Estimation Theory for Wirelss Communication, 24-28 Oct 2005, PARIS.

Carrier Frequency-Offset for OFDM and Related Multicarrier Systems

M. Ghogho

Aims and General Outline

Aims:

To present data-aided and (semi-)blind CFO estimation algorithms for OFDM

To give a unified framework for several existing algorithms
General outline

- Motivation and context
- Null-subcarrier-based CFO estimation
\square Blind CFO estimation exploiting data properties

Motivation and Context

\square High data rates (up to 54 Mbps) with Coded-OFDM * IEEE802.11a, HIPERLAN/2, MMAC; DAB, DVB
\square OFDM turns frequency-selective to flat fading channels \star Timing-Offset (TO) as a pure-delay channel
\square Low-complexity equalization and easy decoding * convolutional coded OFDM (across subcarriers)

\square Challenges

\leadsto Non-constant modulus \Rightarrow large peak-to-average power ratio
\square Sensitivity to Carrier Frequency-Offset (CFO)
Inter-Carrier Interference (ICI)
\leftrightarrow At $E_{s} / N_{0}=19 \mathrm{~dB}$: CFO/subcarrier spacing $=1.26 \%$
\Longrightarrow SNR degradation 10 dB

Part 1: Null-Subcarrier-based CFO Estimation

Outline

\square Signal model
\square Deterministic ML estimator
\square Identifiability issues
\square CRB and optimal placement of null subcarriers
\square Performance analysis
\square Repetitive Slot-Based CFO Estimation
\square Comparisons
\square Summary

Signal Model

\square NSC insertion: $\mathbf{T}_{s c}: K$ cols of a $N \times N$ permutation matrix
$\square \mathrm{CP}$ insertion: $\mathbf{T}_{c p}=\left[\begin{array}{c}\mathbf{0}_{L \times(N-L)}, \\ \mathbf{I}_{L} \\ \mathbf{I}_{N}\end{array}\right]$
\square Transmitted block: $\boldsymbol{u}_{\mathrm{cp}}(i)=\mathbf{T}_{c p} \mathbf{F}_{N}^{\mathcal{H}} \mathbf{T}_{s c} \boldsymbol{s}(i)$
\square Input-output relationship $(N \geq K, P=L+N)$

$$
x_{\mathrm{cp}}(n)=e^{j \omega_{o} n} \sum_{l=0}^{L} h(l) u_{\mathrm{cp}}(n-l)+w_{\mathrm{cp}}(n)
$$

Goal: Estimate CFO ω_{o} based only on knowledge of $\mathbf{T}_{s c}$ without channel state information

Signal Model (2)

\square Received blocks

$$
\boldsymbol{x}_{\mathrm{cp}}(i)=e^{j \omega_{o} i P} \mathbf{D}_{P}\left(\omega_{o}\right)\left[\mathbf{H}_{1} \boldsymbol{u}(i)+\mathbf{H}_{2} \boldsymbol{u}(i-1)\right]+\boldsymbol{w}(i)
$$

where $\mathbf{D}_{P}\left(\omega_{o}\right)=\operatorname{diag}\left(e^{j k \omega_{o}}, k=0, \ldots, P-1\right)$
\square Discard CP to avoid IBI: using $\mathbf{R}_{c p}:=\left[\mathbf{0}_{N \times(P-N)}, \mathbf{I}_{N}\right]$:

$$
\mathbf{R}_{c p} \mathbf{H}_{2}=\mathbf{0}, \quad \mathbf{R}_{c p} \mathbf{D}_{P}\left(\omega_{o}\right)=\mathbf{D}_{N}\left(\omega_{o}\right) \mathbf{R}_{c p}, \quad \mathbf{R}_{c p} \mathbf{D}\left(\omega_{o}\right) \mathbf{H}_{2}=\mathbf{0}
$$

\square Channel matrix: \mathbf{H}_{1} Toeplitz $\Rightarrow \mathbf{H}_{c}=\mathbf{R}_{c p} \mathbf{H}_{1} \mathbf{T}_{c p}$ circulant; so

$$
\mathbf{F}_{N} \mathbf{H}_{c} \mathbf{F}_{N}^{\mathcal{H}}==\operatorname{diag}\left(H_{0} \cdots H_{N-1}\right)=: \mathbf{D}_{H}
$$

where $H_{k}=\sum_{\ell=0}^{L} h_{\ell} \exp (-j 2 \pi \ell k / N)$

Signal Model (3)

\square Received blocks after CP removal

$$
\boldsymbol{x}(i)=\mathbf{R}_{c p} \boldsymbol{x}_{\mathrm{cp}}(i)=e^{j \omega_{o} i P} \mathbf{D}_{N}\left(\omega_{o}\right) \mathbf{F}_{N}^{\mathcal{H}} \mathbf{D}_{H} \mathbf{T}_{s c} \boldsymbol{s}(i)+\boldsymbol{w}(i)
$$

- Perform FFT:

$$
\begin{aligned}
\tilde{\boldsymbol{x}}(i) & =\mathbf{F}_{N} \boldsymbol{x}(i) \\
& =e^{j \omega_{o} i P} \underbrace{\left[\mathbf{F}_{N} \mathbf{D}_{N}\left(\omega_{o}\right) \mathbf{F}_{N}^{\mathcal{H}}\right]}_{\text {diagonal? }} \mathbf{D}_{H} \mathbf{T}_{s c} \boldsymbol{s}(i)+\tilde{\boldsymbol{w}}(i) \\
& =\mathbf{D}_{H} \mathbf{T}_{s c} \boldsymbol{s}(i)+\tilde{\boldsymbol{w}}(i) \quad \text { iff } \omega_{o}=0
\end{aligned}
$$

