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Brief Review on Estimation Theor

K. Abed-Meraim

ENST PARIS, Signal and Image Processing Dept.
abed@si .enst. fr

This presentation is essentially based on the course ‘BABYA. Moulines
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Presentation Outline

Basic concepts and preliminaries

Parameter estimation

Asymptotic theory

e Estimation methods (ML, moment, ...)

J
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Basic Concepts and Preliminari
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The statistics represent the set of methods that allow takysia (and
information extration) of a given set of observations (Jlatgoplication
examples include:

The determination of the production quality by a probingigtu

The measure of the visibility impact of a web site (i.e. nundder
readed pages, visiting strategies, ...).

The modelisation of the packets flow at a high-speed netwaitd g
The descrimination of important e-mails from spam.
The prediction of missing data for the restoration of olcbrelings.

The estimation and tracking of a mobile position in a celigigstem.

etc, etc, ...

Definition and applications

K. ABED-MERAIM

ENST PARIS
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Some history...

One can distinguish 3 phases of development:

e Begining of XIX-th century, apprition of the first data ansily
experiments (Prony, Laplace) and the first canonical meimod
statistics (Gauss, Bayes).

e In the first part of the XX-th century (until the 1960s) the isasf the
statistical inference theory have been established by¢BeaFisher,,
Neyman, Cramer,...). However, due to the lack of powerful cataunh
machines, the applications and the impact of the statigt&rs quite
limited.

e With the fast development of computers and data bases,dtigtisthas
seen a huge expansion and the number of its applicationsscawery
large number of domains either in the industry or in resekaiob.

K. ABED-MERAIM ENST PARIS
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Statistical model

e In statistics, the observation= (1, 22, -+, x,) are seen as a
realization of a random vector (proces3$), = (X1, X, -+, X,,)
which law P is partially known.

e The observation model translates thpriori knowledgewve have on
the data.

e The nature and complexity of the model varies considerabiy fone
application to another...

K. ABED-MERAIM ENST PARIS
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Parametric model

e Parametric modelis a set of probability lawéP,, 6 € ©) indexed by
scalar or vectorial parametére R¢.

e Observationthe observatioX is a random variable of distributiaB,
where the paramet#ris unknown.

e The probability of a given event is a function®and hence we’'ll
write: PQ(A), EQ(X),

J
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Objectives

When considering parametric models, the objectives aemoft

e The estimationwhich consists to find an approximate value of
parametep.

e The testingwhich is to answer the following type of questions... Can
we state, given the observation set, that the proportiorefefaiive
objectsd is smaller thad.)1 with a probability higher thag9%?

J
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Example: Gaussian model

e Arandom variableX is said standard gaussian if it admits a p.d.f.

B(r) = = exn(=T).

which is referred to a& = A (0, 1).

e X is a gaussian random variable of mgaand variance? if
X = n+ cXp
whereX is a standard gaussian.

e Gaussian modekhe observatiof X, - - -, X,,) aren gaussian iid
random variables of megnand variance? (i.e. 0 = (i, 0)).

J
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Statistic’s concept

e To build statistical estimators or tests, one has to evaloattain
function of the observatiorit,, = T'(X3, - - -, X,,). Such a function is
calledstatistic

e Itis crucial that the defined statistic is not a function & frarametef
or the exact p.d.f. of the observations.

e A statistic is a random variable which distribution can benpated
from that of the observations.

e Note that a statistic is a random variable but not any randamable is
a statistic.

J
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Examples

Empirical mean: 7, =Y., X;/n.

Median value: T, = (X),.

Min + Max: T, = 0.5 (max(X1, -+, X,) + min(Xy, -, X,,)).

e Variance: T, =", X?/n.

J
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Parametric versus non-parametric

e Non-parametric The p.d.f.f of X is unknown but belongs to a known
function spacef, e.g.

F={f:R — R",twice differentiable anfi” < M}.
leads to difficult estimation problems !!

e Semi-parametricConsider for example a set of observations
{(X;, z;) } following the regression mode{; = g(0, z;) + ¢; whereg
is a known function and; are iid random variables. This model is said
semi-parametric if the p.d.f. ef is completely unknown.

e Parametric The previous model is parametric if the p.d.f.epis
known (up to certain unknown point parameters).

K. ABED-MERAIM ENST PARIS
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Parametric estimation

o LetX = (Xy,Xs, -+, X,) be an observation of a statistical model
(Pg,@ S @)

e An estimator is a function of the observation

en(X> = én(Xla X2> T ’Xn)

used to infer (approximate) the value of the unknown paramet

K. ABED-MERAIM ENST PARIS
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Example: Estimation of the mean value

e Let (X, Xo, -+, X,) be an-sample iid observation given by
X; =0+ X;0,0 € R andX;q are iid zero-mean random variables.

e Mean estimators:
1- Empirical mean: 6, = 3" | X, /n.

2- Median value: 6, = (X),.

3- (Min + Max)/2: 6, = 2 Xo) (X Xo),

J
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Estimator

e A statistic is referred to as ‘estimator’ to indicate thasitised to
‘estimate’ a given parameter.

e The estimation theory allows us to characterize ‘good edtins’.
e For that one needs ‘performance measures’ of a given estimat

e Different performance measures exist that sometimes rfeghitto
different conclusions: i.e. an estimator might be ‘good’ddirst
criterion and ‘bad’ for another.

J
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Bias

Ey(T) = 6.

e Otherwise, the estimatdr is said ‘biased’ and the difference
b(T,0) = Ey(T) — 0 represents the estimation bias.

e An estimator’ of parametep is saidunbiasedf ¢ is the mean-value
of the distribution ofl" (¢ being the exact value of the parameter): i.e.

K. ABED-MERAIM
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Example: variance estimation

e Let(Xy,---,X,) be aniid observation of pfy(z) = Lp(z — p),
0 = (u,0?), andp satisfies[ z?p(z)dz = 1 and [ xp(z)dz = 0.

e S, =1 3" (X;— X)%is an unbiased estimator of.

e V,=2%" (X;— X)?is abiased estimator of? which bias is

T n

bias goes to zero whentends to infinity.

given byb = —o? /n. It is however saichsymptoticallyunbiased as the

K. ABED-MERAIM
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Unbiased estimator

¢ Instead ofj, one might be interested by a function of this parameter..
For example in the previous example, the objective can bstimate
o = /0, instead ofo? = 0. Whend is a parameter vector, one might,
in particular, be interested in estimating only a sub-vecid.

e T'is an unbiased estimator 9fd) if E,(T") = g(0) forall § € ©.

e Otherwisep(T,0,g) = Eo(T) — g(0) would represent the bias of this

estimator.
K. ABED-MERAIM ENST PARIS
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Bias and transforms

e Non-lineat transforms of unbiased estimators are not sachs
unbiased: i.e. iff" is an unbiased estimator 6f g(7") is not in general
an unbiased estimate 9f6).

e For example, ifl" is an unbiased estimate éghen7 is not an
unbiased estimate ¢f. Indeed, we have

Eo(T?) = varg(T) + (Eo(T))* = varg(T) + 6.

K. ABED-MERAIM ENST PARIS
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Mean squares error

Another pertinent performance measure is the mean squaicegMSE).
The MSE measures the dispersion of the estimator arroundrtiee value
of the parameter:

MSE(T,0) = R(T,0) = E(T(X) — 0)>.
The MSE can be decomposed into:

MSE(T,0) = (b(T,0))? + vare(T).

K. ABED-MERAIM ENST PARIS
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Example: MSE of the empirical mean
e (X, -+, X,)n-sample iid observation of law/(y, o).

e Empirical meanX =n~!'>" | X;.

e Unbiased estimator and

var(X) = —.

K. ABED-MERAIM ENST PARIS
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Estimator’s comparison: Risk measure

e We have considered previously theadratic risk (loss) function
1(0,a) = (0 — a)*
e Other risk (loss) functions are possible and sometimes suitable:
1- Absoluve-value error(6, o) = 6 — «,
2- Truncated quadratic risk functiob(d, o) = min((0 — «)?, d?).

3- The 0-1 risk functioni(f,«) = 0if § —a < eandi(f,a) =1
otherwise.

e The mean risk value for an estimator is definedza§ (7'(X), 9)).

K. ABED-MERAIM ENST PARIS
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Estimator’'s comparison

One can compare 2 estimators w.r.t. their risk values.

e An estimatorl is said ‘better’ than another estimatbf if

R(T,0) < R(T',0), ¥ 0c©

with strict inequality for at least one value of the paraméte

e Except for ‘very particular cases’, it does not exist anreator
uniformlybetter than all other estimators.

K. ABED-MERAIM ENST PARIS
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Reducing the class of estimators

e Unbiased estimatorave seek for the unbiased estimator with the
minimum quadratic risk value.

e Invariance One might be interested in estimators satisfying certain
invariance property. For example, in a translation mode, is
interested in the estimators that satisfy:

T(X1+c¢, -, Xp+c)=c+T(Xy, -, Xpn).

e Linearity: One seeks here for the best linear estimator. This is the cgs
for example, in the linear regression problem (e.g. Theorem o
Gauss-Markov).

K. ABED-MERAIM ENST PARIS
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Cramer Rao Bound: regular model

e For ‘regular’ statistical models it is possible to determalower bound
for the quadratic risk (MSE). It is the Cramer-Rao Bound (CRB)

e A statistical model is regular if:

1- The model is dominated: i.€%(A) = [, po(x)u(dx) ¥V A € B(X).
2- @ is an open set dR? anddp(x; 0) /06 exists for allz: and allé.

3- The pdfs have the same support for all valueg, ofe. for
A € B(X), we have eithePy(A) =0V 6 or Py(A4) >0V 0.

4- [ Zp(x;0)pu(de) = % [y po(x)p(dz) = 0.

K. ABED-MERAIM ENST PARIS
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Cramer Rao Bound: likelihood & score function

e The functiond — p(z;0) is calledlikelihood of the observation.

e For aregular model, the functigh— S(z;0) = Vylogp(x;0)is
calledscorefunction of the observation.

e When for all§, E(S(X;0)?) < oo, one define th&isher Information
Matrix (FIM) as:

1(0) = Eo[S(X:0)S(X;0)"].

K. ABED-MERAIM ENST PARIS
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Fisher information: Properties

e Additivity for iid observations:

I,(0) = Covg(Vglogp(Xy,---, X 6)) =ni(0)
where
i(#) = Covp(Velog p(X1;0))

in other words, each new information contributes in an idahtvay to
the global information.

e When the score function is twice differentiable, we have:

In(e) = _Ee(vg logp(X17 T 7X7L; 9))

K. ABED-MERAIM ENST PARIS
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Cramer Rao Bound

e LetT(X) be a statistic such thdf, (7'(X)?) < oo, V # and assume
that the considered statistical model is regular.

o Lety(f) = Ep(T(X)). Then

varg(T(X)) > V()T T7H(0) Ve (6).

e If T'is an unbiased estimator 6fthen the CRB becomes:

vary(T(X)) > I71(9).

K. ABED-MERAIM ENST PARIS
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Example: Empirical mean for gaussian process

e (X, -, X,) n-sample iid observation of law (;, 2) (% known).

e The Fisher information for the mean parameter is given by:
I,(0) =n/d?.

e The empirical mean MSE reaches the CRB and hence it is the best
estimator (for the quadratic risk) in the class of unbiasstohetes.

K. ABED-MERAIM ENST PARIS
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Example: Linear model

e Observation modelX = Z0 + ¢ whereX = [X1,---, X,,]T isthe
observation vector/ is a full rank known matrix and is the error
vector of zero-mean and covarianBgee’ ) = o21.

e The least squares estimatedadiven by

0=7%X

is unbiased and of MSE
Varg(9) = o*(27 )7L,
e If ¢ is a gaussian noise, then the FIM is givenl§9) = (27 Z) /o2

and hence the LS estimate is the best unbiased estimateher.t. t
guadratic risk.

J
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Efficiency

e An unbiased estimate @fwhich reaches the CRB is saidficient It is
an unbiased estimate with minimum error variance.

o Efficient estimators exist for the class of exponentialribstions
where

p(;0) o< exp(A(0)T () — B(0))-

J
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Asymptotic Theory
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Asymptotic approach

Study of the estimators in the limit of ‘large sample sizég’,n — oc.

For usual models, the estimates converge to the exact vatbe o
parameterconsistency

We then study the dispersion of the estimators around theJatue6.

Our tools are: the law of large numbers and the central lingibtem.

J
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Consistency

o Let(Xy,---,X,) bean observation of a statistical mod&}, 0 € ©).

o T, =T,(X1, -, X,) is asequence of consistent estimator8 iffor
all 6 the sequence of random variablEsconverges in probability té:

lim Py(T,, —0>0)=0 VO e€O,§>0.

n—0o0

J
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Large numbers law
e The consistency is often a consequence ofdige numbers law

e Large numbers lawLet (X1, -- -, X,,) be a sequence of iid random
variables such thal’(X;) < co. Then

1 n
- > X; —p E(X).
=1

J
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Consistency & continuous transform
e LetT,, be a consistent sequence of estimator&, @, —,, 0.
e Let ¢ be a continuous function i®.

e ¢(T,,) is then a sequence of consistent estimatos(6j.

K. ABED-MERAIM
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Convergence rate

e The consistency is an interesting property but does notugve

¢ In the case of the empirical mean one can easily verify that

the convergence speed!!

information on how fast the estimator converges to the lraitie.

vn(X,, — p) is bounded in probability which gives us a rough idea o

-

K. ABED-MERAIM
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Asymptotically normal estimator

e An estimator sequencg, of 0 is said asymptotically normal if

V(T = 0) —a N(0,0%(9)).

wherea?(0) is theasymptotic variancef the considered estimator.

e This asymptotic result allows us to evaluate (often in a gémway) the
dispersion of the estimators aroud the true value of thenpeier.

K. ABED-MERAIM ENST PARIS
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Convergence in distribution

Let (X,,,n > 0) be a sequence of random variabl&s, is said to converge
in distribution toX (i.e. X,, —4 X) if one of the following equivalent
properties is verified:

e For any bounded continuous functign
lim;, oo E(f(Xn)) = E(f(X)).
e Forallu, lim,, .., E(e’Xn) = E(e!X)

e For all subsets! € B(IR) such thatP(X € 0A) = 0 we have
lim,, .o P(X,, € A)=P(X € A).

K. ABED-MERAIM ENST PARIS
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Confidence interval

e Let(7,,n > 0) be a sequence of random variables such that
V(T — 0) —4 TN(0, 02).

o Let A =[—a, a] suchthatP(T € {a,—a}) = 0, then we have

Voro? J_a

e Consequently,

liyrlnPg(G €T, —a/vn, T, +a/\/n]) =a, V6

which represents a confidence interval of levebr 6.

1i7131 Py(v/n(T,,—0) € [—a, a]) = ! /a exp(—2?/20%)dx = a, V4.

K. ABED-MERAIM
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Central limit theorem

theoremthat can be stated as follows:

Let (X4, -, X)) a sequence of iid random variables of meaand
variances? = E(X?) < co. Then,

jﬁ (X = ) —a N (0,0%).

The asymptotic normality of the estimators comes fromcetral limit

K. ABED-MERAIM
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The §-method

e LetT, aconsistent sequence of estimatorg.of

e The continuity theorem states thdfT’,) is a consistent estimate of
9(0).

e However, this result does not give any information about the
convergence rate nor about the asymptotic normality of stienator

9(Tn)??
K. ABED-MERAIM ENST PARIS
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The §-method

e Suppose that/n(T,, — 6) —4 T and letg be a locally differentiable
function atf. Then:

Vn(g(Tn) — 9(0)) —a g'(O)T.

o If T =N(0,02),theny/n(g(T,) — g(0)) is asymptotically normal
N(0,g'(0)%0%).

K. ABED-MERAIM ENST PARIS
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Relative asymptotic efficiency

e LetT, andS,, be two asymptotically normal estimatorstbf

V(T —0) —a N(0,07(6))
V(S —0) —a N(0,0%(9))

e T, is said ‘asymptotically better’ theff,, if

02.(0) < o2(0) V0.

K. ABED-MERAIM ENST PARIS
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Moments method

e (X1, --,X,)niidrandom variable$P,, 6 € ©).

o Lety;(0) = Ey(9:(X)) (9i,7 = 1,-- - d are given functions).

e Moments method consists in solvingdrthe equations

whereji; are empirical (sample averaged) moments.

J
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Moments method

e Several moment choices exist. They should be chosen such tha
1- One can express explicitely the considered moment fomati terms
of 6.

2- Insure a bi-univoque relation between the moments anddbkieed
parametep.

e The method is applicable in simple cases only where we hanead s
number of parameters and there is no ambiguity w.r.t. the ehafithe
statistics.

J
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Consistency of the moment’s estimator

e Using the large numbers law, we have:
1 n
— > 91(X) =4 Eo(gu(X)).
=1

e Ifthe functionu: © — RR% is invertible with a continuous inverse
function, then the continuity theorem states that

0 =pn"" (i)
is a consistent estimate 6f Similarly, one can establish the asymptoti

normality of the moment’s estimator using the central lithéorem
and thej-method.

(9]

K. ABED-MERAIM ENST PARIS
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Maximum likelihood method

Let X = (X4, -, X,) asequence of random variables correspondin
to the model Py, 0 € O). Letpy represents the pdf of .

(e}

Likelihood 6 — p(x; ) seen as a function &£

Maximum likelihood estimatiorestimation of) such that

p(;0) = max p(w;0).

If p(x; 0) is differentiable, therd is a solution of

A~

Aglogp(x;0) = 0.

K. ABED-MERAIM ENST PARIS
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Log-likelihood function
e Log-likelihood L(z;0) = log p(x;6).

e In the case of iid observations:

1
- log p(x;6), — K(6y,0)

whereK (6, 6) is the Kullback-Leibler information defined by

K (00, =~ frog BV

p(X;00)

K. ABED-MERAIM ENST PARIS
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Kullback information

The Kullback-Leibler information is a ‘distance’ measuetween two pdf
satisfying:

o K(pa,,ps) >0

L K<p(7‘07p9) =0 Iﬁ

Py, (w2 p(w;00) = p(x;0)) = 1.

K. ABED-MERAIM ENST PARIS
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Mean and variance of a gaussian

e Log-likelihood:

n n R
log p(w; p, 0%) = —3 log(2m) — 5 log(a?) — 252 > (@i —p)?
=1

e Likelihood equations:

>

9
o

z; f1;6%) = 0,

e Solutions:

K. ABED-MERAIM ENST PARIS
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Non-unicity of ML estimate: Uniform distribution

e (X1, --,X,)iid random variables of uniform distribution in
[0 —0.5 6+0.5].

e Likelihood

1 if 6 € [max(X;)— 0.5, min(X;) + 0.5]

p(z;0) = .
0 otherwise

e The likelihood is constant in the interval

[max(X;) — 0.5, min(X;) + 0.5].

K. ABED-MERAIM ENST PARIS
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Other methods

Minimum contrast method,

M-estimation,

e Z-estimation

Robust estimation

J
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Synchronization (SC, Gaussian)

Impact of synchronization errors (1) &5

» Carrier phase error:

BPSK, « NRZ »filter %

. 1073 R\\ﬂf—'*

» Maximum phase jitter is \\\*14____*
determined by the i \\ =2l |3
implementation loss in the ¢ NS i A
link budget. LN e

L N

4.0 6.0 8.0 10.0 120 14.0 16.0 18.0

Ep
No

Synchronization (SC, Gaussian)
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ENSEEIHTw2

» Timing error
BPSK, « NRZ »filter

T T TTTTT

» Maximum timing jitter is
determined by the ¢
implementation loss in the =g
link budget. -

IR RELLI

Synchronization (SC, Gaussian)

Demodulation

» Functions to be implemented
L Baseband conversion
Q1,Q generation
U Carrier recovery
U Timing recovery
U Matched filtering
U Demodulation/decoding

Synchronization (SC, Gaussian)
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Analog demodulators

» Typical analog demodulator architecture

PLL : baseband conversion + carrier frequency/phase correction

IF input . data
P P »| Timing »| Decoder —»
correction

PLL : baseband conversion + carrier frequency/phase
correction

Timing correction : FF/FB structure AFTER PLL

Synchronization (SC, Gaussian) 7

Digital demodulators

A digital demodulator is NOT the sampled version of the
equivalent analog demodulator.

= Specific algorithms suited to digital implementation have
been developped.

Main differences between digital and analog demodulators:
» Down conversion is INDEPENDENT from phase recovery
» Timing recovery is performed BEFORE phase recovery

Synchronization (SC, Gaussian) 8
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Receiver input signal

y(t)=Re (x(t)ezj”f(’t ) +Re (n(t)ezj”fot )

x()= e’ d h(t - kT 1)

o(t) = 27rAﬁ]-€F Po
f, : carrier frequency, Af :carrier frequency uncertainty
¢, : phase offset, T : timing offset

d, : emitted symbols

h(t): emission filter (wideband channel assumed)

Synchronization (SC, Gaussian)

Baseband signal generation (1) EES

» Analog implementation

4@‘;% LPF [— Real part
— =%

/2

4@ LPF [—— Imag part

This process can be digitally implemented

(DAF : digital anti aliasing filter)

Synchronization (SC, Gaussian)

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 35



Baseband signal generation (2)

» Digital implementation (1)

s(t) 1s the real received passband signal (allocated bandwidth :

FI, centred at f;=FI)

t Sd —
v/ =~ en =y =>
Fe=4FI —

-FI A | Hpg(fI
1
/ :\
o | Fe/g Fela T

Synchronization (SC, Gaussian)

Baseband signal generation (3)

» Digital implementation (2)

hy(n)
% Re(x(n))
s(t) /4
T % z™ —> Im(x(n))
+/-1

Synchronization (SC, Gaussian)
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Likelihood functions (1)

r(t) =x(t)+n(t)
x(t) = e’ d h(t— kT —7)
k

p(t) = 270t + @y

p(T,) : signal observed during a period of duration T,

O = {(Po, Af,z,{d, }} Vector of unknown parameters

D =, A/ »f»{dk}} Vector of parameters estimates

Synchronization (SC, Gaussian)

Likelihood functions (1)

A(®) = Pr(p(Ty)/ D)

In Gaussian channel:

A(D) =exp —]é I ‘r(t) —S(l‘,CT))‘2 dt
0

To

s(t,®) = 42N G n(t— kT - 7)
k

s(t,®): signal replica

Synchronization (SC, Gaussian)

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 37



Likelihood functions (2)

Sub-optimal likelihood functions :
- DD : Decision Directed
- NDA : Non-data aided (depends on modulation)

These sub-optimal likelihood functions are derived for
timing, phase and frequency.

Synchronization (SC, Gaussian) 15

Likelihood functions (3)

Timin

Lypa(T)= %p(kaf)z

M h(-ty — ——— pk,?)

kT +7

Timing recovery is performed prior to phase recovery

Synchronization (SC, Gaussian) 16
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Likelihood functions (4)

Carrier phase:
» DD likelihood function

Lpp(p) = %&k Re(p(k,#)e %)+ Zk:Bk im( p(k,2)e ™77 )

»NDA lokelihood function for general rotationnaly
symetric signal constellation (21t/N symetry)

Lypa (@) = Re(E(d}iN)%pN(k, f)e‘Wj

Synchronization (SC, Gaussian)

Likelihood functions (5)

Examples of general rotationnaly symetric signal constellation

4

A
4 ° e 11 e .
1001 1011 0011 0001
} } } }—p Re{z
3 a1 |41 3 teh

) e I e e
1101 1111 0111 0101

Imfz}
A
+s

[J * L [ ]
1000 1010 0010 0000

-3

QPSK N=4

® L J L] [ ]
1100 1110 0110 0100

16QAM N=4

Synchronization (SC, Gaussian)
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Likelithood functions (6)

» Carrier frequency recovery
OAM

- j\'zmﬂcﬂ(p]

2
L({ak},Af,q)):;dk +2;Re ple)dle " )

PSK

- j[2ﬂAfkT+(pJ

L({ak},Af,¢)=;Re plk.p)d’e

Synchronization (SC, Gaussian) 19

Carrier phase recovery : DDMLFB (1)

Derivation of detector expression from Likelihood function

d B L
——Lpp(9)=0 for ¢ =¢
dp

= Y Im(d; p(k,£)e %) =0 for §=
k

= u(k)= Im(de(k, f)e_j‘i’) is a phase detector

Synchronization (SC, Gaussian) 20
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Carrier phase recovery : DDMLFB (2)

S curve (example for QPSK)

=> Phase amhisonitv (solved hv usino differential encnding/decoding)

/\ | |
401 : // s
/

80

20t
/
Ot

Detector output

-20

-40

/
/
/

L

-80
-100 -80 -60 -40 -20 0 20 40 60 80 100
Phase error

-60

Synchronization (SC, Gaussian) 21

Carrier phase recovery : DDMLFB (3) &2

DPLL
p(k,i)
— » decision >
A
phase detector
1/(z-1) — F(z2)
Synchronization (SC, Gaussian) 22
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Carrier phase recovery : DDMLFB (4)

Other possible detectors
plk,t)=w(k)
ul(k)=1m[w*(k).sgn{w(k)—a7 H
uz(k)zlm[ ]{w(k) d }

us(k):Im[ csgn w(k) d }

u,(k)=Im ]sgn

w(k)—d }

Synchronization (SC, Gaussian) 23

Carrier phase recovery : DDMLFB (5) E=%

Phase equivalent scheme

0 (=2
AN *
(0 2B, T = l,qSH(z)H (z—l)@
2jr z
1/(z-1) y
E,/N,
Synchronization (SC, Gaussian) 24
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E====4 arrier phase recovery : NDAMLFB (1)

Example for QPSK
d ~ ~ A
FLNDA((D) =0 for p=¢
Q

4
= Zlm({p(k,f)e_”’} j: 0 for @ = ¢
3

= u(k)= Im({p(k,f)e_j¢}4j is a phase detector

Synchronization (SC, Gaussian) 25

Detector output
o -
T
e
—
—

4 i i i i i
-100 -80 -60 -40 -20 0 20 40 60 80 100
Phase error

Synchronization (SC, Gaussian) 26
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Carrier phase recovery : NDAMLFB (3) =58

p(k,i)

—

A,

decision ——

A

phase detector

1/(z-1) — F(z)

Synchronization (SC, Gaussian) 27

Carrier phase recovery : NDAMLFF (1) =8

» Suited for burst transmission
» Two types of structures : block window, sliding window
» Example for QPSK

A —JiQ 4 _ 5 — A
%Im({p(k,r)e ”’} j—O for = ¢

= gb:iArg[Zp4(k,f)j+k72[
k

— Phase ambiguity (k7z/2)

Synchronization (SC, Gaussian) 28
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Carrier phase recovery : NDAMLFF (2) i

« Sliding window » estimator

pk.P) .
Delay (L samples) 4’& decision [

Exp(5j -)

]

A

A

Phase estimator (*)

(*): averaging over 2L+1 samples

Synchronization (SC, Gaussian) 29

E=== arrier phase recovery : NDAMLEFF (3)

> « Block » estimator

pk,P) ,,
Delay (L samples) 4’& decision [*

Exp(+j .)

]

A

Phase estimator (*) F i L — hold

Synchronization (SC, Gaussian) 30
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FF structures vs FB structures

» Advantage
* No acquisition time

» Drawbacks

» Smaller B; T => higher jitter, higher cycle slip
probability

= Sensitivity to frequency deviation

Synchronization (SC, Gaussian) 31

Timing recovery (1)

Ly (F)= %\ pk,2)’ = %Rez ( p(k,f))+%lm2( p(k,))

g Ipa (D=2 Re(p(k. ) 7 Re(p(h, 1) + 23 Im(p(k ) 7 1m(p(k )

=Derivative vs timing is approximated by a difference

Re(p(k,7)) cRe(p(k+A,7))—Re(p(k—A,7))
Im(p(k, 7)) oc Im(p(k+A,7))—Im(p(k—A,7))

Synchronization (SC, Gaussian) 32
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Timing recovery (2)

Gardner:
A=1/2 => detector output is independent from carrier phase error.
GA(k)=Re( p(k+1/2,f))(Re( p(k,f))—Re(p(kﬂ,f))}

+1m(p(k+1/2,f)){Im(p(k,f))—lm(p(kﬂ,f))}

caraciaristique 2u detestaur

sorlia du detecteur

a ! / ‘
-L\.wE» \\/4‘* J"
05 0.4 w3 -02 —0.1 [af’rs [ 0.2 0.5 33
Timing recovery (3)
Matched Fractionnal
g N 2 — to DPLL
filter delay i
TED o
T
Loop | is implented by
updating || filter polyphasing the
. matched filter
Synchronization (SC, Gaussian) 34
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Timing recovery (4)

» S curve (Gardner, quantized)

effel de [a quantification
02 ™ T T

pas=Tef o
=== pas=Tas s \ [

ttie du delecl
&
& =

5
= 1 r
)
b '] 1
1 !
b & i
o [ ]
0.18 LL;T ....... |
02 - :
Z6.5 0.4 03 0.2 0. © 01 0z a3 04 0.5

Synchronization (SC, Gaussian)

Timing recovery (5)

» Timing estimator (Oerder and Meyr)

TA 1 L-1N-1
F=—y-Arg z Z‘p(k n)‘ &N
k=0n=0

plk,n)= p(kT+nT/N)

where N is the number of samples per second

Example : N=4

T P

k=0n=0

Synchronization (SC, Gaussian)
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Timing recovery (6)

Implementation of Oerder and Meyr

7 1 Arg f{\ 0 | pk, 2 | Li]{\ e Df [ pk,3)
T AT 2 - 2 + ) T i
T~ 27 & P P 1k=0 P P

4 Rs

MCgmg

~
—_

/4)

Synchronization (SC, Gaussian) 37

Frequency recovery : general

» Feedback structures
= « Frequency » detectors

= « Time » detectors

» Feedforward structures
= Type 1
= Type 2

Synchronization (SC, Gaussian) 38
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Frequency recovery:FB structures (1)

» « Frequency » detector (1)

vVCO

SMF JT
2Rs
v
FMF
F(z)

Frequency recovery:FB structures (2)

x(n)

FED

y(n)

Synchronization (SC, Gaussian)

e(n)

39

» « Frequency » detector (2)

SMF : signal matched filter : g(t)

FMF : frequency matched filter : -2jmtg(-t)

e(n)=Im(x(n)y*(n))

A simpler filter (SFMF) derived from FMF can be used
(g()=-j sgn(t) g(-1)

Acquisition range : +/-(1+o)R

No prior timing correction required

Synchronization (SC, Gaussian)

40
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pad

Frequency recovery:FB structures (3)

fFrequency derived Filter

H et
E=3 gt
B gait)

L

" N v
At -

'
[
] Ay
IR ALY

|
04

GI,G ' lb. '
frequeney in Hz index {4 samples/s)

Synchronization (SC, Gaussian)

Frequency recovery:FB structures (3)

41

NEWCO

> « Time » detectors

Any estimator can be used as a time detector.

Frequency offset range is +/- R/M

Timing has to be corrected prior to frequency detection

1 sample/symbol is sufficient.

Synchronization (SC, Gaussian)
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Frequency recovery:FF structures (1)

» Bellini
(N N => Cycle slip
NT=|>ier; /| 87T > 12
-~ N o;: unwrapped phase

» RCFE (reduced complexity frequency estimator)

” M
27N T=1 arglSd (rr* Large D leads to better
a MD ; k( ¢ k_D] performances but to

r, = p(k,?) lower frequency range.

Synchronization (SC, Gaussian) 43

Digital demodulators (1)
— o FILTRE EST /CORR EST /CORR EST/CORR |_ .| ;F |
ADAPTE RYTHME FREQUENCE PHASE

Typical FeedForward Architecture

RECUP RYTHME
— | CORR. FILTRE ADAPTE RECUP PHASE = -
FREQ INTERPOLATION

T—{ RECUP FREQUENCE }‘7

Typical Feedback Architecture

Synchronization (SC, Gaussian) 44
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Digital demodulators (2)

Choice of algorithms depends on specifications such as:
» Acquisition time (=> FF/FB structures)

» Maximum frequency deviation (=> frequency circuitry

needed)
» Eb/No (=> use of TD if low)
> ...
Synchronization (SC, Gaussian) 45
Digital demodulators (3)

TED

frequenc polyphase
—»  ADC[™| DAF |- corgectioz =P d miatched phase

ilter cormection decoder I

R

&Rs i
= - ™

phase

error

detector

FED
Example: Receiver for TCM (in cooperation with CNES)

Synchronization (SC, Gaussian) 46
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Advanced topics

»Evolutions of input specifications (for satellite
communications)

*Low Eb/No (use of efficient coding schemes such as
Turbo-Codes and LDPC)

*Bursty transmission

» Large frequency deviation (low-cost terminals, non
GEO sat.)

» Critical function : phase recovery (classical algorithms
fail)

» There is a need to develop new synchronisation schemes

Synchronization (SC, Gaussian) 47
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OFDM Systems

Marie-Laure Boucheret
IRIT/ENSEEIHT
Email : Marie-Laure.Boucheret@enseeiht.fr

Contents ENSEEIHT 3

» Recall : OFDM systems
* multipath mobile channel
* Principles of OFDM systems
* OFDM systems and filter banks
* OFDM systems with guard interval
* Advantages/drawbacks of OFDM systems
» Synchronization aspects in OFDM systems
* Specificity of OFDM system w.r.t synchronization

» Impact of synchronization errors (frequency, sampling time) on
OFDM systems

* Synchronization algorithms

Synchronization / OFDM systems 2
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Recall on multipath mobile channels (1)

» Coherence bandwidth : ( Af),

—Two carriers separated by (Af), are affected by « more or
less » the same attenuation.

W : occupied bandwidth
W<< (Af), => non frequency selective channels
W>> (Af), => frequency selective channels

Nota : (Af), 1s not related to the relative mobility emitter/receiver
(ex: cables)

Synchronization / OFDM systems 3

ENSEEIHT &

Recall on multipath mobile channels (2)

> Coherence time (. At)z

Two signal samples separated by less than (At), are affected by « more or
less « the same attenuation.

1
B, =
T4,
B,: doppler bandwidth
Synchronization / OFDM systems 4
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Principles of OFDM systems (1)

> Frequency selective channels

= Use of multiple carriers
The « elementary channel » (one carrier) is now non frequency selective.

