harvested during daylight is sufficient to transmit at full power. Note that the system has an empty battery at 00:00 but has stored some harvested energy at 24:00 that can be used for the next day.

Fig. 5 is a histogram of P_{TX} levels for the five cases (from left to right, respectively) of CVA scheme in Fig. 5. Most of the time CVA uses full power. When the energy constraint is tighter, CVA switches to lower P_{TX} level in order to save up energy.

C. Case-studies

1) Effect of time horizon: The setting in this scenario is the same as reference scenario, except that the time horizon is set to 1 and 30 days, corresponding to right and left set of curves, respectively, in Fig. 6. Also, we assume a monthly energy constraint for 30 days curves. For comparison with 1 day, we however scale the x-axis to a daily constraint in Fig. 6. Fig. 6 shows the energy process for the case of 30 days. For clarity, Fig. 6 is the zoomed version of Fig. 6 by excluding the fixed P_{TX} curves.

In Fig. 6, all curves are moved to the left when horizon increases, i.e., the average consumed grid energy per day is reduced when time horizon increases. The reason is that the system stores some harvested solar energy in the battery from one day to the next one (see Fig. 5b). With fixed P_{TX} scheme, the curve for 30 days has two parts: a steep increase and a lower slope. When E_U is higher than zero at the end of the first day (as for $P_{TX}^{(min)}$ in Fig. 5b), no new grid energy is required in the following days because the average input energy is higher than the average output one. Therefore, the grid energy constraint is used only for the first hours of the first day when the battery is empty. This corresponds to the steep increase part. When E_U is less than zero at the end of the first day, we require new grid energy everyday. Therefore consumed grid energy scales with the time horizon. This corresponds to the lower slope. With a 30 day horizon, CVA still outperforms the fixed P_{TX} scheme. When the constraint is tighter, CV A sees performance dropping while CVA maintain a high level of throughput.

In Fig. 6, we see that there are two modes for the fixed P_{TX} schemes. Either there is enough harvested energy compared to the consumed energy and the saved energy E_U is growing indefinitely, or there is not enough and more and more grid energy is consumed (see minimum and maximum fixed P_{TX} curves respectively). There is thus a best fixed P_{TX} that balances input and output energy processes on the long term.

In Fig. 6, we observe two behaviors. If the constraint is loose, the system takes energy from the grid every day and we observe a decreasing trend towards the constraint. If the constraint is tight (almost zero), during the first half of the month, the system save energy every day in the battery and releases it in the second half of the month to meet the constraint after 30 days. In contrast fixed P_{TX} policies either save or release energy every day without being able to modulate between the days. This flexibility in tight constraint helps CVA increase the user’s average throughput by about 40%, from 9.3 Mbps in fixed P_{TX} scheme to 12.8 Mbps in CVA.

2) Effect of panel dimensioning: In this scenario, we study the effect of the solar panel size. For illustration, we assume the reference scenario with time-horizon of one day and the minimum-blocking-rate strategy. Solar panel’s size is set to 0, 2 and 4 m2 (i.e from right to left set of curves in Fig. 7, respectively). We first observe that reducing the panel size is equivalent to requiring more grid energy as curves are moving to the right. If the panel is small the gain of CVA is also small with respect to fixed P_{TX} policy because there is less room for regulation between days. From 0 to 4 m2, we observe important gains of CVA with respect to fixed P_{TX}. Above 4 m2, harvested energy is more than sufficient and there is no further gains. The blocking rate for CVA is also very small in this case, in which the largest one is 5.9% (vs. 50% for fixed P_{TX}) while the rest is almost zero. As conclusions for this subsection, the panel size has to be chosen according to the grid energy constraint, CVA outperforms fixed P_{TX} scheme in all cases, and even if there is no solar panel, there is still room for optimization.

3It is however still computed to serve as a tie-breaking rules for policies leading the same blocking rate.
Figure 5. CVA vs. fixed P_{TX} scheme (reference scenario, free-blocking-rate strategy).

Figure 6. Effect of different time horizons (reference scenario, free-blocking-rate strategy).

Figure 7. (a-d) Effect of panel size, battery capacity, MIMO, interference and shadowing. (e-f) Iterative CVA scheme for multi BSs.
3) Effect of battery size: Similar to previous scenario, we now assume MIMO 2×2 and a panel size of 8 m2. The effect of varying battery size and non-empty initial battery ($E_0 > 0$), as explained in section III-A1, is shown in Fig. 7b. We first observe that, similar to panel dimensioning, varying battery size moves curves horizontally: obviously, when battery size increases, less grid energy is required. CVA clearly outperforms fixed P_{TX}. Also, CVA works better with large batteries because there is more freedom for power regulation. Having an initial non-empty battery has a similar effect because this stored energy is used during first hours of the process when daily light is not available. The case of unlimited battery allows us to see that a battery level of about 4.3 kWh is sufficient. By cutting off battery capacity down to almost a half at 2 kWh or even by removing completely the battery, a significant amount of harvested energy is lost and more energy is required from the grid.