$\square \hookrightarrow \mathrm{CFO}$ causes ICI; degrades BER

Signal Model (4)

\square After discarding CP, but before FFT (dropping block index)

$$
x(k)=\sum_{n \in \mathcal{A}} H_{n} s_{n} e^{j 2 \pi k\left(n+\nu_{o}\right) / N}+w(k) \quad k=0, \ldots, N-1
$$

- $\nu_{o}=N \frac{\omega_{o}}{2 \pi}$ is unknown CFO ; $-N / 2<\nu_{o} \leq N / 2 s_{n}$ unknown data symbols
- $\mathcal{A} \subset \mathcal{N}=\{-N / 2+1, \ldots, N / 2\}:$ active sub-carriers $\mathcal{Z}=\mathcal{N}-\mathcal{A}:$ set of NSC's
\square

$$
\begin{aligned}
a(k) & =\sum_{n \in \mathcal{A}} H_{n} s_{n} e^{j 2 \pi k n / N} \\
x(k) & =a(k) \exp \left(j 2 \pi k \xi_{o} / N\right)+w(k)
\end{aligned}
$$

- Estimate CFO in additive + multiplicative noise

Deterministic ML Estimator

\square Treat $\alpha_{n}:=H_{n} s_{n}$ as non-random unknowns

- Receiver knows NSC set

$$
\left.\begin{array}{rl}
\boldsymbol{x}=\mathbf{D}\left(\nu_{o}\right) \Phi_{\mathcal{A}} \boldsymbol{\alpha}+\boldsymbol{w} \\
\mathbf{D}\left(\nu_{o}\right)= & \operatorname{diag}\left\{1, e^{j 2 \pi \nu_{o} / N}, \ldots, e^{j 2 \pi(N-1) \nu_{o} / N}\right.
\end{array}\right\}, \mathbf{F}_{N}^{\mathcal{H}} \mathbf{T}_{s c} .
$$

Deterministic ML Estimator (2)

\square Gaussian Problem. Concentrate LLF wrt α_{n} 's:

$$
\begin{aligned}
\hat{\nu}_{o} & =\arg \max _{\nu} \sum_{\tau} r(\tau) \psi_{\mathcal{A}}^{*}(\tau) e^{-j 2 \pi \tau \nu / N} \\
r(\tau) & =\sum_{k=0}^{N-1-\tau} y^{*}(k) y(k+\tau)=r^{*}(-\tau) \\
\psi_{\mathcal{A}}(\tau) & =\frac{1}{N_{a}} \sum_{n \in \mathcal{A}} e^{j 2 \pi n \tau / N}
\end{aligned}
$$

\square Peak-pick windowed correlogram; window dictated by \mathcal{A}.
$\square N_{a}=N \Rightarrow \psi_{\mathcal{A}}(\tau)=\delta(\tau) \Rightarrow \mathrm{CFO}$ is not identifiable
\hookrightarrow Need NSC's

Deterministic ML Estimator (3)

- Interpretation of DML
\square MLE maximizes $J_{A}(\nu)$ or minimizes $J_{z}(\nu)$

$$
\hat{\nu}_{o}=\arg \max J_{a}(\nu)=\arg \min J_{z}(\nu)
$$

where

$$
J_{a}(\nu)=\sum_{n \in \mathcal{A}}|X(\nu+n)|^{2} \quad J_{z}(\nu)=\sum_{n \in \mathcal{Z}}|X(\nu+n)|^{2}
$$

with $X(f)=$ DTFT of \boldsymbol{x}
\Rightarrow Peak-pick (null-pick) sum of shifted periodograms
$\curvearrowleft \hat{\nu}$: frequency shift that minimizes total energy at NSC's

Identifiability Issues

- Identifiability study assumes noiseless case
\square Identifiability is guaranteed iff

$$
\mid \mathbf{D}\left(\nu_{o}\right) \mathbf{\Phi}_{\mathcal{A}} \alpha-\mathbf{D}(\nu) \mathbf{\Phi}_{\mathcal{A}} \alpha \|_{2} \neq 0 \quad \forall \nu \neq \nu_{o}
$$

\square Equivalently $J(\nu)<J\left(\nu_{o}\right)$ where

$$
J(\nu)=\boldsymbol{\alpha}^{\mathcal{H}} \mathbf{G}_{\mathcal{A}}\left(\nu-\nu_{o}\right) \boldsymbol{\alpha}
$$

with

$$
\mathbf{G}_{\mathcal{A}}(\epsilon)=\mathbf{T}_{s c}^{\mathcal{H}} \mathbf{F} \mathbf{D}^{\mathcal{H}}(\epsilon) \mathbf{F}^{\mathcal{H}} \mathbf{T}_{s c}
$$

$\Rightarrow J\left(\nu_{o}\right)=|\boldsymbol{\alpha}|^{2}$.
\Leftrightarrow Channel zeros $\alpha_{n}=0$: it suffices to have $N_{a} \geq L+1$

Identifiability Issues (2)

- Ambiguity due to number and location of NSC's
Δ Global maxima of $J(\nu)$ at $\nu=\nu_{o}+m$; unique global at $\mathrm{m}=0$?
\Rightarrow For $\nu=\nu_{o}+m, \mathbf{G}_{\mathcal{A}}$ is diagonal of ones and zeros
$\Rightarrow J\left(m+\nu_{o}\right)=\sum_{n_{\ell} \in \mathcal{A}}\left|\alpha_{n_{\ell}} g_{n_{\ell}}(m)\right|^{2}$
$』$ If for some $m \neq 0, g_{n_{i}}(m) \neq 0$ whenever $\alpha_{n_{i}} \neq 0$:
\hookrightarrow Identifiability lost
\Longleftrightarrow Identifiability is restored in $(-M / 2, M / 2]$ by choosing \mathcal{A} st. $\forall m \in[1, M / 2], g_{n_{i}}(m)=0$ for at least $L+1$ values of $i, n_{i} \in \mathcal{A}$. (because channel has a maximum of L zeros)