» Spectral efficiency
= Use of overlapping orthogonal carriers

» Diversity
= Use of ECC

COFDM

Synchronization / OFDM systems 5

Principles of OFDM systems (2)

> Expression of OFDM signal (complex envelop)

Carrier #i :

X, ()= d,h(t—kT)exp(2jz fit)
k

h(t): rectangle of width T (NRZ)
£=1/T

Frequency multiplex

x(t) = fzcz,.kh(t —kT)exp(2j7fit)
i=0 k

Synchronization / OFDM systems
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Principles of OFDM systems (3)

-20

-25

-30
0

OFDM PSD

b

i
30

frequency*T

40

50

Synchronization / OFDM systems

60

Principles of OFDM systems (4)

» Modulator / demodulator for carrier # 1 (ideal case)

idikh(t —kT)

x(t)+n(t)

p

e/

x(t)

7 —{ e -

kT

Synchronization / OFDM systems

d,
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OFDM systems and filter banks (1)

» OFDM modulator/demodulator can be seen as a synthesis/analysis
filter bank (no guard time, no coding)

“‘ C) % Channel H receiver
Ji
M |
h(t
L | ? e
emitter et
Synchronization / OFDM systems 9

OFDM systems and filter banks (2)

d;
| |
» Receiver for carrier n°l

» Efficiently implemented via FFT-! (emitter) and FFT (receiver)

Channel 0 —M

Channel 1
IFFT —

Channel N-1 1 Ay [ {h(n)} : polyphase
() emitter implementation of h(n
Synchronization / OFDM systems 10
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OFDM systems and filter banks (3)

»OFDM receiver

Channel 0

Channel 1

Channel N-1

Synchronization / OFDM systems 11

TELECOM
PAR

OFDM systems and filter banks (4)

» Application : classical OFDM F=N/T
A h(n)=1 for n=0,...,N-1
hn)=1 for n=0
7 T > h(n)=0 elsewhere

» Implementation with polyphase+FFT filter banks

‘hannel 0
Channel 0
Channel 1 Channel 1
Channel N-1
Channel N-1
Synchronization / OFDM systems 12
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OFDM system with guard interval (1)

» Guard interval is used to removed residual intersymbol interference
(IS

» Guard interval is inserted by copying the [KT, kT+AT] part of original
OFDM symbol => no discontinuity in the signal!

» Resulting OFDM symbol period is T+AT (AT : guard interval)

Synchronization / OFDM systems 13

OFDM system with guard interval (2) |[ENSEaEEe

OFDM PSD
T

201

250

30 i i I
0 10 20 30 40 50 60

frequency*T

Synchronization / OFDM systems 14
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OFDM system with guard interval (3) ENSEEIHT 2

» The FFT output is (symbol # i, carrier #j):

X;;=H;s;; (without noise)

ij

=> flat fading channel at sub-carrier level

» Cyclic prefix is used in order to:
— Avoid equalization
— Increase robustness against sampling time error

Synchronization / OFDM systems 15

Advantages/drawbacks of OFDM systems |EaEE3Elaiagty

» Advantages:
— Emitter and receiver are efficiently implemented with FFT/IFFT
— No equalization is required
— Spectral efficiency
— Diversity

» Drawbacks
— Sensitivity to synchronization errors

— Sensitivity to non linearities (Amplifiers)
— Mainly used in broadcasting applications

Synchronization / OFDM systems 16
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Receiver Architecture (1)

» Differential demodulation (ex: DAB)

Diff.

encoder 4% IFFT H Cp H channel

Frequency and .
1 H H
CP it semEstion 4 FFT Diff.demo decoder

In non-coherent communication, differential
encoding/decoding avoids the use of channel estimation.

Synchronization / OFDM systems 17
Receiver Architecture (2)

» Coherent demodulation (ex: DVB-T)

4% IFFT H CP H channel

Cp Frequency and FFT Channel estimation/
. imi i ecoder
timing correction compensation

Synchronization / OFDM systems 18
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» Specificity of OFDM system w.r.t synchronization issue

*OFDM systems are much more sensitive to synchronization
errors than single carrier systems.

*Synchronization algorithms suited to single carrier systems are
inefficient for OFDM.

Synchronization / OFDM systems 19

Impact of a synchronization error (1) ENSEEIHT 3

» System model (Gaussian channel)

—Carrier : n° 1
—Frequency offset : Af

—Timing error : 1

S T o

kT+t

U
-

Synchronization / OFDM systems 20
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Impact of a synchronization error (2) ENSEEIHT 2

> Timing error T

—1<A-L : phase rotation (compensated by channel
estimation/correction=

—1>A-L : n" symbol, carrier n° i

Yi n= er/r(n/N)rMXi nHi nThint nr(i’n)
, N intli :
# SNR loss
m) ICI/ISI

Synchronization / OFDM systems 21

Impact of a synchronization error (3) EMSEEIHT

»Frequency error : Af

Ym,lzp(Af)eXp [2_] TE(II’H- 1 /2)Af'[‘] dml+ICI
with

ICI = exp(2 jz(k —1)(m+1/2))sin, (7[(1’!—1+AfT)), p(Af) =sin,. (7AT)

n#l
For |r| <G (G: guard time)

:|sin[7r{(n—l)+Af><T}}|
‘ ﬁ[(n—l)+Af><T] ‘

TEB :lerfc £,
4 N,

Synchronization / OFDM systems 22

n,i,k|

L
Imk|>< [1 + 2%Z|I"”’»k|2} 2

0 i#n
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Impact of a synchronization error (4)

BER degradation due to a frequency error
(gaussian channel)

EbyNa [dE]

Synchronization / OFDM systems

23

Impact of a synchronization error (5)

BER degradation due to a frequency error
(gaussian channel) : single and MC case

sensibilite des systemes OFDM et SC aux erreurs de frequence, TEE=10°5

=5

degradation en dB

-3
log(dffr)

Synchronization / OFDM systems

1: single carrier

2: OFDM, N=100
3: OFDM, N=256
3: OFDM, N=512
4: OFDM, N=1024

24
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Impact of a synchronization error (6)

Impact of phase noise

:3dB BW (SSB) in Wi
10 11 47rN£ £ (OFDM) p o (SSB) in Wiener
In10 60 RN, mode
o 11/ 0 E .
ln 1 O 60 R NO sensibilite des systemes OFDM et SC au bruit de phase, TEB=10"5

1: single carrier

2: OFDM, N=100
3: OFDM, N=256
3: OFDM, N=512
4: OFDM, N=1024

degradation en dB

A 3 2
log(beta/R)
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Timing/frequency estimators (1) NSEEIHT 3

U Estimators using pilot symbols
» Moose
» Schmidl et Cox

U Estimators not using pilot symbols
» Van de Beek

U These estimators are suited to frequency selective channels

» Guard time is necessary for other reason

» Each elementary channel (FFT output) is modelled by a different
complex multiplicative coefficient.

Synchronization / OFDM systems 26
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Moose estimator (1)

Q Principle : Emission of 2 identical OFDM symbols
U Timing has to be corrected first

U Hypothesis : the channel impulse response is constant over
some OFDM symbols

Synchronization / OFDM systems 27

ENSEEIHT

Moose estimator (2)

First OFDM received symbol : [r, 1,...1y]
Second OFDM received symbol : [1y Iy,---Ion.i]
CIR constant over 1 OFDM symbol => 1, \=r,exp(2jtAfNT,)= r,exp(2jne)

with e=1/T (inter carrier spacing)

N-1 i
FFT output (first symbol) : y(k)=D_r, exp(2 jﬂ%)
n=0

N-1
k
FFT output (second symbol): y(k+N)= > r.y exp(z jﬂ'%)
n=0

y(k+N)=y(k)exp(2jne) ke{0,1,...,N-1} =>The signal and ICI are affected
exactly in the same way by the frequency offset.

Synchronization / OFDM systems 28
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ENSEEIHT 3

Moose estimator (3)

MLE estimator:

1 N-1 .
é :5Arg{k§ y(k+N)y (k)}

1 1 1
le|<1 = |Af|<? :—E<Af<ﬁ

Frequency unbiguity has to be removed.

Synchronization / OFDM systems 29

Schmidl et Cox estimator (1) ENSEEIHT 3

O Estimation of both timing and frequency errors
QPrinciple:
» 2 dedicated pilot symbols

*First symbol : null odd carriers

*Second symbol : 2 interleaved PN sequences (odd/even carriers)

» Estimation
*First symbol is used for timing and frequency estimation (2/T ambiguity)

*Second symbol is used to remove ambiguity on frequency estimation

Synchronization / OFDM systems 30
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Schmidl et Cox estimator (2)

ENSEEIHT 3

First symbol : null odd carriers

N-1

-

k=0
N/2-1

k=0

= z Xy €Xp 2j7r£
N/2

Yo=Y, = OFDM symbols with 2 identical halves

Synchronization / OFDM systems 31
Schmidl et Cox estimator (3) ENSEEIHT g
Received OFDM symbol: 1,,,0<n < N -1
Timing metric:
2 _
P(d) N/2-1 )
M(d)= % R@d)="Y |rasmensa
(R(@)) m=0
Vn+d " N/2-1
() D ; > P(d)
Z-N2
Timing estimate: d = arg{max(M (d))}
d
. .1 .
Frequency estimate: &= —angle{P(d)}
b4
le/2|<1 = |Af|<£ :>—1<Af<l
T T T
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Van de Beek estimator

r(k)

A

| 1o

4
Moving sum 1 | .|2
L samples A« ‘
]
Moving sum ()
L samples

7,, =argmax {|7(6’)| — (13(6’)}

AJ}ML = _%< }/(éML)

Synchronization / OFDM systems

Yang estimator (timing) (1)

33

Idea : exploit the fact that a timing error introduces a
phase error at the FFT output which depends on the

carrier number.

A

A Pha
b FFT se L
C rota
tion 1T,
A T
Coarse FFT pilotes
Symbol Window
Estim. controller

1

Ve ’4—‘ filtre ’47

Synchronization / OFDM systems
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Yang estimator (timing) (2) ENSEEIHT 3

S(e,&f):[ sin(;r(g+§)) J_[ sin(ﬁ(g—tf))

Msin[;r(£+§)/M:| Msin[;r(s—f)/MJ

[YAN-DO], M=32, ¥=05
T T

sortie du detecteur

erruer de timing

Synchronization / OFDM systems 35
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Recent Developments on Multi-Channgl

Blind System ldentification (BSI)

K. Abed-Meraim

ENST PARIS, Signal and Image Processing Dept.
abed@si .enst.fr

Blind System Identification. Oct. 2005 2

Presentation Outline

Concepts and preliminaries

BSI for SISO systems (mono-channel case)

BSI for SIMO systems

BSI for MIMO systems

Concluding remarks

K. ABED-MERAIM ENST PARIS
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Blind System Identification

Preliminaries

Blind System Identification. Oct. 2005

INPUT SIGNAL
_—

System identification

LTI SYSTEM

(CHANNEL)

OUTPUT SIGNAL
EEEE—— -

OBJECTIVE : Given the output signal and eventually certain side
information (training sequence, physical or statistio&bimation, partial
channel knowledge, etc.), our objective is to estimate tla@oél (i.e.,

system transfer function) and restore the input signal.

K. ABED-MERAIM
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Blind System Identification. Oct. 2005 5

Blind processing

We talk aboutBLIND PROCESSINGIn the situation wheréNO
TRAINING SEQUENCHS available.

BSI <= System identification usingnly the output data

Motivations:
¢ Increased channel throughput in communication systems.
e Robustness against channel modeling errors.

e Blind processing is necessary in certain applicationsitgny
applications, seismology, etc.)

e Flexibility and increased system autonomy.

K. ABED-MERAIM ENST PARIS

Blind System Identification. Oct. 2005 6

Semi blind processing

Principle: Combining a data-aided (with training sequence) criterg 4
with a blind criterionJg, i.e:

J(h) =aJpa(h)+ (1 —a)Jp(h)

Criterion choice: The blind criterion should be chosen according to the
context. The data-aided criterion is usually chosen as #ramum
likelihood (=MMSE) one.

The optimal value ofx can be computed based on asymptotic performange
analysis (Buchoux et al 1999).

Result Improve the estimation accuracy and/or shorten the trgini
sequence size and hence increase the ‘useful’ channebtipat

K. ABED-MERAIM ENST PARIS
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Blind System Identification. Oct. 2005 7

Identification versus deconvolution

e Blind identification : Estimation of the channel state information using
the observation data and certain ‘statistical’ informatm the source
signal.

e Blind deconvolution: Estimation of the input or the channel inverse
(equalizer) usingnly the output (observation) signal. This is also
known as the blind equalization problem in communicatiopliaption.

J

K. ABED-MERAIM ENST PARIS

Blind System Identification. Oct. 2005 8

Channel model

e Parametric versus non-parametri€hannel can be simply modeled by
certain physical or statistical parameters, e.g. the spechannel
model based on the paths delays, attenuations and angléved.ar

e Instantaneous versus convolutive communication, convolutive
model occurs when the channel delay spread is larger thaythbol
duration.

e Finite (FIR) versus infinite impulse response (1IR) chanielr long
memories channels (this is the case for example in echo katiwe),
one model the channel and an IIR one using for example stafist
ARMA representation.

J

K. ABED-MERAIM ENST PARIS

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 82
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Channel model

e Linear versus non-lineaiinear-quadratic or post-linear channel
models have been considered in the literature. The noasityenay

be due, for example, to amplificator saturation (e.g. steelli
communication).

e Stationary versus non-stationargtationarity is a ‘good’
approximation over a ‘large’ observation period in most-téa
applications. Non-stationary model has been consideoe@x@ample,
in the over-the-horizon channel deconvolution problem.

J

K. ABED-MERAIM ENST PARIS
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How to cope with non-stationarity

e By using adaptive and tracking algorithms, e.g. LMS, RLS, PASd.

e By using channel representation with known basis functions

g (D

}39, [G)
g _
s(t) x(t

=P S

Time—invariant Known function
parameters basis

e By using time-frequency signal analysis.

J
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Blind System Identification. Oct. 2005 11

Inherent ambiguities

Amplitude: y = hx s = Ah % 15.

Phase y = h*s=e%h e 7.

Delay: In the stationary source cas€t) ands(t + 7) have the same
statistical information.

Permutation: This occurs in the multiple input case since the labeling
of the source signals is arbitrary.

J

K. ABED-MERAIM ENST PARIS

Blind System Identification. Oct. 2005 12

Application example: wireless communication

Reflector Q Moving Receiver / Transmitter

— —
i<
Base Transmitter / Re%

_

\\ / ==

Moving Receiver / Transmitter
Reflector

The objective here is to restore the transmitted signalithatbeen distorted
by the propagation channel.

11

The blind processing helps in increasing the ‘informatiatetdthroughput
of the channel (for example, in GSM system the training depaesents
about25% of transmitted data).

J
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Blind System Identification. Oct. 2005 13

Application example: Image restoration

Object Image

Y

Image Formation
System

Objectives From a blurred image retrieve the original one and/or thatpo
spread function (channel).

From several ‘low quality’ images form a ‘high or improvedatjty’ image.

K. ABED-MERAIM ENST PARIS

Blind System Identification. Oct. 2005 14

Application example: Exploration seismology

Source Receiver

(Blind) channel estimation is used here to get informatinrnhe
underground structure and the position of the reflectors.

K. ABED-MERAIM ENST PARIS
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Application example: Over-The-Horizon Radar (OTHR)

Classical radar. Limited horizon

ionosphére
PR

[ \
j/\\ OTHR: Early detection at all altitudes.

J
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Application example: Over-The-Horizon Radar (OTHR)

Distance de groupe

RADAR NOSTRADAMUS

fouillis 1 fouillis 2

Awant égalisation Aprés égalisation

=
o
s 4 = .
= ﬁ’) e ——
E
B fouillis
— » O0Hz —
doppler doppler
K. ABED-MERAIM ENST PARIS
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Blind System Identification. Oct. 2005 17

Other potential applications

¢ Blind deconvolution for ultrasonic non-destructive tagt{Nandi et al
1997, C.H. Chen et al 2002)

e ECG data processing (Sabry-Rizk et al., 1995): Fetal
electro-cardiogram extraction,

e Acoustical and environmental robustness in automaticdpee
recognition (A. Acero et al 1993)

e Military applications, e.g. interference mitigation (M. Anman al
1997), signal interception (Ph. Loubaton et al 2000), etc.

K. ABED-MERAIM ENST PARIS
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Multichannel processing: Diversity

s(k) H 2 | ——

Multichannel processing is intimately linked to the conogfdiversity:

Diversity: We would say that we have an ordef diversity in the situation
where we have several() replicas of the same input signal observed
throughM different and ‘independent’ channels.

K. ABED-MERAIM ENST PARIS
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Blind System Identification. Oct. 2005 19

Diversity gain

e Improved restoration quality : In communication, one can decrease
the bit error rate (BER) by a factor @ff (M being the diversity order)

\ BER without diversity

BER

\ Diversity gain

(slope M times higher)

SNR

e Increased transmission rate The diversity increases the channel

capacity.
K. ABED-MERAIM ENST PARIS
Blind System Identification. Oct. 2005 20

Example: Monochannel image restoration

Original Image Blurred Image : motion filter Deblurred image

TESTR TEST TEST

J
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Example: Multichannel image restoration

Blurred noisy image: Motion filter Degraded noisy image: Average filter Original image

TESTE TESTE TEST

Degraded noisy image: Gaussian filter@08)l noisy image : Gaussian filter(v=1) Deconvolved image
K. ABED-MERAIM ENST PARIS
Blind System Identification. Oct. 2005 22

Multichannel system: processing strategy

e Separate processingerform the blind deconvolution for each channg
followed by a maximum ratio combiner of the channel outputs
(simplicity, SNR gain but loss of the multichannel diveyit

e Selective approaciDeconvolution based only on the ‘best’ channel
(simplicity but difficulty to define the best channel in thengolutive
case).

e Joint processingProcess the channel outputs jointly in order to restore
the input signal (leads to the best performance gain).

J

K. ABED-MERAIM ENST PARIS

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 89



Blind System Identification. Oct. 2005 23

Channel type (system dimension)

We consider a linear time-invariant finite impulse respartsgnnel in the
following three cases:

¢ Single Input Single Output (SIS@)annel: This model is the most
standard and the one considered first in the literature.

e Single Input Multiple Output (SIMQdhannel: This is the situation for
example when a multi-sensor antenna is used at the receiver.

e Multiple Input Multiple Output (MIMOXxhannel: This is an extension
of the SIMO case when multiple users (signals) are consid&®dO
and MIMO cases have been studied extensively during the laatde

K. ABED-MERAIM ENST PARIS
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Data model

Noiseless observation:

h(k) represents a LTI finite impulse response filter af¥) is a zero-mean
stationary sequence of i.i.d (independent and identicadigriduted)
non-gaussiamandom-variables of variane€.

K. ABED-MERAIM ENST PARIS
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Need for higher order statistics (HOS)

e Second order statistics (SOS) information The power spectral
density of the output data is:

Sy(f) = [H(f)*o?

= No channel phase information from the observation SOS. Bibigu
the data SOS is only possible if the channel is of minimum ehas

e HOS information: Data HOS are needed to estimate the missing
channel phase information.

= the source signal must lm®n gaussian

K. ABED-MERAIM ENST PARIS
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HOS-based BSI

e Explicit HOS methods: Direct system identification through explicit
use of the signhal HOS, e.g. 4th order cumulant-based metloAls (
Cadzow et al 1996), polyspectra based methods (C. Nikidslo08,
D. Hatzinakos et al 1991), etc.

e Implicit HOS methods: Identification of the channel inverse filter
(equalizer) through optimization of appropriate non-éineost
functions, Sato algorithm (Y. Sato 1975), CMA algorithm (Dodard,
Treichler et al 1980), Bussgang algorithms (A. Benvenistad £980),

etc.
K. ABED-MERAIM ENST PARIS
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Example of an explicit HOS method

(K y(k) (k)

— i gl —

Shavi-Weinstein method Estimate the channel inverse filtgfk) in such a
way that we maximize the (absolute value) of its outpiit) fourth order
cumulant (under constant power constraint).

Idea: maximize the nongaussianity ofk) by maximizing its 4th order
cumulant.

K. ABED-MERAIM ENST PARIS
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Example of an implicit HOS method

Constant Modulus Algorithm (CMA) : Introduced in communication
(initially) for constant modulus constellation signals:

g = arg minE(|,z(k:)|2 — R)2

Idea: Restore the constant modulus property of the source sajriaé
equalizer output.

J

K. ABED-MERAIM ENST PARIS
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General features of HOS-based methods

e In general, HOS based methods require large sample sizebigva
‘good’ estimation performances.

¢ Non-linear optimization techniques are needed to estithatehannel
(or the inverse channel) parameters. Often, stochastitegra
techniques are used for the optimization.

e The HOS based criteria suffer from the existence of locatlima.

e Convergence analysis is possible only in the noiseless case

J
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Blind system identificatio
for SIMO channels

Blind System Identification. Oct. 2005 32

Motivation for multichannel processing

Blind deconvolution using SOS

e Single channel case Not possible unless the channel is
minimum-phase. The minimum phase condition in the SISO issse
‘strong’ condition that is, in general, not met in practice.

e Multichannel case Almost always possible> More robust and more
accurate estimation. In fact, the minimum phase conditiché SIMO
case is a ‘mild’ condition that is satisfied when the chanaeds
sufficiently independent from one another.

K. ABED-MERAIM ENST PARIS
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Motivation for multichannel processing

More channel capacityin communication systems

e Single channel case
C =logy(1 + p)

e Multichannel case(M transmit and receive channels)
1% H\ M—oo
C = log, det(1 + MHH ) —=" Mlogy(1+ p)

The capacity gain comes from the fact that having severdicapof the
transmitted signal observed through independent chanadlsces
significantly the risk of information loss.

K. ABED-MERAIM ENST PARIS
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Space Diversity (Multiple receivers)

) >> m @
Tos

e s(n): the source signal.

e h;(z): models the propagation between the emitting source and thqg
i-th sensor.

hi(z) = hi(k)z""
k

e y;(n) : output at the i-th sensor.

K. ABED-MERAIM ENST PARIS
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Time diversity (oversampling)

T2

= % ”

—o—e o —e v}

1\23

y(t) = Z h(t — kT)s(k) cyclostationary
k

= Exploit the cyclostationarity (time diversity) by overspling wrt the
symbol duration.

J
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Time diversity (oversampling)

By oversampling we have multiple ‘virtual’ channels:

hi(z) = >, h(kT)z"*
ho(z) = S, h(kT +T/2)z7"

The cyclostationary oversampled signal can be represastestationary
multivariatesignal as:

yi(k) = x(kT)

stationary
ya(k) = x(ET +T/2)

J
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Multichannel model

yi(k) = s(k)xhi(k)
yz(k) = s(k)* ha(k) k=0, N -1
ym(k) = s(k)*ha(k)

e s(n): single unknown source signal.

e To each output corresponds the FIR transfer functiby(z)

K. ABED-MERAIM

Blind System Identification. Oct. 2005
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Multichannel model

yi H, s(—L)

Ym HM S(N—l)

N x (N + L) Sylvester matrix

s is the input vectory; is the observation vector at sens@ndH; is the

K. ABED-MERAIM
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Some properties of SIMO systems

e Weakminimum phase condition
hi(z)
h(z) = #0 for |z| > 1

Satisfied as soon dg(z), 1 < i < M do not share common zeros.

e Left invertible system: as soon as th&/ N x (N + L) matrixH is
full column rank, i.e. when we have more equations than unkisow

J

K. ABED-MERAIM ENST PARIS
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Some properties of SIMO systems

e Finite zero-forcing inverse filters: if h(z) # 0, V z,

Jg(z) =[91(2), -+, gam(2)] a polynomial vector such that:
M
g(2)h(z) = Y gi(2)hi(z) = 1
k=1

Bezout equality

e Exact identification in the noiseless case from a finite sample size
observation vector.

J
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SIMO versus SISO

¢ FIR equalizer for SIMO versus IIR equalizer for SISO.
e Causal equalizer for SIMO versus non-causal equalizer 80SI

e Exact estimation using finite sample size for SIMO (not pdeditr
SISO).

e Equalizer delay plays an important role in SIMO case and ntitén
SISO case.

e SOS-based BSI for SIMO versus HOS-based BSI for SISO.

J

K. ABED-MERAIM ENST PARIS

Blind System Identification. Oct. 2005 42

Strict identifiability

Definition

The system istrictly identifiableif a given outputy implies a unique input
s and a unigue system matrHt up to an unknown scalar, i.e.,

1
H's’ = Hs = s’ = as and h'(z) = —h(z)
&

whereq is a given non-zero scalar.

J

K. ABED-MERAIM ENST PARIS

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 99



Blind System Identification. Oct. 2005 43

Strict identifiability

Necessary condition The system is identifiable only if the followings are
true:
h(z) #0, Vz
p>L+2
N>L+2

wherep is the number of modes in the input sequence.

J
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Strict identifiability

Sufficient condition : The system is identifiable if the followings are true:

h(z) #0, Vz
p>2L+1
N >3L+1

J
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Strict identifiability

The identifiability conditions shown above essentiallyiegrshe following
intuitive requirements:

¢ All channels in the system must be different enough from et
They can not be identical, for example.

e The input sequence must be complex enoligian not be zero, a
constant or a single sinusoid, for example.

e There must be enough number of output samples availabdet of
available data can not yield sufficient information on a éarget of
unknown parameters, for example.
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Blind System Identification. Oct. 2005 46

Estimation techniques

e Direct estimation oBystem function
— Maximum likelihood (ML) method.
— Cross-relations (CR) method.

— Channel subspace (CS) method.

e Direct estimation obystem input
— Signal subspace (SS) method.
— Mutually referenced equalizers (MRE) method.
— Linear prediction (LP) method.
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Maximum likelihood method

Principle: Assuming a circular white Gaussian noise vestor

1 1
- ——|ly — Hs|]?
p(y) N3N exp( Uglly %)

Thus the ML estimate is given byH, s),/;, = arg ming s ||y — Hs||?

Least squares fitting
K. ABED-MERAIM ENSTJPARIS
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Maximum likelihood method

Separable problem Minimize overs:

sy = (HIH)'HYy
Then overH:

Hyp = arg m}iln IPxyl?

P+ = orthogonal projection matrix onto Rand#)—.

J

K. ABED-MERAIM ENST PARIS

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 102



Blind System Identification. Oct. 2005 49

Orthogonal Complement Matrix (OCM)
Idea: One can obtain noise vectors by observing that

i-th j-th u(2)
[0, -+, —hj(2),0, -+, 0, hi(2), 0] : —0

h]\/](Z)

Result (Y. Hua 1995) : One can form an OCK that is a linear function of
the channel parameters such that its column vectors forrsia bbthe
noise subspace, i.e.

Ps; =Py

K. ABED-MERAIM ENST PARIS
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Two step estimation technique

ML criterion :

hyy = arg min y'G(G"G)*G Ty

whereh is the vector of all channels’ impulse responses. From the
commutativity propertgf linear convolution:

Gy =Yh

we obtain
hyp = argmin W Y?(GHG)#Yh
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Two step estimation technique

Two Step Maximum Likelihood (TSML) :

1. h, = argmin h?Y#Yh

2. h, = argmin h? Y#(GHG,)#Yh, whereG, is G constructed
from h,..

At each step the solution is given by the least eigenvectwdated to the
least eigenvalue of the considered quadratic form.
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Cross-relations (CR) method

£=0

Y:
D e oy —

h Y2 fzh,
L 2] |

e Principle: For every pair of channels, we have

yi(k) * hj(k) = y; (k) * h;i(k)

e Algorithm : By collecting all possible pairs o¥/ channels, one can
easily establish a set of linear equations:
Yh=0

This yields toh¢z = arg min h” Y Yh (first step of TSML).
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Subspace method

Range(A®))

Signal Subspace
(Range(A(8)) )

Noise subspace
(The orthogonal oRange(A@)) )

Principle: Assume the following model: x(n) = A(0)s(n) with
Range(A(0)) = Range(A(0')) <=0 =0’
Thus,f can be estimated as:

0 = arg mein d(Range{x(n)}, Range(A(6)))
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Channel subspace (CS) method

e Model:
y(n) = Hs(n)n=0,...N-W
y(n) = [yi(®), - yum]"
yitn) = [yi(n), - yi(n+W —1)]"
In our case: A+——H and § < h.

e Mainresult: If W > L + 1 and theM channels do not share a
common zero, then

Range(H) = Range(H') <= h' = oh

wherea is a scalar constant.
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CS algorithm

eigen-subspace of the data covariance marjx

A, O || &H

= n Hn: s tn
Ry—zn:.V( yim=Eal) = |

where  Range(&;) = Range(H) L Range(&,).
e Compute the least square error solution to

heg = arg ”%1“1111 €T H?.

e Estimate the signal (resp. noise) subspace as the prir{ogsg. minor)

J
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e ML method
— Large computational cost
— Very good estimation accuracy

e CR method
— Low computational cost
— Moderate estimation accuracy

e CS method
— Moderate computational cost
— Good estimation accuracy

Comparison of the ML, CR, and CS methods

J
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Signal Subspace (SS) method

o Signal subspac
Data matrix = |“Nane T source signal matrix<— f=s
matrix

¢

Channel subspace
B=h

e Model: Y = [y(0),---,y(N —W)] =HS
S being a the source signal matrix of Hankel structure.

e Principle: A«——S and f#+«—s

§ = argmin = d(Row(Y), Row(S))

J
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Signal Subspace (SS) method

e Result(Xu et al 1995): Assume thd is full column rank and that the
input sequencés(n)}_r<n,<ny—1 CcOntains more tha” + L + 1
modes, then

Row(S) = Row(S') <= s’ = as

wherea is a scalar constant.

J
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SS algorithm

e Perform the SVD of the data matriX = [y(0),---,y(N — W)]

3 0 vi
0 0 vi

Y=U

V., is the orthogonal matrix to the row spaceSf

V,S? =0

e Estimates by minimizing the quadratic criterion

§ = arg min | V,S7|?
lIsll=1
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Blind equalization

e Definition: g(z) is a blind equalizer iff:
gn)xy(n) =as(n—m) < g(z)h(z) =az™™

e Characterization:
— Statistical criterion If s(n) is i.i.d.

g(z) — 5(n) = g(n) xy(n) isii.d.

e.g., Linear prediction , Bussgang , etc.

— Geometrical criterion If s(n) € A

g(z) — s(n) =g(n)xy(n) e A

e.g., CMA algorithms.
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Mutually referenced equalizers (MRE) method

Equalizer% s()

Equalizer g|_S(t=1

MRE relations Letg;(n)i=0,---,W + L — 1 be equalizer filters
satisfying
gi(n) xy(n) = as(n i), i = 0,1,

Then, filtersg; should satisfy (MRE relations):

gixy(n)=girirxy(n+1)
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Mutually referenced equalizers (MRE) method

e Result(D. Gesbert et al 1994) : Vice versa, the previous relations
characterize uniquely the equalizer filters, i.egdf - - -, gq_1
(d = W + L) satisfy the MRE relations, then

gi(n)xy(n)=as(n—1), Vi

e Algorithm: {g;} are estimated by minimizing (under a suitable
constraint) the quadratic criterion

J=Y lgi*xy(n) —gir1xy(n+1)|°
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Linear prediction (LP) method

e Principle: Bezout equality. 3 g(z) = [91(2), - -, gam(2)] such that
g(z)h(z) =1

e Result y(n)is an AR process of orddr. Its innovation process is
i(n) = h(0)s(n).
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LP algorithm

ye T h(0) x s(t)

Prediction (projection) subspace

e Estimate the prediction coefficients pfn) by solving the Yule-Walker
equations:

e Estimate vectoh(0) (up to a constant) as the principal eigenvector of]
the innovation covariance matr = E(i(n)i(n)") = h(0)h(0).
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Comparison of the SS, MRE, and LP methods

e SS method
— Large computational cost

— Good estimation accuracy

— Deterministic input

¢ MRE method
— Moderate computational cost

— Good estimation accuracy

— Deterministic input

e LP method
— Low computational cost

— Moderate estimation accuracy

— Stochastic decorrelated input

K. ABED-MERAIM ENST PARIS
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The situation of interest

SOURCE 1
O SOURCE =

HHH

B:H:Iﬂ-ﬂ

inlinSnlnininln

SENSOR 2

SENSOR 1

M different (possibly noisy) linear combinations &findependent source
signals are observed at the sensors.

J
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Convolutive linear mixture model

s, . | System | —— VY2
transfer

function

Sn E— —— Ywm

y(n) =H(n) xs(n)

e y(n): M x 1 observation vector (array output),
e s(n): N x 1unknownsource vector,

e H(z) =) H(n)z~™ M x N unknowntransfer function matrix
assumed, in general, of finite impulse response, i.e(ldég)) = L.

J
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Basic assumptions

e System dimension We assume here strictiyore sensors than
sourcesi.e. M > N.

e Source signals They are assumed to Ineutually independent
stationary random processes.

e System matrix The transfer functiod(z) is assumed to be
irreducible (rank H(z)) = N for all z) andcolumn reduced
(rankH(L)) = N).
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Objectives

e SIMO case In the SIMO case we have to get rid of the inter-symbol
interference (ISI) onlyblind equalization problem)

e MIMO case: In the MIMO case we have to get rid of the I@ilind
equalization problemand to get rid also of the inter-user interferences
(blind source separation (BSS))

MIMO blind deconvolution < Blind equalization + BSS.
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Deconvolution approach

STEP 1 STEP 2
. . Blind ) ; .
Convolutive mixture Instantaneous mlxtureBllnd Source) source signal
— equalizatior separation
using SOS using HOS

e Step 1 Blind equalization using second order statistics. Thipst
transforms the convolutive mixture into an instantaneobgure.

e Step 2 Application of a BSS algorithm (using, in general, the data
HOS) to the instantaneous mixture obtained at the previs s

J
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Other possible deconvolution approaches

Blind identification and deconvolution using HOS (Nikiasaef993,
Liu et al 2002, etc.).

Blind separation followed by/ parallel SIMO blind equalization
(Bousbia-Salah et al 2000).

Joint blind equalization and source separation by decatiogl (Y. Hua
et al 2000).

Iterative blind deconvolution with interference canctdla (Delfosse et
al 1996).

J
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First step: Blind equalization

The same algorithms (except for certain details) for SIM@Qdli
identification can be applied to MIMO identification.

