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Aims

[1 To describe a few channel estimation techniques for cyclic-prefixed
(CP) block transmissions, including OFDM and single-carrier
(SC-)CP systems

[1 To address the issue of optimum training design and power
allocation

[1 To introduce a new bandwidth efficient pilot assisted transmission
technique
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Outline

[] Introduction
[1 Channel estimation for OFDM

[1 OFDM signal model and preliminaries

[1 Pilot-based channel estimation for OFDM
[1 Blind channel estimation for OFDM

[1 Channel estimation for general CP systems

[1 Affine precoding and MMSE channel estimation
[ Full rank orthogonal precoding
[1 Rank-deficient orthogonal precoding

[0 Summary
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Introduction

[0 Why block transmissions?

[] existence of zero-forcing equalizer

[1 block-by-block processing
[0 Why cyclic prefix?

[0 FFT-based channel equalization
[1 Why channel estimation

[J required for coherent communication systems
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Part 1: Channel Estimation for OFDM
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OFDM signal model and preliminaries
e Block diagram
Input >
Add
: - R Insert
data | 7 viral | | IDFT —IP/S " g(®)
S/P| - . CP }
= | carriers
— >
Virtual
carriers “I
) Noise &
Output < inter-
Data ference
Frequency-domain‘];/ @ l\ Time-domain
Channel estimation Pilots or/and data statistics
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[0 Frequency-domain (F-D) methods: either pilot-based or (semi-)blind

[0 Time-domain (T-D), generally (semi-)blind.
Assumptions:

[J Channel impulse response (CIR) constant during each OFDM
symbol

h(t) =)  hed(t— )
£=0

0 70 =4Ts, Ts =T/N and T: duration of 1 OFDM block w/0 CP.
0 h:=[ho---hr]" ~CN(0,Rn), Ry =diag{o} ,£=0---L}

[I length of CP = L. Additive noise is Gaussian and white with
2

U.
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e Notations

e N: DFT size e N,: 7 active carriers @ N,: 7 pilot carriers
e A (P): set of active (pilot) carriers; P C A C{0,---N —1}

o F=(1/VN){exp(—j2mnk/N)} 15 ¢ W =(VN)F(;,0: L)

e T,: active carriers selection matrix (N x N,)

e T,: pilot carriers selection matrix (N x N,)

e T,: data carriers selection matrix (IV x Ng) with Ny = N, — N,
e W,=TIWe Wp=TIWe Wp=TIW

2 2

e o, (resp o7) total power of pilot (resp. data) carriers; ;07 := 05 + 0.

p
e D, = diag{z}.

N
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[ VC insertion: T,. : N, columns of a N x N identity matrix

0 5, I
[J CP insertion: T, = [ Lx(N-L)> *L

In
0 Transmitted block: wcp(i) = TepF7t T 5(7)
[J Input-output relationship (N > N,,P =L+ N)

Tep(n) = 1o B ttep(n — 1) + vep(n)

J
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[J Received blocks
Tep(i) = [Hiuep(i) + Hatep (i — 1)) + v(4)
[ Discard CP to avoid IBL: R¢p := [Onx(p—n), In] = RepHz = 0.
[l Channel matrix: H; Toeplitz = H, = R.,H; T, circulant; so
FH F" = diag(Hy---Hn_1) =: Dy
where Hj = Zf:o hee 32mtk/N
[1 Received blocks after CP removal
z(i) = Repxep(i) =F*DyT,.s(i) + v(i)

and after FFT
x(1) = DyTscs(i) + v(7)
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OFDM signal model and preliminaries (6)
[0 F-D received signal at the data carriers (dropping block index):
Tpn = HpSp + Un n €D
s,: data symbol on nth carrier and H,, = Zf:o hpe—2imn/N
[ F-D signal at the pilot carriers, P = {iy,--- ,in,} CA=DUP,
z; =H; cm+v; , m=1,---,N,
In vector form:
xp = DWph + vp
¢ =[c1, -+ ,en, ]t known pilot symbols.
N J
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Pilot-Based Channel Estimation for OFDM

e Pilot placement

Pilot symbols

AR

Frequency
® 0 0 0 0 0 o
- 0 e 00 0 0
> 0 ®© 0 0 00 o

o 0 0 e 0 00 o

v

Time

- Time-invariant or slowly varying channels

Frequency

Pilot carriers

v

Time

- Time-varying channels
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e Minimum Mean Square Error (MMSE) Method

[] MMSE CIR estimator

A

h= ("R, '+ WHED,Wp)  WHEDzp

where D, = diag{|c,n|?, m=1---N,}.
[ The least square (LS) estimator is obtained by setting R, ' = 0.