Identifiability Issues (3)

\square Let $P(m):=\left\{n_{p}: n_{p} \neq n_{k}+m, n_{p}, n_{k} \in \mathcal{A}\right\}$. Need $P(m) \geq L+1$, for $0<|m| \leq M / 2$
\square For consecutive NSC, $P(m)=\min \left(m, N_{z}, N_{a}\right)$. With $m=1 \rightarrow$ $L=0 \rightarrow$ VSC-based estimator is viable only for AWGN channel.
\square If $M \geq 2$, need $\min \left(N_{a}, N_{z}\right)>L$.
\square For equi-spaced NSC's, CFO is uniquely identifiable in $\left(-N / 2 N_{z}, N / 2 N_{z}\right)$, if $L<N_{z}<N-L$.
\square For equi-spaced active sub-carriers, CFO is uniquely identifiable in $\left(-N / 2 N_{a}, N / 2 N_{a}\right)$, if $L<N_{a}<N-L$.
\square For NSC with distinct spacing, CFO is uniquely identifiable in $[-N / 2, N / 2)$ iff $L+1<N_{z}<N-L$.

Identifiability Issues (4)

\square If the number of consecutive $N S C N_{v}>L$, the number of equispaced NSC $N_{n}>L$ and the spacing between the equispaced NSC is $M>L$, then the CFO is uniquely identifiable in the entire acquisition range $(-N / 2, N / 2]$ regardless of the channel zeros.

\square Tradeoffs between acquisition range, performance, maximum tolerable delay spread.
\square Identifiability conditions are relaxed if multiple blocks used and null-subcarrier hopping is performed.

CRB and Optimal Placement of Null Subcarriers

- Conditional CRB (CCRB)
\square CCRB treats $\alpha_{n}=H_{n} s_{n}$ as non-random unknowns

$$
\begin{aligned}
& \quad C C R B_{\mathcal{A}}\left(\nu_{o}\right)=\frac{\sigma^{2}}{8 \pi^{2} N}\left[\boldsymbol{\alpha}^{\mathcal{H}} \Phi_{\mathcal{A}}^{\mathcal{H}} \mathbf{Q}\left(\mathbf{I}-\frac{N_{a}}{N} \Psi_{\mathcal{A}}\right) \mathbf{Q} \Phi_{\mathcal{A}} \boldsymbol{\alpha}\right]^{-1} \\
& \mathbf{Q}=N^{-3 / 2} \operatorname{diag}\{0, \ldots, N-1\} \\
& \quad \Phi_{\mathcal{A}}=\mathbf{F}^{\mathcal{H}} \mathbf{T}_{s c}, \quad \Psi_{\mathcal{A}}=\Phi_{\mathcal{A}} \Phi_{\mathcal{A}}^{\mathcal{H}}
\end{aligned}
$$

\square If no NSC i.e. $N_{a}=N \longrightarrow C C R B\left(\nu_{o}\right)=\infty$.
\square CCRB is channel-dependent.

CRB and Optimal Placement of Null Subcarriers

- Modified CRB (MCRB)
\square Rayleigh fading $\mathbf{R}_{h}=E\left\{\tilde{\mathbf{h}}^{\mathcal{H}}\right\}$.
- $\alpha_{n}:=H_{n} s_{n} ; \mathbf{S}=\operatorname{diag}\left\{s_{n}, n \in \mathcal{A}\right\} ; \quad \mathbf{R}_{\alpha}=\mathbf{S R}_{h} \mathbf{S}^{H}$
- Channel-independent CRB:

$$
\operatorname{MCRB}_{\mathcal{A}}\left(\nu_{o}\right)=\frac{1 /\left(8 \pi^{2} N\right)}{\operatorname{Tr}\left\{\mathbf{R}^{-1} \mathbf{Q R Q}-\mathbf{Q}^{2}\right\}}
$$

where

$$
\mathbf{R}=\Phi_{\mathcal{A}} \mathbf{R}_{\alpha} \Phi_{\mathcal{A}}^{\mathcal{H}}+\sigma^{2} \mathbf{I}
$$

\square Blind case: reasonable to assume \mathbf{R}_{α} diagonal

CRB and Optimal Placement of Null Subcarriers (3)

$\square \rightarrow$ MCRB is a function of \mathcal{A} : \# and placement of NSC's:

$$
M C R B_{\mathcal{A}}\left(\nu_{o}\right)=\frac{1 /\left(8 \pi^{2} N \eta\right)}{\frac{N}{N_{a}} \operatorname{Tr}\left\{\mathbf{Q}^{2}\right\}-\operatorname{Tr}\left\{\Psi_{\mathcal{A}} \mathbf{Q} \Psi_{\mathcal{A}} \mathbf{Q}\right\}}
$$

- $\eta=N_{a} \gamma^{2} /\left(N_{a}+N \gamma\right)$ is channel-independent
- $\gamma=E\left|H_{n}\right|^{2} / \sigma^{2}$ is the average SNR
\square The optimal (in the sense of minimum MCRB) placement of a fixed number of active sub-carriers, N_{a}, is given by

$$
\mathcal{A}^{*}=\arg \min _{\mathcal{A}} \sum_{k, \ell=0}^{N-1} k \ell\left|\psi_{\mathcal{A}}(k, \ell)\right|^{2}
$$