However, in the SIMO case we estimate the channel transfetitum(resp.
the source signal) up tolax 1 constant factor, i.e. h(z) = h(z)a, while
in the MIMO case we estimate the channel transfer functiomnp (i
source vector) up to & x N constant matrixA, i.e. H(z) = H(z)A.

J
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Second step: Blind source separation

S Xy S
Instantaneous Blind
| mixture source
| A separation|
Sy Xy g

Instantaneous linear mixture model:

x(t) = As(t)

J
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BSS versus ICA (Independent Component Analysis)

1. BSS = signal synthesifdentify the mixture matrix and/or recover
the input signals from the observed signal by exploitingdtaistical
independencer other features of the sources.

2. ICA = signal analysis Analyse a multi-variate signal by
decomposing it into a set of independent components (inbkpe
component analysis ICA).

J
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ICA versus PCA

e Principal component analysis seeks directions in feature space that
best represent the datalgast squaresense.

¢ Independent component analysisseeks directions in feature space
that are mosindependentrom one another.

J
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BSS approaches

Lower—order Fractional Second-order Higher—order

Moment Theory Moment Theory Moment Theory
C Ly | |
0 05 08l 1 15 18l 2 I3 I a

e HOS-based methodExploit the observations higher order statistics
either explicitely by processing their higher order cumitseor
implicitely through the optimization of non-linear funatis given by
information-theoretic criteria.

e SOS-based methad#&/hen the sources are ‘temporally colored’, one
can achieve BSS using signal decorrelation.

e FLOM-based method®edicated to the separation of impulsive
signals, e.g. alpha-stable signals (these signals havéériimd and
higher order moments).
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Information theoretic principles

(7202

S A X B ?

B is computed such that its outputs are most independent framaonother:
e By minimizing the mutual information between the composesf§(t).

e By minimizing the Kullbak-Leibler distance in between thaf pf §(t)
and the product of its components pdfs, i.e.

KL(p(8(1)), ] [ or(3x(2)).
k

e My maximizing the nongaussianity 6f¢) (measures of nongaussianity
include the Kurtosis -fourth order cumulant- and the Negmyt
-differential entropy-).
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BSS by decorrelation

Basic assumptions:

e The mixing matrixA is full column rank.

e The sources are temporally coherent but mutually uncdee|)ae.,

p1(7) 0
R,(r) ¥ Bsit+7)st)f) =
0 pn(T)
R.(1) = AR, (7)AY
K. ABED-MERAIM ENST PARIS
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Separation by decorrelation

e Principle: B = A~! is the linear transform that decorrelate the signa
components at all time lags, i.e.

is diagonal for allr.

e A two step procedure

— Datawhitening The whitening matrix transformA into a unitary
matrix.

— Diagonalization Estimate the unitary matrix by diagonalizing the
non-zero lag correlation matrices.

J
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Whitening

Whitening Matrix : Let W denotes a x m matrix, such that
(WA)(WA)H =UU" =1

‘W can be computed as an inverse square root of covariancecrobthie
observation vector (assuming unit-power sources).

Whitened correlations; Defined as

R, (1) = WR, (1)WY =UR,(r)U"

J
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Diagonalization

e Diagonalization obnesingle normal matrixvi
<= Minimizing under unitary transform the sum of squared modtili
the off-diagonal elements. This is equivalent to the mazation under
unitary transforniv. = [vq, - - -, v,,] the sum of the squared moduli of
the diagonal elements:

C(M, V) =) |viMv,|”

e Fora setof d matrices:
d

C(V)=) C(M;, V) =) |[viMgv;|
ki

k=1

= Joint diagonalization criterion.

J
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|dentifiability

Objectives Given a set of” correlation matrice® . (1), - - -, Rx(7x)
answer the following:

e Isit possible to separate the sources given this statpstics
e If no, what it the best we can do (partial identifiability)?

e |s it possible to test the identifiability condition?

K. ABED-MERAIM ENST PARIS
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Theorem 1: Identifiability

e Define for each source
p; = lpi(r1),pi(m2), -, pi(7r)] and p; = [R(p;), S(p;)]

Then, BSS can be achieved using the output correlation ceateit
time lagsry, 7o, -+, T iff Vi #

p; and p; are (pairwise) linearly independent

e If this condition is satisfied theB is a separating matrix iffV i # j

TK
(k) =0 and 3 fru(k) >0

k:Tl

e

wherer;; (k) def E(zi(t+ k)z;(t)), z=Bxandk = 11,72, - -, Tk

(1)
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Discussion

e Theorem 1 gives aecessaryand sufficient condition to achieve BSS.
e Itis possible to separate the sources from @mig correlation matrix.

e K — oo = 2 sources are separable iff they hal#erent spectral
shape

e Itis well known that HOS methods can achieve BSS when no more
than one Gaussian source is present. In contrast, SOS msathnd
achieve BSS when no more than one temporally white source is

present.
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Theorem 2: Partial Identifiability

Assume there aré distinct groups of sourcemach of them containing;

source signals with same (up to a scalar) correlation vggtar=1, - - -, d,
H T T
ie,s=[s;, --,s;]" .

Letz(¢) = Bx(t) be anm x 1 random vector satisfying equation (1)

Then, there exists a permutation maffband non-singular matricds;
such that
PZ(t) = [Z,{(t)v e 7Zg(t)]T
Z; (t) = UiSi (t)
Moreover, sources belonging to the same group, i.e., having fapto a

scalar) correlation vectgs, can not be separated using only the correlatiop
matricesR,.(k), k=71, -+, 7Tk

J
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Theorem 3: Testing of Identifiability Condition

Letm; < 7o < --- < 7k be K distinct time lags and(¢) = Bx(t). Assume
thatB is such a matrix that(t) satisfies equation (1). Then there exists a
generalized permutation matrX such that fork = 7, - - -, 7

R.(k) = E(z(t + k)z" (t)) = PR, (k)PT

In other wordszq, - - -, z,,, have the same (up to a permutation) correlatior
factors assy, - - -, s, @ttime lagsry, - - -, 7x.

J
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Discussion

e Two situations may happen:
1. Forall pairs{, j), p; andp; are pairwise linearly independent.
Then we are sure that the sources have been separated and that
z(t) = s(t) up to a scalar and a permutation.

2. Afew pairs (, j) out of all pairs satisfyp, andp; linearly
dependent. Therefore the sources have been separatedhs.blo

e The angle betweep; andp; can be used as a measure of the quality pf
separation between sourcand source.

J
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Simulation Examples
e Simulation context
— ULA with M = 5 sensors)N = 2 unit-norm independent sources
and7 = 1000 samples.
e Criteria:
— Rejection level criterion:
(0)[(BA);?
Tperf, def ZE PJ( )I( - )w|
= Lpi(0)[(BA);|?
— ldentifiability criterion:
~ T
9% 1pipa]
1o [[][p2]]
K. ABED-MERAIM ENST PARIS
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Simulation examples

Table 1. Separation performance versys

Sources Up ZIperf (dB)
2 AR1 signals | 0.213 -26.23

2 CWGP signals 0.007 -5.14

et ecion e (65

Figure 1. Separation Performance ver8@$SNR=25dB): 2 AR1 sources with
a1 = 0.95exp(j0.5) andaz = 0.5exp(j(0.5 + 60)).
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Simulation examples
R ---- lperfl |
-=- Iperf2
151 — lperf3 il
% 3 o SNRsm N 10 15 20
Figure 2. Separation Performance versus the SMNRs: 3 sources 2 of them are
CWGP signals and the third is AR1.
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Simulation examples
- 0 100 200 300 400 TImSEOglep 600 700 800 900 1000

Figure 5. Comparison with EASI (Laheld & Cardoso 1996): 2 AR(rses with
QAM4 innovation processes & N R = 30dB. .
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Concluding remarks

e A common feature of all presented methods is the use of tirdéoan
spacdliversity.

e Extensionto IIR case or multiple input case is possible.

e Partial knowledge of the channels can be incorporated in the blind
criteria, e.g., DOA of multi-paths, pulse-shape filters, adieg
sequence in CDMA systems, etc.

e Robustnesdo channel order estimation errors: The last 3 methods ($S,
MRE, LP) are more robust than the first 3 methods (ML, CR, CS).
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Some hot topics & perspectives

e Semi-blind methods: i.e., combining blind and non-blind criteria (i.e.
training sequence) to improve the estimation accuracy.

¢ Induced cyclostationarity or pre-filtering : i.e., modify the signal
modulation at the transmission side in such a way to suit anglgy
the blind system identification (BSI).

e Space time coding BSl is a tool to exploit the diversity at the
reception. The space-time coding is to create the diveasitiye
transmission.

J
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Some hot topics & perspectives

e Application-oriented BSI methods Derive or adapt blind system
identification (BSI) methods for specific applications gthllows to
exploit a maximum of side-information).

e Robustness Improve the robustness of BSI methods against noise apd
modellization errors.

e Under-determined case BSI for systems with more sources than
Sensors.

J

K. ABED-MERAIM ENST PARIS

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 126



Blind Carrier Frequency Offset estimation

and Mean Square Error Lower bounds

Philippe Ciblat
Ecole Nationale Supérieure des Télécommunications, Paris, France

NEWCOM Autumn School :
Estimation Theory for wireless communications

@ Blind Carrier Frequency Offset synchronization

@ Harmonic retrieval in multiplicative noise
@ Design of powerful estimates

@ Asymptotic analysis

@ Probability of outliers

@ Mean Square Error Lower bound

@ Standard Cramer-Rao bound
@ Cramer-Rao bound with nuisance parameter

@ Bayesian Cramer-Rao bound
@ Other bounds

- Deterministic approach : Battacharya, Barankin
- Random approach : Ziv-Zakai

Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Harmonic retrieval (1)

We assume
y(n) =a(n)e? ™™ 4 b(n), n=0,....N—1

with
@ y(n) : the received signal
@ a(n) : a zero-mean random process or a time-varying amplitude.
@ b(n) : circular white Gaussian stationary additive noise.

Goal : Estimating the frequency fo in multiplicative and additive noise

Outline :
© Short review on some estimates

@ Derivations of asymptotic performance and non-asymptotic
performance

© MSE lower bounds associated with this problem

Philippe Ciblat Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Harmonic retrieval (I1)

Previous model holds for

Digital Communications : Non-data-aided/Blind synchronization.

L
a(n) = Z hisn_|
=0

~» circular/noncircular complex-valued MA process
~» non-Gaussian process

Radar : Jakes model
~ a(n) circular complex-valued Gaussian process.

Direction of Arrival (DOA) : Frequency domain.
~ a(n) circular complex-valued Gaussian process.
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Literature on estimator design

Digital Communications community (COM)
@ A. Viterbi, U. Mengali, M. Moeneclaey

~ Ad hoc algorithms based on modulation properties (Gaussian
channel)

Signal Processing community (SP)
@ P. Whittle, D. Brillinger, E. Hannan, A. Walker (1950-1970)
~» Constant amplitude and periodogram analysis.

@ O. Besson, P. Ciblat, M. Ghogho, G.B. Giannakis, H. Messer, E.
Serpedin, P. Stoica (1990-present)
~ Time-varying amplitude
~ Notion of non-circularity
~ Notion of cyclostationary
~  Asymptotic performance analysis
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Definition of circularity

Circularity (strict sense)

Let Z be a zero-mean complex random variable. Z is said circular in
strict sense iff _
Z and ze'

have the same distribution for any 6.

Property

E[Z---ZZ---Z]=0
p times g times

as soonasp # Q.
Remark Z is M-order noncircular/ M — 1-order circular random

variable if only the moments of order (M — 1) or less satisfy the
previous property
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Second order circular case (1)

Assumptions
@ a(n) is second order circular (= circular in wide sense)

E[a(n)?] =0

@ a(n) is Gaussian
@ a(n) is colored
@ a(n) obeys the Jakes model

ra(7) = Jo(27fq7)

and so ry(7) is real-valued.

~+ Applications : Radar
~~ SP community

Philippe Ciblat Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Second order circular case (Il)

We get
ry(r) =E [y(n + T)y(n)} = ra(7)e?™7  vr £0

As ra(7) is real-valued (as in Jakes model), we obtain
fi

in () J

~ 2nr

where fy(7) is the empirical estimate of ry(7) when N samples are
available.

Estimating frequency boils down to estimating constant phase.
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Non-circular case (l)

Assumptions
@ a(n) is M-order noncircular

Efa(n)"] # 0

@ a(n) is Gaussian or not
@ a(n) is colored or not
@ a(n) is a MA process

a(n) = Z h|Sn_|
=0

where {h,} is the impulse channel response and s, is the
unknown M-order noncircular data
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Non-circular case (ll)

Any usual constellation is rotationally symmetric over 27 /M.

Constellation | M
P-PAM 2
P
4

P-PSK
P-QAM

One can prove that any usual constellation is M-order noncircular

~» Applications : Digital communications
~~» COM and SP community
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Second order non-circular case (I)

Deterministic ML based method : Besson 1998

A P : _ 1l B 2irfn |2
{an,fn} = arg rg’lfn Kn(a,f) = N nz;) ly(n) —a(n)e”"™

Non-linear least square (NLLS) asymptotically equivalent to
maximization of periodogram of y2(n)

fy = arg min Jy(f Z y2(n)e~2m(20n
~ Traditional Square-Power estimate in COM community for BPSK
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Second order non-circular case (I1)

As U, (0) = E[a?(n)] # 0, then

2(n) = y2(n) = 1a(0)? "0 + e(n)

where e(n) is a non-Gaussian and non-stationary additive noise.

\

~» Frequency estimation in multiplicative and additive noise

0

Frequency estimation in additive noise but non-standard noise
~+ Periodogram based on y?2(n) instead of y(n).
~ If a(n) colored, periodogram not exhaustive.

N,
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Cyclostationary based method

@ Letuy(n,7) = E[y(n + 7)y(n)] be the pseudo-correlation

Definition

y(n) is cyclostationary w.r.t. its pseudo-correlation iff n — uy(n, 7) is
periodic of period 1/ag. Then

uy(n, 7_) _ Z u)(/kao)(T)GZiﬂ'kOéon
k

with
@ koyg : k™ cyclic frequency
-] u§ka°)(7) : cyclic pseudo correlation

o c{ ™) (e = ET.(7 — u{*)(r)) : cyclic pseudo spectrum

@ n — uy(n, 7) is periodic of period 1/ag with ag = 2fg
@ Ciblat & Loubaton 2000
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Contrast function

Estimating frequency in multiplicative and additive noise boils down to
estimating a cyclic frequency

2
fo = arg mfaXJW(f) = u§/2f)ku3(/2f) - Hu§/2f)HW J

with u{™ = [u(=T),. - Ul (M)

In practice, u§,2f) is not available and needs to be estimated

uy (n’ T)e72i7rocn

u(r) = lim

Ely(n + 7)y(n)]e~ 7"
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Contrast process

fAN = arg mfaxJN,W(f) =

: J

with 64 = [6{)(=T), .-, a{*(T)]" and

1 N—-1 '
05 (7) = < Do y(n+7)y(nye2men.
n=0
Then
1 V-1 2
£ _ = —2im(2f)n
fy = argmax Iy w(f) = || nz% z(n)e
= W

with z(n) = [z_7(n),...,z7r(n)]" and
z,(n) =y(n+7)y(n) = U™ (r)e? ™" + e (n).
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

RENES

@ Multi-variate periodogram
@ Weighted periodogram
@ Extended Square-Power algorithm
@ Asymptotic performance
@ Giannakis & Zhou
1995 : cyclostationarity approach and CRB bounds
@ Besson & Stoica
1999 : deterministic NLS with white real-valued multiplicative noise
@ Ghogho & Swami
1999 : deterministic NLS with white real-valued multiplicative noise
@ Ciblat & Loubaton

2000 : weighted multi-variate periodogram and analysis with
colored complex-valued multiplicative noise
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

High-order noncircular case

P-PSK : Viterbi 1983.

2
N—-1
A 1 :
P _ - P —2iw(Pf)n
Ela(n)”] # 0 < fiy = argmax || < gy (n)e
Tutorial done by Morelli-Mengali in 1998.
P-QAM : Moeneclaey 2001 & Serpedin 2004
2

N-—-1
¢ 1 :
E[a(n)*] # 0 < fy = arg max HN § :y4(n)e—2m(4f)n
n=0

= The so-called M-power estimate
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Asymptotic analysis

@ Consistency
fyn—fo ™3

@ Asymptotic normality : it exists p such that
NP(fy — fo) = N(0,7)

with
@ p the so-called convergence speed
@ ~ the so-called asymptotic covariance

@ Asymptotic covariance

MSE = E[(fy — f0)?] ~ %
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Harmonic retrieval S.0. noncircular case  H.O. noncircular case Asymptotic analysis

Convergence analysis

@ Consistency
@ Asymptotic normality (with p = 3/2)
are proven in Ciblat & Loubaton for

2
N—-1
1 .
Gy = argmax Iy w(a) = || & > z(n)e=#men
« — W
where

z(n) = ue?m" 4 g(n)

whatever the noise process e(n) satisfying standard mixing conditions

@ Analysis valid for second order and high order noncircular case
@ Derivations of the asymptotic covariance need still to be done
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Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Asymptotic covariance (l)

Second-order noncircular case :

whatever the second-order noncircular process a(n), Ciblat &
Loubaton (IEEE SP 2002) have proven that

Q Wopt = Idor 41
Q Topt = L with L the memory size of a(n)

o 1 2infy|2 2int
s 3 [, lca(e®™)Px(e*™ )df-

~ 4 2N3° 2
N (3 oaea ) ot

with
X(eZiwf) — (sa(eZiwf) + 02)(Sa(e—2iwf) + 0.2) _ Ca(eZiwf)Ca(e—Zirf) J

@ if a(n) is a white real-valued process, then asymptotic covariance
also available in Ghogho and in Besson
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Harmonic retrieval S.0. noncircular case  H.O. noncircular case Asymptotic analysis

Asymptotic covariance (ll)

High-order noncircular case :
Serpedin (IEEE TCOM 2003 and IEEE TWIRELESS 2003) has
proven that

24 B-D
MSEp.psk ~ —ee ————
SEp-ps m2PN3 C2
with
P
B = ) (Ci)alo!
q=0
C = e You,F (2P +1,2P +1,1/02)
P

= ey® VRP 1P+ 1,1/0h)

@ Similar equations for P-QAM constellation

Philippe Ciblat Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Harmonic retrieval S.0. noncircular case H.O. noncircular case Asymptotic analysis

Numerical illustrations

Set-up :
@ a(n) =s(n) + 0.75s(n — 1) with s(n) white Gaussian process
@ Performance of “weighted periodogram-based estimate” vs. SNR

MSE versus SNR
T

— Theoretical MSE |]
= = Empirical MSE
S
107°F S B
N
~
<
birs
10° >
107
w
@
3
10°
10°
(o
T — S e e oo -
10'B L L
-5 [} 15 20 25

5
SNR (N=100 ; h0=0.75 ; a=0.75)

Questions :
~+ How far away from Cramer-Rao Bound we are ?
~» Irrelevancy of MSE at low SNR (outliers effect).
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Outliers effect

Outliers effect

We focus on the following M-power estimate

2

1 1 N—-1
fy=—ar ma - n)Meg—2man
VMY a2y | N nz_%y( )

with _
y(n)M — ue2|7er0n + e(n)

This periodogram is maximizing by proceeding into two steps
@ a "coarse" step detecting the peak
@ a "fine" step refining the estimation around the peak

At low SNR and/or when few samples are available, the coarse step
may fail. This leads to the so-called outliers effect.
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Outliers effect

Example

@ a(n) is a complex-valued white zero-mean Gaussian process
with unit-variance and pseudo-variance u = E[a(n)?]
~ |u| refers to non-circularity rate.

@ SNR = 0dB and N = 500

Cost function versus (21) Cost function versus (21)
T T T T T T

0.25
0.06

0.2 0.05 |
0.04 ‘

0151 ‘
0.03

0.1
0.02 1 |

0.05 . 001 ‘ l

o O‘vl 0‘2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 o 0.1 0.2 0.3 0.4 05 0.6 0.7 O‘B 0‘9 1
2f (SNR=0dB ; N=500 ; rho=0.66) 2f (SNR=0dB ; N=500 ; rho=0.33)
Cost function with |u| = 2/3 Cost function with |u| =1/3

Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 138



Mean Square Error

MSE — % + (1 — p)MSEyy.

where
@ p is the probability of coarse step failure
@ MSE,; is the standard "outliers effect"-free MSE

Available Results :
@ MSE,; seen in previous slides
@ p recently derived (Ciblat & Ghogho submitted to TCOM)
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Failure probability p (1)

Let Yy (resp. Ex) be the N-FFT of y(n)M (resp. e(n))

ue? ™o L Egl § k=0
vl ={ '3 ke 00

The failure probability may write as follows

D=1—Pb(vk £0,[Yy| < |Yo) =1 - /pl(x)pz(x)dx
where
p1(X) = Pb(Vk #0,|Yk| < X)
_ /_XOO _ ../_XOO Pl o (Y2 YN — 1)dys - - - dyn—1

P2(X) = Py, (X)

= The distribution of FFT points are needed
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Outliers effect

Failure probability p (1)

Constant-amplitude multiplicative noise :
@ a(n)=a, Vvn
oeM=1
@ Rife & Boorstyn (IEEE IT 1974)

~ e(n) is white circular Gaussian process

Time-varying multiplicative noise :
@ a(n) is white and belongs to an usual constellation
~ e(n) is white noncircular and non-Gaussian process

Under Gaussian assumption, a closed-form expression for p can be
addressed which strongly depends on

og = E[ja(n)|™] — [E[a(n)M]|* + X m_o (Ci)Ella(n) Pm]E[ b(n) M=
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Outliers effect

Simulations : p versus SNR

nd Empirical Outlier probability versus Eb/NO (N=256)
BN T T T T T T

N Theoretical and Empirical Outlier probability versus Eb/NO (N=1024) o
10"% ek T 10° % &
—+— Additive noise (T) —6— BPSK (T)
— + - Additive noise (E) - © - BPSK ()
—6—BPSK(T) —¥— 4-PSK/4-QAM (T)
= ~ 8 -BPSK(E) | 10 — % — 4-PSK/4-QAM (E)| |
10 —¥— 4-PSK/4-QAM (T) 8-PSK (T)
— ¥ — 4-PSK/4-QAM (E) .-
—#— 8-PSK (T) 8-PSK (E)
- % - 8-PSK (E) 16-PSK (T)
> 16-PSK (T) z 16-PSK (E)
£10 16-PSK (E) Z 10 16-QAM (T)
s —— 16-QAM (T) K - - - 16-QAM (E)
e — = — 16-QAM (E) £ —&— 256-QAM (T)
5 T 256-QAM(T) 5 % - B8 - 256-QAM (E)
E - — & — 256-QAM (E) = 00 —+— 1024-QAM (T)
S} ] — — — 1024-QAM (E)
10 107
20 30 0 10 -5 0 5 10 15 20 25 30 35 40

@ p strongly depends on P for P-PSK
@ p slightly depends on P for P-QAM

@ Self-noise for QAM due to o2 = E[|a(n)|®] — |E[a(n)?*]|?> # 0in
noiseless case
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Outliers effect

Simulations : MSE versus SNR

) Theoretical and Empirical MSE versus Eb/NO (N=128 ~ QPSK/4QAM)

) Theoretical and Empirical MSE versus Eb/NO (N=128 - 256QAM)

10 10

O Empirical MSE
~ -~ - Theoretical MSE (w/o outiiers)
. Theoretical MSE (w. outl .
107 o eoretical (w. outliers) 107 \_‘_\7
)
° o o o

10" 10"
w 6 w -6
& 7]
2107 2 10

10° 10°

107 107 ©  Empirical MSE

-~ Theoretical MSE (/o outliers)
Theoretical MSE (w. outliers)
o 2
10 10
2 o0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30
Eb/NO ED/NO

4-QAM and N = 128 256-QAM and N = 128

Threshold analysis
@ For 4-QAM, SNRy,, = 6dB if N = 128
@ For P-QAM (with P > 4), floor effect for p = no threshold

Philippe Ciblat Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Outliers effect

Simulations : MSE versus N

o Theoretical and Empirical MSE versus N (Eb/N0O=5dB - QPSK/4QAM) o Theoretical and Empirical MSE versus N (Eb/N0=20dB - 256QAM)
10 T T T T T T T T T T 10 T T T T T T T T T
O Empirical MSE O Empirical MSE
— — = Theoretical MSE (w/o. outliers) — — = Theoretical MSE (w/o. outliers)
1070 Theoretical MSE (w. outliers) 102 Theoretical MSE (w. outliers)
107 b 107 b
w
0 10° ® 10°
10 2 10
10° b 10° e
TTTTe--g
107 4 100
1072 i i i i i i i i i i 107
50 100 150 200 250 300 350 400 450 500

N

4-QAM and E /No = 5dB 256-QAM and Ey /Ny = 20dB

@ When N increases, p decreases (without floor effect)
@ Any MSE is reachable BUT sometimes with very large N
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RENES

Estimation accuracy

@ Data-aided context can improve the performance but outliers
effect still exists (Mengali IEEE TCOM 2000)

@ Cramer-Rao bound (CRB) with coded scheme is less than CRB
without coded scheme (Moeneclaey IEEE COML 2003)

@ Turbo-estimation is an appropriate solution (Vandendorpe & al.
EURASIP JWCN 2005)

@ MSE value : is it far away from the lower bound (Cramer-Rao
Bound) ?

@ Outliers effect : is it intrinsic to M power estimate or to any
estimate ?
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Lower bounds Definitions Links and Derivations Other bounds

Mean Square Error Lower Bounds

Signal Model |

y(n) =a(n)e?™" L b(n), n=0,....N—1<y=D(f)a+b

where
oy = [y(0)7 T ,y(N — 1)]T
@ D(fo) = diag([1,- - - ,eZiﬂ'fO(N—l)])
@ Noise variance assumed to be known (for sake of simplicity)

fo : (deterministic) parameter of interest
{a(0),--- ,a(N — 1)} : parameters of nuisance

Each assumption on the parameters of nuisance
(deterministic/random, etc.) leads to ONE Cramer-Rao-type bound
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Lower bounds Definitions Links and Derivations Other bounds

Unconditional CRB

We consider the likelihood for parameters {fp,a} :

—lly—D(f)a||®
A(f,a) <o<e No )

a(n) are viewed as real nuisance ~ stochastic

Unconditional CRB or True CRB or Stochastic CRB

Unconditional Likelihood is equal to True-Likelihood
Au(f) = EalA(F,2)] = [ A a)p(a)da

= UCRB(f) = 1 = 1

By [|3In0(6)]’] By || G InEalAG, )]

~ Often untractable
~» UCRB mainly analysed by Moeneclaey
~ Approximation at low SNR (eX = 1 + x + x?/2 if x small)
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Lower bounds Definitions Links and Derivations Other bounds

Conditional CRB

a(n) are viewed as parameters of interest ~» deterministic

Conditional CRB or Deterministic CRB
Conditional Likelihood is equal to Deterministic Likelihood

ON(f,a)

Ac(f) = A(f, &) where Ja &
f

1

CCRB(f) =
= CCRB(f) E, [|%In/\c(f)|2]

Average CCRB or Asymptotic CCRB

1
Ey.a || &Inq(f)[°]

< CCRB >(f) =

~» CCRB not used although CML well spread
~» CCRB mainly analysed by Stoica and Vazquez
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Lower bounds Definitions Links and Derivations Other bounds

Modified CRB

a(n) are viewed as known parameters

Modified CRB

1
Ey.a [|§InA(f,a)\2]

= MCRB(f) =

~» Closed-form expressions tractable
~» MCRB introduced by Mengali
~+» MCRB very often used in COM/SP community
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Lower bounds Definitions Links and Derivations Other bounds

Gaussian CRB

a(n) are viewed as Gaussian process

Gaussian CRB
Gaussian Likelihood

Ng(f) = Ea[A(f, @)]
where a is a Gaussian vector.
1
Ey || 5InAg()]°]

= GCRB(f) =

~» Closed-form expressions tractable

~~ Not valid for digital communications but this is still a bound for all
the consistent estimates based on data sample covariance matrix
~~ GCRB developed in SP community (Giannakis, Ghogho, Ciblat)
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Lower bounds Definitions Links and Derivations Other bounds

Bayesian CRB

fo isAaIso viewed as stochastic variable with an a priori pdf p(f)
Let @ be an unbiased estimate of 8y = [fo, @]. Then

MSE gayesian = Ey,0[(6 — 80)(8 — 60)"] > I~' = BCRB
with
AInA(f,a) dInA(f,a) T

) =Eye 96 00

Jensen’s inquality

[E¢[CRB(6)] > BCRB

@ If CRB(0) independent of 8 then CRB = BCRB
@ No link in the literature between xCRB and BCRB
@ If §y = fo, then E»[TCRB(#)] > BCRB
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Lower bounds Definitions Links and Derivations Other bounds

Bayesian Algorithm

Deterministic approach :
@ Optimal unbiased estimate does not always exist (except ML in

asymptotic regime)
Stochastic/Bayesian approach :

@ Optimal unbiased estimate always exists : the so-called MMSE
estimator

B — Eqy (0] = / op(6ly)de

@ The MMSE is the mean of the a posteriori density
@ p(0) must be differentiable
@ SP community (Van Trees)
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Link between xCRB (1)

All these bounds (except GCRB) lower-bound the mean square error!

UCRB > MCRB

and
< CCRB > > MCRB

@ At high SNR : UCRB = MCRB (if the values of the parameters of
nuisance belongs to a discrete set)

@ For large samples : CCRB N=% - CCRB > (ergodism)
@ Under Gaussian assumption : UCRB = GCRB

~+» MCRB usually too optimistic
~» GCRB unable to take into acocunt high order information
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Lower bounds Definitions  Links and Derivations Other bounds

Link between XCRB (II)

Application to blind synchronization

a(n) belongs to a constellation and thus to a discrete set
~ At high SNR,
UCRB = MCRB
MCRB is of interest in digital communications
~» At low SNR,
UCRB > MCRB

Let M be the order of non-circularity (Moeneclaey IEEE COML
2001).

UCRB = O(1/SNR™) and MCRB = O(1/SNR)

~+ GCRB likely useful for BPSK but not for other constellations
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Example (1)

Harmonic retrieval where a(n) is complex-valued white (discrete)
process with E[|a(n)|?] = 1 and E[a(n)?] = u.

22 3 [(1 —|ul?) + 202 + 04]
MCRB = 2 _ RB —
CRB = Zons ad CC 472|uZN3

30*
UERBlIowsvR = 721y ens

and
302

2m2N3

UCRB rjgh sur = MCRB =

~» MCRB quite relevant BUT does not depend on non-circularity rate.
~+ At low SNR, second-order noncircularity leads to GCRB=UCRB
~ If lu| # 1, floor error with GCRB not with MCRB and UCRB
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Lower bounds Definitions  Links and Derivations Other bounds

Example (1)

We consider u = 1 (e.g. a(n) € BPSK)

MCRB = —— and GCRB =
272N3 2712N3 + 472N3
and
30’2 304

UCRB = MCRB = GCRB

UCRB = GCRB \

~ GCRB relevant for BPSK
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Lower bounds

Example (111)

Definitions

Links and Derivations Other bounds

T T

O GCRB

— MCRB

102 L . . ® MSE with Gaussian process ||
: : — MSE with binary process

MSE

10 L L L L L I
-10 -5 0 5 15 20 25 30

10
SNR (N=100)

MSE versus SNR

107"

107k

107

107E

MSE

10°L

10°E

107E

10°

MSE versus rho

T T T T 3
-6~ GCRB
: : MCRB
R et —e- MSE with Gaussian process

" " " " " " " " "
0 0.1 02 03 04 05 06 07 08 0.9 1
tho (N=100 ; SNR=100B)

MSE versus |u|

~ For BPSK signal, we are lucky (GCRB~MCRB)!

Philippe Ciblat Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Lower bounds

Definitions  Links and Derivations Other bounds

Asymptotic Gaussian CRB (1)

~+ Several works for obtaining asymptotic (large sample) expressions

for GCRB.

@ Circular case : Ghogho 2001 (based on Whittle’s theorem)
@ Real-valued case : Ghogho 1999
@ Non-circular case : Ciblat 2003 (large Toeplitz matrices)

| White

| Colored

Real-valued O(1/N3)

No floor error
Reached by Square Power

O(1/N3)
No floor effect

Non-circular O(1/N?%)

No floor error
Reached by Square Power

O(1/N?)
Floor effect

Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds
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Lower bounds Definitions  Links and Derivations Other bounds

Asymptotic Gaussian CRB (Il)

Second-order noncircular case : Ciblat (EURASIP SP 2005)

3 L ca(e2™)oa(e2T)
GCRB i~ 47_(275'\]3 W|th f = /O X(eZiﬂ'f) df

1 2infy|2 2inf
X df

MSE £l with n = fo |Ca(e )l (e 2)
(fol |Ca(e2i7rf)|2df>

~ 472N3

One can proven that (Cauchy-Schwartz inequality)

GCRB = MSE iff a(n) white process |

Philippe Ciblat Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Lower bounds Definitions Links and Derivations Other bounds

Other types of bound

XCRB unable to predict and analyze the outliers effect

Introducing other tighter lower bounds
@ Deterministic approach

~ Battacharyya bound
~ Barankin bound

@ Stochastic approach

~s Ziv-Zakai bound
~» Weiss-Weinstein bound

Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds
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Lower bounds Definitions Links and Derivations Other bounds

Battacharyya bound (1)

Review on CRB : consider the vector z,
6 — 0y
Z=| ain(p(y|®))
o6

By construction, E[zz'] is nonnegative matrix. This implies that

MSE 1
[ 1 FIM]ZO
and
MSE > FIM~! = CRB J

Philippe Ciblat Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Lower bounds Definitions Links and Derivations Other bounds

Battacharyya bound (ll)

consider the vector zy,

60— 0,
ain(p(y|9))
6

Nin(p(y|0))
i 2ON

Once again E[zyz],] is nonnegative matrix and this leads to

MSE > BaB = CRB + one positive term J

Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds
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Lower bounds Definitions Links and Derivations Other bounds

Barankin bound (I)

We consider "test-points” &, = [0 — 6, ...,0™ — @]
Furthermore B, = (Bk)1<k.i<n is the following n x n matrix

(k) 0
B = E, [|0(y|<9 )p(y|6 )]

P(y|60)?