[J Identifiability condition (since ¢, # 0):

rank( DcWp)=L+1 < N,>L+1

[0 MMSE estimate of H,,

A

H, = wZ‘lAz

N J
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Pilot-Based Channel Estimation for OFDM (3)

e Performance of MMSE estimates

(1 MSEs of h and the ﬁn’s:

A A - 1 -1
X, = E {(h — h)(h - h)H} = (Rhl + ;W%‘DPWP)
= E {|f[n _ Hn|2} = WS w,
Ymmse = Z Tn = Ir {WDZIALW%}
neD

[] MSEs of LS estimates obtained by setting Rgl =0

N J
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Pilot-Based Channel Estimation for OFDM (4)

e Optimum pilot design for MMSE channel estimation

[1 Equalization carried out in F-D; so criterion based on ,.
Minimizing the total (or average) mse:

{po, PO} = arg I;l%l Ymmse

1 —1
= arg m%l Tr {Wfp (Rgl + —QW:’;‘DPWP) W%}
p, v

under the constraints

Np
P C A; Z Pn = 0129 (C1)
n=1

N J
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e Optimum pilot design for MMSE channel estimation: no VC

[0 For any (L x L) positive-definite matrix, B = {bk,g}ﬁ,zzo, we have

L
1
Tr{B~ !> —
{B7'}> ; e
with equality iff B is diagonal.
[1 Since Ry, is diagonal, ¥mmse 18 minimized if

WZEWp =Nyl and WED,Wp = 0’1

which is possible in the no-VC case

N J
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Pilot-Based Channel Estimation for OFDM (6)

e Optimum pilot design for MMSE channel estimation: no VC (cont.)

[1 An optimum design is

(Pf:{t+ZQ,Z:0,7Np—].} lfQ:Nﬂpln‘teger
PO =

\ Ps :={0,--- ,N =1} =Py if () := NiVNp integer

where t is arbitrary integer from [0,Q — 1).
Example: (N = 16)

® ® ® e N,=4

®oO® X N LK e Np=12

N J
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e Optimum pilot design for MMSE channel estimation: no VC (cont.)
Illustration of the effect of pilot placement on estimation performance
(p= 01% / NplT)

N=32: N =32; L=3: N =4
a P

o 0.5 1 1.5 2
Different pilot placements % 10*
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e Optimum pilot design for MMSE channel estimation: no VC (cont.)

[ The minimum of Aymge is (using Ny = N — N,, since no VO)

L 2 2

0 o Oy Op
TYmmse — (N_NP)7 — (N_NP)Z £2
£=0

2 2
(g -+ apahe

[ The MSE, 71, of LS estimate obtained using o, = oo.

[] Pilot design minimizing Ymmse also minimizes the ~,,’s
individually, and with optimal design, all carriers experience the

same channel estimation MSE, i.e. 72 = «°.

[] Minimizations of the MSE in the F-D and T-D are equivalent:

arg I[I)l,lgl Ymmse = aI'g I;l,%l Ir {Efl}

N J
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e Optimum pilot design for MMSE channel estimation: no VC (cont.)

[ For fixed o7 and with p° and P°, 7° is independent of N,,. But this
is not exactly true if there is a mismatch between the assumed and the

actual channel models, e.g. fractional path delays!

[] Optimum pilot placement and power distribution design not unique,
in general. However if V, = L 4 1, only equipowered and equispaced

pilot carriers achieve minimum MSE.

