Channel estimation and Superresolution in UWB system

Philippe Ciblat

École Nationale Supérieure des Télécommunications, Paris, France

NEWCOM Autumn School : Estimation Theory for wireless communications

Outline

UWB system

- Impulse Radio
- Multi-band
- Channel Model
- Channel estimation
 - Cramer-Rao Bound
 - Existing estimates
 - Comparison
- Superresolution

Digital communications system satisfies the following spectral mask :

Interest

- Spread spectrum technique
- Localization

Approaches

- Impulse Radio (IR)
- Multi-band (MB)

We hereafter focus on Impulse-Radio technique

- Pierce and Hopper 1952
- Winthington and Fullerton 1992
- Win and Scholtz 1993

IR-UWB transmit signal

• Time-Hopping (TH) IR-UWB signal associated with user n

$$\mathbf{s}(t) = \sum_{i=0}^{M-1} d_i \mathbf{b}(t - i N_f T_f)$$

where

- *M* is the number of transmit symbols
- $\mathbf{d} = [\mathbf{d}_0, \cdots, \mathbf{d}_{M-1}]$ belongs to PAM
- N_f is the number of frame per symbol
- T_f is the duration of each frame

The super frame composed by N_f frames is structured as follows

$$b(t) = \sum_{j=0}^{N_f-1} g(t-jT_f - \tilde{c}_jT_c)$$

where

- T_c is the chip duration
- N_c is the number of chips in one frame
- Time-hopping code in the j^{th} frame is given by $\tilde{c}_j \in \{0, \cdots, N_c-1\}$
- g(t) is the mono-cycle with the temporal support $[0, T_g)$

Developed code

For each frame j, let $\mathbf{c}_j = [c_j(0), \cdots, c_j(N_c - 1)]$ defined as follows

$$c_j(i) = \begin{cases} 1 & \text{if } i = \tilde{c}_j \\ 0 & \text{otherwise} \end{cases}$$

Then $\mathbf{c} = [\mathbf{c}_0, \cdots, \mathbf{c}_{N_f-1}] = [c(0), \cdots, c(N_f N_c - 1)]$

$$s(t) = \sum_{i=0}^{M-1} d_i \sum_{j=0}^{N_f N_c - 1} c(j) g(t - jT_c - iN_f T_f)$$

- Status of the chip (occupied/free) outside g(t)
- Le Martret & Giannakis 2002

- Multi-path random channel
- Molish 2003

Impulse response

$$h(t) = \sum_{k=1}^{N_p} A_k \delta(t - \tau_k)$$

where

- A_k is the attenuation associated with the k^{th} -path
- τ_k is the delay associated with the k^{th} -path

Statistical channel model

We focus on one cluster model

Statistical model

$$p(au_k | au_{k-1}) = \lambda e^{-\lambda(au_k - au_{k-1})}$$
 $A_k = (\underbrace{p_k.b_k}_{a_k}) e^{- au_k/\gamma}$

where

- a_k independent of τ_n^k
- p_k binary variable
- *b_k* log-normal variable

λ and γ are both deterministic parameters

Deterministic parameters

- λ is the path density
- γ is the RMS delay spread (i.e., length of impulse response)

Receiver

- Rake receiver (for sake of simplicity)
- Correlation with the template $b(t) = \sum_{j=0}^{N_t N_c 1} c_j g(t jT_c)$ synchronized at each path

Path estimation is necessary

Fisher Information Matrix

$$J_{A_{l},A_{k}} = \frac{2}{N_{0}} f_{1}^{(k,l)}, J_{A_{l},\tau_{k}} = -\frac{2A_{k}}{N_{0}} f_{2}^{(l,k)}, J_{\tau_{l},\tau_{k}} = \frac{2A_{k}A_{l}}{N_{0}} f_{3}^{(k,l)}$$

where

$$f_{1}^{(k,l)} = \mathbb{E}_{\mathbf{d}} \left[\int \mathbf{s}(t-\tau_{k}) \mathbf{s}(t-\tau_{l}) dt \right]$$

$$f_{2}^{(k,l)} = \mathbb{E}_{\mathbf{d}} \left[\int \mathbf{s}(t-\tau_{k}) \mathbf{s}'(t-\tau_{l}) dt \right]$$

$$f_{3}^{(k,l)} = \mathbb{E}_{\mathbf{d}} \left[\int \mathbf{s}'(t-\tau_{k}) \mathbf{s}'(t-\tau_{l}) dt \right]$$

with

• s'(t) = ds(t)/dt and $\mathbb{E}_{d}[\phi(\mathbf{d})] = \phi(\mathbf{d})$ if **d** is a known sequence