Definition

Barankin bound of order n ~» BB(6p) = sup §n(Bn(£n) — 1nlI)_15,{

n

Sn(&n)

with 1, = ones(n, 1)

~+» MSE of any unbiased estimator is greater than any BB,
~» As n — oo, BB,, becomes even the tightest lower bound

Philippe Ciblat Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Lower bounds Definitions Links and Derivations Other bounds

Barankin bound (II)

@ BB; used (one test-point)
@ Main task : closed-form expression for matrix B

CRB = (‘!‘ITO S]_(g)

~» CRB inspects the likelihood only around the true point
~» CRB and BaB unable to observe outliers
BB = sup Si1(€)
£

~s BB scans all the research interval
BB takes into account outliers effect in lower bound.

$

@ Pure harmonic retrieval : Knockaert in 1997
@ Circular multiplicative noise : Messer in 1992 for DOA issue

Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds
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Lower bounds Definitions Links and Derivations Other bounds

Derivations

@ Lety(n) = ae?™" 4 b(n) ~ Information in mean of y(n).
@ Lety(n) = a(n)e? ™" + b(n) ~» Information in variance of y(n).

Closed-form expression (Ciblat EURASIP SP 2005)

—1 _  if
By = /det(Qy 1) ' Qui >0

’ +00 otherwise

where
Qk) = (ﬁf_(kl) + ﬁf_u)l)'ifo — ldon

and
5 _ [ Ebwynl Elynyal |
E[YNVL] E[YNVH]
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Lower bounds Definitions Links and Derivations Other bounds

Numerical illustrations

a(n) white Gaussian process with unit-variance and E[a(n)?] = u.

N MSE versus SNR | MSE i
10 : : 10 r T
5~ GCRB \ 5~ GCRB
* Asymptotic GCRB \ — BB
————— — BB w0 Lo\ —+— Theoretical MSE ]
1025\ = : B —#- Theoretical MSE || N — - Empirical MSE
\\ e : — - Empirical MSE \
\ 10 \\;
10 \ N R i R
\ 107 : Sl
\ \
Lo A
10 \ 10°L i \x
4 \ g PN
= ! = \
. | ] L
10° \ 10 : .
i
10°F :

10° i
]
10° 1
|
i
107 | N TEIE T e , :
Theshold: -1 T e e e g = = 107
i
USNR = 4.1d8 1’ Thréshold
| i attho=0.275
10° . . . 10° . ! .
-10 5 5 10 15 20 25 30 0 01 02 03 04 05 06 08 09 1
SNR (N=100; tho=0.75 ; a=0) tho (SNR=10 dB ; N=64 ; a=0)

@ Threshold analysis : BB = max(GCRB, S(1/4))
@ Important gap between BB and standard Square-Power estimate
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Lower bounds Definitions Links and Derivations Other bounds

Ziv-Zakai bound (1)

@ Bayesian bound : random parameter

@ Two classes :
@ Holder inequality :
@ Bayesian Battacharyya
@ Bobrovsky-Zakai (1976)
@ Weiss-Weinstein bound (1985)
@ Kotelnikov inequality :
@ Ziv-Zakai (1969)
@ Bellini-Tartara (1975)

State-of-the-Art

Ziv-Zakai bound (ZZB) derivations
@ bearing estimation and additive noise (Bell IEEE IT 1997)
@ time-delay estimation (Weiss IEEE SP 1983)
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Lower bounds Definitions Links and Derivations Other bounds

Ziv-Zakai bound (I1)

The mean square error (MSE) for ¢ is bounded by

MSE > / hy (rrLaxg(ho, h1)> dh;.
0 o

where
@ g(ho,h1) = [ min(p(¢), p(¢ + h))Pe(p, v + h)de
@ p= [¢O;f0] and h = [ho, hl]
@ p(.) is the a priori density function of ¢

@ Pc(p, ¢ + h) is the error probability when the optimal detector
decides between the following two equally likely hypotheses

Ho: y(n) = a(n)e2=(es+om | b(n)
Hi: y(n) = a(n)e2iﬁ((¢o+ho)+(fo+h1)n)_|_b(n)

~+ Detection theory with multiplicative noise

Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds
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Lower bounds Definitions Links and Derivations Other bounds

Derivations

1/2
MSE; > / (1/2 ~ hy)hs (max(1/2 — ho)Pe(ho, hy))dhy
0 0

with
01/602)
Patho.hs) = L B0, )P (as + oz 1,00+ 1~ 02/02)

where

@ B(ag,ap) =T (a1 + a2)/I(q) is called either the Euler’s first
integral or the Beta function

@ ,F1(a, B,7; X) is the hyper-geometric function
@ Closed-form expressions of 64, 6>, a1, a, depend on ﬁh and ﬁo

v
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Lower bounds Definitions Links and Derivations Other bounds

Numerical illustrations

a(n) white Gaussian process with unit-variance and E[a(n)?] = u.

MSE versus SNR 10 MSE h
10 . £ v
~&- Cramer-Rao Bound \
~&- Barankin bound \
1 Ziv Zakai Bound 10° |
0 — - Empirical MSE for NLS

,,,,,,,,,,,

S
5
MSE
5
A
3

\
10 = 10 ? T
ol 3*
15 10 0 5 10 15 0 0.1 0.2 03 0.4 05 06 0.7 08 0.9 1
SNR (N=64 ; rho= 1) tho (N=64 ; SNR=10dB)
MSE versus SNR MSE versus u

@ Small gap between ZZB and standard Square-Power estimate
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Lower bounds Definitions Links and Derivations Other bounds
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Channel estimation and Superresolution

in UWB system

Philippe Ciblat
Ecole Nationale Supérieure des Télécommunications, Paris, France

NEWCOM Autumn School :
Estimation Theory for wireless communications

@ UWB system

@ Impulse Radio
@ Multi-band
@ Channel Model

© Channel estimation

@ Cramer-Rao Bound
@ Existing estimates
@ Comparison

@ Superresolution
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UWB-IR system

Introduction

Digital communications system satisfies the following spectral mask :

T
-41.25%——% = Indoor

-51.25 ’_I—d
53,25 i

-61.251 e —
63251 -

PIRE (dBM/MHz)

~75.25 - H—*

Frequences (GHz)

@ Spread spectrum technique
@ Localization
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UWB-IR system

Techniques

Approaches

@ Impulse Radio (IR)
@ Multi-band (MB)

We hereafter focus on Impulse-Radio technique

@ Pierce and Hopper 1952
@ Winthington and Fullerton 1992
@ Win and Scholtz 1993
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UWB-IR system

IR-UWB transmit signal

@ Time-Hopping (TH) IR-UWB signal associated with user n

NyTy

dn(i—1) dn (i) dn(i+1)

| o1 l'”;f

N ' trames

A
v

Ty Temps de garde

|
-

A
v

N
v

__  duy()) =1PAM —we  dn(i)=1PPM
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UWB-IR system

Data stream

S(t) = Mz_:ld|b(t = INfo)

where
@ M is the number of transmit symbols
@ d = [do,--,duw_1] belongs to PAM
@ Ns is the number of frame per symbol
@ T; is the duration of each frame
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UWB-IR system

Superframe structure

The super frame composed by N; frames is structured as follows

Nf—1

b(t) =) g(t—jTs — §Te)
j=0

where
@ T, is the chip duration
@ N is the number of chips in one frame

@ Time-hopping code in the j frame is given by
& € {0,--- ,Ne — 1}
@ g(t) is the mono-cycle with the temporal support [0, Ty)

Philippe Ciblat Channel estimation and Superresolution in UWB system 7132

Developed code

For each frame j, let ¢; = [¢;(0), - - - , ¢j(Nc — 1)] defined as follows

ey 1 =6
77 0 otherwise *

Thenc =[cog,- - ,Cn,—1] = [c(0),--- ,C(N¢N¢ — 1)]

— NiNc—1
s(t) = Zd. > cl)g(t —iTe —iNiTy)
j=0
Train d'impulsions \C@ hvo\ || V\vl\ | L | V\;

A k) = 10;1;3)

@ Status of the chip (occupied/free) outside g(t)
@ Le Martret & Giannakis 2002

“\0\0\0‘0\‘\0\”‘“\0\0\1‘

cu(k)
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UWB-IR system

Channel model

@ Multi-path random channel
@ Molish 2003

NP
h(t) =Y At — )
k=1
where

@ A is the attenuation associated with the k"-path
@ 7, is the delay associated with the k™-path

Philippe Ciblat Channel estimation and Superresolution in UWB system 9/32

UWB-IR system

Statistical channel model

@ We focus on one cluster model

Statistical model

p(ri|m—1) = Ao

Ac = (px-bi)e ™/
~——
ak
where
@ a, independent of 7%
@ py binary variable
@ by log-normal variable

A and ~ are both deterministic parameters
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UWB-IR system

Deterministic parameters

@ )\ is the path density
@ ~ is the RMS delay spread (i.e., length of impulse response)

Amplitud
°
a—— S,
i
1
Amplitud

L L L L L L L L L L
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
R

A=0.1ns"! and v = 20ns A= 1ns ! and v = 200ns
Philippe Ciblat Channel estimation and Superresolution in UWB system 11/32

UWB-IR system

Receiver

@ Rake receiver (for sake of simplicity)

@ Correlation with the template b(t) = Zj'\':f'gc_l cig(t —jTe)

synchronized at each path

@

?

Alo(t) —

@ [
¢

Aloy(h)

lo,
AlLy
Alroy(r)

Path estimation is necessary
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CRB

Fisher Information Matrix

Ina = Niofl(k"),JA,,Tk _ —ZN—AO"fZ(""),JTW _ %’;A'fé"") J
where
ICOR -/s(t sl —ﬂ)dt}
ACU -/s(t st —ﬂ)dt}
GO -/s’(t e —ﬂ)dt}
with

@ s'(t) =ds(t)/dt and Eq[¢(d)] = ¢(d) if d is a known sequence
~~ CRB for DA scheme and MCRB for NDA scheme

Philippe Ciblat Channel estimation and Superresolution in UWB system 13/32

CRB

State-of-the-Art

@ Laurenti (September 2004) : one path
@ Huang (June 2004) : non-overlapping context (i.e., signal echoes
are orthogonal)
D —0 if k£l

@ Zhang (June 2004) : overlapping taken into account (but no
closed-form expression for FIM)

@ Non-overlapping assumption does not hold in realistic situation ?

@ Closed-form expressions for f,ﬂ"') even when k # |

Philippe Ciblat Channel estimation and Superresolution in UWB system 14 /32
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CRB

Non-overlapping case

Straightforward derivations yield

N E
CRBDA(AI) = MCRBNDA(A|) = MISIf 2(E1E33_ EZ)
2
No El

CRBDA(’T]) = MCRBNDA(’H) =

MN; 2A?(E,E3 — E2)

with E; = [g(t)?dt, E; = [g(t)g’(t)dt, and E3 = [ g’(t)dt

~+ In DA scheme, performance does not depend on the training
sequence

~+ Same expression in the context of single-path (when N, = 1)

Philippe Ciblat Channel estimation and Superresolution in UWB system 15/32

CRB

Overlapping case

Let
@ Am) =71k — 7 = Qi Nt Tt + Ok Tc + ek, With the integer parts
Qxk, and g j, and the remainder gy |

19D = M(C(a)An(e) +C(a + 1) Am(e — Te)
+ D(Q)Bm (5) + D(q + 1)Bm(5 - Tc))

with
o
N¢Nc—q—1 q—1
c@= >, cl)el+a) Da)=> cli)eli-a)
j=0 j=0
o
1 M—-1 1 M—-1
Am(e) = > Eald_q-14ii]rm(e), Bm(e) = v > Eald_q4idi]rm(e)
i=0 i=0
@ ri(t) = g(t) xg(-t), r2t) = g'(t) x g(=t), r3(t) = g'(t) x g'(-t)
Philippe Ciblat Channel estimation and Superresolution in UWB system 16 /32
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CRB

Comments

@ Code collisions plays an important role.
@ The more f,'f{') (for k # 1) is high, the more the CRB is high
@ If e € [Ty, Tc — Tg4], there is no overlapping

@ The more the path is dense, the more the CRB taking into
account the overlapping is larger than the (simplified) CRB

@ Deleuze & Ciblat & Le Martret (July 2004)

Philippe Ciblat Channel estimation and Superresolution in UWB system 17 /32

CRB

Average CRB (1)

Ex[CRB(X)] = Ex[J(X) 1] > (Ex[I(x)])* J

Simplified expressions for A, B, C, D by averaging over
@ symbol sequence
@ time-hopping code

~+ In DA scheme, average CRB over all possible training sequences

~ |n NDA scheme, MCRB is considered

Philippe Ciblat Channel estimation and Superresolution in UWB system 18/32
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CRB

Average CRB (lI)

@ {d(i)}; i.i.d. symbols belonging to 2-PAM

Ed[Am(e)] = dg,-1Tm(€),  Ea[Bm(e)] = dq,0fm(e)

@ ¢;j is the realization of i.i.d. random vector whose each
component admits the following distribution

p(c) = ((Ne — 1)5(c) + 3(c — 1))/Ne.

Ec[C(q)] = " ifq#0 { Ec[D(a)] = 5;  ifa#NiNe
Ec[C(0)] = N ifqg=0 "’ Ec[D(N¢Nc)] = Nr if g = N¢Nc

Philippe Ciblat Channel estimation and Superresolution in UWB system 19/32

Estimator design

Maximum Likelihood

@ Lottici & Andrea & Mengali 2002
@ No overlapping context
@ Simulations done in a non-overlapping context

@ ML carried out in DA and NDA schemes

@ DA scheme : derivations based on likelihood
@ NDA scheme : derivations based on true likehood at low SNR

M—-1
1 Zi(T,di:—l)—l—Zi(T,di:l)
J —
nDA(T) MEg iZ(:) >
with Zi(’T, d,) = di(r(t) * b(_t)|t:iNfo+7)
@ Localizations of peaks provide 7
@ Magnitudes of peaks provide A
Philippe Ciblat Channel estimation and Superresolution in UWB system 20/32
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Undersampling based method (1)

@ Maravic & Vetterli 2003
@ DA scheme

@ Undersampling at period Ts > T, preceded by Anti-Aliasing
Filter

Let F(t) the noiseless receiver signal at the output of AAF

NP
k=1
then

Np
Rs(m) = R(m)/S(m) = " Az
k=1

with z, = e~ 277f

Philippe Ciblat Channel estimation and Superresolution in UWB system 21/32

Undersampling based method (1l)

Re(0)  Re(1) - Ro(Ny-1) X
Rs(1 Rs(2 e Rs(N P ,
R | RO R M) Rl = S A
; : ; k—1
Rs(Np - 1) Rs(Np) AR Rs(ZNp - 2)
Then
1 . 1
R=VAVH" with V= : :
Np—1 Np—1
Zl PN ZNp
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Undersampling based method (l11)

Shift invariance

V =Vdiag([zs, - ,2,])

where V and V_denote the omition of the first and last row of V
respectively

Then it exists a vector X, such that

V Xk = ZkV Xk

~ 7y is a generalized eigenvalue of (V,V)

For any k, zy is the root of the polynomial
P(s) = det(V — sV)

This obviously provides # and A

Philippe Ciblat Channel estimation and Superresolution in UWB system 23/32

Estimator design

First-order cyclostationarity based method (1)

@ Luo & Giannakis 2004
@ Asymmetric PAM (d; € {—1,6})
@ |ISI-less context (delay spread < guard-time)

M—1 Np
r(t) =Y dibr(t — 7 —iNTe)  with br(t) = > Acb(t — An)
i=0 k=1

If ISI-less, {b(t — 71 — iN;T¢)}; is a orthogonal set and thus b, (t) is a
square-root Nyquist filter.

Problem

@ Optimal receiver is the matched filter b, (—t) shifted by
@ Knowledge of b, (t) and 71 is needed
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Estimator design

First-order cyclostationarity based method (I1)

Elr(0)] = 75 3 bi(t— 71— iNeTy)
i=0

The cyclostationary mean contains information about b, (t) and 7,

If 7, is associated with the strongest path, then

/ M B Ol — ot
0

71 = arg max

TE [07 Nf Tf)
and
~ —
br(t) = ﬂE[r(t +7-1)]7 for te [0, Nfo)
4
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Comparison

Non-overlapping case

® T, = 1ns, Tc = 2T,, Ne = 10, and N; = 10, Ts = 200ns, M = 100
@ 7 =[5T,,10T,, 15T,] and A = [0.73,0.67,0.35]

Such assumptions ensure the absence of overlapping

Vetterli B=Bs)2 _ ©
stterli B=BS ““o—
Giannakis --------
MLNDA  +
o ML DA —— _|
| CRB -----
0.01
\f)\
N .
. \<
5 o001
(2]
s
le-04
\\K
s \
1e-05 _ ;
TR
T T
e
1e-06
0 2 4 6 8 o " m .
Eb/NO
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Comparison

Overlapping case

Q7T = {kTp/Z}kzl,...,zo
@ A obeys a normalized exponential decreasing profile

Such assumptions ensure the presence of overlapping

1
Vetterli B=Bs (DA) —e—
Giannakis ———
ML NDA ——
CRB
01
\9\\
0.01
o
2 —
w |
2 —
0,001
\\\
1le-04
1e-05
0 2 4 6 8 10 12 14 16

Eb/NO

~» ML non optimal in overlapping case

Philippe Ciblat Channel estimation and Superresolution in UWB system

Comparison

Comparison

Is there overlapping or not in realistic channel ?

Two statistical models :
Molish (A = 0.2ns™%, v = 20ns) and Lee (A = 2ns™%, v = 5ns)

MCREB : Delay

L L L L
30 35 40 45 50

L L L L
0 5 10 15 20

25
SNR (M=100)

~» |f path density is high, the non-overlapping model does not hold

Channel estimation and Superresolution in UWB system 28132
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Superresolution

Definition

@ The superresolution is the smallest gap between two delays that
we are able to distinguish from

@ The Cramer-Rao Bound CRB(r) is the smallest mean square
error that we may reach when the value of the sought delay is 7

Superresolution definition

The superresolution 7. satisfies the following equation

Tres. = \/ CRB(Tres.)

@ When 7 decreases, the overlapping increases

@ To evaluate accurately the superresolution, we need the
closed-form expression of CRB(7) in overlapping case
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Superresolution

Superresolution versus SNR

@ 7 =[07], A=[10.5], and M = 100

T T
Presence of Overlapping —e—
Absence of Overlapping —+—

0.1

" \
0.06

Resolution/Tp

0.02 \\
\\

0 10 20 30 40 50
Eb/NO

~~ Non-overlapping is too optimistic and does not make sense
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Superresolution

Superresolution versus T,

o Eb/No = 10dB and M = 100

Pr‘esence of Overlépping —e—
Absence of Overlapping
0.08

Resolution (ns)

0.4 0.5 0.6 0.7 0.8 0.9 1
Tp (ns)

~+ Resolution proportional to Ty,
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Superresolution
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Channel Estimation for Cyclic Prefixed Block
Transmissions

M. Ghogho University of Leeds, UK

[y

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris
4 N

Aims

0 To describe a few channel estimation techniques for cyclic-prefixed
(CP) block transmissions, including OFDM and single-carrier
(SC-)CP systems

O To address the issue of optimum training design and power
allocation

0 To introduce a new bandwidth efficient pilot assisted transmission

technique
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Outline

O Introduction
O Channel estimation for OFDM

0 OFDM signal model and preliminaries
O Pilot-based channel estimation for OFDM
O Blind channel estimation for OFDM

0 Channel estimation for general CP systems

0 Affine precoding and MMSE channel estimation
U Full rank orthogonal precoding
0 Rank-deficient orthogonal precoding

0 Summary

M. Ghogho Leeds University

%)

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris

Introduction

0 Why block transmissions?

U existence of zero-forcing equalizer

U block-by-block processing
O Why cyclic prefix?

[0 FFT-based channel equalization
[0 Why channel estimation

O required for coherent communication systems
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~
Part 1: Channel Estimation for OFDM
AN J
M. Ghogho Leeds University
Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 5
4 N
OFDM signal model and preliminaries
e Block diagram
—>|
Input > —*
data — A.‘dd . Insert
data .| Virtual | : [IDFT —P/S— —19()
S/P| : carriers cP
— —
CP
Virtual
carriers
Noise &
Output inter-
Data ference
Frequency-domairr Time-domain
Channel estimation Pilots or/and data statistics
- )
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O Frequency-domain (F-D) methods: either pilot-based or (semi-)blind

O Time-domain (T-D), generally (semi-)blind.
Assumptions:

O Channel impulse response (CIR) constant during each OFDM
symbol

h(t) = hed(t —70)
=0

O 10 =4¢T,, Ts = T/N and T: duration of 1 OFDM block w/0 CP.
0 h:=[ho---hr]" ~ CN(0,Rp), Ry =diag{o},,£=0---L}

O length of CP = L. Additive noise is Gaussian and white with

2

variance o;.

M. Ghogho Leeds University
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Ve

OFDM signal model and preliminaries (3)

e Notations

e N: DFT size e N,: # active carriers ¢ N,: # pilot carriers
e A (P): set of active (pilot) carriers; P C A C {0,--- N — 1}

o F = (1/VN){exp(—j2mnk/N)}Y, Ly o W = (VN)F(,0: L)

e T,: active carriers selection matrix (N x N,)

e T,: pilot carriers selection matrix (N x Np)

e T,: data carriers selection matrix (N x Ng) with Ny = N, — N,
o W, =TI'W e er:TgWo Wp =TIW

2

e o7 (resp 02) total power of pilot (resp. data) carriers; ;07 := 07 + 07.

P
e D, = diag{z}.
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O VC insertion: T, : N, columns of a N x N identity matrix

0 _, I
O CP insertion: T,, = [ Lx(N=L)» 7L

In
0 Transmitted block: ucp (i) = TepF*Ts0s(i)
O Input-output relationship (N > N,,P = L + N)

Zep(n) = Y1 h(1)tiep(n — 1) + vep(n)

M. Ghogho Leeds University

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 9

s

[0 Received blocks
Tep (i) = [Hatbep (i) + Hatep (i — 1)] + v(4)
0 Discard CP to avoid IBI: Ry, == [0y (p—n), IN] =R Hae = 0.
0 Channel matrix: H; Toeplitz = H. = R.,H; T, circulant; so
FH.F* = diag(Hy---Hy_1) =: Dy
where Hj, = Zf:o hee~i2mtk/N
0 Received blocks after CP removal
x(i) = Repep(i) =F*DyT,.s(i) + v(i)

and after FFT
Z(i) = DyTses(i) + (i)
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10

OFDM signal model and preliminaries (6)

O F-D received signal at the data carriers (dropping block index):

Tpn=Hpsn+0n n€ED
sp: data symbol on nth carrier and H,, = Ef:o hye=2imtn/N
0 F-D signal at the pilot carriers, P = {i1, - ,in,} CA=DUTP,

Zi,, = H;, cm + Vi, m=1,---,Np

In vector form:
zp = DWph +vp

c=[c1,---,cn,]": known pilot symbols.

M. Ghogho Leeds University

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 11
~ ™
e Pilot placement
Pilot symbols Pilot carriers
A0 A o o o o
o ] (] (]
o o o o
) g’ o o o o
§ 3 o o o o
g g o o o o
o () o o
o ] o (]
v, v V y
Time Time
- Time-invariant or slowly varying channels - Time-varying channels
\
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e Minimum Mean Square Error (MMSE) Method

0 MMSE CIR estimator
h = (oR;' + WED,Wp) " WEDap

where D, = diag{|c,m|?, m =1---N,}.
[ The least square (LS) estimator is obtained by setting R; " = 0.

O Identifiability condition (since ¢, # 0):

rank (DcWp)=L+1 <= N,>L+1

0 MMSE estimate of H,,

T
H,=wh
H .
where w, := W(n,:)
M. Ghogho Leeds University
Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 13
4 N

e Performance of MMSE estimates

00 MSEs of h and the ﬁn’s:

. . B 1 -1
%, = E {(h —h)(h— h)”} - (Rhl + J—gwgDpWP>
n = E {|1fln . Hn|2} = wiS, w,
Ymmse = Z Tn = Tr {WDZ}ALW%}
neD

[J MSEs of LS estimates obtained by setting R,:l =0
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e Optimum pilot design for MMSE channel estimation

0 Equalization carried out in F-D; so criterion based on ~,,.
Minimizing the total (or average) mse:

{p°,P°}y = arg r[r)lgl Fmmse

-1

1

— argmin Tr {WD <R,;1 + 2W§DPWP> Wg}
pP 0y

under the constraints

Np
P CA Z Pn = 0'1% (C1)
n=1

M. Ghogho Leeds University
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e Optimum pilot design for MMSE channel estimation: no VC

O For any (L x L) positive-definite matrix, B = {bk,é}ﬁ,e:m we have

R
Tr {B 1} > ; @
with equality iff B is diagonal.
O Since Ry, is diagonal, Ymmse is minimized if
WZEWp = Nyl and WED,Wp =071

which is possible in the no-VC case
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Pilot-Based Channel Estimation for OFDM (6)

e Optimum pilot design for MMSE channel estimation: no VC (cont.)

0 An optimum design is
2

o O_plT
P
Py={t+iQ, i=0,--- ,N, — 1} ifQ::Nipinteger
PC =

Pg:={0,--- ,N—1} —P? if Q= Niva integer
where t is arbitrary integer from [0,Q — 1).
Example: (N = 16)

® e ® e N, =4

®*®o® oo oo oo Np=12

M. Ghogho Leeds University
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s

e Optimum pilot design for MMSE channel estimation: no VC (cont.)
[lustration of the effect of pilot placement on estimation performance
(p=05/Np1T)

N=32; N_=32; L=3; N =4
a P

10 . . .
(0] 0.5 1 1.5 2

Different pilot placements 4
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e Optimum pilot design for MMSE channel estimation: no VC (cont.)

0 The minimum of Jmmse is (using Ny = N — N,, since no VC)

L 0'2 O'fgl
/?r(:lmse = (N_NP)’YO = (N_Np) Z o2 —i-0'22'2

[0 The MSE, A1, of LS estimate obtained using O',Zu = 00.

[J Pilot design minimizing mmse also minimizes the v, ’s
individually, and with optimal design, all carriers experience the

same channel estimation MSE, i.e. 72 = ~°.

[J Minimizations of the MSE in the F-D and T-D are equivalent:

arg min Ymmse = arg min Tr {=i}

M. Ghogho Leeds University
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s

e Optimum pilot design for MMSE channel estimation: no VC (cont.)

[0 For fixed 012, and with p° and P°, 7° is independent of IN,. But this
is not exactly true if there is a mismatch between the assumed and the
actual channel models, e.g. fractional path delays!

[0 Optimum pilot placement and power distribution design not unique,
in general. However if N, = L + 1, only equipowered and equispaced
pilot carriers achieve minimum MSE.

[J In the case of colored noise with unknown spectral density, use pilot
carrier hopping, e.g. ¢ in the above optimum design should vary across
the blocks.
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0 Under the above optimal placement and power distribution of the
pilots, what are the optimal value of N,, the optimal power
allocation and the optimal data power distribution? We use a
capacity-bound criterion

0 Channel unknown at transmitter = ideal training-based capacity

maximized when o2(n) := E {|s,[?} = 02/Ng:

N,
Cideal = N _:lLE {log (1 + ,Bidea1|g|2)} (bits/symbol)

where g ~ CN(0,1) and Bigeal is the ideal SNR (0% = >_, 07,)

2 2
Bideal i= HZ
1aeal -— 2
Nyoz
M. Ghogho Leeds University
Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 21
S~
e Incorporating estimation error into signal model
U Treating estimation error as extra noise:
Tn = Hpspy +Un = HpsSp + €nSp +0p
—~—
extra noise
where e, = H, — H, and E {|ens, + Un|*} = ym0Z(n) + o2.
O Orthogonality principle: E {Hnen} = 0. Thus
o2 2 2
E{|Hn| } =0 —Tn<0H
[ Equivalent to a known channel H,, system subjected to an
additive noise 0, = e, S, + U, which is neither Gaussian nor
independent (though uncorrelated) of the data.
-

M. Ghogho  Leeds University

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 183



Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 22

Pilot-Based Channel Estimation for OFDM (12)

e Effect of estimation on capacity

O Since noise @), is uncorrelated from data, the capacity is lower
bounded by that of a system subjected to Gaussian noise with same

~1!
power as v, .

C>C= 2 Y E{log (1+5(mlgP)}

neD

where (n) effective SNR at nth carrier

I (0 A G R
(n) := E {72} ~ mo2(n)+ o2

M. Ghogho Leeds University
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4 N

e Optimum data power distribution, no VC

U In this case, Ng = N — N, and with optimal design, vy, = v°,Vn.

L 200 — 2 /N -
Hence, C maximized when oZ(n) = o7 /Ny:

0 Maximum lower bound:

N —N,
C= 5 E{log(1+8l9")}
where
e (0% —1°)2

7003 + (N = Np)o3

M. Ghogho  Leeds University
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e Optimal number of pilots: no VC

U Treating N, as a continuous variable v, it can be shown that

@_ 1
ov N+1L

8 2
E{—log(1+,6’|g2) +(N_”)a_f%} <Y

= u should be as small as possible, i.e.

NS =L+1

[0 Np = L + 1 also minimizes complexity at the receiver and
maximizes bandwidth efficiency. However, N, = L + 1 might not be
optimal in the case of channel modeling mismatch.

M. Ghogho Leeds University
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e Optimum power allocation: no VC
0 Let a =02 /0. Using N, = L + 1, P°, p° we maximize C
a° := argmax C = arg max f3

= For the general case, solution can be found by polynomial
rooting. Let 8° denote maximum value of 5.

O Let & = 0%0?/(N — N,)o?, i.e. data SNR when o2 = o?.
[0 SNR losses due to channel estimation, estimation errors and both:

5 (_ 1 ﬁideal 5

Bideal a” B ’ B

M. Ghogho  Leeds University

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 185



Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 26

e Optimum power allocation: no VC (cont.) High SNR regime:

[0 Approximations:

2(L+1

oh - moh, AT (02+ )
p
a(l —a)

5:(N—Np)f(L+1)a+(N—Np)(1—a)

0 Take N, = L + 1. For fixed pair (N, L), optimal value of o and £:

1
-—_ e N = = 2
Qoo = a°|high sor _—L+1’ Poo i= ﬁo|high snr =6 oo
L+ ~21=3

O For typical N > 2(L + 1), @ > 0.5 and maximum SNR losses ( at
high SNR) are resp 3dB, 3dB and 6dB. [J SNR loss decreases with
N/L and — 0 when N >> L.

M. Ghogho Leeds University
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e Optimum power allocation: no VC (cont.)

Optimum pilot power allocation at high SNR,
N=64, Np:L+1, no VC
0.5

0.45r © High SNR )
0.4 B
0.35[ : : : R
0.3F B

0.25r 4

1-0°

0.2+ ‘ , : .

0.15r N

o.1f : v : ]

0.05r- N
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Pilot-Based Channel Estimation for OFDM (18)

e Optimum power allocation: no VC (cont.)

BER performance: Rayleigh channel with exponential delay profile;
N=64and N, =L+1=38.

(¢]

0.1 0.2 0.4 0.5 0.6 0.7 0.8

10 i . ;
1 —— BPSK
. —— QPSK
1
. SNR=10dB
1
1
:
1

% 10717 . //
[an] . I .
1
;\S\e—efi,e,/,e—e//e’/)e/(y/

1
1
1
]
I
:

107 -~
0.
—a
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e Optimum power allocation: no VC (cont.)
U Rayleigh channels with equipowered taps, i.e. o, = op:
1 N — N, L+1
Qiid = — ———r where ¢ := P ( I >
1+ 4/1-1/¢ N—-Np,—L-1 (N — Np)¢
0 Max effective data SNR
£ 2
Biia = 171 Qiid
I+ =
0 Data SNR loss due estimation depends on both N/L and &.
-
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e Optimum power allocation: no VC (cont.)

SNR loss vs {, N, = L + 1.

6.5

N=64

35 40

M. Ghogho Leeds University
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e Optimum pilot design for LS channel estimation: VC present

0 Optimization wrt both P and p untractable in general.
0 Complexity reduced if LS is used and N, = L + 1 (i.e. Wp square).

O If total MSE, 4, is used as criterion:

Yn,n

Np
°,P°} = argmin7yrs = arg min
{p®, P} = argminArs = argmix ; o

under (C1) where ¥ := W;lHWgWDWEI.
O Minimizing wrt to p under ) p, = o gives
o 2

o = g2V ¥nn
n

Vn=1,
PN, . ;
Y it VWi

, Np
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Pilot-Based Channel Estimation for OFDM (22)

e Optimum pilot design: VC present (cont.)

0 Optimization reduced to:

2

NP
L
P? = arg in | 2 v

[0 Minimum total MSE of LS estimates:

2
o2 Ny
5 | 2 Vinn
p n=1

0 Exhaustive search over all Np-point subsets of A.

M. Ghogho Leeds University
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e Optimum pilot design: VC present (cont.)

U Example: N =32, N, =24, Ny=L+1=4:

0 L 0 0
21 28 4 11

[0 Equispacing pilots in the active carrier region with one pilot
placed near each edge of the VCs seems to be optimal.
[ Pilot power p,, decreases when pilot close to VCs.

[0 Numerical examples show that setting p to be constant and
optimizing wrt P lead to almost the same design
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Pilot-Based Channel Estimation for OFDM (24)

e Optimum pilot design: VC present (cont.)

N=32; N_=24; L=4; N =4
a P

10°

10" W

2

(=1
=
=
3
e 10

0

10 . . . . .
(0] 1000 2000 3000 4000 5000 6000

107 |

STD'of .

10

(o] 1000 2000 3000 4000
Different pilot placements

L] P almost also minimizes ‘STD’ of ~,,. Perfect ‘Fairness’ in terms of

estimation accuracy at different data carriers is impossible in general.

5000 6000
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Pilot-Based Channel Estimation for OFDM (25)

e Optimum pilot design: VC present (cont.)

U The general problem is that of maximizing

N 0k —Wm)oZ(n) | o
Q_N+L,;3E{1°g<1+ n2m) + 07 )19

wrt P, p o2 and the oZ(n)’s for a constant o7; (orthogonality is

valid only for MMSE estimator!)