[] In the case of colored noise with unknown spectral density, use pilot

carrier hopping, e.g. t in the above optimum design should vary across
the blocks.

N J
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Pilot-Based Channel Estimation for OFDM (10)

[1 Under the above optimal placement and power distribution of the
pilots, what are the optimal value of N,, the optimal power
allocation and the optimal data power distribution? We use a
capacity-bound criterion

[ Channel unknown at transmitter = ideal training-based capacity
maximized when o2(n) := E {|s,|*} = 02/Ny:

Ny
N+ L

where g ~ CN(0,1) and Bigear is the ideal SNR (03, = Y, 07,)

Cideal = ———F {log (1 + Bideal|9]| )} (bits/symbol)

2 2
JHOS

Bideal = 5
Ngoz

J
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e Incorporating estimation error into signal model

[1 Treating estimation error as extra noise:

zn, = H,s, +v, =H,$,+ e€,8, —+Un
——

extra noise

where e, = H, — H,, and E {lensn + Unl?} = ymoZ(n) + o2.

v

[1 Orthogonality principle: F {ﬁnen} = (0. Thus

E{|Hu*} = 0% —m < o}

[l Equivalent to a known channel H, system subjected to an
additive noise U], = e, s, + U, which is neither Gaussian nor
independent (though uncorrelated) of the data.

N /
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Pilot-Based Channel Estimation for OFDM (12)

e Effect of estimation on capacity

[] Since noise v, is uncorrelated from data, the capacity is lower
bounded by that of a system subjected to Gaussian noise with same
power as v,..

C>C= N+LZE{log 1+ B(n)lgl") }

where 5(n) effective SNR at nth carrier

E{HLYE{|s:?} (02, — 4)0%(m)
EQLP)  mol(n) + o2

B(n) =

J
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Pilot-Based Channel Estimation for OFDM (13)

e Optimum data power distribution, no VC

[J In this case, Ny = N — N, and with optimal design, v, = v°, Vn.
Hence, C maximized when ¢2(n) = 02 /Ny:

[ Maximum lower bound:

~_N-N,

C N——I—LE {log (1 T B|g|2)}

where , ,
(UH T 70)0.3

"o+ (N - Ny)ot

N J
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e Optimal number of pilots: no VC

[J Treating N, as a continuous variable v, it can be shown that

oc 1
o N+ L

8 2
E{—bg@+5@%+{N—y%£1i%wP}<0

= 1 should be as small as possible, i.e.

N°=L+1

[l N, = L + 1 also minimizes complexity at the receiver and
maximizes bandwidth efficiency. However, N, = L + 1 might not be
optimal in the case of channel modeling mismatch.

J

M. Ghogho Leeds University



Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 25
4 N
Pilot-Based Channel Estimation for OFDM (15)

e Optimum power allocation: no VC

0 Let a =o02/0?. Using N, = L+ 1, P°, p° we maximize C

a’ := argmax C = argmax f3
(81 (87

= For the general case, solution can be found by polynomial
rooting. Let 5° denote maximum value of £.

0 Let £ = 0%02/(N — N,)o2, i.e. data SNR when o2 = o7.

[1 SNR losses due to channel estimation, estimation errors and both:

5 (: l) Bideal 5
Bideal o’ ﬁ 7 5

N J
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e Optimum power allocation: no VC (cont.) High SNR regime:

[J Approximations:

2
o (L+1)
bl on L
p
a(l — a)

b= (N—Np)g(L+1)a+(N—Np)(l—Oé)

[0 Take N, = L + 1. For fixed pair (N, L), optimal value of a and f:

1 2
Qoo = ao|high snr ; BOO ‘= 60|high snr :g Koo

L+1
1+ N—-L-1

[0 For typical N > 2(L + 1), a > 0.5 and maximum SNR losses ( at
high SNR) are resp 3dB, 3dB and 6dB. [ SNR loss decreases with
N/L and — 0 when N >> L.

N J
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Pilot-Based Channel Estimation for OFDM (17)

e Optimum power allocation: no VC (cont.)