For $N_{a} \leq N / 2$: equispace active sub-carriers
For $N_{a} \geq N / 2$: equispace null sub-carriers
Average performance improves with \# NSC's $N_{z}=N-N_{a}$

CRB and Optimal Placement of Null Subcarriers (4)

MCRB for different NSC placements; $N_{z}=4$; one block

Performance Analysis

Performance Analysis (2)

Repetitive Slot-Based CFO Estimation

Motivation: CFO acquisition not requiring channel estimation

J identical slots obtained by nulling all carriers not multiples of J

- u$:=\mathbf{F}^{H} \boldsymbol{s}$ made of J identical slots $(N=J Q) \rightarrow u(k)=u(k+\ell Q)$, $k=0 \ldots Q-1 ; \ell=0 \ldots J-1$

$$
\begin{aligned}
\hookrightarrow x(k+\ell Q) & =z(k) e^{j 2 \pi \nu \ell / J}+w(k+\ell Q) \\
z(k) & =e^{j 2 \pi \nu k / N} H_{c}(k,:) \boldsymbol{u}
\end{aligned}
$$

Repetitive Slot-Based CFO Estimation (2)

\square We ignore the dependence between \boldsymbol{z} and ν. Nonlinear Least Squares Estimator (NLLS):

$$
\begin{gathered}
\left\{\hat{\nu}_{R E P}, \hat{\boldsymbol{z}}\right\}=\min _{\nu, \boldsymbol{z}} \sum_{\ell=0}^{J-1} \sum_{k=0}^{Q-1}\left|x(k+\ell Q)-z(k) e^{j 2 \pi \nu \ell / J}\right|^{2} \\
\hookrightarrow \quad \hat{\nu}_{R E P}=\arg \max _{\nu} \sum_{k=0}^{Q-1} \xi_{\nu}(k) \\
\xi_{\nu}(k)=\frac{1}{J}\left|\sum_{\ell=0}^{J-1} e^{-j 2 \pi \ell \nu / J} x(k+\ell Q)\right|^{2}
\end{gathered}
$$

\& Acquisition range increases with $J:-\frac{J}{2} \leq \hat{\nu}_{R E P}<\frac{J}{2}$

Repetitive Slot-Based CFO Estimation (3)

\square NLS estimator can be rewritten as

$$
\begin{gathered}
\hat{\nu}_{R E P}=\arg \max _{\nu} \sum_{m=1}^{J-1} \operatorname{Re}\left[r(m Q) e^{-j 2 \pi m \nu / J}\right] \\
r(\tau)=\sum_{k=0}^{M-\tau-1} x^{*}(k) x(k+\tau)
\end{gathered}
$$

\Longleftrightarrow if $J=2, \rightarrow$ closed-form solution (Schmidl/Moose algorithms)

$$
\hat{\nu}_{R E P}=\frac{1}{\pi} \arg \{r(N / 2)\}
$$

$』$ if $J>2, \rightarrow$ no closed-form solution...

Repetitive Slot-Based CFO Estimation (4)

- Relationship between DML and NLS estimators
\square Repetition of identical slots: VSC absent
$\triangleright \mathcal{K}=\{m J, m=0, \ldots, M / J-1\}$ and

$$
\psi_{\mathcal{K}}(\tau)=\frac{K}{M} \delta(\tau-m Q) \quad m=0, \pm 1, \pm 2, \ldots
$$

\Rightarrow The repetitive slot-based and NSC-based are identical:

$$
\hat{\nu}_{R E P} \equiv \hat{\nu}_{N S C}
$$

if no VSC (consecutive NSC dictated by system design)

Repetitive Slot-Based CFO Estimation (5)

- Relationship between DML and NLS estimators (cont.)

Repetitive Slot-Based CFO Estimation (6)

- Relationship between DML and NLS estimators: J=4

Plot of $\psi(\tau) ; \mathrm{N}=64 ; 15 \mathrm{VSCs}$

Repetitive Slot-Based CFO Estimation (7)

- Relationship between DML and NLS estimators: J=8

$$
\text { Plot of } \psi(\tau) ; \mathrm{N}=64 ; 15 \mathrm{VSCs}
$$

Repetitive Slot-Based CFO Estimation (8)

- Relationship between DML and NLS estimators: J=16

Plot of $\psi(\tau) ; \mathrm{N}=64 ; 15 \mathrm{VSCs}$

Repetitive Slot-Based CFO Estimation (9)

- Relationship between DML and NLS estimators: J=32

$$
\text { Plot of } \psi(\tau) ; \mathrm{N}=64 ; 15 \mathrm{VSCs}
$$

Repetitive Slot-Based CFO Estimation (10)

- Relationship between DML and NLS estimators: J=64

Plot of $\psi(\tau) ; \mathrm{N}=64 ; 15 \mathrm{VSCs}$

Repetitive Slot-Based CFO Estimation (11)

- Relationship between DML and NLS estimators (cont.)
\square Repetition of identical slots: VSC present
\leftrightarrows Most of the correlation coefficients contribute to the ML estimator
$\leadsto \hat{\nu}_{R E P}$ consists of using only the $(J-1)$ highest correlation coefficients, and is therefore an approximate ML estimator.
\triangle DML is computationally more demanding than NLS.
\leftrightarrows If $J=2$, NLS is obtained in closed-form. If $J>2$, no closed-form expression. Approximations given by the following algorithms.

Repetitive Slot-Based CFO Estimation (12)

- The 'BLUE' estimator: optimal combining of the correlations' phases.