0 Maximization is untractable. A suboptimum solution is to use P, p
which minimize 475 and use the individual v, to maximize C' wrt
the 02(n)’s. [J Numerical examples show that no significant gain is
obtained by accounting for the slight differences between the

gamma,’s.
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0 Two main classes of methods

O methods exploiting the redundancy introduced by CP or/and
virtual carriers: require large number of OFDM symbols.

00 methods exploiting the finite-alphabet (FA) property of the
symbols: performance deteriorates with size of constellation.

When the channel varies rapidly across the blocks, only the
FA-based methods may be suitable.

M. Ghogho Leeds University
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e FA-based blind channel estimation

O Assume E {s}} =puy #0and E{s]} =0for J < M, eg. M =2
for BPSK and M = 4 for QPSK and QAM.

O Received ith block after CP removal and DFT (assume N, = N):
Tn(1) = Hp8p (1) + Wp (i), n=0--,N—-1
U Then
Gn (1) = [En (D] = Hy' s} (i) + €n(d)
where E {£,(1)} = 0. and
HM =11, e=I2m/N . ,e_j%"M(L)/N](h xpr h) =: Q(n,:)hy
O In vector form

[HM, -  HM 7 = Hy = Qhy
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e FA-based blind channel estimation (cont)

0 Blind estimate of Hj; and hjy; using K blocks:

— 1 1 &
}AI n = H%:—_ y(i
[H ] MMKiﬂy()
hy = QUH, =Qq/NQ"H,,

0 Necessary condition: N > ML + 1. For PSK, identifiability
guaranteed even with one OFDM symbol.

O Blind estimate of h:

h = argm}in A — by b

M. Ghogho Leeds University
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e FA-based blind channel estimation (cont)

e Minimum Distance Algorithm

0 Estimate H,, using
. —1/M
Hy = [H,M ]
where A\, € {/Gm/M)mIM—1 g the scalar ambiguity.
0 Using exhaustive search over all MY possible vectors X, and for
each A, estimate time-domain vector h and compute

A — h s B

O Final estimate of h is the minimizer of the above criterion.
[J Reduced complexity because of discrete search. Other simpler

algorithms exist.

M. Ghogho  Leeds University

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 192



Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 40

M. Ghogho Leeds University

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 41
4 N

O Assume
O frequency-selective channel, constant over K (> 1) blocks

0 Received signal after CP removal

e O, (N x N) precoding matrix e s;: ith transmitted data block
e b;: ith pilot sequence o H = circ([hg...h10...0])
e v;: AWGN, variance 02 e s;: independent of v;.

[J Affine precoding includes TDM and superimposed training.
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O

Assume
O (A1) The non-zero elements of the s;’s are unknown, i.i.d

ecoding and MMSE Channel Estimation (2)

zero-mean random variables drawn from a finite alphabet M.

Design criteria assume a fixed total pilot power in the frame
K—1

1 )
O-I?:EZU?(Z)’

1=

but the training power can vary from block to block.

M. Ghogho Leeds University
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s

0 Collecting K blocks:

xz; =HO®;s;, +B,h+v;, i1=0,....K—1
e B;: leading (N x L) of circ(b;) e h=1[ho---hr]T.

0 MMSE channel estimate:

M. Ghogho

Leeds University
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O Identifiability condition:
rank(B) =L +1 (C2)

0 Frequency-domain counterpart:
e let b;:= DFT of b; and

K
pn =Y _|bi(n)*, n=0,.,N-1
=1

e Let N,: number of nonzero entries of p := [po - pn_1]
O rank(B) = min(N,, L + 1)
(C2) = N,>L+1

i.e. combined training power across the blocks is non-zero at at

least L + 1 frequencies.

M. Ghogho Leeds University
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e Orthogonal precoding
0 Condition for decoupled channel estimation and data detection:

0, Vn, 1

=

T,F"©;s; 0, Vi (C3)

where T; = diag{t;(n),n=0,--- ,N — 1} with

ti(n) = ,
0 otherwise

{1 if neP;
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Affine Pre

e Optimal training for orthogonal precoding
Result 1 Assume that @ = N/N, is an integer. Under (C3) and the
constraint of fixed training power o7, the MSE of h in orthogonal

precoders is minimized when

2 —
Uﬁfiv évzpo Yo(n—0Q —m) if Q) := Nﬂp integer

P (C4)

U]‘g,iv évz"o_l[l —d0(n—L4Q —m)] if Q:= N—LN,, integer

e m : arbitrary integer from [0, ..., Q — 1]

M. Ghogho Leeds University

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 47

s

O Result 1 implies that the pilot frequencies should be equispaced and
that their average powers across the K blocks should be identical.
Therefore, channel estimation performance is the same regardless of
the distribution of the training power across the blocks.

0 the minimum MSE of h is independent of N, the number of pilot
frequencies.

0 Time-division multiplexing (TDM) is not an orthogonal precoding
scheme. Condition (C3) implies that training should be
superimposed onto the data in the time domain (but orthogonal in
the frequency domain).

0 The K > 1 scenario gives more flexibility for designing precoders. It
is also useful if frequency hopping is desired.

M. Ghogho  Leeds University
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Full-Rank Orthogonal Precoding

O Let P;: set of pilot frequencies during ith block

0 Result 2 Assume that ©;,i=1,..., K — 1, are full rank,
assumption (A1) holds and maximum possible data-rate is required.
Then, the orthogonality condition (C3) is satisfied if and only if the
nth entry of A;s; is identically zero for n € P;, where A; is any
permutation matrix, and the precoding matrix has the following
form

0, =F"[T;W,T; + (I—-T;)A;] A;

where W; and A; are any (N x N) matrices such that
(TZW,TZ + (I - T,)Al) is full-rank.

M. Ghogho Leeds University

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 49

Full-Rank Orthogonal Precoding (2)

0 W; =A; =1 ©; =F" = OFDM with reserved pilot tones.

0 Uncoded OFDM has poor performance because only diversity order
one is possible through Rayleigh fading channels. This problem is
overcome by employing either Galois field channel coding or
LP-OFDM - LCP-OFDM.

0 Here, we focus on SC-CP systems. Although such systems do not
have full multipath diversity, their performance at realistic SNR
values approaches that of maximum diversity systems. Further,
maximum diversity at high SNR can be achieved if the
constellations are first rotated prior to SC-CP modulation.

0 Conventional SC-CP where ®; =1 is not an orthogonal precoding
scheme.
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e Full-rank orthogonal single carrier (FROSC) precoding

0 Let Tp, and Tp, be the data and pilot selection matrices, and A;=
non-zero ((N — Np,) x N) submatrix of (I — T;)A;

0 FROSC is obtained by choosing ® to be the same as I except for
the N, pilot rows. This is achieved by

W, =1, and A = (T3, F*Tp,)"'THE (I1-F*Tp,T})

0 Bandwidth efficiency of FROSC:

Crrosc(i) = N - Ny,
N+ L
M. Ghogho Leeds University
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Full-Rank Orthogonal Precoding (4)

e FROSC precoding (cont.)

0 The ©;’s are the same as I except for P; rows are obtained using Aj;.
An example of the structure of ®; when N = 8 and P; = {0, 4} is

X X X X X X X X 0
0 1.0 0 0 0 O O X
0 0 1 0 0 0 O O X
o, — 0 0 0 1.0 0 0 O s = X
X X X X X X X X 0
0 0 0 0 0 1 0 O X
0 0 0 0 0 0 1 O X
0O 0o 0 0 0 0 0 1 X
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Full-Rank Orthogonal Precoding (5)

e FROSC precoding (cont.)

O Effectively, the precoding is redundant (or tall):
G)isi = C:)igi with (:)z = @JI‘%Z and S; = TDisi

Previous example:

X X X X X X
1 0 0 0 0 O X
0 1.0 0 0 O X
0, — 0 0 1 0 0 O 5= X
X X X X X X X
0 0 0 1 0 O X
0 0 0 0 1 O X
0 0 0 0 0 1
M. Ghogho Leeds University
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Full-Rank Orthogonal Precoding (6)

e FROSC precoding: symbol detection
0 Linear equalization: H is circulant = equalization in the F-D
5 = [O]F*(I - T,)GFx;) |
where G = diag{g(k), k=0,---,N — 1} is the MMSE equalizer:
g(k) = H; /(| Ha|* + 07)
0 Ignoring the n € P; rows of ©;, a simpler detection scheme is

5, = |Tp,F*(I1 - T,)GFx;) |\

M. Ghogho  Leeds University
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Rank-Deficient Orthogonal Precoding

e Rank-deficient orthogonal single carrier (DROSC) precoding

O Full data-rate under (C3) requires (rank(®;) = N — P;)
FO®;], =0, necP;
[ s; cannot be recovered linearly. However, using the finite-alphabet
property detection is still possible.

0 DROSC is obtained by designing ©; as

K-1
e; = min ) [|©; — 1|,
©;; Fp,®;=0 4
1=0
o __ H .
@ = F'(I-T,)F
M. Ghogho Leeds University
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4 N

Rank-Deficient Orthogonal Precoding (2)

O Result 3 Assume N/(L +1) =@ and M = (L + 1)/K are integers.
A bandwidth efficient orthogonal precoding scheme is obtained as

follows
O fori=0,...,K —1 chose P; = {nKQ +iQ,n=0,....M — 1}
O set @ =F*(I-T,)F
O add a training sequence according to condition (C3).
0 Bandwidth efficiency of DROSC:

¢ N
DROSC = T

M. Ghogho  Leeds University

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 200



Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 56

e Symbol detection
0 Received signal ; = H [(I — J)s; + b;] + v; with J = F*T,;F
0 Remove training related term
zZ; = (I — J) r;
= (I-J)Hz;,+(I-J) v,
= H (I — J)(Bz + ’l~7i
= HI-J)s;+9; since I-J)?>=1-J
0 MMSE equalizer: G = diag{|[H,|> + 6% 'H,,n=0,---N — 1}

M. Ghogho Leeds University
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e Symbol detection, cont.

0 Even if channel estimation is perfect and no noise, u; # s;:

u;, = (I-J)s; +€; (€; : due to noise & estimation errors)

0 I —J: rank-deficient = s; cannot be recovered linearly

0 Using finite alphabet property:
0 Symbol vector detection <— prohibitive
O Iterative symbol-by-symbol detection: (1-2 iterations suffice)
57 = lu

5™ = w38

.
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Rank-Deficient Orthogonal Precoding (5)

e Simulation Results

0 BER vs SNR; K =4, N =64, L =15, 02 = 0.2, BPSK.

K=4; N=64; L=15;0§=0.2; BPSK; Rayleigh channel

10° : . : : ;
—— OFDM
DROSC: iter O
4 , ~<— DROSC: iter 1
" \ —o— DROSC: iter 2
10k ; —4— FROSC E
107
x
i
o
10
107
10’5 i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20
SNR
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Rank-Deficient Orthogonal Precoding

e Simulation Results, cont.

K=4; N=64, L:15;0§:O.2; QPSK; Rayleigh channel

0 BER vs SNR; K =4, N =64, L = 15, 02 = 0.2, QPSK.

(6)

10° : ; ; ; . ‘ ‘ ;
: —— OFDM
DROSC: iter O
P —v— DROSC: iter 1
—— DROSC: iter 2
o FROSC
10k T -
w107
A
107 X
10’4 L L L L L L L L L
o] 2 4 6 8 10 12 14 16 18 20
SNR
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e Simulation Results, cont.

Rank-Deficient Orthogonal Precoding (7)

0 BER vs SNR; K =4, N =128, L =15, o2 = 0.2, BPSK.

K=4; N=128; L=15;0§=0.2; QPSK; Rayleigh channel

10° ;

T

S

——
—A

T
OFDM
DROSC: iter O
DROSC: iter 1
DROSC: iter 2
FROSC

10
SNR

12

14

16 18

20
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Summary

y/ Pilot carrier design dramatically affects system performance

y/ Blind techniques for OFDM may be more promising than for serial

single-carrier systems

/ Affine precoding gives a general framework for block transmission

schemes

v/ OFDM or single-carrier CP systems? the saga continues...
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Carrier Frequency-Offset for OFDM and Related
Multicarrier Systems

M. Ghogho University of Leeds, UK

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 1
4 N
Aims and General Outline
Aims
0 To present data-aided and (semi-)blind CFO estimation algorithms
for OFDM
O To give a unified framework for several existing algorithms
General outline
U Motivation and context
0 Null-subcarrier-based CFO estimation
0 Blind CFO estimation exploiting data properties
-
M. Ghogho Leeds University
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Mbotivation and Context

O High data rates (up to 54 Mbps) with Coded-OFDM
« IEEE802.11a, HIPERLAN/2, MMAC; DAB, DVB

0 OFDM turns frequency-selective to flat fading channels
* Timing-Offset (TO) as a pure-delay channel

0 Low-complexity equalization and easy decoding
* convolutional coded OFDM (across subcarriers)

[0 Challenges

0 Non-constant modulus = large peak-to-average power ratio

O Sensitivity to Carrier Frequency-Offset (CFO)
0 Inter-Carrier Interference (ICI)
[ At Es/Ng = 19dB: CFO/subcarrier spacing = 1.26%
=— SNR degradation 10 dB

M. Ghogho Leeds University
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%)

s

Outline

Signal model

Deterministic ML estimator

Identifiability issues

CRB and optimal placement of null subcarriers
Performance analysis

Repetitive Slot-Based CFO Estimation

Comparisons

o o o o o o g 0O

Summary
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Signal Model

s(n) s(2)
Cyclic P:
ﬂ Insertlon S 1c =t P /S
of NSC IFFT Insertlon
Kx1

max order L

0 NSC insertion: T, : K cols of a N x N permutation matrix

Orx(nv—1), I

O CP insertion: T,, =
In

0 Transmitted block: ey (i) = T F¥Ts.5(4)

O Input-output relationship (N > K, P = L+ N)

Zep(n) = €79 ST h(1)tep(n — 1) 4+ wep(n)

Goal:  Estimate CFO w, based only on knowledge of

T,. without channel state information

M. Ghogho Leeds University
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Signal Model (2)
U Received blocks
Tep (i) = 7P D p(w,) [Hiu(i) + Hau(i — 1)] + w(d)
where Dp(w,) = diag(e’* k=0,...,P — 1)
0 Discard CP to avoid IBI: using Rep := [Onx(p—n), IN]:
R,H> =0, R;Dp(w,)=Dn(ws)Rep, R.,D(w,)Hs =0
O Channel matrix: H; Toeplitz = H, = R.,H, T, circulant; so
FyH.F} == diag(Hp---Hy_1) =: Dy
where Hy, = Zf:o heexp(—j2nlk/N)
-
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Signal Model (3)

O Received blocks after CP removal

x(i) = Rep@ep(i) = "Dy (w, ) FRD g T,.58(i) + w(i)

O Perform FFT:

#(i) = Fya(i)
= P Ry Dy (wo ) F R Dy Tses (i) + w(i

~—

'

diagonal?

=DyTees(i) +w(i)  iff wo=0

0 — CFO causes ICI; degrades BER

M. Ghogho Leeds University
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Signal Model (4)

O After discarding CP, but before FFT (dropping block index)

2(k) = Y Hosn??™ /N (k) k=0,..,N 1
neA

o v, = N2 is unknown CFO ; —N/2 <v, < N/2 s, unknown

data symbols
e ACN ={-N/2+1,...,N/2} : active sub-carriers
Z =N —A: set of NSC’s

0
a(k) — ZHnsnejQWkn/N
neA
z(k) = a(k)exp(j2rké,/N) + w(k)

e Estimate CFO in additive + multiplicative noise

M. Ghogho  Leeds University
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Deterministic ML Estimator

O Treat «, := H, S, as non-random unknowns

O Receiver knows NSC set

z=D(v,) P4 + w

D(v,) = diag{l,e/? /N 2 (N-Dre/N}
b, = FET,.
a = (o, . any ]’ neA £=1,.. N,

M. Ghogho Leeds University
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4 N

©

[0 Gaussian Problem. Concentrate LLF wrt a,’s:

U, = argmax Z (1) (1)e 2 v IN

=

—1—7

r(r) = Y yRyk+7)=r7(-7)

k=0
1
Na neA

'll)A(T) — _Zej27rnr/N

0 Peak-pick windowed correlogram; window dictated by A.

O N, =N = ¢4(1) = d(r) = CFO is not identifiable
— Need NSC’s

M. Ghogho  Leeds University
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Deterministic ML Estimator (3)

e Interpretation of DML

0 MLE maximizes J4(v) or minimizes J,(v)
Vo = argmax J, (v) = arg min J, (v)
where

L) =Y I Xw+n) L) = [XF+n)
ncA nez
with X (f)=DTFT of z
00 Peak-pick (null-pick) sum of shifted periodograms
O o: frequency shift that minimizes total energy at NSC’s

M. Ghogho Leeds University
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Identifiability Issues

e Identifiability study assumes noiseless case

O Identifiability is guaranteed iff

ID(vo)®saa — D) Bacfz # 0 Vv # v,

O Equivalently J(v) < J(v,) where
J(v) =a™ G4(v —v,)

with
GA(e) = TEFDM (e)FHT,,

0 J(v,) = ||
O Channel zeros a,, = 0: it suffices to have N, > L + 1

M. Ghogho  Leeds University
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Identifiability Issues (2)

0 Ambiguity due to number and location of NSC’s

O Global maxima of J(v) at v = v, + m; unique global at m=07
O For v = v, + m, G4 is diagonal of ones and zeros

O J(m+v,) = aneA |anegne (m)|2

O If for some m # 0, g,,(m) # 0 whenever «,,, # 0:
— Identifiability lost

O Identifiability is restored in (—M/2, M /2] by choosing A st.
Vm € [1,M/2], gn,(m) = 0 for at least L + 1 values of i, n; € A.
(because channel has a maximum of L zeros)

M. Ghogho Leeds University
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Identifiability Issues (3)

O Let P(m) := {ny : np # ng +m,ny, ny € A}. Need P(m) > L+ 1,
for 0 < |m| < M/2

O For consecutive NSC, P(m) = min(m, N,, N,). Withm =1 —
L =0 — VSC-based estimator is viable only for AWGN channel.

O If M > 2, need min(N,, N,) > L.

O For equi-spaced NSC’s, CFO is uniquely identifiable in
(-N/2N,,N/2N,),if L< N, < N — L.

O For equi-spaced active sub-carriers, CFO is uniquely identifiable in
(-N/2N,,N/2N,),if L< N, < N — L.

O For NSC with distinct spacing, CFO is uniquely identifiable in
[-N/2,N/2)iff L+ 1< N, <N — L.

M. Ghogho  Leeds University
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Identifiability Issues (4)

O If the number of consecutive NSC' N,, > L, the number of equispaced
NSC N,, > L and the spacing between the equispaced NSC is
M > L, then the CFO is uniquely identifiable in the entire
acquisition range (—N/2, N/2| regardless of the channel zeros.
N

V% % %

Nwv/2 M M M M Nwv/2

Iy

0 Tradeoffs between acquisition range, performance, maximum
tolerable delay spread.

O Identifiability conditions are relaxed if multiple blocks used and
null-subcarrier hopping is performed.

M. Ghogho Leeds University
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s

e Conditional CRB (CCRB)

O CCRB treats o, = H,$, as non-random unknowns

2 Na -1
CCRB4(v,) = &;’TN [a%}Q <I - W‘I’A> Q@Aa]

Q = N—3/2diag{0, ..., N — 1}
Pp=FHT,, U =70,0%

0 If no NSCie. N, =N — CCRB(v,) = cc.

0 CCRB is channel-dependent.

M. Ghogho  Leeds University
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CRB and Optimal Placement of Null Subcarriers (2)

e Modified CRB (MCRB)
0 Rayleigh fading Ry, = E{flfl"‘}
O ap = Hps,; S = diag{s,,n € A}; R, = SR,S¥

0 Channel-independent CRB:

1/(872N)
MCRB4(v,) =
A = T R-1QRQ - Q7
where
R = ®,R,®% +0°1

0 Blind case: reasonable to assume R, diagonal

M. Ghogho Leeds University
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s

0 — MCRB is a function of A: # and placement of NSC’s:
1/(87*Nn)

MCRBA(v,) =

T {Q%} — Tr {T4QUAQ}

e 7= N,y?/(N, + Nv) is channel-independent
e v = E|H,|?/o? is the average SNR

O The optimal (in the sense of minimum MCRB) placement of a fixed

number of active sub-carriers, N,, is given by

N-1

A* — : 2
argmin » | kLl (k. 0)]

k,£=0
For N, < N/2: equispace active sub-carriers
For N, > N/2: equispace null sub-carriers
Average performance improves with # NSC’s N, = N — N,

M. Ghogho  Leeds University
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CRB and Optimal Placement of Null Subcarriers (4)

MCRB for different NSC placements; IV, = 4; one block

NZ:4 NSCs
o

10

-2 I I I I

T
—— Consecutive
—+#— Distinct

—<— Distinct—-max
—#— Equi—spaced

10 L
15 20 25 30 35 40 45 50

N # sub—carriers

55 60 65

M.

Ghogho  Leeds University
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Performance Analysis
10° < ;
—— Consecutive NSC
—e— Equispaced NSC
o —v— Distinctly Spaced NSC
10 'k ; il
g
@
£
%
o
i 1 OFDM block
Q N =64
= N, =54
N, =10
v, € [-2,2)
L=38§8
E{|hl|2} — 60'2l
SNR Distinct:
1,2,4,7,...,56
-
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10

[
o

MSE of CFO estimates

10

Performance Analysis (2)

]
~
T

T T
—— Consecutive NSC
—o— optimal NSC
— - Minimum MCRB

1 OFDM block

6 8

N =16

L=4

E{|hl|2} — 60'2l

v, € [2,2)

SNR = 15 dB
w12 14 QPSK

Number of null-subcarriers

v

M. Ghogho Leeds University
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~
Repetitive Slot-Based CFO Estimation

Motivation: CFO acquisition not requiring channel estimation

0 J identical slots obtained by nulling all carriers not multiples of J

e u := F”s made of J identical slots (N = JQ)— u(k) = u(k + £Q),

E=0..Q—-1;, £=0..J -1

s z(k+ Q) 2(k) 72 4wk +£Q)
2(k) T EINH (K, )u

J

M. Ghogho  Leeds University

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005

215



Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 22

Repetitive Slot-Based CFO Estimation (2)

J We ignore the dependence between z and v. Nonlinear Least
Squares Estimator (NLLS):

J—-1Q-1

2
N A1 s _ j2mve)J
{Prep, 2 =min Y Y [alk + Q) = 2(k)e
£=0 k=0
Q-1
— Urpp = arg max Z & (k)
Y k=0
1271 2
fy(k;) = j Z e_JQWZV/Jx(k + KQ)
£=0
[0 Acquisition range increases with J: —% <Vrpp < %

M. Ghogho Leeds University
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Repetitive Slot-Based CFO Estimation (3)

O NLS estimator can be rewritten as

J—1

UrEp = arg max Z Re [r(mQ)e_ﬂ”m”/J
m=1
M—-1-1
r(r)= Y a*(k)ak+7)
k=0

0 if J =2, — closed-form solution (Schmidl/Moose algorithms)

UrREP = % arg{r(N/2)}

O if J > 2, — no closed-form solution...
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Repetitive Slot-Based CFO Estimation (4)

e Relationship between DML and NLS estimators

[ Repetition of identical slots: VSC absent

OK={mJ, m=0,....M/J—1} and
K
Ui () = M(S(T—m@) m=0,+1,+2, ...
[0 The repetitive slot-based and NSC-based are identical:

VREP = UNSC

if no VSC (consecutive NSC dictated by system design)

M. Ghogho Leeds University
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e Relationship between DML and NLS estimators (cont.)
Plot of ¢(7); N = 64;15 VSCs

O VSC absent
x VSC present
1r- ® B
0.8 b
J=2
~ 0-67 b
l—l
=
0.4 B
X X x
0.2r B
x x x x
* x % x x x % x % x x  x *
0 x“ x ;i x g g x ;i x ;Ex xgi x ii x g 9 x Ei ® ;Ex
-0.2 I I I I I I
10 20 30 40 50 60
T
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Repetitive Slot-Based CFO Estimation (6)

e Relationship between DML and NLS estimators: J=4
Plot of ¢(7); N=64; 15 VSCs

x VSC present
O VSC absent
1t ® ® ® B
0.8r il
J=4
___os6f ,
=
N—"
=
0.41 3
0.2+ x X X X X X x|
x x x x x x x x
x x x x
o |coatiponitonoo coonitinoaliioonn aooatinonlionen conpttineliteomn
x X X x x X X 5 x XX 5 x X X 5
_0 2 x i x X | x x i x x i %
10 20 30 40 50 60
T
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Repetitive Slot-Based CFO Estimation (7)

e Relationship between DML and NLS estimators: J=8
Plot of 9(7); N=64; 15 VSCs

O VSC absent
x VSC present
1r ® ® ® ® ® ® ® 1
0.8+ 1
J=8
~ 067 : b
|_|
=
0.4 1
0.2r 1
R AKX XK K XK X X XK XK X XX X XX X XXX X XXX X X XXX X X
)){csocsofeacesceocsscsoleacesoofacsascesllcsonsaofaoesncsNesaneaoy
X X X X X X X X X X X X X X X X X X X X X X X X
L L L L L L

10 20 30 40 50 60
T
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Repetitive Slot-Based CFO Estimation (8)

e Relationship between DML and NLS estimators: J=16
Plot of ¢(7); N=64; 15 VSCs

O VSC absent
x VSC present
1-® @ @ ® @ ® @ ® ® 8 & 8 ® @ &
0.8 i
J=16
— 0.6 i
[
N—r
=
0.4r- B
XX K X X X K X KKK XK KX KKK KKK XK KKK KX KKK
0.2r B
[0){es¥c3oXsaofasofccscsolesoNascoRassHceasllesoNsaofaceFacssHesoleao)
—0.2 | | | | | |
10 20 30 40 50 60
T
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e Relationship between DML and NLS estimators: J=32
Plot of 9(7); N=64; 15 VSCs

O VSC absent
VSC present

8| X

J=32

0Fr0000000000O000O00O0O0OO0OOO0O0O0OO0O0O0OOO0O00O0O00
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e Relationship between DML and NLS estimators: J=64
Plot of ¢(7); N=64; 15 VSCs

1.6 T T
o VSC absent
» VSC present
1.4F n
1.2F b
1
-
J=64
0.6 b
0.4r b
0.2 b
o | | | | | |
10 20 30 40 50 60
T
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s

e Relationship between DML and NLS estimators (cont.)

O Repetition of identical slots: VSC present
O Most of the correlation coefficients contribute to the ML
estimator

O Drpp consists of using only the (J — 1) highest correlation
coefficients, and is therefore an approximate ML estimator.

0 DML is computationally more demanding than NLS.

O If J =2, NLS is obtained in closed-form. If J > 2, no closed-form
expression. Approximations given by the following algorithms.
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e The ‘BLUE’ estimator: optimal combining of the correlations’ phases.

[0 To avoid phase wrapping, the algorithm is based on
p(m) = [arg{r(mQ)} — arg{r((m — 1)Q)}]2x

O Deriving the average (over Rayleigh channel) statistics of the
¢(m)’s, the BLUE estimator is

; I\
VREP = > w(m)p(m)
m=1

p: design parameter (optimum value=J/2) and
(J—m)(J—m+1)—p(J—p)

p(4p? — 6pJ +3J%2 — 1)
[J The amplitude of the correlations not exploited in BLUE...

w(m) =3

M. Ghogho Leeds University

Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 33
4 N

e Approximate NLLS (ANNLS) estimator

00 Rewrite the NLS criterion
J-1
Z |r(mQ)| cos(¢m — 2mmu/J)
m=1

¢m: unwrapped phase of r(m@)

O Small error approx. sin(¢,, — j2rmv/J) = (¢m — j2emv/J) —
ANLS estimator:

J Yot mir(mQ)ém
2 S0 m2r(mQ))|

VREP =

M. Ghogho  Leeds University
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e Optimum number of identical slots (cont.)

0 The repetitive-slot structure-based Conditional CRB:
3 1
2m2N(1—-1/J%) SNR g

where we assumed no VSC and |s,,| = 1,Vm and where

CCRB(v) =

N/J—-1

H 2
YH = E @; frequency diversity decreases with J
o
m=0 H

0 Averaged CCRB:

T 2m2N(1—-1/J%) SNR~ | vm

— no closed-form expression

ACCRB(v) 5 E {i}

— Monte-Carlo simulations
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e Optimum number of identical slots (cont.)  Rayleigh channel
1077 ;
- Flat fading
2 —e— AWGN
8 —e— Flat fading Multipath fading
Q10| o =2 1
% L=N ]
o
[<5)
=
=
AWGN
1074 1 1 1 1 1 1
o 10 20 30 40 50 60 70
J
N
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Repetitive Slot-Based CFO Estimation (16)

e Optimum number of identical slots (cont.) Ricean channel k = 4

2

10 T
[ —e— AWGN
—e— Flat fading
—e— L=4
—e— L=N
m
[a'
Q
o
B103t 1
> [
© [ :
> [ :
<>( I °\ Flat fading N
| W
r AWGN
10_4 i i i i i i
(0} 10 20 30 40 50 60 70
J
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Comparisons
o MSE vs. SNR, J=4
107 :
— CRB
N —— MLE
2 —<— NLS ]
—+— Approximate NLS |{
BLUE
810
5]
E
2
o
L
O
ks
W
= 10 Bl
¥
10’5 I I I I I I I I I
(o] 2 4 6 8 10 12 14 16 18 20
SNR, dB
N =64, N, =49, L =15, CFO € [-2,2], E {|h¢*} = 7%, QPSK
- ) a — ) - ) s 4]y 0 - )
-
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Comparisons (2)

e MSE vs. # Repeated slots, J

10 T

CRB
MLE
NLS
Approximate NLS
BLUE

PHie]

(%2}
210
£
= 3
()
o
L
o SNR=0dB
o
I
N 1073k ,
= 10
!\
SNR=10dB
10’4 I I I I I I
2 4 6 8 10 12 14 16
J (number of repetitive slots)
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Summary

0 A computationally efficient algorithm
0 Analytical performance analysis and CRB

0 Relationship between the repetitive slot-based and the NSC-based
MLE

U Equivalent in the absence of VSC’s
0 NSC is better if VSC’s present
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Part 2: Blind CFO estimation

Outline

0 Constant-modulus algorithm
0 Finite-alphabet algorithm

0 Comparative study

M. Ghogho Leeds University
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Constant-Modulus Algorithm

O Assuming |s,| =1, Vn, wlog
<> Hps, = |Hy|e??; 0, = LH,s,

— z(k) = /> /NN H, [0 e k), k=0,..,N—1
ncA

O The |H,|’s are parameterized by only (L + 1) coefficients, the h;’s

O The H,s,’s are parameterized by only (N, + L + 1) coefficients
instead of 2NN, (Ng = card(A))

O w(k) is assumed AWGN
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Constant-Modulus Algorithm (2)

e Deterministic Max-Likelihood

O Treat {|H,|},{0»} as non-random unknowns
0 DML criterion

N—

|_l

2

V |H| 0 .’L‘ ej27rku/N Z |Hn|ej6nej27rkn/N

neA

k=0

e can be rewritten as

(v,[H|,6) Z (k)] + ) |Hy|* — 2NRe
ncA

Z |Hp| X (n + V)e_je"]

neA
e X(f): DTFT of {z(k)} at frequency f/N
N-1
X(N)= Y a(k)e PN
k=0

M. Ghogho Leeds University
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Constant-Modulus Algorithm (3)

e Deterministic Max-Likelihood, cont.
O Setting 0J/06,,

0, = arg{X(n +v)}

o If |H,| =0, 0,, becomes non-identifiable
e N, > L ensures that H, #0,Vn € A

O DML of {H,} and v, obtained by minimizing

J(v,[H]) = Jvsc(v)+ Jalv,[H])

Jvsc(v) = Z|X(n—|—l/)|2 due to VSC
nez

Jaw,[H|) = > (X(n+v)|—|Hs)> duetoCM
neA
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e Non-Dispersive Channel

0 H, = hg, Vn € A. Criterion becomes

Jw,H|) = > [X(n+v)P+ > (X(n+v)| - |he|)®
nez neA
N-1
= > [X(n+v)?+ Nalhol® = 2lho| > |X(n +v)]
n=0 neA
0 DML of CFO:

Do = arg max Z | X (n+v)
neA
[J VSC-based estimator is equivalently obtained by maximizing the
Lo-norm

arg min Jysc(v) = arg max Z | X (n+v)|?
neA

M. Ghogho Leeds University
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e Dispersive Channel
O Jysc(v) is not a function of |Hj
O Ja(v, | H]|) should be minimized wrt |H| under the constraint:
L
|H’n|2 — Z hlh;efj%'r(lfp)n/]\/
1,p=0
O we modify J4(v, |H|) into
2
Jaw,[H]) = Y (X (n+v) — |Hal?)
neA
-
M. Ghogho  Leeds University
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Constant-Modulus Algorithm (6)

e Dispersive Channel, cont.

O |Hp|? can be re-parameterized as

|Hn|2 = cha n c A

¢n = [1, V2cos(2rn/N),--- ,V2cos(2rnL/N),
V2sin(2rn/N), - -- ,V2sin(2anL/N)|T
A = [go,V2Re[g1], - ,V2Relgr],V2Im[gi1],--- ,v2Im [gr]]T

L—1
9 = Zhl*huri
1=0

M. Ghogho Leeds University
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e Dispersive Channel, cont.

0 X estimate:

A= argm}in J,(v,|H|) = C} Z | X (n+v)en ,
neA

C, = Z cmc% .
meA
O CFO estimate: obtained by minimizing J(v) = Jysc(v) + Jom (V)

Jysew) = [X(nt)]% Jou() =Y (|X(n+1/)|— Y(n;y))2

nez neA

Y (n;v) = cLCl Z X (n+v)|%c,
neA
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e Dispersive Channel, cont.