Optimum pilot power allocation at high SNR

0.5
0.45
0.4
0.35
0.3

T 0.25
0.2
0.15
0.1

0.05

N=64, Np=L+1, no vVC

T

T

T

T

High SNR

10

25

30
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Pilot-Based Channel Estimation for OFDM (18)

e Optimum power allocation: no VC (cont.)

BER performance: Rayleigh channel with exponential delay profile;
N =64 and N, =L +1=28.

10°

BER

J
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Pilot-Based Channel Estimation for OFDM (19)

e Optimum power allocation: no VC (cont.)

[J Rayleigh channels with equipowered taps, i.e. oy, = op:

1 h ¢ N — N, <1+ L+1
Qiid = whnere L= -
Ty 1)¢ N-N,—-L~-1 (N — Np)§

[1 Max effective data SNR

§ 2
Biid — 1+ L+1 Qiiq
(N—Np)¢

[0 Data SNR loss due estimation depends on both N/L and &.

N J
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Pilot-Based Channel Estimation for OFDM (20)
e Optimum power allocation: no VC (cont.)
SNR loss vs £, N, = L + 1.
6.5 . .
N=64 N
%0 10 15 20 25 30 35 40
¢ (dB)
y
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Pilot-Based Channel Estimation for OFDM (21)

e Optimum pilot design for LS channel estimation: VC present

[1 Optimization wrt both P and p untractable in general.
[0 Complexity reduced if LS is used and N, = L + 1 (i.e. Wp square).

[ If total MSE, 7, is used as criterion:

{p°, P°} = arg mmq/Ls — arg mm Z Yrn

—1 n
under (C1) where ¥ := W;l'“w%WDW;l.

O Minimizing wrt to p under ) p, = o, gives

o  nm ,Vn=1,---,N,
Zz 1\/¢ZZ

N J
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Pilot-Based Channel Estimation for OFDM (22)

e Optimum pilot design: VC present (cont.)

[J Optimization reduced to:

2

Np
P° = arg min Z VUnn
n=1

PCA

[ Minimum total MSE of LS estimates:

2
o [ Np
el DIV
2 n,n
)
b n=1

[0 Exhaustive search over all N,-point subsets of A.

N J
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Pilot-Based Channel Estimation for OFDM (23)

e Optimum pilot design: VC present (cont.)

[ Example: N =32, N, =24, N, =L+ 1=4:

O 0 0 O
21 20 4 11

[1 Equispacing pilots in the active carrier region with one pilot
placed near each edge of the VCs seems to be optimal.
[] Pilot power p,, decreases when pilot close to VCs.

[0 Numerical examples show that setting p to be constant and
optimizing wrt P lead to almost the same design

N J
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e Optimum pilot design: VC present (cont.)
N=32; N =24; L=4; N =4
10° . i
= 107 |
% |
e 10
100 | | | | |
0] 1000 2000 3000 4000 5000 6000
10° |
>C
‘..5 W
)
|_
7
10°
0] 10‘00 20‘00 30‘00 40‘00 50‘00 6000
Different pilot placements
[1 P° almost also minimizes ‘STD’ of ~,,. Perfect ‘Fairness’ in terms of
estimation accuracy at different data carriers is impossible in general.
/
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e Optimum pilot design: VC present (cont.)

[1 The general problem is that of maximizing

0= s > mfiog (14 T

o
nED /yn S

wrt P, p o, and the o7(n)’s for a constant o7; (orthogonality is

valid only for MMSE estimator!)

[1 Maximization is untractable. A suboptimum solution is to use P, p
which minimize 475 and use the individual 7, to maximize C wrt
the 02(n)’s. [0 Numerical examples show that no significant gain is
obtained by accounting for the slight differences between the
gammay,’s.

N J
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[ Two main classes of methods

[ methods exploiting the redundancy introduced by CP or/and
virtual carriers: require large number of OFDM symbols.

[ methods exploiting the finite-alphabet (FA) property of the
symbols: performance deteriorates with size of constellation.

When the channel varies rapidly across the blocks, only the
FA-based methods may be suitable.