To avoid phase wrapping, the algorithm is based on

$$
\varphi(m)=[\arg \{r(m Q)\}-\arg \{r((m-1) Q)\}]_{2 \pi}
$$

\square Deriving the average (over Rayleigh channel) statistics of the $\varphi(m)$'s, the BLUE estimator is

$$
\breve{\nu}_{R E P}=\frac{J}{2 \pi} \sum_{m=1}^{p} w(m) \varphi(m)
$$

p : design parameter (optimum value $=J / 2$) and

$$
w(m)=3 \frac{(J-m)(J-m+1)-p(J-p)}{p\left(4 p^{2}-6 p J+3 J^{2}-1\right)}
$$

The amplitude of the correlations not exploited in BLUE...

Repetitive Slot-Based CFO Estimation (13)

- Approximate NLLS (ANNLS) estimator
\square Rewrite the NLS criterion

$$
\sum_{m=1}^{J-1}|r(m Q)| \cos \left(\phi_{m}-2 \pi m \nu / J\right)
$$

ϕ_{m} : unwrapped phase of $r(m Q)$
\square Small error approx. $\sin \left(\phi_{m}-j 2 \pi m \nu / J\right) \approx\left(\phi_{m}-j 2 \pi m \nu / J\right) \rightarrow$ ANLS estimator:

$$
\tilde{\nu}_{R E P}=\frac{J}{2 \pi} \frac{\sum_{m=1}^{J-1} m|r(m Q)| \phi_{m}}{\sum_{m=1}^{J-1} m^{2}|r(m Q)|}
$$

Repetitive Slot-Based CFO Estimation (14)

- Optimum number of identical slots (cont.)
\square The repetitive-slot structure-based Conditional CRB:

$$
\operatorname{CCRB}(\nu)=\frac{3}{2 \pi^{2} N\left(1-1 / J^{2}\right) S N R} \frac{1}{\gamma_{H}}
$$

where we assumed no VSC and $\left|s_{m}\right|=1, \forall m$ and where

$$
\gamma_{H}=\sum_{m=0}^{N / J-1} \frac{\left|H_{n J}\right|^{2}}{\sigma_{H}^{2}} ; \quad \text { frequency diversity decreases with } J
$$

\square Averaged CCRB:

$$
\operatorname{ACCRB}(\nu)=\frac{3}{2 \pi^{2} N\left(1-1 / J^{2}\right) S N R} E\left\{\frac{1}{\gamma_{H}}\right\}
$$

\rightarrow no closed-form expression
\rightarrow Monte-Carlo simulations

Repetitive Slot-Based CFO Estimation (15)

- Optimum number of identical slots (cont.) Rayleigh channel

Repetitive Slot-Based CFO Estimation (16)

- Optimum number of identical slots (cont.) Ricean channel $\kappa=4$

Comparisons

- MSE vs. SNR, J=4

Comparisons (2)

- MSE vs. \# Repeated slots, J

Summary

\square A computationally efficient algorithm
\square Analytical performance analysis and CRB
\square Relationship between the repetitive slot-based and the NSC-based MLE
\Rightarrow Equivalent in the absence of VSC's
\Rightarrow NSC is better if VSC's present

Part 2: Blind CFO estimation

Outline

\square Constant-modulus algorithm
\square Finite-alphabet algorithm
\square Comparative study

Constant-Modulus Algorithm

\square Assuming $\left|s_{n}\right|=1, \forall n$, wlog

$$
\begin{gathered}
\hookrightarrow H_{n} s_{n}=\left|H_{n}\right| e^{j \theta_{n}} ; \quad \theta_{n}=\angle H_{n} s_{n} \\
\hookrightarrow x(k)=e^{j 2 \pi k \nu_{o} / N} \sum_{n \in \mathcal{A}}\left|H_{n}\right| e^{j \theta_{n}} e^{j 2 \pi k n / N}+w(k), \quad k=0, \ldots, N-1
\end{gathered}
$$

The $\left|H_{n}\right|$'s are parameterized by only $(L+1)$ coefficients, the h_{ℓ} 's
\square The $H_{n} s_{n}$'s are parameterized by only $\left(N_{a}+L+1\right)$ coefficients instead of $2 N_{a}, \quad\left(N_{a}=\operatorname{card}(\mathcal{A})\right)$
$\square(k)$ is assumed AWGN

Constant-Modulus Algorithm (2)

- Deterministic Max-Likelihood
\square Treat $\left\{\left|H_{n}\right|\right\},\left\{\theta_{n}\right\}$ as non-random unknowns
- DML criterion

$$
J(\nu,|\mathbf{H}|, \boldsymbol{\theta})=\sum_{k=0}^{N-1}\left|x(k)-e^{j 2 \pi k \nu / N} \sum_{n \in \mathcal{A}}\right| H_{n}\left|e^{j \theta_{n}} e^{j 2 \pi k n / N}\right|^{2}
$$

- can be rewritten as
$J(\nu,|\mathbf{H}|, \boldsymbol{\theta})=\sum_{k=0}^{N-1}|x(k)|^{2}+\sum_{n \in \mathcal{A}}\left|H_{n}\right|^{2}-2 N R e\left[\sum_{n \in \mathcal{A}}\left|H_{n}\right| X(n+\nu) e^{-j \theta_{n}}\right]$
- $X(f)$: DTFT of $\{x(k)\}$ at frequency f / N

$$
X(f)=\sum_{k=0}^{N-1} x(k) e^{-j 2 \pi k f / N}
$$

Constant-Modulus Algorithm (3)