0 The proposed VSC&CM estimate:

Vo = arg min Z <Y(n; v) —2|X(n+ 1/)|\/m>

Y (niv) = cECh Y (X (n+v)Pes

neA
Cy = E cmel (pre — computatble)
meA
1 N-1
X(f) = D wlk)e 2mtI
N
k=0
M. Ghogho Leeds University
Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 49

Constant-Modulus Algorithm (9)

e Extension to Multiple Blocks: Time-Invariant Channel

O Signal model for M blocks: (CFO and fading assumed constant
across the set of blocks)

mm(k) _ ei2mkvo /N Z Hnsm,neﬂ”’“”/N + wm(k), m=1,., M
neA

0 VSC&CM CFO estimate:

Dy = arg min Z Z(njv) —2 (% Z | X (0 + l/)|> Z(n;z/)]

neA m=1
1 M
Z(n;v) =efCH Y (M > [ Xm(n+ 1/)|2> Cn
neA m=1
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Constant-Modulus Algorithm (10)

e Extension to Multiple Blocks: Time-varying Channel

O Signal model for M blocks:

mm(k) = eI2mhvo /N Z Hm,nsm,neﬂﬂknﬂv + wm(k)

neA
0 VSC&CM CFO estimate:
M
U, = argmin E Im (V)
v
m=1
Im(v) = E (Ym(n; v) = 2| Xpm(n+ )|/ Yim(n; 1/)
neA
M. Ghogho Leeds University
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0 PSK constellations of size M satisfy:

M _
s, =1

— In the noiseless case

L M ur
[X(n+vo)|M = HM = Z hye92mn/N | _ Zvleﬁewln/}v — Ay

n

o, =[1,&92 /N 2 MLIn/NIT: . (ML +1) x 1
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Finite-Alphabet Algorithm (2)

0 Proposed criterion:

Jv) = wlysc)+ (1 —w)Jpa(v,v)
Teaw,v) = Y |X(n+v] — 4y’
neA

o If ML+ 1< N,, u can be estimated as:

V=TT Y [X(n+v)"y,,
ncA

=) v

neA

M. Ghogho Leeds University
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Finite-Alphabet Algorithm (3)

0 The finite alphabet-based criterion becomes

Jra(v Z‘ X(n+v™ - Z(n;v)
ncA

o Z(nyv) = YT 32, c 4 X (n +v)] My,
— Proposed VSC&FA-based estimator:
Dy = argmuin [w Jysc(v) + (1 —w) Jpa(v) ]

w: weight parameter to be adjusted. If no VSC, w = 0.
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Comparative Study

e VSC vs CM: performance vs SNR.
MSE of CFO estimators vs. SNR; L = 6

T
—— VSC-based estimator
2 —— VSC&CM-based estimator |4

MSEs of CFO estimates

10 15 20 25 30 35 40
SNR (dB)

N =64, N, =49, CFO in [-2,2] and E {|h¢|*} = ¢7%-?; 8PSK.
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~
Comparative Study (2)

e VSC vs CM: unknown channel order.

MSE of CFO estimators vs. assumed L; actual L = 6

1072 : :
—<— VSC-based estimator
—o— VSC&CM-based estimator: L known
—v— VSC&CM-based estimator: L unknown
1%
]
<
E
k7]
Q107 b
[&]
k]
)
% v
=
107 I I I I I
6 8 10 12 14 16 18

Assumed channel order

N =64, N, =49, CFO in [-2,2] and E {|h|?} = e~ *%; 8PSK.
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Comparative Study (3)

e CM versus FA: BPSK case
MSE of CFO estimators vs. SNR; actual L = 6

10~ T T T T T

T T T
—— CM-based estimator ]
—<— FA-based estimator |[]

MSE of CFO estimates

[
o
T

—6 i i i i i
10 12 14 16 18 20 22 24 26 28 30
SNR

10

N =N, =64, CFO in [-2,2] and E {|h,|?} = e7%-2¢
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Summary

0 CMA greatly outperforms VSC-based estimators
0 CMA works even when the system is fully loaded
0 CMA outperforms FA for M-PSK with M > 2

0 Performance of CM close to data-aided algorithms

0 Complexity is however greater than VSC and data-aided algorithms.
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Soft information aided parameter estimation
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e Cramer-Rao bound with coded/prior information
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INTRODUCTION

QOutline

e Introduction/motivation

e The EM algorithm

e Coding and the MAP algorithm

e Synchronization of coded systems with the EM algorithm
e |llustration of performance

e CSI estimation for coded MIMO transmission

e lllustration and performance

e Cramer-Rao bound with coded/prior information

INTRODUCTION

Motivation

e Synchronization or parameter estimation required even if not primary goal
(data)

e Synchronization/CSI required at the RX; CSI also of interest for TX

e Recent advances in coding (error correcting codes): operation point at (very)
low SNRs; powerful with perfect sync.

e Can we still reliably estimate parameters at low SNRs 7

e Increase of number of pilot symbols decreases spectral efficiency

e Problem for short block transmission; use the information carried by the
whole block

e Turbo receivers (for instance) produce soft information
e How to use this soft information for sync/CSI estimation ?

e The EM algorithm is a nice framework to derive soft-data aided estimation

algorithms; adaptations are desirable however
4
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INTRODUCTION

Illustration: impact of timing estimation

BER

-+ EM CA init O&M
DD CA init O&M N %
4 EM CA init EM NDA & O&M
10 'H /\ DD CA init DD NDA & O&M §
-E+ EM NDA init O&M
{3 DD NDA init O&M
0o&M

— — Perf. sync.

:

0 0.5

1 15
Eb/No (dB)

e Turbo code performance for various timing synchronizers

5
INTRODUCTION
Illustration: impact of CSI
10° ; %
) iteration #1 \
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0 5 10 15 20 25 30 35 40
SNRh [dB]
e Turbo equalizer for BICM over Porat channel 6
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INTRODUCTION

Parameter estimation

e Assume data symbols ay, observation vector r, parameter vector 6
e Ultimate goal (min SER): detection/decoding given by

~

ay = argmax p(a|r)
ay.
= argmax | (@ |r.6) (o] )t )
ap 0
e Suboptimal approach:
= argmax [ p(@ r.6) p(e| )t @
aj. 9
~ argmax p(a |r, = argmax p(f|r)) @)
aj, 0
7
INTRODUCTION

Maximum likelihood parameter estimation

e Assume no prior information about parameters (uniform distribution)
e About the estimates:
0

argmax p(r | ) @)
0

argmax 3 p(r|a.f) p(2) ©)

e Function of the information we have about the transmitted sequence
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INTRODUCTION

ML parameter estimation: DA mode

e Assume one uses pilots only
e We transmit a sequence of pilot symbols ay,;t

é = arg méaX p(rpilot | QApilot 5) (6)

e Easy to compute
e Only exploits part of the available information

INTRODUCTION

ML parameter estimation: NDA mode

o All transmitted sequences assumed equiprobable

0 = argmax 3 p(r|a, 0) p(a) )
a B 1 )

= arg max Z p(r|a,0) (W : ©)]

9)

e Untractable problem

10
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INTRODUCTION

ML parameter estimation: NDA mode

o All transmitted sequences assumed equiprobable

6 = argmax r|a,d) p(a 10
gmé Ea: p(r|a,0) p(a) (10)
~ 1.y
= arg max r|a,6 —) 11
gézpu)(w| (11)
a  Jow SNR approx.
(12)
o Viterbi-Viterbi (phase), Oerder-Meyr (timing)
11
INTRODUCTION

ML parameter estimation: Code aided mode

e Only existing codewords have non-zero probability:

6 = arg max Z p(r | a,0) p(a) (13)
= argmax > p(r|a.0) p(a) (14)
ae BB

o with B C AV
e Untractable problem

12
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INTRODUCTION

Previous work (non exhaustive !)

e Basically two different paths are followed:

— Parameter estimation can be embedded in the SISO module ("aug-
mented trellis”) [Colavolpe(2000)][Anastasopoulos,Chugg (2001)][Miel-
czarek(2002)]

— Iterative detection/parameter estimation, coined turbo sync/parameter
estimation

« Carrier phase estimation in turbo coded systems: [Lottici, Luise (2002)];
[Burr (2002)]; [Oh,Cheun (2001)]; [Morlet (2000)]; [Langlais (2000)].

« Timing recovery: [Mielczarek, Svensson (2002)]; [Li Zhang, Burr
(2002)]

« Channel estimation: [Kobayashi-Boutros-Caire (2001)], [Guenach2000],
[Kaleh-Vallet (1994)]

— The methods proposed for turbo-sync are rather ad-hoc”

— The EM framework provides a more structured approach
13

INTRODUCTION

Outline

e Introduction/motivation

e The EM algorithm

e Coding and the MAP algorithm

e Synchronization of coded systems with the EM algorithm
e lllustration of performance

e CSI estimation for coded MIMO transmission

e lllustration and performance

e Cramer-Rao bound with coded/prior information

14
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EM ALGORITHM

EM algorithm (1/3)

e Expectation-Maximization
e Seminal paper of [Dempster, Laird, Rubin, 1977]

e Can be used for the ML estimate or also the MAP estimate (Bayes frame-
work, accounting for prior distribution)

e Example: assume observed data » and set of parameters to be estimated b
e The ML estimate of b is obtained as

b=arg mglx pr(r]D) (15)

15

EM ALGORITHM

EM algorithm (2/3)

e Assume that instead of the incomplete data r one has access to the
complete data z from which » may be obtained by a many-to-one mapping
r= H(z)

e Definition of the complete data non unique; idea: p.(z|b) more easily
obtained

e EM algorithms proceeds as follows
— E-step (expectation): compute Q[b, '] = E[In p.(z|b)|r, b']
— M-step (maximization): solve b*'=arg mgx Q[b, b]

16

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 243



EM ALGORITHM

EM algorithm (3/3)

e |dea: Inp.(z|b) is not available; it is therefore a random variable and one
maximizes its expectation given the observation » and the most recent
value of the estimate '

e Converges under mild conditions
e Can produce a local maximum
e Likelihood never decreases

17

EM ALGORITHM

Parameter estimation in the presence of nuisance (1/3)

e Let the complete data r denote a random vector obtained by expanding
the received modulated-signal »(¢) onto a suitable basis and let b indicate
a deterministic vector of parameters (sync parameters) to be estimated

e r also depends on a random discrete-valued nuisance parameter vector a
independent of b and with a priori probability density function p(a) (the
data)

e Find the ML estimate b of b : b = argmax{In p(r|b)}, where
b

p(xb) = / p(rla, b) pla) da (16)

18
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EM ALGORITHM

Parameter estimation in the presence of nuisance (2/3)

e Set r as the incomplete data set and z £ [r”,a’]" as the complete data
set

e EM algorithm :

(b, B ) / p(alr, B V) In p(a|b) dz )

b™ = argmax{Q(b, b""1)} (18)
b

19

EM ALGORITHM

Parameter estimation in the presence of nuisance (3/3)

e Using now the Bayes rule and taking into account the independence of a
and b we may write

p(z|b) = p(r, a/b) = p(r|a, b) p(ab) = p(r|a, b) p(a).

e |t comes
Q(b,b" V) = / p(alr, b ) Inp(r|a, b) da
+ / p(alr, b)Y Inp(a) da. (19)
e Finally, with the independence assumption
Q(b, by = / p(alr, B@ V) Inp(r|a, b) da. (20)

20
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EM ALGORITHM

Parameter estimation in the presence of nuisance: comments

e Knowledge of a posteriori sequence (symbol) probabilities required
plalr,b™Y) (21)
e Should take into account the code information if any

e For convolutional code: can be computed exactly

e FFor turbo code or any iterative device, should be delivered after ’a number”
of iterations

e How do we get marginal a posteriori probabilities ?

21

INTRODUCTION

Outline

e Introduction/motivation

e The EM algorithm

e Coding and the MAP algorithm

e Synchronization of coded systems with the EM algorithm
e lllustration of performance

e CSI estimation for coded MIMO transmission

e lllustration and performance

e Cramer-Rao bound with coded/prior information

22
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How to improve coding (1/2) ?

¢ Classical codes:
> block codes (BCH, Reed-Solomon,. . . )
> convolutional codes (NSC, RSC)
= Efficiency is increased by increasing the length of the
codewords (block codes) or the code memory (convolutional codes).
= Exponentially increasing complexity of the associated

Maximum Likelihood (ML) decoding.

e Concatenated codes
> Outer block code and inner convolutional code separated
by an interleaver.

> Separate decoding of the codes.

October 27, 2005 Newcom Automn School 1
© L. Vandendorpe/A. Dejonghe

How to improve coding (2/2) ?

e Turbo-codes and iterative decoding (1995):
> Combination of several simple codes (constituent codes)
in order to form a powerful global code.
= Attractive ML performances for the global code.
> Iterative decoding technique which allows
the separate decoding of the constituent codes.

= Performances close to those of the untractable

ML decoding of the global code.

October 27, 2005 Newcom Automn School 2
© L. Vandendorpe/A. Dejonghe
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Classical turbo coding (1)

e rate-1/2 RSC code:

u;

¢ Coding scheme:

X]S
U
Coder RSC 1 .
T g
% 7 = >
& x;? and/or x; 2
Interleaver § A 1
Xj:p
Coder RSC 2
October 27, 2005 Newcom Automn School 3

© L. Vandendorpe/A. Dejonghe

Classical turbo coding (2)

e Parallel concatenation of 2 identical rate-1/2 RSC constituent codes.

¢ Pseudo-random interleaver: random permutation of the input sequence u.
= The two constituent encoders are coding the same

information sequence u but in a different order.

e For each input binary information symbol w;, we keep:
> the systematic output =7 = wu; of the first RSC encoder.

1 2 ¢ Y
> the coded outputs x;” and z;” of the two RSC encoders.

October 27, 2005 Newcom Automn School 4
© L. Vandendorpe/A. Dejonghe
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Classical turbo coding (3)

e The outputs are multiplexed to form the sequence:
2p }

Ap 2p 1p 2p e
R VPN i i T PRI R i B 1SN B o O o S

= code rate r = 1/3.

e The code rate may be increased through puncturing.

= Classically the code rate is increased to 1/2 as follows
1 2 1 2
{ooo e x P i, .-r;l.jfl._ Uita, .r:iig, Uiy, ;r:i.jfs ..... ;

e In practice, only the trellis of the first constituent code is terminated
with negligible impact on the performances of the global turbo-code.

Newcom Automn School

October 27, 2005
© L. Vandendorpe/A. Dejonghe

Decoding complexity

e Maximum Likelihood decoding of the global turbo-code 7

> O(2V) complexity!

N = information sequence length.

> Totally untractable!

= Suboptimal iterative decoding technique (turbo-decoding).

> On(2% + 2%)) complexity!
K = constraint length of the constituent codes.
n = number of iterations
> Performances (after convergence) close to those of ML decoding.
6

Newcom Automn School

October 27, 2005
© L. Vandendorpe/A. Dejonghe
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Ilterative decoding

e Iterative decoding scheme:

Deint . [+

L

Soft
decisions

Dec2 L —» Deintl .
LI_‘:

o) w

Hard
decisions

e Soft information exchange between two soft-in/soft-out decoders.

e Progressive improvement in the reliability of the decisions.
October 27, 2005 Newcom Automn School 7
© L. Vandendorpe/A. Dejonghe

Performance

Binary error rate [-]

B S N S S S S

0 0.2 04 06 0.8 1 12 14 16 18 2
EBINO [dB]
October 27, 2005 Newcom Automn School 8

© L. Vandendorpe/A. Dejonghe
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Possible schemes

e Concatenation method:
> Parallel concatenation of two or more constituent codes.
> Serial concatenation of two or more constituent codes.

> Hybrid concatenation of two or more constituent codes.

e Constituent codes:
b rate-r convolutional codes (NSC or RSC).

> rate-r block codes.

o In all cases:
> Attractive asymptotic ML performances.

> Iterative decoding.

October 27, 2005 Newcom Automn School 9
© L. Vandendorpe/A. Dejonghe

Soft decisions
and
soft-in/soft-out (SISO)
decoding

October 27, 2005 Newcom Automn School 10
© L. Vandendorpe/A. Dejonghe
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Soft decisions (1)

e Hard decision:
A discrete symbol from the input constellation is associated

with each received sample at the demodulator.

e Soft decision:

A continuous value is kept at the demodulator.

= Reliability measure associated with the symbol.
= Allows the full exploitation of the available information.

October 27, 2005 Newcom Automn School 11
© L. Vandendorpe/A. Dejonghe

Soft decisions (2)

e Soft decision vs. hard decision: 2dB Gain!
e Soft decision in the binary case: Log-Likelihood Ratio (LLR).

e LLR of a discrete binary random variable U:

_ o PU ('U.. = 1)
L-L (U) = 111 (m)
Absolute value = Reliability of the decision.
Sign = hard decision.
1 if Ly(u) >0
0 ifLu(u)<0

October 27, 2005 Newcom Automn School 12
© L. Vandendorpe/A. Dejonghe

=>
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Soft output of a channel (1)

e Information symbol v € {0,1} BPSK mapped to symbol b € {+1, -1},
e Memoryless channel associating the input symbol b € {41, -1}

with the received sample y.

e The LLR of symbol w given the reception of symbol ¥ is:

Using the Bayes rule:

rolo) = (5 =y) - (7=
- n(F==n) - (7=
= Ley+ La(u)
October 27, 2005 Newcom Automn School 13

© L. Vandendorpe/A. Dejonghe

Soft output of a channel (2)

e Two terms in L(u|y):
> L.y is called soft output of the channel.
Soft information associated with u, brought by the reception of y.
> Lo(u) corresponds to the information available a priori

at the receiver about u, independently of the reception of y.
e In the case of an AWGN channel, with noise variance o*:

P(ylb = +1) exp(—gr (b= 1) 2
In{ ———= ) =1In = —y
P(ylb=—1) exp(— 5z (b+1)° o’

= The reliability value of the channel is given by L. = .

| QJD—‘

October 27, 2005 Newcom Automn School 14
© L. Vandendorpe/A. Dejonghe
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SISO decoder (1)

e Decoder working with soft values at its inputs and outputs

= Soft-In/Soft-out (SISO) decoder.

e Particular case here: rate-1/2 systematic code

(straightforward generalization).

October 27, 2005 Newcom Automn School 15
© L. Vandendorpe/A. Dejonghe

SISO decoder (2)

e Coder input: binary information symbols w; (i =1,..., N)

e Coder output: coded symbols x7, z¥.

e Coder output sequence: x = (x1,...,xn) with x; = (7, 27).
e BPSK mapping = sequence b = (bq,..., by)

with b; = (07,0%) and b = 227 — 1, bY = 227 — 1.

e Channel = output sequence y = (y1,...,yn~) with y; = (y7,y7).
La(us)
n Lp(ui) = L{uily)
— SISO
—m»| RSC coder | BPSE | gy g decoder :,: -
mapper
u; x o= (ahal) b= (b6 yio= () i
u X b Y i
October 27, 2005 Newcom Automn School 16

© L. Vandendorpe/A. Dejonghe
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SISO decoder (3)

e Inputs of the SISO decoder:
> Sequence y of the received symbols.
Equivalently: sequences y° = (yi,...,yxy) and y° = (y7',. .., v% ).
Equivalently: sequences of soft channel values L.y® and L.y".
> Sequence L, of a priori information about

the information symbols {u;} (i=1,... , N):

- P(u; = 1)
La(u;) =1n (—P('uz — ())>
e Output of the SISO decoder:

> LLR of the a posteriori probabilities of the information symbols:

Plu; =1 Pu; = 1|y*,y?
Lo(u) = In (Pl = U9y (Pl = Ly7, )
P(u; = 0]y) P(u; = 0ly*, y?)
Newcom Automn School 17
© L. Vandendorpe/A. Dejonghe

October 27, 2005

SISO decoder (4)

e A SISO decoder is implemented with algorithms able to estimate
the symbol a posteriori probabilities.
e From SISO decoder output, decoded symbols obtained via hard decision:

1 if Ly(u) > 0
0 if Ly(u;i) <0

=
&

e SISO decoder + hard decision = symbol-by-symbol MAP decoding:

it; = arg max P(uly)
w

e Fundamental property (SYSTEMATIC CODE):
Lp(ug) = (Leys ) + La(ui) + Le(us)

= The a posteriori LLR Lp(u:) can be split into three terms.

October 27, 2005 Newcom Automn School 18

© L. Vandendorpe/A. Dejonghe
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SISO decoder (5)

= The a posteriori LLR Lp(ui) can be split into three terms:

> L.y;: information about symbol x; = u, through direct (noisy)

observation at the output of the channel.
> La(u;): a priori information about the information symbol ;.

> Le(ui): extrinsic information about the information symbol ;.

= Supply of soft information brought by the decoding process.

= Dependson gy, (m=1,....N:m#i), yh (m=1,...,N)
Lo(tm) (m=1,...,Nim #1i).
October 27, 2005 Newcom Automn School 19

© L. Vandendorpe/A. Dejonghe

Iterative decoding

October 27, 2005 Newcom Automn School 20
© L. Vandendorpe/A. Dejonghe
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Classical turbo coding scheme

e rate-1/2 RSC code:

u; X1,

e Coding scheme:

Xj
uj
Coder RSC 1
x; P
1 P E
Interleaver x;'? andfor x;’P
p
x]
Coder RSC 2
October 27, 2005 Newcom Automn School 21

© L. Vandendorpe/A. Dejonghe

Iterative decoding (1)

| Deintl I-‘. -
e(1) | I L((-J
e N v ___I_l
: C Dec.l L . B Tud. |
s v & L™
- Soft
decisions

¥

(e RN

Dec2 L

Hard
decisions
e Demultiplexing = sequence y* (systematic output of CC1),
sequences y'* and y?* (coded outputs of CC1 and CC2).
o If puncturing: missing values are replaced by 0.
October 27, 2005 Newcom Automn School 22

© L. Vandendorpe/A. Dejonghe
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Iterative decoding (2)

e Decoding scheme based on the association of 2 SISO decoders

corresponding to the 2 constituent codes of the turbo-code.
e These SISO decoders collaborate through an extrinsic information exchange.

e [terative processing leads to progressive increase in the reliability

of the decisions.

e Performances close (after convergence) to those of the untractable
ML decoding of the turbo-code.

October 27, 2005 Newcom Automn School 23
© L. Vandendorpe/A. Dejonghe

Iterative decoding (3)

e The first decoder ensures the decoding of the first constituent code
based on the received sequences y*. y'? and on the

a priori information sequence LY about the transmitted symbols.

e At the first iteration: no a priori information = LY (u;) =0 Vi
1 e, S OFI
e It outputs a sequence Ly~ of a posteriori LLRs Ly~ (us):

P(u, = 1y°,y'")
Plus = Oly".y77)

L](ol)(u;) =In (

e The extrinsic component L{" is then extracted from the output L;l):
1 1 1
L (ug) = L (ug) — Leyi — LY (wy)

October 27, 2005 Newcom Automn School 24
© L. Vandendorpe/A. Dejonghe
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Iterative decoding (4)

¢ The second decoder ensures the decoding of the second constituent code
based on the received sequences y* (interleaved), y*” and on the

e g . 2 .
a priori information sequence L{? about the transmitted symbols.

e L is obtained by interleaving of the extrinsic information sequence

LY produced by decoder 1.

2 . . 2
e The second decoder outputs a sequence LL ) of a posteriori LLRs L; )(-u-j):

@ 0y — 1 (Pl =1y"y*)
Ly”(u;) =1In (P(uj = 0y®,y?")

e Again, the extrinsic component L is extracted from the output Lgf):

LEQ}('U._,) = Lf) (u;) — Leys — Lff) ()

October 27, 2005 Newcom Automn School 25
© L. Vandendorpe/A. Dejonghe

Iterative decoding (5)

e A second iteration may now begin:

The sequence LS ) of extrinsic information produced by decoder 2
becomes (after deinterleaving) the sequence L ) of a priori information

for the decoder 1.

e The fundamental principle is that the extrinsic information provided by

one of the decoders becomes the a priori information for the other.

= Improved quality of the decoding for each of the SISO decoders.

e Through iterations: progressive increase in the reliability of the decisions.

October 27, 2005 Newcom Automn School 26
© L. Vandendorpe/A. Dejonghe
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Iterative decoding (6)

e At the last iteration, the best estimation available about the transmitted
symbols is given by the deinterleaved a posteriori output of

the second decoder.

e The final hard decision is:

1 it L8P (w) >0

Uy = (2)
0 if Lp”(ui) <0
October 27, 2005 Newcom Automn School 27

© L. Vandendorpe/A. Dejonghe

Iterative decoding (7)

e This scheme will perform efficiently if the two SISO decoders

are decorrelated information sources one for each other.
e This decorrelation is possible thanks to the interleaver.

e This is also the reason why only the extriusic part of the a posteriori LLRs

at the output of the SISO decoders is used during the exchange process.

October 27, 2005 Newcom Automn School 28
© L. Vandendorpe/A. Dejonghe
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Performance

Binary error rate [-]

1077 1 1 1 1 { 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2
ED/NO [aB]
October 27, 2005 Newcom Automn School 29

© L. Vandendorpe/A. Dejonghe

Symbol by symbol algorithm

October 27, 2005 Newcom Automn School 30
© L. Vandendorpe/A. Dejonghe
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Markov process

e Markov process:
> State s; in finite set S a each time ¢ (i=0,...,N).
> Input: sequence u, output: sequence x.
> Particluar case: 1 input symbol, n output symbols:

Wy/%) e SNy U2/ e XN

LLITE ST U3/X) 2y X2

S0 S1 S2 SN-2 SN-1 SN
i=0 i=1 i=2 i=N-2 i=N-1 =N

e At time 4, transition between states s;_; = s" and s, = s
caused by symbol u; (i =1,..., N) generates symbols

X; = (2,1, ..,Ti ) of sequence x.

e Fundamental property:

P(h’i Siely...,y «‘»‘D) = P(Si|5i—l)
October 27, 2005 Newcom Automn School 31
© L. Vandendorpe/A. Dejonghe
e Convolutional code = Markov process
Xl.‘l
v L p ]
uj I ujy I uja
e State = content of the shift-registers.
= In the case of an NSC code:
s; = (Ui, ..., Ui pr41)
. T aM ) i P oM
e Memory M = 2% possible states S; (j =0,..., 2 1)
October 27, 2005 Newcom Automn School 32

© L. Vandendorpe/A. Dejonghe
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Convolutional code (2)

e State diagram representation of a convolutional code:

e Encoding of a sequence = path through the state diagram.

October 27, 2005 Newcom Automn School 33
© L. Vandendorpe/A. Dejonghe

Convolutional code (3)

e ‘Irellis representation of a convolutional code:

5;=11

$,=10

So=00

e Encoding of a sequence = path through the trellis diagram.

October 27, 2005 Newcom Automn School 34
© L. Vandendorpe/A. Dejonghe

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 263



Transmission scheme (1)

e Rate r = 1/n convolutional encoder.
e Memory M encoder = 2* possible states in set S.
e Coder state at timestep i: s,.

e At timestep i, transition (s', s) between states s;_1 = s" and s; = s.

e Input: binary information symbols u; (i =1,..., N)
e Output: coded symbols z;1,..., Tin.
e Output sequence: x = (x1,...,xn) with x; = (zi1....,Tin).

e BPSK mapping = sequence b = (by,...,by)

with b; = (b1, ..., bin) and b; j = 2z, ; — 1.

October 27, 2005 Newcom Automn School 35
© L. Vandendorpe/A. Dejonghe

e Channel = output sequence y = (y1,...,yw~) with y; = (yi,1,- .., Yin )

Transmission scheme (2)

e Transmission scheme:

La
n; L,
SISO
—— | coder | BPSK | gy g decoder - j:
mapper L

UA X’L = (‘1‘5‘1. Tt l“:‘n“] yL = (.yll.l """ yl!’lj 215

u X y a

October 27, 2005 Newcom Automn School 36
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SISO decoder

e Input of the SISO decoder:
> Received sequence y.

> A priori LLR sequence L, with entries L, (u;) = In %%.

e Output of the SISO decoder:

> A posteriori LLR sequence L, with entries L,(u;) = In %“%.
=

e Data:
> initial state sg and final state sp.
> Code trellis.

> Noise variance o2,

October 27, 2005 Newcom Automn School 37
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BCJR algorithm (1)

e Symbol-by-symbol a posteriori probability (APP) evaluation

< Minimization of the symbol error rate = optimall

e BCIR algorithm (1974):
Evaluation of the a posteriori probabilities of the states and transitions

of a Markov source observed through a discrete-time memoryless channel.

October 27, 2005 Newcom Automn School 38
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BCJR algorithm (2)

e The BCIR algorithm provides the a posteriori states and transitions
probabilities:
P(si = s|y) or P(si =s,y)
and:
P(si1=5" 8 =sly)or P(s,_1 =55 =5,¥)
on the basis of:
= the received sequence: y.

= the channel type — p(y:|si_1 = ¢, 5, = 35).

= the transitions a priori probabilities: p(s; = s|si_1 = s').

e Slight modification necessary to obtain a SISO decoder.

= “MAP” algorithm.

October 27, 2005 Newcom Automn School 39
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MAP algorithm (1)

e Slight modification of the BCJR algorithm = “MAP” algorithm.

e The goal of the MAP algorithm is to provide an APP LLR (soft output):

Ly(u:) =1n (H)

based on the received sequence y and the a priori information sequence L,.

= Optimal algorithm for the implementation of a SISO decoder.
e Combined with hard detection, it realizes MAP decoding:

1 if Ly(u;) >0

i =
0 if Lp(u) <0
Equivalent to:
it; = arg max P(uly)
u
October 27, 2005 Newcom Automn School 40
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MAP algorithm (2)

e The MAP algorithm provides the a posteriori LLR:

r _ P('U-i = ]-|y)
Lp(ui) =1n (W)

e As the knowledge of s,_; = s’ and s; = s determines u;, we have

3. _ !‘;-!)i —
L,(u;) =1In (Zer p(si1 5} S g y))
ZS_ IJ(S’,_]_ =3’ 5 = S|y)

. . L. I
where S+ (resp. S_) is the set of transitions (si—1 = §', s; = §) caused

by a symbol u; = 1 (resp. w; =0 ).

e This can be simplified as:

3 - — (Vf. (it _ ‘i.
Lp(ui) =1n s+ Plsi-1 =" $,Y)
ES_ p(‘qi_l = “;’: 5; = 8, y)

October 27, 2005 Newcom Automn School 41
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MAP algorithm (3)

e The probability p(si_1 = ¢',8; = s,y) is computed as (BCIR algorithm):

plsio1 =555 =5,y)

Plsicr = 8 Yi<p(¥s2i 5 = slsic1 = 8, y;<0)

i1 — HI)

=p(sic1 =8, ¥j<i)p(¥izi, 8i = 8

P(sic1 = 8, ¥i<i)p(¥i Yini 50 = s|si1 = "”f)
p(yé: Vizei. 8 = 8,81 = 3’)
E—

p(yi, s =8,8.1=25") o )
=y POlYes = sso=s)

= p(sims = &y, p(yi s = slsis = 8 )plyalse = )

=p(sic1 =5, ¥<i)

=p(si1=25,¥i<i)

si1 =85 = 8)P(s; = slsi_1 = " )plyj»i|s: = 5)

=p(sic1 =8, yj<i)p(¥i
NB: if s; = 5 is known, events after time 7 do not depend on yj<it1.
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MAP algorithm (4)

e Defining:

> i 1(8") = p(sii1 = 8, yj<i),

S; = c’-:’) 5

> Bi(s) = p(yi>i

/

> vi(s',8) = plyi, si = s|sic1 = &)

sic1 = 8,8 = s)p(s; = s[si—1 = &),

= p(yi

We have:
p(sic1 =5 .8:=5.y) =a;i_1(5) (5", 5).3:(s)

October 27, 2005 Newcom Automn School 43
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MAP algorithm (5)

e Parameters a are computed as follows:

(ll(c,) = p[si = 5,¥; <z‘+1)

= }U[Hi,]_ = .‘s’j.. S; = 8, yj<i+1)
== }U(Hz‘_l :.‘s'j..“a'i :‘Q.Yj<i,yi)
=D plsicn =8\ yjc)p(si = s,yilsion = s yj<)

= 3 plsics = &' yacalpls: = syilsios = §)

October 27, 2005 Newcom Automn School 44
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MAP algorithm (6)

e Parameters «v are obtained via a forward recursion:

ai(s) = Z ai—1(8" )i, 8)

s'eS

for (i =0,...,N —1) and Vs € S.

e The initial conditions are:
ap(so) = 1 and ap(s # so)

< The initial state is known to be sg.

October 27, 2005 Newcom Automn School
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MAP algorithm (7)

e Parameters 3 are computed as follows:

Bic1(s") = p(yisi-a|si-1 = &)
= plsi =s.yimicalsion =)

scS

= plsi =5y yilsio =)
sES

_Zpsl—sypa i Si1=5')
plsic1 = &)

=0

45

s')

sES
plsi = 5, ¥i, Si— 179)
ZZ}U(YJ>i|~"’z‘=" Yiisic1=8') —
Mot =
- Z P(Yi>ilsi = s)p(si = s,yilsi—1 = &)
sES
= 3 A
scS
October 27, 2005 Newcom Automn School
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MAP algorithm (8)

e Parameters /3 are obtained via a backward recursion:

Bi_1(s") = Z Bi(s)7i(s", 8)

sES
for (i=2,..., N +1) and ¥vs' € S.
o [f trellis termination, the initial conditions are:
An(sn)=1and gn(s#sn) =0
< The final state is known to be sx.
e If no trellis termination, the initial conditions are:

Vs e S

) 1
B (s) = 7S

< The final state is unknown.

October 27, 2005 Newcom Automn School 47
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MAP algorithm (9)

e v;(s', s) associated with a transition between states s,_1 = s’ and s; = s:

Si_1 = s’)

vi(s', 8) = plyi,si = s

sii1 =88 = 8).P(s; = s|si_1 = 8')

=plyi
In terms of symbols:
vi (s, 8) = plyi|ui, si—1 = 8"). P(ui)
> p(¥ilui, si—1 = §') is evaluated on the basis of the received symbol
and the channel type.
> P(u;) is evaluated on the basis of the a priori information Lg(u;).
e 7;(s', s) = metric associated with the transition (s;_; = &', 8; = s).
The same as in MAP sequence estimation and SOVA.

October 27, 2005 Newcom Automn School
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MAP algorithm: summary

e The MAP algorithm computes the a posteriori LLR L (w;)

of the information bits u; (fori=1,...,] N):
i1 (8") il 8).Bi(s , -
Ly(u) = In ( st Gt ()7, 9) fils) (i=1,....N)
Do im1(8)yil8 8).Bi(s)

e o = forward recursion with appropriate initial condition:

ai(s) =Y aia(s)yi(ss)  (i=0,... N—-LVse8)

s'eS
¢ 1 = backward recursion with appropriate initial condition:

Bic1(s') = Z Bi(s)yils', 8) (i=2...,N+1,9 8)
sES
e v = calculated based on the received symbols and the a priori information:
!