N J
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e FA-based blind channel estimation

O Assume E{s¥} =uy #0and E{sl} =0for J < M, eg. M =2
for BPSK and M = 4 for QPSK and QAM.

[J Received ith block after CP removal and DFT (assume N, = N):
Tn (1) = Hpsp (1) + we(2), n=20---,N—1
[J Then
G (i) = (20 (D))" = Hp' sy (i) + €n (1)
where F {£,(7)} = 0. and

HM = [1, ¢792™/N ... o=32enMD/NY(b s\ b)) =: Q(n, ) ha

[] In vector form
[Hév!a o 7H%—1]T = HM — ﬂhM
\_ J
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e FA-based blind channel estimation (cont)

[ Blind estimate of Hj; and hj; using K blocks:

Hyl, = HM = —2 (i
[ H ] i K Z:1’3/( )
hy = QT H, =1/NQ"H,,

[J Necessary condition: N > ML + 1. For PSK, identifiability
guaranteed even with one OFDM symbol.

[1 Blind estimate of h;:

h = argm}}anzM — h x5 h|

J
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e FA-based blind channel estimation (cont)

e Minimum Distance Algorithm

[ Estimate H,, using
~ —_— 1/M
Hy = My [H,,QJ ]
where ), € {e/?™/M)m1M -1 is the scalar ambiguity.

[0 Using exhaustive search over all M” possible vectors A, and for
each A\, estimate time-domain vector h and compute

Ay — ho*ys bl

[] Final estimate of h is the minimizer of the above criterion.
[] Reduced complexity because of discrete search. Other simpler
algorithms exist.

N J

M. Ghogho Leeds University




Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris

-

Part 2: Channel Estimation for General CP Systems
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[] Assume
[1 frequency-selective channel, constant over K (> 1) blocks

[1 Received signal after CP removal

I
>

r, = Hui+vi )

u, = ®i3i+bz'

e O, (N x N) precoding matrix e s;: ¢th transmitted data block

e b;: ith pilot sequence e H = circ([hg...h0...0])

2

2 e s;: independent of v;.

e v;: AWGN, variance o

[] Affine precoding includes TDM and superimposed training.

N J
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[0 (A1) The non-zero elements of the s;’s are unknown, i.i.d
zero-mean random variables drawn from a finite alphabet M.

[1 Design criteria assume a fixed total pilot power in the frame

1 K-1
O-g — E Z 02(2) )
1 =0

but the training power can vary from block to block.

J
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Affine Precoding and MMSE Channel Estimation (3)

[J Collecting K blocks:

xXr;,; = H@zSZ —|—Bzh + v;, 1= 0, ,K —1
e B;: leading (N x L) of circ(b;) o h=|hg---hr]t.

[1 MMSE channel estimate:

o2 o

.1 1 !
h = (Rgl+—zB”HB) B* .

v v

° m:[mr{---mﬂ]TQ B:[B”{...BJI;]T

N J
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Affine Precoding and MMSE Channel Estimation(4)
[J Identifiability condition:
rank(B) = L + 1 (C2)
[1 Frequency-domain counterpart:
e let b;:= DFT of b; and
K ~
pni=Y |bi(n)]*>, n=0,.,N-1
i=1
e Let N,: number of nonzero entries of p := [pg - pn—1]
O rank(B) = min(N,, L + 1)
(C2) = N,>L+1
i.e. combined training power across the blocks is non-zero at at
least L + 1 frequencies.
N J
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Affine Precoding and MMSE Channel Estimation(5)

e Orthogonal precoding

[ Condition for decoupled channel estimation and data detection:

~

bi (n) [F™O;s;], 0, Vn, i

~

T,F"O®,s; = 0, Vi (C3)

where T; = diag{t;(n),n =0,--- , N — 1} with

1 if n € P
ti(n):{ if n

0 otherwise

J
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Affine Precoding and MMSE Channel Estimation(6)

e Optimal training for orthogonal precoding
Result 1 Assume that @) = N/N, is an integer. Under (C3) and the
constraint of fixed training power o7, the MSE of h in orthogonal

precoders is minimized when

(NSNS Q—m)  if Q:= 2L integer
Pn = { (C4)
| AN b —0Q —m)] if Q = Y integer

e m : arbitrary integer from |0,...,Q — 1]

J
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[] Result 1 implies that the pilot frequencies should be equispaced and
that their average powers across the K blocks should be identical.
Therefore, channel estimation performance is the same regardless of
the distribution of the training power across the blocks.