- Deterministic Max-Likelihood, cont.
\square Setting $\partial J / \partial \theta_{n}=0$,

$$
\widehat{\theta}_{n}=\arg \{X(n+\nu)\}
$$

- If $\left|H_{n}\right|=0, \theta_{n}$ becomes non-identifiable
- $N_{a}>L$ ensures that $H_{n} \not \equiv 0, \forall n \in \mathcal{A}$
\square DML of $\left\{H_{n}\right\}$ and ν_{o} obtained by minimizing

$$
\begin{aligned}
J(\nu,|\mathbf{H}|) & =J_{V S C}(\nu)+J_{A}(\nu,|\mathbf{H}|) \\
J_{V S C}(\nu) & =\sum_{n \in \mathcal{Z}}|X(n+\nu)|^{2} \quad \text { due to VSC } \\
J_{A}(\nu,|\mathbf{H}|) & =\sum_{n \in \mathcal{A}}\left(|X(n+\nu)|-\left|H_{n}\right|\right)^{2} \quad \text { due to CM }
\end{aligned}
$$

Constant-Modulus Algorithm (4)

- Non-Dispersive Channel
$\square H_{n}=h_{0}, \forall n \in \mathcal{A}$. Criterion becomes

$$
\begin{aligned}
J(\nu,|\mathbf{H}|) & =\sum_{n \in \mathcal{Z}}|X(n+\nu)|^{2}+\sum_{n \in \mathcal{A}}\left(|X(n+\nu)|-\left|h_{0}\right|\right)^{2} \\
& =\sum_{n=0}^{N-1}|X(n+\nu)|^{2}+N_{a}\left|h_{0}\right|^{2}-2\left|h_{0}\right| \sum_{n \in \mathcal{A}}|X(n+\nu)|
\end{aligned}
$$

- DML of CFO:

$$
\hat{\nu}_{o}=\arg \max _{\nu} \sum_{n \in \mathcal{A}}|X(n+\nu)|
$$

VSC-based estimator is equivalently obtained by maximizing the L_{2}-norm

$$
\arg \min _{\nu} J_{V S C}(\nu)=\arg \max _{\nu} \sum_{n \in \mathcal{A}}|X(n+\nu)|^{2}
$$

Constant-Modulus Algorithm (5)

- Dispersive Channel
$\square J_{V S C}(\nu)$ is not a function of $|\mathbf{H}|$
$\square J_{A}(\nu,|\mathbf{H}|)$ should be minimized wrt $|\mathbf{H}|$ under the constraint:

$$
\left|H_{n}\right|^{2}=\sum_{l, p=0}^{L} h_{l} h_{p}^{*} e^{-j 2 \pi(l-p) n / N}
$$

\square we modify $J_{A}(\nu,|\mathbf{H}|)$ into

$$
J_{A}^{\prime}(\nu,|\mathbf{H}|)=\sum_{n \in \mathcal{A}}\left(|X(n+\nu)|^{2}-\left|H_{n}\right|^{2}\right)^{2}
$$

Constant-Modulus Algorithm (6)

- Dispersive Channel, cont.
$\square\left|H_{n}\right|^{2}$ can be re-parameterized as

$$
\begin{gathered}
\left|H_{n}\right|^{2}=\boldsymbol{c}_{n}^{T} \boldsymbol{\lambda}, \quad n \in \mathcal{A} \\
\boldsymbol{c}_{n}=\quad[1, \sqrt{2} \cos (2 \pi n / N), \cdots, \sqrt{2} \cos (2 \pi n L / N) \\
\\
\boldsymbol{\lambda}=\sqrt{2} \sin (2 \pi n / N), \cdots, \sqrt{2} \sin (2 \pi n L / N)]^{T} \\
g_{i}= \\
\left.\sum_{l=0}^{L-i} g_{0}, \sqrt{2} \operatorname{Re}\left[g_{1}\right], \cdots, \sqrt{2} \operatorname{Re}\left[g_{L}\right], \sqrt{2} \operatorname{Im}\left[g_{1}\right], \cdots, \sqrt{2} \operatorname{Im}\left[g_{L}\right]\right]^{T}
\end{gathered}
$$

Constant-Modulus Algorithm (7)

- Dispersive Channel, cont.
$\square \boldsymbol{\lambda}$ estimate:

$$
\begin{gathered}
\hat{\boldsymbol{\lambda}}=\arg \min _{\boldsymbol{\lambda}} J_{A}^{\prime}(\nu,|\mathbf{H}|)=\mathbf{C}_{2}^{\dagger} \sum_{n \in \mathcal{A}}|X(n+\nu)|^{2} \boldsymbol{c}_{n} \\
\mathbf{C}_{2}:=\sum_{m \in \mathcal{A}} \boldsymbol{c}_{m} \boldsymbol{c}_{m}^{T}
\end{gathered}
$$

\square CFO estimate: obtained by minimizing $J(\nu)=J_{V S C}(\nu)+J_{C M}(\nu)$

$$
\begin{gathered}
J_{V S C}(\nu)=\sum_{n \in \mathcal{Z}}|X(n+\nu)|^{2} ; \quad J_{C M}(\nu)=\sum_{n \in \mathcal{A}}(|X(n+\nu)|-\sqrt{Y(n ; \nu)})^{2} \\
Y(n ; \nu)=\boldsymbol{c}_{n}^{T} \mathbf{C}_{2}^{\dagger} \sum_{n \in \mathcal{A}}|X(n+\nu)|^{2} \boldsymbol{c}_{n}
\end{gathered}
$$

Constant-Modulus Algorithm (8)

- Dispersive Channel, cont.
\square The proposed VSC\&CM estimate:

$$
\begin{gathered}
\hat{\nu}_{o}=\arg \min _{\nu} \sum_{n \in \mathcal{A}}(Y(n ; \nu)-2|X(n+\nu)| \sqrt{Y(n ; \nu}) \\
Y(n ; \nu)=\boldsymbol{c}_{n}^{T} \mathbf{C}_{2}^{\dagger} \sum_{n \in \mathcal{A}}|X(n+\nu)|^{2} \boldsymbol{c}_{n} \\
\mathbf{C}_{2}:=\sum_{m \in \mathcal{A}} \boldsymbol{c}_{m} \boldsymbol{c}_{m}^{T} \quad(\text { pre }- \text { computatble }) \\
X(f)=\frac{1}{N} \sum_{k=0}^{N-1} x(k) e^{-j 2 \pi k f / N}
\end{gathered}
$$