7,5, 8) = p(yilsic1 = 8,80 = 8).P(si = 8]si-1 = &) Wi ¥ (s', ) € trellis

October 27, 2005 Newcom Automn School 49
© L. Vandendorpe/A. Dejonghe

MAP algorithm: log MAP

e The MAP algorithm has numerical problems.

= Implementation in the logarithmic domain:

e Define @:(s) = In (ai(s)), 3,(s) = In(Bi(s)) and 7,(s". s) = In (yi(s", 5)).
e The a posteriori LLR becomes:

S exp (@i—1(s')) . exp (T,(s'. 8)) . exp(Bi()) )
T 5- exp (Tim1(5')) . exp (7, (', £)) - exp (B, (5))

Ly(u;)) = In (
= In (Z exp (@1 (s") +7:(s', 5) —|—T")’2(H)))

— In (Z exp (@1 (s) +7:(', 5) _,_732(5)))

October 27, 2005 Newcom Automn School 50
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MAP algorithm: max log MAP

e Using the approximation:

In (exp(z) + exp(y) + exp(z)) ~ max(z, y, z)

we have

Lp(w) = max(@i () +7,(s,5) + Fils)
S

- max(@i_1(s) + 7,(s",5) + Bils)
o
> The forward recursion for parameters @;(s) becomes:
@i(s) = max(W—a(s) +7:(s". 8))

with initial conditions :

@o(s0) = 0 and Wo(s # s0) = —x

October 27, 2005 Newcom Automn School
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MAP algorithm: max log MAP

. =) !
> The backward recursion for parameters 3, ,(s’) becomes:

B;_1(s) = max(5,(s) +7;(5", %))

sES

with initial conditions:

Ba(sn)=0and Gy(s # sn) = —oo if trellis termination

or initial conditions:

if no trellis termination

By(s) = ln(%) Vs eS8

> Parameter 7,(s’, s):

Y

7.5, 8) =In(plyilsi_1 = 8,5 = 5)) + In(P(s; = s]si_1 = §'))
= Metric calculated for each transition between states s;,_1 = s" and s; = s

on the basis of the received symbol and the a priori information.
October 27, 2005 Newcom Automn School
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MAP algorithm:log MAP

e An optimal implementation in the logarithmic domain is possible.
= Instead of approximation, use exact expression:
In(exp(z) + exp(y)) = max(x,y)+ In(l + exp(—|z —y|))
= max(x,y)
If more than two entries:
In(exp(x) + exp(y) +exp(z)) = max(x,y,2)
= max(max(z,y), z)

= Generalized maximum function.

October 27, 2005 Newcom Automn School 53
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MAP algorithm:log MAP

= LOG-MAP algorithm.

e Proceeds exactly as the MAX-LOG-MAP algorithms

if we replace every max function with a max™ function:

Lo(u) = mhx(@ir () +7.(5, ) + Bi(s))

S+

— III?L‘{[HZ—I (Hf) + ﬂ_.'l (";1‘1 “’)) + .“1 (Sj)
S5—

e Optimal algorithm!

e Numecrical problems solved.

e 2 instances of a generalized VA.

e Complexity O(2%) where K is the code constraint length.
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Summary of algorithms

e Optimal algorithm: MAP.
> Consider all paths in the trellis at each step.

Divide them into 2 sets at step i.

e Optimal algorithm in the log. domain: LOG-MAP.
> Consider all paths in the trellis at each step.

Divide them into 2 sets at step 4.

e Suboptimal algorithm in the log. domain: MAX-LOG-MAP.

> Consider 2 paths per step:

The best with bit 0 and the best with bit 1 at step @

October 27, 2005 Newcom Automn School
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Metric computation (1)

e Particular case: rate-1/2 RSC code.

Notations already defined.

e Transition metric 7,(s’, s) = In (yi(s', 5))

suited for LOG-MAP, MAX-LOG-MAP and SOVA algorithms.

P— I - e i/
o Metric 7, (s", s) for a transition between states s;_1 = s’ and s; =

s =shsi=5) = In(plylsiot = 5 = )
+ In(P(s; = s|sic1 = ')

or equivalently, in terms of symbols:

7.5, 8) = In(p(yilui,sic1 = ")) + In(Plws))
In (p(yiwi, wiz1, ..., wimnr)) + In (Plug))

= In(p(yilz:, zf) + 1In (P(u:)) = In (p(y:|b;,67)) + In (P(u,))

October 27, 2005 Newcom Automn School
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Metric computation (2)

> The first term In (p(y:|bi, b7)) depends on the received symbols.

2,

(y; = b3)° + (yF —b0)?
202

Considering an AWGN channel with noise variance o

1
p(yilb;, bY) = exp | —
p(yilbi, b7) = —5—ex)

or, in the logarithmic domain:

(45 = b7)* + (yF —b)?
202

In(p(y:|b].b7)) = — In(o”27) —
which may be developed as:

yibs oyl (p)? 4 (00)% + () + (0))?
ol 202

In(p(yi|b;.07)) = —In(c?27) +

October 27, 2005 Newcom Automn School 57
© L. Vandendorpe/A. Dejonghe

Metric computation (3)

> The second term In (P(u;)) is calculated on the basis of

the a priori information:
P(u; = 1)
Lo(u)) =In | —m——=
(u;) = In (P — )

We may write:
exp(La(ui)) i, _
P(u;) = T4exp(La(u;)) ifu; =1

—t— ifu; =0
14exp(La(u;))

or, in the logarithmic domain:

In (P(u;)) = La(u:)u; —In (1 + exp(La(u:)))
October 27, 2005 Newcom Automn School 58
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Metric computation (4)

e Combining those two terms, we obtain:

yibi +ytb (y)? + (097 + ()7 + (BY)?
2 - .

202

— In(o”2m) +
+  La(u)u; —In(1 + exp(La(us)))

Tz(sl' 5) =

e Suppressing the terms common to all hypotheses

(terms which do not depend on u;, bj or b):

She PhHP
7' ) = LTI b L

e Remembering that L. = ;25 for an AWGN channel:

(Ley: b5 + %(Lcyf)bf + Lo (u)u;

| =

Ti(s',s) =
59

October 27, 2005 Newcom Automn School
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Metric computation (5)

e Noting that b = 2x] — 1 and 0¥ = 227 — 1

7:(s",s) = (Leyi)x; + (Ley?)a? + Lo (uwi)u;

e Remembering that z; = u;:
7.(s',8) = (Leyi + La(ui))us + (Ley?)a?

.
!

= For each transition (s;—1 = ¢, s; = s) in the trellis (characterized by wu;,
tf = u; and x¥'), we can compute the metric on the basis of the

a priori information L, (u;) and the soft outputs of the channel

L.y; and L.y?.
60
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Metric : fundamental property

e SISO decoder fundamental property for a rate-1/2 RSC code:
Lp(wi) = Ley; + La(us) + Le(w;)
e Expression of the transition metric:

vi(s',s) = exp(F.(5,9))
= exp((Ley; + La(uwq))u; + Ley?a?)

can be written as:
vi(s", 5) = exp((Ley; + La(ui))us)vi (s, 5)

with:
i (s, s) = exp (Ley; zy)

October 27, 2005 Newcom Automn School 61
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Metric : fundamental property

e According to the MAP algorithm:

Ly(w) = In (M)

P(u; = 0ly)
- (Z& ai1(8 )“fz("-v)-.ife'(«ﬂ’))
s @ima(8) il 5).Bils)

s
_ (Eﬁazm)ewuLm+L( e (s, 5). m>
> 5= i1 (+)-oxp((Let + La(w)) ey (3, 5)-0:(3)

o Factors exp((L.y; + Lo (ui))u;) identical for all transitions in ST and S~ =

L) = o (SR L)) DT gt a9 9)0,6)
e exp((Ley; + La (uz))()za— ai—1(s').75 (8", 5).Bi(s
_ . Ps+ im1(s)7i (57, 5).Bils)
= Leyi + La(wi) +1In (Eb— () 5 )
= Loy + La(u) + Le(ui)
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Impact of interleaver

Binary emor rate [-]

B[]
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Log MAP vs MAX LOG MAP

10

Taux d'erreur binaire [-]

05

ra

1 15 25
Rapport Eb/ND [dB]
October 27, 200: 64
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Comparison

d'erreur binaire [-]

Taux

== MAX-LOG-MAP
== 50VA

10 L
1 15
Rapport EbINO [68]
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INTRODUCTION

Outline

e Introduction/motivation

e The EM algorithm

e Coding and the MAP algorithm

e Synchronization of coded systems with the EM algorithm
e |llustration of performance

e CSI estimation for coded MIMO transmission

e lllustration and performance

e Cramer-Rao bound with coded/prior information

23
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information
bits

TURBO SYNCHRONIZATION

Transmitter setup

from
channel

noise

channel
delay ©

exp(2mjvt+jo)

24

TURBO SYNCHRONIZATION

demapping

coded symbols
bits
encoder symbol t_ransmlt
mapper filter p(t)
Receiver setup
Yn
receive J
—> ) >
filter

exp(-2mjvt)

>

decoding >

nT+t  exp(-j6)
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TURBO SYNCHRONIZATION

Observation model

e Received signal
K-1 .
r) =AY app(t — kT = 7) "0 + (), (22)
k=0

e A: amplitude; 7: timing; (v, ) carrier frequency and phase offset
e w(t) ANGN
e ;. data symbols

26

TURBO SYNCHRONIZATION

EM algorithm

e [t comes
B _ K—1 ~
Inp(rja,b) = —2A Re{>  aj yp(F,7) e’}
k=0

- K-1
+ AP (23)

k=0

where .

u(7,7) & / r(t) e 1 p(t — kT — 7) dt. (24)

27
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TURBO SYNCHRONIZATION

Posterior averages

e Expectation step:
o~ ~ K71 A
Q(b,b" ) = —2ARe{> ni(r,b" V) yu(7, 7 e/}

k=0
K-1

+ A e, ). (25)
k=0
e With following posterior values

(e, B0y 2 / a(k) plalr, B"Y) da
aeAl

acAKk

a0 2 [ R sl B ) da
o Note: depend on symbol marginal posterior probabilities !

28

TURBO SYNCHRONIZATION

EM estimates

e Maximization step leads to partially decoupled solutions [ICC2003]

K—-1
.7 = aigmax{| Y (. b ) u@ D} (26)

k=0
~ K-1 ;
0" = arg{y (e B )@ A} @)
k=0
K-1 ;
|22 nie, B ) (@, 7))
A‘(n) — _k=0 = . (28)
> e, b )
k=0

29
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TURBO SYNCHRONIZATION

Comparison with pilot aided solution

o If pilots had been used

[v,7]

K-1
argmax{| » _ ai y(7. 7|} (29)

k=
o 0

0 = arg{> a0, 7))} (30)
k=0

K-1

1> aiuk(@,7)]
A = =0 . (31)

K-1

D lal?

k=0

30

TURBO SYNCHRONIZATION

Posterior mean values

L b 2 bk R og

31
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TURBO SYNCHRONIZATION

Discussion

e Solution only requires marginal symbol a posteriori probabilities

e Delivered by trellis based MAP module implemented by means of BCJR
algorithm (when code or *supercode* not too complex)

e Also available in a turbo receiver after *sufficient* number of iterations

32

TURBO SYNCHRONIZATION

BICM transmitter

bli Encoder Interleaver - Mapper
ag
r(t) s(t) Channel Waveform
= D~ 5(t—7) - u(t)

33
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TURBO SYNCHRONIZATION

BICM iterative demapper/decoder with timing estimation

Anti—aliasi

Discrete Time Interpolator mlﬁ[ate]? sing Received

Matched Filter P S X signal
ampling

arg max

Q7Y

information

Y Deinterleaver
Matched Filter Soft Soft
Outputs, Demapper Decoder —_— bit a posteriori
Interleaver I‘—

34

TURBO SYNCHRONIZATION

Discussion

e A turbo receiver is supposed to deliver bit posterior probabilities after an
infinite number of iterations

e Approximation: use these bit APPs obtained after one or several iterations
to build symbol APPS

e Use them in the EM algorithm

35
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ILLUSTRATION OF PERFORMANCE

Outline

e Introduction/motivation

e The EM algorithm

e Coding and the MAP algorithm

e Synchronization of coded systems with the EM algorithm
e Illustration of performance

e CSI estimation for coded MIMO transmission

e lllustration and performance

e Cramer-Rao bound with coded/prior information

36

SYMBOL TIMING OR JOINT PHASE/TIMING ESTIMATION

Setup

e 16-QAM, “medium unconditioned bit-wise mutual information” mapping,
convolutional code, length= 3, code rate= 1/2

e Timing only or joint phase/timing estimation

o Startup : 7 =0 or 70 = 0,000 = 0 (9 = 15 degrees)

e E,/N, = 4dB

e One turbo iteration per EM iteration (no reset of extrinsic information)

37
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SYMBOL TIMING OR JOINT PHASE/TIMING ESTIMATION

Results: mean

sTiminQ estimator mean (phase-aided timing synchronizer) Timing estimator mean (joint timing and phase synchronizer)
s
.5 ! , ,
iteration 1
iteration 3
iteration 6
iteration 12
iteration 18

ttid

[
~

o
w
o
[ %)

I

)
o
%)

o

Mean of the estimated timing (-)
o

Mean of the estimated timing (-)

. . . . o i i

0.2 0.3 0.5
Normalized timing offset (-)

0.2 0.3
Normalized timing offset (-)
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SYMBOL TIMING OR JOINT PHASE/TIMING ESTIMATION

Results: MSE

Ti”"%% estimator mean squared error (phase-aided timing synchronizer iming estimator mean squared error (joint timing and phase synchronize
: 10 L

s
=4 iteration 1
_ 4 =4~ iteration 3 : 3
a0 T, -1 =+ iteration 6
L10 L.
2 > sy ?10 =4 iteration 12 . 5
£ / € iteration 18 b
s = || === CRbound
310 S 810 ;
: f :
8107 / // // 800
o o
£ £
3 / =
w
2107 g 1 2107
2 s 20
-5 -5
10 0 0.1 0.5 10 0 0.1 0.5

0.2 0.3 04 0.2 0.3 0.4
Normalized timing offset (-) Normalized timing offset (-)
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SYMBOL TIMING OR JOINT PHASE/TIMING ESTIMATION

Results: BER (7/7 = 0.25)

. BER (phase-aided synchronizer)
10 T T T
10! T
T % D
x10” b
i} g
o " )
107 \ \ X
‘ = iteration 1 N
4 iteration 1 4~ iteration 3 N\
=4~ iteration 3 =4~ iteration 6
~+~ iteration 6 ~+ iteration 12
1oL eraton 12 10 iteration 18 |
0 1 2 3 5 [ 1 5
E,/N, (dB)

2 3
E,/N, (dB)
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SYMBOL TIMING ESTIMATION

Steepest descent implementation

e No closed form solution for the symbol timing
e Steepest descent leads to

! ~() ~() n TN (DI ~(5
'é(n) A 7_(nJrl) - 7_(n) — ﬁz ’77](6 )‘ % RE{@ Jjarg(n,, )y(kT + T(rz))} (32)
k

e Proposal: design a best linear unbiased estimator [SPAWC2003]

41
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SYMBOL TIMING ESTIMATION

BLUE estimator

e BLUE estimator (with some simplification) leads to

E(n) — B/ Z M Re{ e—]drg, nk (y(kT + T ) — Z flk/ Xk k/)}

- Twstk) ¥ Oerh)

; E[hq(k)] _jarglr (n)
+ 7 Z ﬁ Im{ e i 'y(KT + 7 Z The Xk 1)}
k waqlk) eq(k)

e [dea: not only projection in phase with 77 ) contains useful information but
also that in quadrature (red term).

e Also: perform soft interference cancellation of self noise (blue term)

42

SYMBOL TIMING ESTIMATION

Results with improved design

MSE

0 0.1 0.2 0.3 0.4 0.5
timing offset

43
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SYMBOL TIMING OR JOINT PHASE/TIMING ESTIMATION

Acquisition

e Does not solve acquisition

e Conventional methods with ambiguity resolution can be used to initialize the
EM estimates.

e Or run the EM with different initial values [Wymeersch2004] . Can work
without pilots at low SNRs ((M)CRB reached at 1dB).

e Solves convergence towards local minimum.

44

SYMBOL TIMING ESTIMATION

Turbo coded system

¢ 512 BPSK symbols
e Timing changed randomly at each new frame
e MSE and BER with different initial values for the EM

45
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MSE results

SYMBOL TIMING ESTIMATION

- EM CA init O&M

10—4 L X DD CA init O&M

O&M
- - MCRB

EM CA init EM NDA & O&M
/DD CA init DD NDA & O&M
£+ EM NDA init O&M
<1 DD NDA init O&M

10 :

0 0.5

;
Eb/No (dB)

BER results
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SYMBOL TIMING ESTIMATION

- EM CA init O&M
X DD CA init O&M

<7 O&Mm
— — Perf. sync.
T

EM CA init EM NDA & O&M
10 5 </ DD CAinit DD NDA & O&M
-+ EM NDA init O&M
1 DD NDA init O&M

0 0.5

1 1.5
Eb/No (dB)
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TURBO SYNCHRONIZATION

Conclusion

e Soft data aided synchronization works
e Cramér Rao bound can be reached
e Initial value has large impact

48

CSI ESTIMATION FOR CODED MIMO TRANSMISSION

Outline

e Introduction/motivation

e The EM algorithm

e Coding and the MAP algorithm

e Synchronization of coded systems with the EM algorithm
e |llustration of performance

e CSI estimation for coded MIMO transmission
e lllustration and performance

e Cramer-Rao bound with coded/prior information

49
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CHANNEL ESTIMATION IN FS MIMO CHANNELS

FS MIMO scheme

e FS MIMO channels with n; transmit and n, receive antennas
e Observation model for polyphase component m and RX antenna j
o) = Ahg) +n). (33)

e Objective: estimate the 2/); the symbols a;(mn) are nuisance parameters

—=m

e Estimation of noise variance can be handled as well

50

CHANNEL ESTIMATION IN FS MIMO CHANNELS

EM algorithm

e Follow path similar to soft data aided synchronization [Wautelet2003]
ng Mg—
3 = LN~ TN ) g7
INp(RIA,B) = -5 > Y W —Ah)" () —Ah)  (34)
4 5 4 4
" j=1 m=0
e Channel estimation at step (n)

()

i = BIAY AR, BV BLAIR, BV 1) (35)
o Noise-variance estimation
() R G ()
~m) j Y A1) 70
olpm = TLRJ\L;LTJE_; mz_% [Z%) ri) + hyen  E[A"AR, B" ] ko

—2Re {zﬁf)H E[AR,B" "] EﬁEMH ‘

51
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CHANNEL ESTIMATION IN FS MIMO CHANNELS

Comparison with pilot aided solution

e Pilot aided solution for the channel

() - :
Booa = (474,) A, (36)
e For the noise-variance (biased):
SRR B S R N DRSS )
U?Z,DA - nRMgL, JZI ;} (@m - éh”LDA) (@T;L - éhﬂl,DA)' (37)

e Biased can be removed
e EM Channel estimation at step (n)

ﬁ(?)(?\)l — E[éHé‘Rv 3(7271)]*1 E[é‘R’ B(nfl)]H ESr]L) (38)

—m,

e Posterior averages of products also needed

52

CHANNEL ESTIMATION IN FS MIMO CHANNELS

Problems

e Posterior average of product not delivered by e. g. turbo receivers
e Solution for the channel estimate delivered at each EM iteration is biased

— Degrades the BER
— Pointed out by [Kobayashi et al.,2001]; ad-hoc solutions proposed

e Solution for the noise variance estimate delivered at each EM iteration is
also biased: bias can be partly removed.

53
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CHANNEL ESTIMATION IN FS MIMO CHANNELS

Proposed solution: BLUE design

e Target Best Linear Unbiased Estimator assuming a priori information for
the symbols

e Estimation at step (n):

Y on = (ELAIR, BV BLA[R, Bo~V]) " BIAIR, Bo-0}H 1)

(39)

54

CHANNEL ESTIMATION IN FS MIMO CHANNELS

Other possibility: ECM

e Expectation Conditional Maximization

e Update one value at a time; take the most recent value for others

e Avoid matrix inversion

o 2 SR B D)~ (IS SR, B ) AV
o {ES"SIR, BV} it nivi

~

)

(40)
e This solution is also biased and the bias can be removed

55
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e Introduction/motivation
e The EM algorithm

CSI ESTIMATION FOR CODED MIMO TRANSMISSION

Outline

e Coding and the MAP algorithm
e Synchronization of coded systems with the EM algorithm

e |llustration of performance

e CS| estimation for coded MIMO transmission

e Illustration and performance

e Cramer-Rao bound with coded/prior information

56

CHANNEL ESTIMATION IN MIMO CONTEXT

ST BICM Transmitter and receiver

(1)

(1)
A o

(2)

il mapper |2l (1) }_Y

Ua | convolutional |%b | Te
- coder 1 int. | demux.
— 0
! | computation of symbol La(wyy)

2 g} 1

Le(wy)

a priori probabilities

ch.annel | pa(sgj))
estimator

i

L]

inner SISO stage

space—time Fe (“Ej)) Le (Igf)},) Lo (wy): ' L,,(%Ea’
i demodulator deint. decoder
equalizer : ; :

outer SISO stage
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CHANNEL ESTIMATION IN FLAT MIMO CHANNEL

Simulation parameters

e Space time BICM [Tonello 2000]

e Random interleaver, 8-PSK, Gray Mapping

e = 0.5 convolutional encoder, generator polynomials (23,35) (octal)
o frame: 2000 information bits (1336 symboles)

e Flat Rayleigh fading channel 4 x 4; 4 x 5 pilot symbols (orthogonal)
e FS GSM Typical Urban 4 x 4; 4 x 55 pilot symbols

o Iterative space equalization/demodulation (MMSE filter based) and decod-
ing (BCJR) [Wautelet 2004]

e 6 iterations
o Noise variance estimated in a way similar to CSI

58

CHANNEL ESTIMATION IN FLAT MIMO CONTEXT

Results for Flat 4 x4 MIMO@10 it

T
—— DA

-5

-10
8

N
o

-20

Normalized MSE [dB]

—40
6
Eb/No [dB]
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CHANNEL ESTIMATION IN FLAT MIMO CONTEXT

Results for Flat 4 « 4 MIMO

BER

5
Eb/No [dB]
60

CHANNEL ESTIMATION IN FS MIMO CONTEXT

Results for FS 4 x4 MIMO

BER

perf
—— DA
-4|| —s— DD
—— EM
—— UEM
EM diag ‘ ‘

—4 -2 0 2 4 6
Eb/No [dB]
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CHANNEL ESTIMATION IN FS MIMO CHANNEL

Simulation setup

e Space time BICM, 16-QAM, Gray Mapping

e r = 0.5 convolutional encoder, generator polynomials [7s, 5g]

o frame: 1001 information symbols

e Initialization with CSI corrupted by noise: normalized MSE of —25dB
e IS Hiperlan 2/B channel 2 x 2

62

CHANNEL ESTIMATION IN FS MIMO CHANNEL

Results for Hiperlan IT 2 x 2 channel

Normalised MSE [dB]

Eb/No [dB]

63
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CHANNEL ESTIMATION IN FS MIMO CHANNEL

Results for Hiperlan II 2 x 2 channel

BER

10
perf
—— init
-4|| —=— DD
10 —— EM
—— UEM
UEM diag
0 5 1 15
Eb/No [dB]
64
CONCLUSIONS

Global conclusions

e EM : nice framework for the use of soft information in a synchroniza-
tion/parameter estimation context

e Improvements have to be introduced wrt pure EM design

65
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CSI ESTIMATION FOR CODED MIMO TRANSMISSION

Outline

e Introduction/motivation

e The EM algorithm

e Coding and the MAP algorithm

e Synchronization of coded systems with the EM algorithm
e |llustration of performance

e CSI estimation for coded MIMO transmission

e lllustration and performance

e Cramer-Rao bound with coded/prior information

66

CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Cramer-Rao bound

e Channel with ny inputs and ny outputs; bursts of ny L, complex symbols
s\ are sent

o Model: I
s+, (41)
i=1 [=0
e Let
by =[R{h}" S{n}"]". (42)
e We have R R
Eunl(hg — hp)(hy — hp)'] > CRB(hp). (43)
CRB(hy) = J ' (hp). (44)

e Fisher Information Matrix
olnp(r ﬁ olno(r E
{J(h’R)}l k — T|/’LR p(*’—]?) p(7|7]?)

A a . (4
Nhghi  Hhgls

|ﬁ1?:h12

67
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CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Cramer-Rao bound

o With nuisance (data) parameters:

p(r|hy) = / p(r|Ig, 5) p(s)ds (46)
e \We have - -
dIn p~(z|ﬁ1?,) _ 1~ ap(glhza) (a7)
8{@3}1 p(f’ﬁfz) a{ﬁR}l
e S0 use the substitution
op(rlhy) _ =~ OInp(r|hy)
TR - hp) —=— 48
2k p(r|hp) Y (48)
68

CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Cramer-Rao bound

e With nuisance (data) parameters:
oInp(rlhy) _ 1 Op(r|hy)

a P (49)
Nhpti p(rlhp) O{hph
L0 [ el ) e
= — - (50)
p(rlhg) {hr}i
1 op(r|hp, s)ds
= _ - / o §)M (51)
p(r|hr) B a{ﬁR}L
_ / P)p(rlhp, 5) Onplrhg, 5) 4 (52)
p(rlhg) H{hrh
~ I
= / p(s|hg, 1) Olnplr|fiy, 5) ds (53)
{hp}i
69
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CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Cramer-Rao bound

e The effect of the prior distribution of nuisance parameters s is captured
through the posterior probability

o This posterior probability p(s|hy, ) is exactly what is delivered by an 7 -
aided MAP receiver

e Basic formula for CRB computation over coded system
e Assumes exact posterior probabilities are delivered: true MAP (turbo ?)

70

CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Cramer-Rao bound

e About the partial derivatives

dInp(r|h, s) Z%{ e nz'ih D)) }
ORI |, U%M S = 2 2
dIn p(r|h, ) L
—_— - \Y S 7’ h

o Using 5" = Eﬁ‘lﬁh}z[g;j)] and p,(f}i? = By, hR[sgf) s;j;')*], we finally have
np L—1

M — 225}%{ Zzh kl’kl}

ORI Y iy i

ny L—1

ZZh kI/A l}

i'=1 "=

N*
;~./—\

Tn
~ Ls
dInp(r|h) _ Z
ao{ﬁ(ﬂj)} :

S |h=h " k=

71
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CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Cramer-Rao bound for given mutual information

e Instead of setting p(s) for each sequence or symbol, one can instead assume

a pdf for the symbol probability
e Usually LLR are gaussian distributed

e One can set the mutual information (MI) between p(s) and the sequence
e Amounts to fixing the LLR distribution : MI=0 <> NDA; MI=1 « DA

e For a given MI, one has a lower bound given on the CRB given by
E, Millr — hp)hy — hp)'1 > B, il (Rg)),
e With Jensen’s inequality for matrices:

E, Miller = hp)(hy = hp)'] > (B, milZ@)D
= CRma

(54)

(55)
(56)

72

CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Cramer-Rao bound for random channel

e For an estimate unbiased on average . Ej, [hg] = my,,,

e Lower bound given by
By [(hp — hp)(hp — hp)'] = CRBRang.

e With
CRBRand = (B, La(h)) "

e and Jy(hy) is a matrix whose elements are

aInp(r, huy) dInp(r, hy)
0{hph oHhp}n

{L(bp)tir = Evng

‘ER:LLR

(57)

(58)

(59)

o Valid for estimators knowing the prior channel distribution or the joint pdf

p(r. hp)
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CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Cramer-Rao bound for random channel

e For a conditionally unbiased estimator : Ez\bn[ﬁlﬁ] = hp.
Ey (b — hy)(hy — hg)'] > CRBgy, (60)
CRBoy = BjylL (hp)] (61)
e J of the ”usual” CRB (see 44)
e Averaging over r and channel NOT simultaneous (inversion in between)
e With Jensen’s inequality for matrices:
CRBGy2 = (EnglJ(hp)]) ™ (62)
CRBcy2 < CRBcy- (63)

74

CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Results

e Burst sent over Porat channel

e MAP equalizer, no coding, BPSK

e £, /Ny=0dB

e CRB decreases with increasing MI (means closer to DA mode)

e Result also for EM estimation: achieves the CRB after 10 iterations

75
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CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Results for Porat channel

-8 CRB,

—*— EM MSE 10 iterations

oy
k)
241 e
2}
=
_o6 |
-28 8
-30 R 8
- = v
— —
32l — |
= o
—
-34 L L L L L L L L L
0 0.1 02 03 0.4 05 06 07 08 09 1

Mutual information
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CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Results for di erent constellations

e SISO Proakis B channel
e All bounds converge to the DA CRB at high E,/N,

e For MI=0.1, smaller constellation better: less uncertainty about symbols
for low E,/Ny

e For large MI information brought by constellation less crucial
e All same DA CRB

7
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CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Results for Proakis B

40

: .
—o 8PSK NDA CRB
_—_ 8PSKCRB,, Mi=0.1

-4 8PSK CRBMI MI=0.5 H
—=- 8PSK DA CRB

©O- BPSK NDA CRB
x. BPSK CRBM‘ MI=0.1 ]

A BPSK CRBM‘ MI=0.5
O0- BPSK DA CRB

30¢r

20

78

CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Results for random channels

e Flat Rayleigh fading

e 1,2 or 4 TX antennas

e All NDA: MI=0

o Benefitial knowledge of channel distribution for low E/N,

e Degradation with increasing number of antennas: less information about
data (more interference)

79
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CRAMER-RAO BOUND WITH CODED/PRIOR INFORMATION

Results for MISO flat Rayleigh

10 T o) T T T
N & NDACRB___ 1x1
N @ Rand
N -0~ NDA GRB, 1x1
5 ~
e o NDACRB 1x1
AN —x NDA gRBRan 421
04 © B —~ NDACRB, 2x1 |
~_ 9. X x. NDA CRB, 2x1
i A N —=- NDACRB_  4x1 ||
N 5 o NDACRB, 4x1
NN o NDA CRB 4x1
-10- NN B
N
2’?‘ N . X «
w151 il
[2}
= x
20 o B
—25 o i
X,
_30- il
o
_35 il
-40 L L L L L L L
~20 -15 -10 -5 0 5 10 15 20
Es/N, [dB]
80
CONCLUSIONS
Thank you !
81
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Parameter estimation for the Alamouti scheme:
impact of diversity on ’estimability”

L. Vandendorpe (UCL)

Thanks to J. Louveaux

Université z
catholique %=
deLouvain S

Introduction

Outline

e Introduction/motivation
e Alamouti scheme
e CRB and nuisance parameters

e Results for Alamouti
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Introduction

Outline

e Introduction/motivation

e Alamouti scheme

e CRB and nuisance parameters

e Results for Alamouti

3
Introduction
Motivation

e Alamouti benefits from order 2 diversity
e E ect known for detection: slope of BER curve changes accordingly
e What about sensitivity to synchronisation errors ?

e Does diversity impact the sensitivity and the CRB ?
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e Introduction/motivation

e Alamouti scheme

e CRB and nuisance parameters

e Results for Alamouti

Transmitter

2 symbols

Antenna 1} S,

S,

1 S, encoder

L | TX diversity

Antenna 2 s,

Introduction

Alamouti scheme

Terminal TX diversity
Antenna ¥| decoder
6
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Alamouti scheme

Model

e Transmitted signal (baseband)

N-1
xo(t) = [so(n)u(t —2nT) — sj(n)u(t — 2nT — T')) (1)
i
x1(t) = [s1(n)u(t — 2nT) + sg(n)u(t — 2nT — T (2)
n=0
e Received signal
N-1
r(t) = ho Z [so(n)u(t —2nT — 7) — sj(n)u(t —2nT — T — 1)
n=0
N-1
+ hy Y [san)ult — 2nT — 7) + sg(n)u(t — 2nT — T — 7)]
n=0
+ n(t) (3)

7

Alamouti scheme

Question

e g, hy are both complex circular gaussian (Rayleigh fading)
e What is the impact on the "estimability” of 7

e To be compared with a non diversity situation
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No diversity scheme

Transmitter
e Transmitted signal
N-1
z(t) = s(n)ju(t = nT — ) (4)
n=0
o Received signal
N-1
r(t) = h s(n)u(t —nT — 1) +n(t) (5)
n=0
e with
s(n) = sy(n) + jsi(n) (6)
9
Cramér Rao bounds
Likelihood function
e Assuming h
0 N-1
Pl s ] = C exp / r)=h 3 smyu(t—nT—r)/2No] (7
- n=0

e After expansion/simplification
Plr: 7l he, hi] = C explhy A, /No+h; A;/No| exp|—(h2+h?)B/2Ny] (8)

A=) [se(n)y,(n) + si(n)yi(n)] 9)

n

A = 3 [sem)yiln) = si(m)y, (n)] (10)
B =Y |stm)f (11)

00
vin) = i)+ jutn) = [ e -nT-n)de (2)
o 10
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Introduction

Outline

e Introduction/motivation
e Alamouti scheme
e CRB and nuisance parameters

e Results for Alamouti

11

Cramér Rao bounds

Cramér Rao bound

e The CRB: (for any unbiased estimator):

1
7% 2 E [82 In p[r; 7’]:| (13)
72
e where E[.] means is expectation wrt to p[r; 7]
e How to handle A, or a nuisance parameter ?
® 4 possible cases
12
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Cramér Rao bounds

CRB for case 1: joint estimation

e If nothing is known about &, should be estimated together with 7

e Compute the Fisher information matrix .J with (87 = [r, h,, hy))
Olnplr; 0] 0lnp[r; 0] 9% Inplr; 0]

Ji,=E ’ S N it 14

7 00; 00, 00,00, (14)

o5 = [J7, (15)

i

e where E[.] means is expectation wrt to p|r; 0]

e Not interesting here: we want the e ect of the distribution of h

13

Cramér Rao bounds

CRB for case 2: nuisance parameter

e h has to be "removed” in the likelihood function
e Situation comparable with the symbols

e Called "nuisance parameters”

e "Proper” handling of nuisance

e Averaging over h
il = [ dhe [ ATk gl (0)
hy h;
= C'expla® Y [s*(n)y(n)[?] (17)
n 1
PEDI
2 _ L i+7”
2Ng U% NO

14
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Cramér Rao bounds

CRB for case 2: nuisance parameter (cont’d)

e This corresponds to a "non-h-aided solution”; for any estimator that does
not use the knowledge (estimation) of h

e The CRB: (for any unbiased estimator):

1

z> 19
7= E O*Inp[r; 7] (19)
or?
e where E[.| means is expectation wrt to p[r; 7]
15

Cramér Rao bounds

CRB for case 3: h aided solution

e Assume h is known and compute the h-aided CRB for 7

o> ! (20)
i = E O Inplr; 7, hy, b
ot?
e Then compute the average of this CRB over the statistics of h
1
2
, = dh, dh; Ty, 1, (hey by 21
OMCB? Ar /};i h,h( ) e 2 I p[r: 7, hr, b (21)
ot?
16
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Cramér Rao bounds

CRB for case 4: bound modified wrt h

e Compute p[r; 7, h,, hj]

e Compute

1
2> 22
n o |:82 hlp[?“, T, hT; hz}:| ( )
—Erh by

or?

e where E, j, 5,,[.] means expectation wrt to both r and h

17

Introduction

Outline

e Introduction/motivation
e Alamouti scheme
e CRB and nuisance parameters

e Results for Alamouti

18
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Cramér Rao bounds

Discussion

e Cases 2 and 4: same solution for Alamouti or non Alamouti !

e If normalization such that identical number of symbols, and total emitted
power

e Value for MCRB:

ENT' 1
=S - (23)
NO Nna WE
_ 1 e
E, = 20]21 JS—/ dw |U(w)\2 (24)
T J -0
/ dw w? |U (w)|?