4) Effect of MIMO system: In this subsection, we study the influence of SIMO 1×2 and MIMO 2×2. A 10 days time-horizon, no sleep-mode, free-blocking-rate strategy are assumed. Panel sizes of 4 m2, 4 m2 and 8 m2 are assumed for SISO, SIMO and MIMO cases, respectively. Results are shown in Fig. 7. We first see how MIMO increases the average throughput but requires more energy. Moreover, the blocking rate is reduced with MIMO (almost zero). The reason is that the traffic demand is the same while the serving rate is increased. CVA in MIMO case outperforms fixed P_{TX} scheme and the relative gain with respect to fixed P_{TX} is similar to the SISO case. The interesting case is SIMO, which compromises between SISO and MIMO. Given the same amount of harvested energy, the average throughput in SIMO is significantly higher than that in SISO, while the blocking rate in SIMO case is dramatically lower (almost zero). This is owing to the increase in serving rate in SIMO, without the need of increase in energy like MIMO. Although the average throughput of SIMO is not as high as that of MIMO, we suggest that SIMO should be preferred in application of CVA, owing to its efficiency in energy per bit.

5) Effect of shadowing and interference: Given the same MIMO 2×2 case in previous subsection, we wish to study the effect of shadowing and interference. At equal angles around our central BS, we set up six extra macro BSs as interferers, whose inter-distance to central BS is two times the cell radius r_b, as shown in Fig. 7. For simplicity, we assume that interferers transmit at 10 W, i.e., half of the maximum power. For every received power, we consider an independent shadowing of $\sigma_s = 6$ dB [42] in the path-loss formula in (20). The best server policy is employed, i.e., a user is served by the BS providing the highest received power. Results in this case are shown in Fig. 7d. As expected, shadowing effect reduces QoS significantly, down to about 50% of QoS in no shadowing case. The interference effect then further reduces QoS down to about 50% of QoS in shadowing case. Nevertheless, we again observe that, for all cases, the CVA always yields better QoS than fixed P_{TX} for our central BS under the same constraint of grid energy. The rejection rate in CVA is also sufficiently low.

6) Effect of iterative CVA in BS network: Let us now study a network of BSs as shown in Fig. 7. The hexagon area is served by seven solar BSs (the coverage radius is nearly doubled with $r_b = 1990$ m compared to previous cases). In such a single frequency network, every BS tries to optimize its QoS, while generating interference on other BSs and thus influencing their own QoS. To solve this issue, we propose an iterative CVA, which iteratively applies CVA to each BS one-by-one while keeping the P_{TX} trajectories of all other BSs unchanged. Along the iteration steps, the network average QoS never decreases. Indeed if we fix P_{TX} policies of all BSs but one and tune network QoS via the remaining P_{TX} policy, the QoS can only improve because CVA provides a constrained near-optimal policy. Hence, iterative CVA is guaranteed to converge to a local maximum for the QoS of the whole network.

In simulations, we observed that not more than four rounds of iteration are required for convergence, given that our initialization is fixed P_{TX} scheme of the same grid energy constraint and each round consists of one iteration for each BS. In Fig. 7, we assume that the harvested solar energy process and daily grid consumed energy constraint are the same for all BSs. Users are served by their best server, which explains that the MIMO’s average throughput in this case is better than that of shadowing and interference case in Fig. 7. The SISO and SIMO, however, have much lower throughput that those in Fig 7, owing to shadowing and interference in hexagon area. In all cases, iterative CVA outperforms the fixed P_{TX} scheme. This is due to the fact that the iterative CVA is now able to regulate the P_{TX} of all interferers in order to balance the other-cell interference. As shown in Fig. 7, given the same average user’s throughput, iterative CVA can save up to 85% of grid consumed energy, in comparison with fixed P_{TX} scheme. Also, given the same grid energy constraint, all user’s throughput in iterative CVA are higher (up to 25%) than that of fixed P_{TX} scheme.