0 the minimum MSE of h is independent of IV, the number of pilot
frequencies.

[0 Time-division multiplexing (TDM) is not an orthogonal precoding
scheme. Condition (C3) implies that training should be
superimposed onto the data in the time domain (but orthogonal in
the frequency domain).

[1 The K > 1 scenario gives more flexibility for designing precoders. It
is also useful if frequency hopping is desired.

N J

M. Ghogho Leeds University




Estimation Theory for Wirelss Communication, 24-28 Oct 2005, Paris 48

4 N

Full-Rank Orthogonal Precoding

[1 Let P;: set of pilot frequencies during ¢th block

[0 Result 2 Assume that &;, 1 =1, ..., K — 1, are full rank,
assumption (A1) holds and maximum possible data-rate is required.
Then, the orthogonality condition (C3) is satisfied if and only if the
nth entry of A;s; is identically zero for n € P;, where A; is any
permutation matrix, and the precoding matrix has the following

form

©;, = F" [T,W,T; + (I - T;)A;] A;

where W, and A; are any (/N x N) matrices such that
(TszTz + (I — Tz>A1> is full-rank.

N J
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Full-Rank Orthogonal Precoding (2)

0 W,; =A; =1— ©; =F" = OFDM with reserved pilot tones.

[ Uncoded OFDM has poor performance because only diversity order
one is possible through Rayleigh fading channels. This problem is
overcome by employing either Galois field channel coding or
LP-OFDM - LCP-OFDM.

[1 Here, we focus on SC-CP systems. Although such systems do not
have full multipath diversity, their performance at realistic SNR
values approaches that of maximum diversity systems. Further,
maximum diversity at high SNR can be achieved if the
constellations are first rotated prior to SC-CP modulation.

[1 Conventional SC-CP where ®; = I is not an orthogonal precoding
scheme.
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e Full-rank orthogonal single carrier (FROSC) precoding

0 Let Tp, and Tp, be the data and pilot selection matrices, and A;=
non-zero ((N — Np,) x N) submatrix of (I — T;)A;

[J FROSC is obtained by choosing ® to be the same as I except for
the N, pilot rows. This is achieved by

W, =1, and A = (T, F"*Tp,) 'TE (I1-F"Tp,T5 )

[1 Bandwidth efficiency of FROSC:
N — sz‘

CFROSC(Z) — N + L
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e FROSC precoding (cont.)

[J The ©,’s are the same as I except for P; rows are obtained using A;.
An example of the structure of ®; when N = 8 and P; = {0,4} is

(><><><><><><><><\ /0\
o 1 0 0 0 0 0 O X
o 0 1 0 0 0 0 O X
o, — 0O 0 0 1 0 0 0 O g X
X X X X X X X X 0
o 0 0 0 O 1T 0 O X
o 0 0 0 0 o0 1 O X
\0 0 0 0 0 0 0 1 | T,
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e FROSC precoding (cont.)

[J Effectively, the precoding is redundant (or tall):
@Z‘S,,; = (:)z'gz' with (:)z = ®@T£z and S; = TD@-S'IZ

Previous example:

[

—

>
|
X X X X X X

SO O O X o O =

o O O X o = O X
o O O X _ O O X
o O© = X o O© O X
o = O X o O© O X
_ O O X o O O X

SN——
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Full-Rank Orthogonal Precoding (6)

e FROSC precoding: symbol detection

[ Linear equalization: H is circulant = equalization in the F-D
5 = |O/F" (1 - T,)GFx;) | p
where G = diag{g(k), k=0,--- ,N — 1} is the MMSE equalizer:
g(k) = Hy;/(|Ha|* + 07)
0 Ignoring the n € P; rows of ©;, a simpler detection scheme is

5; = | Tp,F™(I - T;)GFx;) | p
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Rank-Deficient Orthogonal Precoding

e Rank-deficient orthogonal single carrier (DROSC) precoding
[0 Full data-rate under (C3) requires (rank(®;) = N — F;)
[F®z]n = O, n < Pz

[1 s; cannot be recovered linearly. However, using the finite-alphabet
property detection is still possible.