L welwer

19

Cramér Rao bounds

Discussion

e Apparently: no benefit from diversity when non / aided solution
e Is this logical 7 Yes
e One should remember that the detector providing diversity IS h aided

e A non-h aided detector would maximize (see above)

plri7) = Clexpla® Y [s*(n)y(n) (26)

e Something similar for non A aided Alamouti detection

e So the diversity in detection is measured by considering the h aided detector
and then average the BER(h) over the statistics of h

e One should "mimic” this for estimation

20
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Alamouti scheme

h-aided Alamouti detector

e Detection structure:

so(n’) = h§ /OO r(t)yu(t — 2n'T)dt + hj [/OO r(t)u(t — 2n'T — T)d87)
) = b /_ o (ult — 20TVt — ho| /_ T (ult — 20T — T)428)

e Structure of decision variables

So(n') = [|ho]2 + |h1\2] so(n') + hiro(n) + havg(n) (29)
51(n') = Uholz + ]hl\z] s1(n’) 4+ hivo(n) — hovy(n) (30)

21

Alamouti scheme

Impact of diversity on error bound

e For Q-QAM modulation, symbol error bounded by :
1 _3SNR
P, < 2(1——=)exp 2@D (31)

V@

o Averaging over the SNR distribution normalized such that the average
received energy is constant, it comes for Alamouti

= -2
_ 1 0.75 K
P<2(1—— —+ 32
e For non Alamouti
= -1
_ 1 1.5 E
P <2(1-— —‘*+1] 33
=g [Q—UVO &
e where [, is the average received energy per branch in the non-Alamouti

case

o slope of the SER determined by diversity order: this is how diversity mate-

O
rializes ! -
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Diversity

llustration for Q = 16-QAM and Rayleigh channels

Bound on SER; Impact of diversity order 1 to 5 on BER for 16 QAM - Rayleigh
10 T T T T T T T

BER
3
T

I I I I
0 5 10 15 20 25 30 35 40
MEan Eb/NO

23

Cramér Rao bounds

Case 3 Non Alamouti

e Bound for given hg:

E N 1
£s , (34)
No Nia W92 |h0|2/20}z

e |ho|? is 2 with 2 degrees of freedom

o for u = |ho|?/2072,
T(u) =exp “ and / utexpTdu = oo (35)
0

e Average of h-aided bound is infinite

24
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Cramér Rao bounds

Case 3 Alamouti

e Bound for given hg, hy:

E N\ 1
A 2 2 2) /52 (36)
No Nig Ws (|h0| + |h1| )/Uh

o |ho|? + |h1|? is x? with 4 degrees of freedom

o for u = (|ho|? + |h1|?) /02,

T(u) = 0.25u exp~*/? and / uwr0.25u exp”2du =05  (37)
0

o Average of h-aided bound is finite and given by

ENY 2
N) N2 (38)

25

Conclusions

Thank you !

26
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Mobile Localisation

Karim Abed-Meraim

ENST-PARIS, TSI department TSI
abed@si.enst.fr

ENST - October., 2005 2

Outline

Generalities.

e Mobile localisation using time of arrival.

Mobile localisation using angle of arrival.

Conclusion.

J
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Generalities

ENST - October., 2005

Introduction

e Objective: Find the mobile positioniz, y) in a cellular network.

e Interest:
— Localisation services: Emergency, hotels, close restasira.

— Trafic Localisation, navigation, ...

e Possible approaches:
— Use of GPS (satellite) system.

— Terrestrial base station (BS) based localization: (Focuthe
mobile localization in UMTS-FDD).

— Hybrid solutions (GPS + BS).

K. ABED-MERAIM

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005
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Introduction: Some history...

e GPS is the first localization system (operational since 1991
Developped by US army mainly for military applications and
navigation aid.

e New requirement by the FCC (federal communications conmonis
for all mobile operators to provide a localisation servioe f
emergencies (911 service):

— Phase 1: Localization with a precisiorc 125m in 67% of the cases.

— Phase 2: Localization with a precisiorc 300m in 99% of the cases.

J

K. ABED-MERAIM ENST PARIS
ENST - October., 2005 6
nﬂ“f"g .

— -

e Advantage : high precision.
e Drawbacks :
— Requires the visibility by at least 3 satellites.
— Generation of new mobiles : extra cost for the mobile opesato

— Heavy initialization system.

J

K. ABED-MERAIM ENST PARIS
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Localisation techniques

1. Distance measures= at least 3 base stations (BSs)
e Power measure : exists in the standard.
e Time of arrival (TOA) : Synchronisation of the BSs.

2. Angle of arrival (AOA) = at least 2 BSs
¢ Installation of multi-sensor antennae : up-link.

3. Angle-distance measure= 1 BS:
¢ AOA + distance measure (in the near field case).

K. ABED-MERAIM ENST PARIS

ENST - October., 2005 8

Timing Advance (TA)

Zones of infersections :
mobile localisation

e TA: Proportional to the propagation time between the BS aed t
mobile.

¢ Quantification with 6 bits of the TA> precision error of about 500m!!!

e Triangulation with the TA and al least 3 BS.

K. ABED-MERAIM ENST PARIS
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TOA/OTD (1)
T T T\ »A/T
BT P -iv
BT BETa o
XA ’
]
Information de TOA collectée Information de OTD collectée
BTS . ET3
par les stations de base par le mobile
K. ABED-MERAIM ENST PARIS
ENST - October., 2005 10
Localisation via time delays
Lol
[ N
\# Y A
T s ! T /
e Necessitates the synchronisation of the BSs.
e Necessitates the use of at least 3 BSs.
K. ABED-MERAIM ENST PARIS
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TOA/OTD (2)

e Time Of Arrival
— Installation of heavy and expensive equipments at the BSs.

— sensitive to multi-paths.

e Observed Time Difference
— Certain improvement over the previous technique (signals a
synchronized in the down-link).
— Drawbacks:

* Generation of new mobiles.
* sensitive to multi-paths.

J

K. ABED-MERAIM ENST PARIS
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Power measures

o P.= Pe(ﬁ)a.
e Advantages:

— Exists already in the standard.
— Triangulation possible with more than 3 BSs. de base.

Drawbacks:

— Very sensitive to the received power model (tough modetinat
problem!!).

J
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Angles and delays

e Avantages:

— Localisation is possible with only 1 BS (if synchronizatjon
e Drawbacks :

— Requires multiple receivers (antenna array) at the BS.

— Even more sensitive to multipaths effect.

J

K. ABED-MERAIM ENST PARIS
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Powers and delays

e Avantages:

— Localisation is possible with the existing BSs that usetweal’ sensors.
e Drawbacks :

— Very sensitive to the received model power.

— Requires time synchronization of the BS with the mobiles.

J
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Angles and ranges (Near Field)

Xp  Xepn %o *p

e Avantages:

— Localisation is possible with only 1 BS (without synchraatipn).

e Drawbacks:

— Applicable only in the near-field!!

J

K. ABED-MERAIM ENST PARIS
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Differences between GSM & UMTS

e Advantages in favor of UMTS:

— Better time resolution due to the oversampling w.r.t symbol
duration.

— Frequency re-use factor equal to 1. Mobile seen by neighborin
cells.

e Advantages en faveur du GSM :

— Relatively reduced multi-paths effect.

J
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Preliminary results for the GSM

Power measure| 140 meters (experiment realised in Parjs)
Timing Advance 550 meters
OTA/TOA 110 meters
GPS 5to 10 meters
Angle of arrival ~ 100 meters

K. ABED-MERAIM ENST PARIS
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Limiting factors in UMTS-FDD

e Estimation accuracy: An error of one chip period. = an error of
73m.
e Hearing problem (particular to 'UMTS-FDD): communication
between the mobile and the far-located BSs.
— First considered solutions:
x Down-link: use of Idle periods.
x Up-link: " mobile power.
— Reduces the system capacity and the mobile autonomy.
¢ Non-line of sight (NLOS) problem:
— Considered solutions: Use redundant measures and perform
selection.

K. ABED-MERAIM ENST PARIS
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Mobile Localization in UMTS-FDD
Using OTD (Down-link)

ENST - October., 2005 20
Signal Model
Puissance regue (dB) Tap | Retard relatif (ns) | Puissance relative o; (dB) | Spectr de Dappler $()
1 100 -3.2 CLASS
2 200 -3 CLASS
iation & court-terme 3 300 45 SR
4 600 -3.6 CLASS
b 850 -3.9 CLASS
6 900 0.0 CLASS
variation & long-terme: 7 1050 30 CLASS
/ 8 1330 12 CLASS
9 1430 5.0 CLASS
T variation & moyen-terme 10 1300 -3.5 CLASS
10 log(d)
M .
h(t,7) = > hi(t)o(t — 7;(t)) Channel model in a macro-cellular
=1
environment proposed by CODIT
K. ABED-MERAIM ENST PARIS
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The down link

e Why chosing the down-link:
— A high power pilot existing during all the transmission jpeti

— Transmitted signals are synchronized.

e Signal transmitted by the BS:

d
o 4’@*’@ Code de brouillage
G
1 o s
Udisateur 1 A\
o_ X X X
X X

f fe
e Propagation channel assumed constant during the slot perabl:

R
W) = Brag(t—7)

r=1

J

K. ABED-MERAIM ENST PARIS
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Estimation of TOAS

e Principle (RAKE estimator):

— Estimation off; (k): Correlation between thieth slot received
signal and the shifted version of the pilot signal.

— TOAs Estimation: Averaging ovel slots.
. 15
) = 2 )

e Estimation accuracy: T../2
Refining the accuracy:

— By oversampling.
— By using high resolution methods.

e Floor effect: RAKE estimator is not robust against interferences.

J
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Hearing problem

e Objective: Improve the robustness of channel estimate against ineertes
especially for far-located BSs.

e Difficulty: The mobile does not know the other user’s signatures.

e Proposed solutions:
— Projection of the channel estimate onto the principal sabspf its
covariance matriX’ (RAKE-SP).

hl = Ugl

where U represents the matrix of principal eigenvectorsof T".

— Remove (substract) the pilot signal of the serving BS to extirthe
channels of far-located BSs.

#1(i) = 21(i) — pr (i)

J

K. ABED-MERAIM ENST PARIS
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High resolution (MUSIC) algorithm

: Estimation of the channel covariance matrix

J
L1
==

J

j=1

=

Y — o A(T)GA(T)" + 00Ro

Estimation of the generalized eigenvectord of

Aei = )\Z Ro e;

Delay estimation by minimising:

r.rX

v(r) = r,EEfrH

whereE represents the matrix of noise eigenvectordaindr, is the
pilot signal autocorrelation vector evaluated for a tingeta

J
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NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 334



ENST - October., 2005 25

Discussion

e MUSIC allows a better estimation of the time delay (see sitita
results).

e However, MUSIC is relatively expensive especially for the
down-link (limited mobile power).

e One should reduce its complexity (size of vedi)tby using a
windowing around the first peak of the RAKE Two step procedure
where MUSIC represents the ‘refinement’ step.

K. ABED-MERAIM ENST PARIS
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Triangulation with more than 3 BSs

¢ Relation between the TOAs and the mobile positiony) :

~ x—$i2—|— —i2
P )C =9 o

to=temps deé&féerence etv;= bruit d’estimation.

e System resolution:

— Solving the system in the least squares sence (non-lineatieqs).
— Explicit solution (after linearization):

CQ(tg — t%) :Egyl yg?l C(t2 — tl) T K2 — K1
; =2 : ; : y |+ :
fo Ko - K

At — 1) zra1  yra o c(tr —t1)

<

K. ABED-MERAIM ENST PARIS
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e If the number of BS is 3:

e Among the 2 possible solutions, one choses the one withingrba

Triangulation: Chan’s method

— One solves w.r.try :

T 2,1 Y21 21 . 1 T%,1 — Ko+ K3 —‘
=_ 1+ =
Y 3,1 Y3,1 L 73,1 2 r§,1 - K3+ K J

— Then, we solve a second order polynomial equation in

= (z ) (x)_ (2z1  2y1) (m)+ (1 1) (:131)
Yy Yy Y1

covered by the serving BS.

K. ABED-MERAIM ENST PARIS
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MICRO & MACRO cells)

5

(g) Micro-cell (Manhattan) (h) Macro-cell J

K. ABED-MERAIM ENST PARIS
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Simulation

e Simulation in a micro-cell environment (Manhattan).

Three paths per channel, triangulation with 4 BSs.

Additif noise representing 10% of the total received powfehe furthest BS.

e Loose power control (the ratio between the maximal and mahpowers is< 10).

les stations de base de microcellule

4000 °

3500

P °

3000 °
3 * °
g 2500
r o
£ 2000 .
-1

® Station de Base 3
1500
o @ Staton de Base 1

1000 @ Station de Base 2 Station de &

°

°

100 200 300 400

500 600 700 800 900 1000
Distances (metre)

Micro-cell environment

J
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RAKE-SP

e Comparison of the performance obtained by MUSIC, RAKE-S®PRAKE.

ir 3

0.9

0.8

0.7

0.6

0.5 RAKE-SP

CDF

0.4
03 MusIC

0.2

0.1

L L L L ,
0 50 100 150 200 250 300

meétres

Random position of the mobil8p users,L. = 240 slots.

J

K. ABED-MERAIM ENST PARIS

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005 337



ENST - October., 2005

31

Dealing with NLOS

mobile hearing by more than 3 BSs).

e Coherence criterion:
— Coherence of the estimated positidfy ; ;(¢;,t;,;) (using BSs, j andi) with
TOA t;, assuming a time referen¢g known:

€850(t0) = I/ (@i g — 20)2 + (a0 — 9a)? — et — to)|?
Minimisation ofgfj , over all possible choices 6f j, !
a7 . k
i,7,l = arg min &7 ., (t
J giﬁj’lykﬁz,g,z( 0)
— The time referencéy being unknown (one minimizes numerically):

k
Ofi,j,l(to)

] itb = ar min
D &kt

e Proposed solution: Selection of the 3 ‘most coherent’ TOA measures (we assume

J

K. ABED-MERAIM
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Algorithm of selection (AS)

random position of the mobile at each run= 120 slots, 8 BSs, K=15

Classique

classique

150 200 250 300 200
metres

100
metres

250

(i) TOAs estimated by MUSIC, NLOS on the 2nd B§) TOAs estimated by RAKE-SP, NLOS on the 2nd BS
K. ABED-MERAIM ENST PARIS
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Mobile Localisation Using
Angle of Arrival (Up-Link)

ENST - October., 2005 34

Estimation of the AOA

e Requires at least two sensetsApplicable in the uplink.

e Possible with existing BSs but poor estimation accuracy.

e Estimation using ‘smart antennae’ array processing for source
localization.

K. ABED-MERAIM ENST PARIS
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Array Processing: Basic Conceps

ENST - October., 2005 36

Objectives

e Signal processing extracts information from measuredadsgn

e Array signal processing uses a group of sensors:

— Signal enhancement / noise reduction.
* Coherence adding.
x Spatial filtering.

— Source / channel characterizations :
x number of sources.

x |ocation 'direction finding'.
* waveforms 'information from the sources’.

J
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Applications

Wireless communications.

Interference mitigation.

Radar / Sonar.

e Biomedical.
e Speech.

e Seismic.

® L.

K. ABED-MERAIM ENST PARIS
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Coherent adding

e Letus have an array df/ sensorgm =1,--- , M) :
T (1) = 5(t) + e (t), noise variance

o [f the noise on the antennas is uncorrelated, then

M M
1 1 R
y(t) = 77 mz—l Tm(t) = s(t)+ 47 > nm(t),  noise variance, -o

m=1

Hence the noise power is reduced by a fadtbr

J
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Spatial filtering

s(t)

Y Y Y . o
x1(t) xo (1)
vy ~wa ~ e
= & =] - (1)
s(#)
x4 (1) xz(1)
~w, ~we 7 T
- b © - y(t)

J

K. ABED-MERAIM ENST PARIS
ENST - October., 2005 40
Spatial filtering

S 0L Sz(r;.c
ol O W e
x T D =
T ' = A —ao
s w -
= §: % —s2(r)
W
e Cancelling out interferers : Source separation
— Classical beamforming requires known ’look directions’aaeference signal.
— Blind beamforming : no a priori direction information. Redion structural
properties.
K. ABED-MERAIM ENST PARIS
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Data model

Baseband signal

e An antenna receives a real valued bandpass signal withrcente
frequencyf.,

2(t) = R{s(t)e??™ It} = z(t) cos(2m fot) — y(t) sin(2n f.t)

e The baseband signal is

It is the complex envelope af(t)

e s(t) is recovered from(t) by demodulation : multiplying the received
signal withcos (2~ f.t) andsin(2~ f.t) followed by low pass filtering.

K. ABED-MERAIM

ENST -

October., 2005
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Data model

Small delays of narrow band signals

e Recallz(t) = R{s(t)ei?"F<t}. We investigate the effect of small delay$

of z(¢) on the baseband sign&(t)
2 (1) £ z(t—71) = R{s(t — T)e_j%fc'rej%f”t}
e The complex envelope of the delayed signal is

sp(t) = s(t — 7)e 92T

K. ABED-MERAIM

NEWCOM Autumn school : ”Estimation theory in wireless communications”, October 2005

ENST PARIS

343



ENST - October., 2005 43
Data model
Small delays of narrow band signals
e Let W be the bandwidth of(t). If e=927/7 ~ 1 for all frequencies
|f| < %, then
Y Y
stt=)= [ Sher T [ s(neiag = s(o)
-y -
For narrowband signals, time delays shorter than the invers
bandwidth amount to phase shifts of the complex envelope.

K. ABED-MERAIM ENST PARIS
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Data model

Antenna array response
L dsin(a) AAsin(a) Asin(a)
T = — = = =
C C C fc
()
Lo
Asino 3 .
A
x1(t) xa(t) xm(t)
A
e Far field assumption : planar waves.
e a(a) : Antenna gain pattern.
K. ABED-MERAIM ENST PARIS
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Data model

Antenna array response
e Lets(t) be the baseband signal at the first antenna(t) = a(«)s(t)

e The signal received by, at a distance ofA wavelengths experiences an
addition delayr.

e If 7 is small compared to the inverse bandwidth: ), then
sr(t) = s(t)e I2mAsin(@)
e Collect the received signals into a vectdt) :
z1(t) e i2m Ay sin(e)
x(t) = : = : a(a)s(t) = a(a)s(t)

%A{(t) e—jZ‘rrAJ\/I sin(a)

a(«) is the array response vector. For uniform linear atay= (k — 1)A.

J
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Data model

Array manifold

e The array manifold :
Q={ala): —m<a<m}

e The knowledge of2 allows direction finding (i.e. determinefrom x).

J
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Spatial Localisation

¢ Find the number and positions of the sources.

e Sweep all space directions using beamforming
— Matched filter=- Bartelett's method.
— MVDR =- Capon’s method.
e Exploit the data model & covariance matrix structure

— MUSIC (subspace) algorithm
— ESPRIT algorithm.

K. ABED-MERAIM ENST PARIS
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Bartlett's method

¢ Estimate the covariance and sweep all angles
p(0) = E(ly(t)]*) = w'Rw

e Sum-delay (matched filter) beamforming

a(f) _a(f)"Ra(f)

Va2 Y T @eao)?
e For a uniform linear array (ULA)
1
#(0) = ~7a(0)"Ra(0)
ENST PARIS

K. ABED-MERAIM
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Computation using Fourier transform

e Development of the quadratic transform

N—-1N-1

p(0) =a(0)"Ra(0) = > Y apRumam

n=0 m=0

e For ULA
N—1N-1
a, = (e—JQTrue)n - S0(0) — z Z an(e—j%rug)n—m
n=0 m=0
e Fourier transform
N-—1 N —1+min(0,q)
p0)= > (™) > Rung
qg=—N+1 n=max(0,q)
K. ABED-MERAIM ENST PARIS
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Capon’s method (MVDR)

Sweep all angle positions with the MVDR spatial filter

~ R1'a(9)
Y a0 FR1a(0)

The localisation function becomes

1
#0) = TR "Ta(@)

_ wH _ (OR™! R 'a(0)
carp(f) = w'Rw = e Rogar - tam)

Can be computed using Fourier transform but vi&th! instead ofR..

K. ABED-MERAIM ENST PARIS
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MUSIC (subspace) method

Range(AQ))

Signal Subspace
(Range(A@Y ) =

Noise subspace
(The orthogonal oRange(A®)) )

Principle: Assume the following model: x(n) = A(0)s(n) with
Range(A(6)) = Range(A(¢)) < 06 = ¢’
Thus,@ can be estimated as:

0 = arg Hgl’l d(Range{x(n)}, Range(A(6)))

K. ABED-MERAIM
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MUSIC

eigen-subspace of the data covariance marjx

As 0 EX
0 0 EX

n

R, =Y _x(n)x"(n) = [E, E,]

where  Range(E;) = Range(A(#)) L Range(E,,).

e Orthogonal relation still valid if additive white noise.

e Estimate the signal (resp. noise) subspace as the prirjogsg. minor)

K. ABED-MERAIM
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MUSIC

e The source angle locations are estimated by minimizing:

Hbin a(®)"E,Efa(9)

e Or equivalently by maximizing the MUSIC localisation furani

1
?0) = TR, ETa0)

The P sources locations correspond to tAhenaximas of the above

function.

K. ABED-MERAIM ENST PARIS
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Example (1)

e Bartlett's method (SNR = 20dB)
Batlett source localisation (8 sensers, 500 snapshots)
40 T T
30+ -
0 // - "‘\ -
/ \
3 / \
:; 10 / 4
: N/ /N
~ SN // \/ AN
0 \\_/ N ~ A
-10f g
7:—%5 —C!—l —C‘S —C!] —0‘1 0 C‘l C!] C‘S C!-l 03
ormalized spatial Sequency
K. ABED-MERAIM ENST PARIS
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Example (2)
e Capon’s method (SNR = 20dB)
Capon  source localisation (8 sensors, 500 snapshots)
40
301 4
20 1 ! R
-
§ o
£ wf I‘I Vo 1
- [V
ot .‘":‘ I"-.‘I 4
- / N
-10F = — — E
_:—%E —C‘-l —C‘S —C‘J —0‘1 0 [Ill [IIZ [IIS [Il-l 05
Naormalised spatial Sequency
K. ABED-MERAIM ENST PARIS
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Example (3)
e MUSIC method (SNR = 20dB)
MUSIC  source localisation (8 sensors, 500 snapshots).
40 T T
30k
-
I 1
y 1.
£ 10p i\ / \
2 ‘." Vi \
of / ""-.‘.
/'; ‘..\
o S N
=10 - - o -
_:—%.S —C!4 —C!S —C!J —O‘l 0 C‘l CTJ C‘S [254 05
Normalized spatial Sequency
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Example (4)
e Capon’s method (SNR = 0dB)
Capon  souace localisation (8 semsoss, 500 suapehiots).
0 : T T : : T T
S
0 PN
// N
PR 4 AN
g - —
of
o)
I TR TRty o o1 o2
Nonzalized spatial fequency
K. ABED-MERAIM ENST PARIS
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Example (5)
« MUSIC method (SNR = 0dB)
MUSIC  source localisation (8 sensors, 500 suapshots),
20 . . r . ; , ,
£
0+
4
Z 1w}
of ,.-‘ll I"-‘.I‘
pp—————— \ -
[ I T T R o ol o2
Nomusalised spatis] Sequency
K. ABED-MERAIM ENST PARIS
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Example (6)
e Capon’s method (SNR =-10dB)
Capon souce localisation (8 semsors, 500 suapshots).
4 ; . ; T . T T T T
o ]
wf T — T —
of ]
s i
E T T 0 o1 o2 o3 o2 0.5
Norzalised spatial Sequency
K. ABED-MERAIM ENST PARIS
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Example (7)
« MUSIC method (SNR = -10dB)
MUSIC  source localisatios (8 sensors, 500 smapshots),
“ : . . T T
0+ ]
0k g
4
? f I'\/l "".
of ‘..‘"; g
Fi \\
-/ N
J0f g
[ T PRy Sy p— o o1 o2 ] b s
Norsalised spatial Sequency
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ESPRIT Method

e Consider a ULA

e Structure of the directional vector

1 1
e—jQTrf% sin 6 e—j27Tl/9
a(f) = : =
e—j27rf(N—1)%sin9 (e—jQﬂ'ug)N—l

e By removing the first or the last entry of this vector, one oistdwo
linearly dependent subvectorsa(?).

K. ABED-MERAIM ENST PARIS
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Rotational invariance

e Oo the directional vector

0 row 1 .

a(f) = a1(0) = = ax(f) = a; (G)E_JQTWQ
row N ax(0)

e On matrixA

A= [3(01), a(92)7 to 7a(9P)]

A, row 1

A= = = As(0) =A10
row N A,
b = diagxe_jzw%)
e Matrix ¢ provides directly the desired angles.
K. ABED-MERAIM ENST PARIS
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ESPRIT method

e The same transform on the eigenvectors of the signal subdgads to
U, =A,T, U, =A,T
Uy = AT =U,; T 'oT
o |l suffit de trouver¥ tel queU, = U, V¥ By least squares estimation:
v = (Ufu))~'ufu,
e ® andV¥ have the same eigenvalues

Eig(V) = diag(e’?™e»)

K. ABED-MERAIM ENST PARIS
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‘Generalized’ ESPRIT method

e ESPRIT can be used, not only for ULA but for any array contegr2
sub-arrays such that the 2nd is the translated version dirth@ne.
Hence, for a source locatedtt

= s(t) with a(0) = ay(0)e 2™

e Space shift; plays the role of the inter-sensors distanti i.

t A
Xl( ) = ! S(t) = A =A0

X9 (t) A2

K. ABED-MERAIM ENST PARIS
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ESPRIT method: algorithm

e Eigen-decomposition of the covariance algorithm (nossdecase)

H H

R—E X1 (t) Xl(t) _ U1 A U1
X2 (t) X9 (t) U2 U2

¢ Rotational invariance property fex andU,
U, = AT
U, = AT
3¥ such thatU, = U ¥
e Matrix @ is the matrix of eigenvalues @f

Eig(V) = diag(e/?™¢»)

K. ABED-MERAIM ENST PARIS

ENST - October., 2005 66

Other localization methods: ML

¢ Inthe AWGN and deterministic inputs case, the likelihooddtion can
be expressed as:

d 2
L(0,s(t),0°) = H(WU2)_N6_M

t=1

e LetIl4 be the orthogonal projection matrix on Rafge
Iy =AA7PA)TAH = As(t) = T 4x()

o=1I-14=0= argm@in Tr(ﬁAf{)

K. ABED-MERAIM ENST PARIS
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Other methods: Weighted subspace fitting

e Exploits the relation betweed; and A

3T such that U, = AT
e Minimise the LS distance
{0, T} = argmin||U, — ATIffy
e Solving inT first followed by an estimation af
T = A#U, with A* = (A#A)~1AH
then 0 = arg meinTr(ﬁAUSWUS)

Asymptotic optimal weightingV = (A, — 0?I)?A !

K. ABED-MERAIM ENST PARIS

ENST - October., 2005 68

Discussion

e Many existing localizaton methods.

e Compromise between resolution (MUSIC, ESPRIT, ..) and rolasstn
and computational complexity (Beamforming).

e Many existing extentions:
— Joint estimation of angles and delays (JADE algorithm)
— Generalisation to wide-band sources,

— Tracking and adaptive processing, ...

K. ABED-MERAIM ENST PARIS
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Up-Link

e Transmitted signal b¥-th user:

channelization
codec

data d* | scrambling code
Q
control d? @
VE

channelization
codec?

e Propagation channel

Ry,

hy(t) = a(0k,:)Br,ig(t — Tk,

=1

J

K. ABED-MERAIM ENST PARIS
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Joint AOA and TOA estimation

e Raison: Correspondance between the AOAs and TOAs of the multi-paths
for joint angle-delay localization. Also, the direct pasichosen as the one
associated with the smallest TOA.

e State of the art
— Maximum likelihood approach [Wax & al. 1997].
— Subspace methods: Time Space Time-MUSIC [Wax & al. 2001].
— ESPRIT-like methods [Vanderveen & al. 1998].
e Proposed method:
— Delay estimation using the channel FT matrix by ESPRIT.

— Estimation of only the desired angle (i.e. the one corredpanto the
smallest delay).

J

K. ABED-MERAIM ENST PARIS
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Hearing problem

e AOA-TOA estimation algorithms require a first channel estiora
— RAKE-type estimator: non-robust to near-far effect (ifeéegnces).
— RAKE-estimator with interference cancellation (PIC):

y RAKE
Xn T~ Desired user k
pe m

z n

hy,

RAKE K01
User 1 {+

RAKE
User K Zn.K
hKn

J
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Localization with antenna array:
hi(t)
e Channel modeln(t) = : = Zj: a(0;)Big(t — 1)

}LN (t)

i€ cos(0;=71)

e For a uniform circular array a(6;) =

i€ cos(8;—vN)
e Channel matrix :
T T
H 2 h(0O)h(=).. -h(LT — —
0) (P) ( P)

ﬂl 0 871
= [a(61)---a(fa)]

= A(0)BG(r)

K. ABED-MERAIM
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Delays Estimation

e The FT ofH transformsG(7) (up to a diagonal matrix) into:

1 x1 3 - !
V(1) = :
1 oxa X3 - X7

—Jj2nT;

wherey; = ¢ » , 1 <4 <d.

e Matrix Hg has the rotational invariance property that allows for the

estimation ofr; using ESPRIT algorithm.

K. ABED-MERAIM
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Angle estimation

e Once the delays are estimated we estimate the angle of theoh®S
according to:

— Inversion of the delays matrix:
H = HG(r)™*

— Selection of the first columh; deH’ and estimation of the AOA of
the first path by maximizing :

l(6)""h |

J

K. ABED-MERAIM ENST PARIS
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Proposed method for the NLOS

e Idea: Selection of the 2 ‘most reliable’ measures: Coherencerait of 2 given AOAS.
e Coherence measure:

— If we know the distribution of the
mobile positionDy, w.r.t. a BSk:

S

P(8;,05/Dy) = Dy (M)

= We would select the

pair (6;,6;) that maximizes

P(8;,6;/Dy,). Z&
— To give equal opprtunity to all  ®

BSs, we chose:

d

i,j = arg maxP(8;,0;/ D)
1,7,

J
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. . . . . . . .
A priori’ mobile position distribution
Many possible distributions: We have chosen the Gaussiaribdison.
e 0, etoy are ad-hoc.
* g = 0Op. ﬁ
e 1, = dj : tr islinked tody via  «
the relation:
dk- = C(tk — tok) “ 25\3’ o 300
2
_(r=pr 2 _<9_“6>
D(r7 9) = 1 e (\/Eor) e \/5"9
2mo,09
K. ABED-MERAIM ENST PARIS
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Synchronisation constraint
e Problem: Necessitates between the mobile and the BSs. Too consgdini
de = c(ti — to,,)
N+
e Alternative solution:
— Use a similar technique to the Timing
Advance in GSM.
— Estimate the time references by mini-
mizing:
foys-eesto; =
I I
argmin » > ||d; (to; )—d;(to,)II”
i=1j=1 A
where  d; ; is given by:
\/7‘7:2,]- +d? — 2COS(9i7j)7‘Z‘,jdi BS]
K. ABED-MERAIM ENST PARIS
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Localization results

Comparison with standard triangulation techniques.

coF

900 1000
yyyyyyy

(k) NLOS surlesBS 3et4 () NLOS surlesBS 2 et4

Random mobile position at each rubh = 80 slots, 4 BSsK = 20.
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Conclusion

e Main difficulties (Hearing + NLOS) : No fully satisfactory solution
(i.e. still an open problem). We have presented certainisaisiusing,
when possible, partial interference cancellation andctiele of the
‘best’ AOA/TOA estimates. Other solutions exist, e.g.

— Using ‘a priori’ learning of the dependence of the channegdiitae
response on the mobile position (too expensive and reguagesar
up-dating),

— Using a ‘super calculator’ which captures both the transdiand
received signals to extract the desired information,

— Using Idle periods: reduces significantly the system caypaci

K. ABED-MERAIM ENST PARIS

ENST - October., 2005 82

Conclusion

e Estimation accuracy. The best estimates are computationally
demanding and the power in the downlink is ‘restricted’. @oo
‘intermediate’ solutions especially in adaptive schemes.

e Tracking: Many tracking algorithms exist using subspace tracking,
Kalman filtering, particular filtering, gradient techniguetc. Tracking
might improve the estimation accuracy (at least for slowfywing
mobiles) due to memory effect.

e Hybrid solution : Use both GPS and terrestrial BS signals for maobile
location.
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