Constant-Modulus Algorithm (9)

- Extension to Multiple Blocks: Time-Invariant Channel
\square Signal model for M blocks: (CFO and fading assumed constant across the set of blocks)

$$
x_{m}(k)=e^{j 2 \pi k \nu_{o} / N} \sum_{n \in \mathcal{A}} H_{n} s_{m, n} e^{j 2 \pi k n / N}+w_{m}(k), \quad m=1, . ., M
$$

\square VSC\&CM CFO estimate:

$$
\begin{gathered}
\hat{\nu}_{o}=\arg \min _{\nu} \sum_{n \in \mathcal{A}}\left[Z(n ; \nu)-2\left(\frac{1}{M} \sum_{m=1}^{M}\left|X_{m}(n+\nu)\right|\right) \sqrt{Z(n ; \nu)}\right] \\
Z(n ; \nu)=\boldsymbol{c}_{n}^{T} \mathbf{C}_{2}^{\dagger} \sum_{n \in \mathcal{A}}\left(\frac{1}{M} \sum_{m=1}^{M}\left|X_{m}(n+\nu)\right|^{2}\right) \boldsymbol{c}_{n}
\end{gathered}
$$

Constant-Modulus Algorithm (10)

- Extension to Multiple Blocks: Time-varying Channel
\square Signal model for M blocks:

$$
x_{m}(k)=e^{j 2 \pi k \nu_{o} / N} \sum_{n \in \mathcal{A}} H_{m, n} s_{m, n} e^{j 2 \pi k n / N}+w_{m}(k)
$$

\square VSC\&CM CFO estimate:

$$
\begin{aligned}
\hat{\nu}_{o} & =\arg \min _{\nu} \sum_{m=1}^{M} J_{m}(\nu) \\
J_{m}(\nu) & =\sum_{n \in \mathcal{A}}\left(Y_{m}(n ; \nu)-2\left|X_{m}(n+\nu)\right| \sqrt{Y_{m}(n ; \nu}\right)
\end{aligned}
$$

Finite-Alphabet Algorithm

\square PSK constellations of size M satisfy:

$$
s_{n}^{M}=1
$$

\rightarrow In the noiseless case

$$
\left[X\left(n+\nu_{o}\right)\right]^{M}=H_{n}^{M}=\left[\sum_{l=0}^{L} h_{l} e^{-j 2 \pi l n / N}\right]^{M}=\sum_{l=0}^{M L} v_{l} e^{-j 2 \pi l n / N}=\gamma_{n}^{H} \mathbf{v}
$$

- $\gamma_{n}=\left[1, e^{j 2 \pi n / N}, \ldots, e^{j 2 \pi M L n / N}\right]^{T} ; \mathbf{v}:(M L+1) \times 1$

Finite-Alphabet Algorithm (2)

- Proposed criterion:

$$
\begin{aligned}
J(\nu) & =w J_{V S C}(\nu)+(1-w) \bar{J}_{F A}(\nu, \mathbf{v}) \\
\bar{J}_{F A}(\nu, \mathbf{v}) & =\sum_{n \in \mathcal{A}} \mid\left[X(n+\nu]^{M}-\left.\gamma_{n}^{H} \mathbf{v}\right|^{2}\right.
\end{aligned}
$$

- If $M L+1<N_{a}, \boldsymbol{u}$ can be estimated as:

$$
\begin{gathered}
\hat{\mathbf{v}}=\Gamma^{\dagger} \sum_{n \in \mathcal{A}}[X(n+\nu)]^{M} \gamma_{n} \\
\Gamma:=\sum_{n \in \mathcal{A}} \gamma_{n} \gamma_{n}^{H} .
\end{gathered}
$$

Finite-Alphabet Algorithm (3)

\square The finite alphabet-based criterion becomes

$$
J_{F A}(\nu)=\sum_{n \in \mathcal{A}} \mid\left[X(n+\nu]^{M}-\left.Z(n ; \nu)\right|^{2}\right.
$$

- $Z(n ; \nu)=\gamma_{n}^{H} \boldsymbol{\Gamma}^{\dagger} \sum_{n \in \mathcal{A}}[X(n+\nu)]^{M} \boldsymbol{\gamma}_{n}$
\hookrightarrow Proposed VSC\&FA-based estimator:

$$
\hat{\nu}_{o}=\arg \min _{\nu}\left[w J_{V S C}(\nu)+(1-w) J_{F A}(\nu)\right]
$$

w : weight parameter to be adjusted. If no VSC, $w=0$.

Comparative Study

- VSC vs CM: performance vs SNR.

MSE of CFO estimators vs. SNR; $L=6$

$N=64, N_{a}=49$, CFO in $[-2,2]$ and $E\left\{\left|h_{\ell}\right|^{2}\right\}=e^{-0.2 \ell} ; 8$ PSK.

Comparative Study (2)

- VSC vs CM: unknown channel order.

$N=64, N_{a}=49$, CFO in $[-2,2]$ and $E\left\{\left|h_{\ell}\right|^{2}\right\}=e^{-0.2 \ell} ; 8$ PSK.