→ CRB for DA scheme and MCRB for NDA scheme

- Laurenti (September 2004) : one path
- Huang (June 2004) : non-overlapping context (i.e., signal echoes are orthogonal)

$$f_m^{(k,l)} = 0$$
 if $k \neq l$

Zhang (June 2004) : overlapping taken into account (but no closed-form expression for FIM)

Questions

- Non-overlapping assumption does not hold in realistic situation?
- Closed-form expressions for $f_m^{(k,l)}$ even when $k \neq l$

Non-overlapping case

Straightforward derivations yield

$$CRB_{DA}(A_{l}) = MCRB_{NDA}(A_{l}) = \frac{N_{0}}{MN_{f}} \frac{E_{3}}{2(E_{1}E_{3} - E_{2}^{2})}$$
$$CRB_{DA}(\tau_{l}) = MCRB_{NDA}(\tau_{l}) = \frac{N_{0}}{MN_{f}} \frac{E_{1}}{2A_{l}^{2}(E_{1}E_{3} - E_{2}^{2})}$$

with $E_1 = \int g(t)^2 dt$, $E_2 = \int g(t)g'(t)dt$, and $E_3 = \int g'(t)^2 dt$

Remarks

In DA scheme, performance does not depend on the training sequence

 \rightarrow Same expression in the context of single-path (when $N_p = 1$)

Overlapping case

Let

• $\Delta \tau_{k,l} = \tau_k - \tau_l = Q_{k,l} N_f T_f + q_{k,l} T_c + \varepsilon_{k,l}$ with the integer parts $Q_{k,l}$ and $q_{k,l}$, and the remainder $\varepsilon_{k,l}$

Main result

$$\begin{array}{ll} f_m^{(k,l)} &=& M(\mathcal{C}(q)\mathcal{A}_m(\varepsilon) + \mathcal{C}(q+1)\mathcal{A}_m(\varepsilon - T_c)) \\ &+& \mathcal{D}(q)\mathcal{B}_m(\varepsilon) + \mathcal{D}(q+1)\mathcal{B}_m(\varepsilon - T_c)) \end{array}$$

with

۲

$$\mathcal{C}(q) = \sum_{j=0}^{N_t N_c - q - 1} c(j) c(j+q), \quad \mathcal{D}(q) = \sum_{j=0}^{q-1} c(j) c(j-q)$$

۲

$$\mathcal{A}_{m}(\varepsilon) = \frac{1}{M} \sum_{i=0}^{M-1} \mathbb{E}_{\mathbf{d}}[d_{-Q-1+i}d_{i}]r_{m}(\varepsilon), \ \mathcal{B}_{m}(\varepsilon) = \frac{1}{M} \sum_{i=0}^{M-1} \mathbb{E}_{\mathbf{d}}[d_{-Q+i}d_{i}]r_{m}(\varepsilon)$$

• $r_{1}(t) = g(t) \star g(-t), \ r_{2}(t) = g'(t) \star g(-t), \ r_{3}(t) = g'(t) \star g'(-t)$

- Code collisions plays an important role.
- The more $f_m^{k,l}$ (for $k \neq l$) is high, the more the CRB is high
- If $\varepsilon \in [T_g, T_c T_g]$, there is no overlapping
- The more the path is dense, the more the CRB taking into account the overlapping is larger than the (simplified) CRB
- Deleuze & Ciblat & Le Martret (July 2004)

$\mathbb{E}_{\mathbf{x}}[\mathrm{CRB}(\mathbf{x})] = \mathbb{E}_{\mathbf{x}}[J(\mathbf{x})^{-1}] \geq (\mathbb{E}_{\mathbf{x}}[J(\mathbf{x})])^{-1}$

Simplified expressions for $\mathcal{A},\,\mathcal{B},\,\mathcal{C},\,\mathcal{D}$ by averaging over

- symbol sequence
- time-hopping code

---- In DA scheme, average CRB over all possible training sequences

---- In NDA scheme, MCRB is considered

Average CRB (II)

• $\{d(i)\}_i$ i.i.d. symbols belonging to 2-PAM

Result $\mathbb{E}_{\mathbf{d}}[\mathcal{A}_{m}(\varepsilon)] = \delta_{\mathbf{Q}_{c}-1} \mathbf{r}_{m}(\varepsilon), \quad \mathbb{E}_{\mathbf{d}}[\mathcal{B}_{m}(\varepsilon)] = \delta_{\mathbf{Q}_{c}0} \mathbf{r}_{m}(\varepsilon)$

• **c**_{*j*} is the realization of i.i.d. random vector whose each component admits the following distribution $p(c) = ((N_c - 1)\delta(c) + \delta(c - 1))/N_c$.