7) Effect of sleep-mode: We now allow the BS to go in sleep-mode, i.e., whatever the policy (CVA or fixed P_{TX}), the BS consumes less energy when there is no user to serve. We assume a 10 days time-horizon, a panel size of 2.8 m2 and a minimum-blocking-rate strategy. Results are shown in Fig. 8a,b. As with sleep-mode we need less energy, the grid energy constraint can be much tighter to achieve the same throughput. As a consequence, we can reduce the panel size with respect to the reference scenario: about 3 m2 are sufficient to run a BS with sleeping-mode and without grid energy, which explains why we picked a slightly smaller panel for this scenario. An interesting observation is that CVA achieves much higher gains in presence of sleep-mode when the constraint is tight and almost no gain when the constraint is loose. The high gain can be explained as follows. CVA offers higher throughputs than fixed P_{TX}, so that users leave the system quicker. As a consequence the proportion of time during which there is no user in the system is higher (see Fig. 8) and the BS switches to sleep-mode more often (from 10% for fixed P_{TX} to 40% for CVA in the tightest constraint scenario).
8) Effect of rejection strategy: We now study the effect of different rejection strategies. We use the same assumption as in the previous subsection with MIMO 2×2. In order to stress the system, we increase the traffic and assume the scenario #2, in which 50% of active users are heavy users. With this high traffic demand, we compare the three rejection strategies for CVA. The result is shown in Fig. 9(a). We first observe that CVA always outperforms fixed P_{TX} in terms of user throughput. There is however a trade-off between the gain and the blocking rate: as the blocking rate constraint is tighter (from free to 5% to minimum strategies on the figures), the throughput gain is lower (see Fig. 9(b)). The free-blocking-rate strategy yields the most throughput gain for CVA, but with high blocking rate (from 24% to 14% for top set of curves in Fig. 9(b)). The blocking-rate-constraint meets the constraint at 5% blocking rate, but yields lower gain in throughput. Lastly, the minimum-blocking-rate strategy yields the least blocking-rate, around 1.1% in Fig. 9(a, b), but has little throughput gain over traditional fixed P_{TX} scheme. When the constraint is very tight, this strategy is very interesting as both throughput and blocking rate gains are huge (see the first left points of the two figures). As a conclusion, CVA offers the flexibility to control and balance user throughput and blocking rate.

9) Comparison with brute-force method: We now consider a very simple scenario and compare the output of CVA with fixed P_{TX} scheme and the optimal policy obtained with the brute-force approach. In order to make it computable, we only consider the case of two, three and four possible P_{TX} values,
as shown in Table I over a single day. The number of policies is $2^{24}, 3^{12}$ and 4^{12} for the case of two possible P_{TX} values over 24 slots of one hour period, three and four possible P_{TX} values over 12 slots of two hours period, respectively. The grid energy constraint E_G kWh is set so as fixed P_{TX} meets the constraint by always using only one P_{TX} state all the time. In all cases, brute-force and CVA provide the same performance and clearly outperform fixed P_{TX} scheme in terms of throughput and blocking rate. From numerical results we observe that indeed the optimal policy is returned by CVA in all cases. Running time is computed using MATLAB and a commercial PC (Intel i7 CPU, 2.67 GHz) and shows clear advantage of CVA.

V. Conclusion

In this paper, we tackled generic optimization problems under multiple constraints, whose objective and constraint functions are based on L_p-norm. We formulated this kind of problems as a quantized Markovian cost-reward process. Next, we designed a low complexity near-optimal optimization algorithm, called Cost-constrained Viterbi Algorithm, to solve these problems.

We applied this framework to resource allocation in hybrid mobile base stations. For the first time, we formulate the hybrid energy process using L_p-norm. Our algorithm was shown to be robust, flexible and near-optimal in practical settings of solar mobile base station.

We showed in which practical scenarios optimization is particularly interesting compared to fixed transmit power policies: when the constraints are tight (grid energy, solar panel size, short time horizon, blocking rate, battery size) or the system is stressed (high traffic demand), our Cost-constrained Viterbi Algorithm achieves huge gains in user’s average throughput and blocking rate. In a more typical scenario, about 40% gain in user throughput can be achieved under the same constraint of grid energy for single BS and about 85% reduction in grid energy can be achieved under the same constraint of user throughput for hexagon network of BSs.

REFERENCES

Viet Hung Tran has been a lecturer at Hochiminh city University of Technology, Vietnam, since 2008. He received his Master degree from ENS Cachan in Paris, France, in 2009 and his Ph.D. degree from Trinity College Dublin, Ireland, in 2014. From 2014 to 2016, he was a postdoc at Telecom ParisTech. His research interest is optimal algorithms for Bayesian learning network and information theory.

Marceau Coupechoux is Associate Professor at Telecom ParisTech since 2005 and Professeur Chargé de Cours at Ecole Polytechnique since 2016. He obtained his Master from Telecom ParisTech (1999) and from University of Stuttgart (2000), his Ph.D. from Institut Eurecom (2004), his Habilitation from University Pierre et Marie Curie (2015). From 2000 to 2005, he was with Alcatel-Lucent (in Bell Labs former Research & Innovation and then in the Network Design department). He was Visiting Scientist at the Indian Institute of Science, Bangalore, India, in 2011-2012. He has been General Co-Chair of WiOpt 2017. In the Computer and Network Science department of Telecom ParisTech, he is working on cellular networks, wireless networks, ad hoc networks, cognitive networks, internet of things, focusing mainly on performance evaluation, optimization and resource management.