[ DROSC is obtained by designing ®; as

2
|

O, -1
o, B _ ZH I

@ = F*I-T,F
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[0 Result 3 Assume N/(L+1)=Q and M = (L + 1)/K are integers.
A bandwidth efficient orthogonal precoding scheme is obtained as
follows

[ fort=0,..., K — 1 chose P; = {nKQ +iQ,n=0,..,M — 1}
Oset @ =F*(I1-T;F
[J add a training sequence according to condition (C3).

[J Bandwidth efficiency of DROSC:

N
N+ L

CDROSC —
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Rank-Deficient Orthogonal Precoding (3)
e Symbol detection
[0 Received signal ; = H [(I - J)s; + b;] + v; with J = F*T;F
[1 Remove training related term
Z; = (I — J) €Xr;
= (I-J)Hx;+I-1J) v,
= H (I—J)[(I—J)Sz—l—bz]—l—f)z
= HI-J)s;+v; since(I-J)*=1-1J
0 MMSE equalizer: G = diag{|[Hn|? + 6% 'Hn,,n=0,---N —1}
1Li:=:]??{(}1?2ﬁ
N /
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e Symbol detection, cont.

[1 Even if channel estimation is perfect and no noise, u; # s;:

u;, = (I —J)s; + € (€; : due to noise & estimation errors)

[0 I — J: rank-deficient = s; cannot be recovered linearly
[1 Using finite alphabet property:

[J Symbol vector detection < prohibitive
[ Tterative symbol-by-symbol detection: (1-2 iterations suffice)

57 = |uy

3™ =y +J8mY)

1
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Rank-Deficient Orthogonal Precoding (5)

e Simulation Results

0 BER vs SNR; K =4, N =64, L =15, 02 = 0.2, BPSK.

K=4; N=64; L=15;0-=0.2; BPSK; Rayleigh channel

100 T T T T T T T T T
—=— OFDM ]
—— DROSC: iter O |
—v— DROSC: iter 1 ||
—— DROSC: iter 2
—A— FROSC
10_2 i nedririininineioin i TN DT TN T s e
o
L O,
m <&
A
10_3 il NG
10_4 :_ ............................................................................................ 7
;
10_5 i i i i i i i i i
0] 2 4 6 8 10 12 14 16 18 20
SNR
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Rank-Deficient Orthogonal Precoding (6)

e Simulation Results, cont.

0 BER vs SNR; K =4, N =64, L =15, 0% = 0.2, QPSK.

K=4; N=64; L=15;0-=0.2; QPSK; Rayleigh channel

10 T T
—— OFDM 1
—— DROSC: iter O []
—— DROSC: iter 1 ||
—— DROSC: iter 2 ||
A
10_1 =
o _
W 10 2k
roa) 3
107
10_4 i i i i i i i i i
0] 2 4 6 8 10 12 14 16 18 20

SNR
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~
Rank-Deficient Orthogonal Precoding (7)
e Simulation Results, cont.
0 BER vs SNR; K =4, N =128, L =15, of = 0.2, BPSK.
K=4; N=128; L=15;0-=0.2; QPSK; Rayleigh channel
10 I T
—<— OFDM 1
—— DROSC: iter O ]
—v— DROSC: iter 1 |
—— DROSC: iter 2 |1
10
i 10
10
10/ 4 EIS 8 1IO ll2 1I4 1I6 1I8 20
SNR
/
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Summary

v/ Pilot carrier design dramatically affects system performance

Blind techniques for OFDM may be more pI’()IIliSiIl than for serial
q g
single—carrier Systems

v/ Affine precoding gives a general framework for block transmission
schemes

v/ OFDM or single-carrier CP systems? the saga continues...
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