Result

$$\begin{cases} \mathbb{E}_{\mathbf{c}}[\mathcal{C}(q)] = \frac{N_f N_c - q}{N_c^2} & \text{if } q \neq 0 \\ \mathbb{E}_{\mathbf{c}}[\mathcal{C}(0)] = N_f & \text{if } q = 0 \end{cases}, \begin{cases} \mathbb{E}_{\mathbf{c}}[\mathcal{D}(q)] = \frac{q}{N_c^2} & \text{if } q \neq N_f N_c \\ \mathbb{E}_{\mathbf{c}}[\mathcal{D}(N_f N_c)] = N_f & \text{if } q = N_f N_c \end{cases}$$

Maximum Likelihood

- Lottici & Andrea & Mengali 2002
- No overlapping context
- Simulations done in a non-overlapping context
- ML carried out in DA and NDA schemes
 - DA scheme : derivations based on likelihood (for PPM or PAM)
 - NDA scheme : derivations based on true likehood at low SNR (for PPM)

Algorithm

$$J_{\mathrm{DA}}(au) = rac{1}{ME_b}\sum_{i=0}^{M-1} Z_i(au)$$

with $z_i(\tau) = d_i(r(t) \star b(-t)_{|t=iN_fT_f+\tau})$

- Localizations of peaks provide $\hat{\tau}$
- Magnitudes of peaks provide Â

Undersampling based method (I)

- Maravic & Vetterli 2003
- DA scheme
- Undersampling at period $T_s \gg T_p$ preceded by Anti-Aliasing Filter
- Let $\tilde{r}(t)$ the noiseless receiver signal at the output of AAF

$$\tilde{R}(m) = \text{F.T.}(t \mapsto \tilde{r}(t))_{|f=mf_0} = \sum_{k=1}^{N_p} A_k \tilde{S}(m) e^{-2i\pi\tau_k mf_0}$$

then

$$ilde{R}_{s}(m) = ilde{R}(m)/ ilde{S}(m) = \sum_{k=1}^{N_{p}} A_{k} z_{k}^{m}$$

with $z_k = e^{-2i\pi\tau_k f_0}$

Undersampling based method (II)

$$\mathbf{R} = \begin{bmatrix} \tilde{R}_{s}(0) & \tilde{R}_{s}(1) & \cdots & \tilde{R}_{s}(N_{p}-1) \\ \tilde{R}_{s}(1) & \tilde{R}_{s}(2) & \cdots & \tilde{R}_{s}(N_{p}) \\ \vdots & \vdots & & \vdots \\ \tilde{R}_{s}(N_{p}-1) & \tilde{R}_{s}(N_{p}) & \cdots & \tilde{R}_{s}(2N_{p}-2) \end{bmatrix} \Leftrightarrow [\mathbf{R}]_{\ell,\ell'} = \sum_{k=1}^{N_{p}} A_{k} z_{k}^{\ell+\ell'}$$

Then

$$\mathbf{R} = V \wedge V^{\mathrm{H}} \quad \text{with} \quad V = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ z_1^{N_p - 1} & \cdots & z_{N_p}^{N_p - 1} \end{bmatrix}$$

Undersampling based method (III)

Shift invariance

$$\overline{V} = \underline{V} \operatorname{diag}([z_1, \cdots, z_{N_p}])$$

where \overline{V} and \underline{V} denote the omition of the first and last row of V respectively

Then it exists a vector \mathbf{x}_k such that

$$\overline{V}\mathbf{x}_k = z_k \underline{V}\mathbf{x}_k$$

 \rightsquigarrow z_k is a generalized eigenvalue of $(\overline{V}, \underline{V})$

Algorithm

For any k, z_k is the root of the polynomial

$$P(s) = \det(\overline{V} - s\underline{V})$$

This obviously provides $\hat{\tau}$ and \hat{A}

First-order cyclostationarity based method (I)

- Luo & Giannakis 2004
- Asymmetric PAM ($d_i \in \{-1, \theta\}$)
- ISI-less context (delay spread < guard-time)

$$r(t) = \sum_{i=0}^{M-1} d_i b_r (t - \tau_1 - iN_f T_f)$$
 with $b_r(t) = \sum_{k=1}^{N_p} A_k b(t - \Delta \tau_{k,1})$

If ISI-less, $\{b_r(t - \tau_1 - iN_fT_f)\}_i$ is a orthogonal set and thus $b_r(t)$ is a square-root Nyquist filter.