Comparative Study (3)

- CM versus FA: BPSK case

MSE of CFO estimators vs. SNR; actual $L=6$

$N=N_{a}=64, \mathrm{CFO}$ in $[-2,2]$ and $E\left\{\left|h_{\ell}\right|^{2}\right\}=e^{-0.2 \ell}$

Summary

- CMA greatly outperforms VSC-based estimators
- CMA works even when the system is fully loaded
- CMA outperforms FA for M-PSK with $M>2$

I Performance of CM close to data-aided algorithms
Complexity is however greater than VSC and data-aided algorithms.

References

[1] M. ghogho and A. Swami, "Carrier Frequency Synchronization for OFDM Systems," in Signal Processing for Mobile Communications Handbook, Ibnkahla Edt., CRC, 2004.
[2] T. M. Schmidl and D. C. Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans. Communications, vol. 45, pp. 1613-1621, Dec. 1997.
[3] T. Pollet, M van Bladel and M. Moeneclaey "BER sensitivity of OFDM systems to CFO and Wiener phase noise", IEEE Trans. Communications, vol. 43, March 95.
[4] T. Pollet and M. Peeters, "Synchronization with DMT modulation", IEEE Commun Mag, 37(4), pp. 80-86, April 1999.
[5] L. Wei and S. Schegel, "Synchronization requirement for multi-user OFDM on satellite mobile and two path Rayleigh fading channel", IEEE Trans. Communications, vol. 43, pp. 887-895, Feb 1995.
[6] N. Lashkarian and S. Kiaei, "Class of cyclic-based estimators for frequency-offset estimation of OFDM systems", IEEE Trans. Communications, vol. 48, pp. 2139-2149, Dec 2000.
[7] X. Ma, and G. B. Giannakis, "Exploiting the Cyclic-Prefix for Blind Frequency-Offset Estimation in OFDM," Proc. of 35th Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, November 4-7, 2001.
[8] P.H. Moose, "A technique for orthogonal frequency division multiplexing frequency offset correction", IEEE Trans. Communications, vol. 42, pp. 2908-2914, Oct 1994.
[9] M. Luise and Reggianini, "Carrier frequency offset acquisition and tracking for OFDM systems", IEEE Trans. Communications, vol. 44, Mar 1996.
[10] H. Liu and U. Tureli, "A high efficiency carrier estimator for OFDM communications," IEEE Communications Lett., vol. 2, pp. 104-106, Apr. 1998.
[11] M. Morelli and U. Mengali, "An improved frequency offset estimator for OFDM applications," IEEE Communications Lett., vol. 3, pp. 75-77, Mar. 1999.
[12] H. Bölcskei, "Blind high-resolution uplink synchronization of OFDM-based multiple access schemes", Proc. IEEE SPAWC'99, pp. 166-169, Annapolis, MD, 1999.
[13] H.-K. Song, Y.-H. You, J.-H. Paik, and Y.-S. Cho, "Frequency-offset synchronization and channel estimation for OFDM-based transmission", IEEE Communications Lett., vol. 4, pp. 95-97, Mar 2000.
[14] M. Morelli, A.N.D'Andrea, and U. Mengali, "Frequency ambiguity resolution in OFDM systems", IEEE Communications Lett., vol. 4, pp. 134-136, April 2000
[15] U. Tureli, H. Liu, and M. Zoltowski, "OFDM blind carrier offset estimation: ESPRIT", IEEE Trans. Communications, vol. 48, Sept 2000.
[16] M. Morelli, A.N.D'Andrea, and U. Mengali, "Feedback frequency synchronization for OFDM applications", IEEE Communications Lett., vol. 5, pp. 28-30, Jan 2001.
[17] J. Li, G. Liu and G.B. Giannakis, "Carrier frequency offset estimation for OFDM-based WLAN's" IEEE Signal Processing Lett., 8, pp. 80-82, March 2001.
[18] M. Ghogho, A. Swami and G. B. Giannakis, "Opimized null-subcarrier selection for CFO estimation in OFDM over frequency-selective fading channels," GLOBECOM'2001, San Antonio, USA, Nov. 2001.
[19] X. Ma, C. Tepedelenlioglu, G. B. Giannakis, and S. Barbarossa, "Non-Data Aided Carrier-Offset Estimators for OFDM with Null Sub-Carriers: Identifiability, Algorithms, and Performance," IEEE Journal on Selected Areas in Communications, vol 19, pp. 2504-2515, Dec. 2001.
[20] S. Barbarossa, M. Pompili, and G. B. Giannakis, "Channel-independent synchronization of OFD multiple access systems", IEEE Journal on Selected Areas in Communications, vol 20, pp. 474-486, Feb 2002.
[21] M. Ghogho and A. Swami, "A blind frequency offset synchronization for OFDM transmitting constant-modulus symbols", IEEE Communications Lett., vol. 5, August 2002.
[22] M. Ghogho and A. Swami, "Blind frequency-offset Estimation for OFDM and Multicarrier Systems," 2nd IEEE International Symposium on Signal Processing and Information Technology, ISSPIT2002, Marrakech, Morocco. Dec. 2002
[23] M. Ghogho, "On blind frequency-offset synchronization for OFDM communications," XI European Signal Processing Conference, EUSIPCO'2002, Toulouse, France, Sep. 3-6, 2002.
[24] M. Ghogho and A. Swami, "Semi-blind frequency offset synchronization for OFDM," IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP'02), Orlando, Florida, USA, May 2002.
[25] J.-J. van de Beek, M. Sandell, and P.O. Borjesson, "ML estimation of time and frequency offset in OFDM systems", IEEE Trans. Signal Processing, vol. 45, pp. 1800-1805, July 1997.
[26] A.J. Coulson, "Maximum likelihood synchronization for OFDM using a pilot symbol: algorithms", IEEE Journal on Selected Areas in Communications, vol 19, pp. 2486-2494, Dec 2001.