Problem

- Optimal receiver is the matched filter $b_r(-t)$ shifted by τ_1
- Knowledge of $b_r(t)$ and τ_1 is needed

First-order cyclostationarity based method (II)

$$\mathbb{E}[r(t)] = \frac{\theta-1}{2} \sum_{i=0}^{M-1} b_r(t-\tau_1 - iN_fT_f)$$

The cyclostationary mean contains information about $b_r(t)$ and τ_1

Algorithm

If τ_1 is associated with the strongest path, then

$$\hat{\tau}_1 = \arg \max_{\tau \in [0, N_r T_r]} \left| \int_0^{2N_r T_f} \widehat{\mathbb{E}[r(t)]} b(t-\tau) dt \right|$$

and

$$\hat{b}_r(t) = \frac{2}{\theta - 1} \mathbb{E}[\widehat{r(t + \hat{\tau}_1)}], \text{ for } t \in [0, N_f T_f)$$

Non-overlapping case

Set-up

•
$$T_p = 1$$
ns, $T_c = 2T_p$, $N_c = 10$, and $N_f = 10$, $T_s = 200$ ns, $M = 100$

•
$$\boldsymbol{\tau} = [5T_p, 10T_p, 15T_p]$$
 and $\mathbf{A} = [0.73, 0.67, 0.35]$

Such assumptions ensure the absence of overlapping

Overlapping case

Set-up

- $\tau = \{kT_p/2\}_{k=1,\cdots,20}$
- A obeys a normalized exponential decreasing profile

Such assumptions ensure the presence of overlapping

→ ML non optimal in overlapping case

Comparison

Question

Is there overlapping or not in realistic channel?

Two statistical models : Molish ($\lambda = 0.2ns^{-1}$, $\gamma = 20ns$) and Lee ($\lambda = 2ns^{-1}$, $\gamma = 5ns$)

↔ If path density is high, the non-overlapping model does not hold

Definition

- The superresolution is the smallest gap between two delays that we are able to distinguish from
- The Cramer-Rao Bound CRB(τ) is the smallest mean square error that we may reach when the value of the sought delay is τ

Superresolution definition

The superresolution $\tau_{\rm res.}$ satisfies the following equation

$$\tau_{\rm res.} = \sqrt{\rm CRB}(\tau_{\rm res.})$$

- When \(\tau\) decreases, the overlapping increases
- To evaluate accurately the superresolution, we need the closed-form expression of CRB(τ) in overlapping case

Superresolution versus SNR

Set-up

Superresolution versus T_p

Set-up

• $E_b/N_0 = 10$ dB and M = 100

\rightsquigarrow Resolution proportional to T_p

Bibliography

• CRB derivations :

- L. Huang et al., "Performance of ML channel estimator for UWB communications", IEEE COML, Jun. 2004.
- J. Zhang et al., "CRB for time-delay estimation of UWB signals", ICC, Jun. 2004.
- A.L. Deleuze, P. Ciblat et al., "CRB for channel parameters in UWB based system, IEEE SPAWC, Jul. 2004.
- N. Laurenti et al., "On the performacne of TH-PPM and TH-PAM as transmission formats for UWB commmunications, IEEE VTC, Sept. 2004.

Estimator design :

- M.Z. Win and R.A. Scholtz, "On the energy capture of UWB signals in desne multipath environments", IEEE COML, Sept. 1998.
- V. Lottici et al., "Channel estimation for UWB communications", IEEE TCOM, Dec. 2002.
- I. Maravic, M. Vetterli et al., "High resolution acquisition methods for wideband communication systems", IEEE ICASSP, Apr. 2003.
- X. Luo and G. Giannakis, "Blind timing and channel estimation for UWB multi-user ad hoc access", Asilomar Conference, Nov. 2004.
- Comparison : K. Bouchireb, "systèmes UWB : résolution de trajets pour la localisation dans les réseaux ad hoc", Master thesis (in French), Sept. 2005.