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e Asymptotic theory

Presentation Outline

e Basic concepts and preliminaries

e Parameter estimation

e Estimation methods (ML, moment, ...)
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examples include:

e elc, etc, ...

Definition and applications

The statistics represent the set of methods that allow tagsis (and
Information extration) of a given set of observations (flafgplication

e The determination of the production quality by a probingigtu

e The measure of the visibility impact of a web site (i.e. numifer
readed pages,

visiting strategies, ...).

e The modelisation of the packets flow at a high-speed netwatd g
e The descrimination of important e-mails from spam.
e The prediction of missing data for the restoration of olcorelings.

e The estimation and tracking of a mobile position in a celighstem.

K. ABED-MERAIM

ENST PARIS



Brief review on estimation theory. Oct. 2005 5

Some history...

One can distinguish 3 phases of development:

e Begining of XIX-th century, apprition of the first data ansity
experiments (Prony, Laplace) and the first canonical meithhod
statistics (Gauss, Bayes).

e In the first part of the XX-th century (until the 1960s) the isas the
statistical inference theory have been established byr¢BeaFisher,,
Neyman, Cramer,...). However, due to the lack of powerful cateon
machines, the applications and the impact of the statigtee quite
limited.

e With the fast development of computers and data bases,dtististhas
seen a huge expansion and the number of its applicationsscavery
large number of domains either in the industry or in resekaioh.
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Statistical model

e In statistics, the observation= (1,2, --,x,) are seen as a
realization of a random vector (proces$) = (X1, Xa, -+, X,)
which law P is partially known.

e The observation model translates thpriori knowledgewne have on
the data.

e The nature and complexity of the model varies considerabiynfone
application to another...
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Parametric model

e Parametric modelis a set of probability law$Py, 6 € ©) indexed by
scalar or vectorial parametérc R,

e Observationthe observatioX is a random variable of distributiahRy,
where the parametéris unknown.

e The probability of a given event is a function®find hence we'’ll
write: PQ(A>, E@(X),
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parametesp.

Objectives

When considering parametric models, the objectives asnpft

e The estimationwhich consists to find an approximate value of

e The testingwhich is to answer the following type of questions... Can
we state, given the observation set, that the proportiorefdative
objectsd is smaller thap.)1 with a probability higher tha89%"?
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Example: Gaussian model

e A random variableX is said standard gaussian if it admits a p.d.f.

b(z) = ——exp(~T5).

which is referred to a& = N (0, 1).

e X is a gaussian random variable of meaand variancer? if
X =u+0oXy
whereX| Is a standard gaussian.

e Gaussian modekhe observation Xy, - - -, X,,) aren gaussian iid
random variables of meanand variance? (i.e. 0 = (u, 0)).
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Statistic’s concept

e To build statistical estimators or tests, one has to evalcaittain
function of the observatiorit,, = T'( X4, - - -, X,,). Such a function is
calledstatistic

e |t is crucial that the defined statistic is not a function af Farametef
or the exact p.d.f. of the observations.

e A statistic is a random variable which distribution can benpated
from that of the observations.

e Note that a statistic is a random variable but not any randanable is
a statistic.
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Examples

e Empirical mean: T,, = > ", X;/n.

e Median value: T, = (X),.

e Min+Max: T, =0.5(max(Xy,---,X,)+min(Xy, -, X,,)).
e Variance: T, =>.", X?/n.
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Parametric versus non-parametric

e Non-parametric The p.d.f. f of X is unknown but belongs to a known
function spaceF, e.g.

F ={f:R — R",twice differentiable angl” < M}.

leads to difficult estimation problems !!

e Semi-parametricConsider for example a set of observations
{(X;, z;)} following the regression mod&l; = ¢(0, z;) + €; whereg
IS a known function and; are iid random variables. This model is saig
semi-parametric if the p.d.f. @f is completely unknown.

e Parametric The previous model is parametric if the p.d.f.epfs
known (up to certain unknown point parameters).
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Parametric estimation

o LetX = (X1, X5, .-+, X,,) be an observation of a statistical model
(Pg, 0 c @)

e An estimator is a function of the observation

én(X) — én(X17X27 o 7Xn)

used to infer (approximate) the value of the unknown paramet
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Example: Estimation of the mean value

o Let (X4, X5, -+, X,,) be an-sample iid observation given by
X; =0+ X0, 0 € R andX,y are iid zero-mean random variables.

e Mean estimators:
1- Empirical mean: 6,, = >7" | X;/n.
2- Median value: 0,, = (X),.

3- (Min + Max)/2: 6§, = 2extX Xn) bmin(X, e Xn),
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Estimator

e A statistic is referred to as ‘estimator’ to indicate thasitised to
‘estimate’ a given parameter.

e The estimation theory allows us to characterize ‘good egtns’.
e For that one needs ‘performance measures’ of a given estimat

e Different performance measures exist that sometimes neghtto
different conclusions: i.e. an estimator might be ‘good’ddirst
criterion and ‘bad’ for another.
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Bias

e An estimator!’ of parametep is saidunbiasedf 6 is the mean-value

of the distribution ofl" (# being the exact value of the parameter): i.e.
Ey(T) = 0.

e Otherwise, the estimatdr is said ‘biased’ and the difference
b(T,0) = Ey(T) — 0 represents the estimation bias.
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Example: variance estimation

e Let(Xy, -, X,) beaniid observation of pgfy(z) = Lp(z — p),
0 = (u,0?), andp satisfies[ z°p(z)dz = 1 and [ zp(z)dz = 0.

e S, =—->" (X;— X)*is an unbiased estimator of.

e V,==L3" (X;— X)?is abiased estimator of* which bias is
given byb = —c? /n. Itis however saidsymptoticallyunbiased as the
bias goes to zero whentends to infinity.
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estimator.

Unbiased estimator

e Instead off, one might be interested by a function of this parameter..
For example in the previous example, the objective can bstimate
o = /0 instead ofr? = 0,. Whend is a parameter vector, one might,
In particular, be interested in estimating only a sub-vecfd.

e T'is an unbiased estimator gf0) if Ey(T) = g(0) forall 6 € ©.

e Otherwisep(T,0,qg) = Ey(T) — g(0) would represent the bias of this
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Bias and transforms

e Non-lineat transforms of unbiased estimators are not 1sachs
unbiased: i.e. ifl" is an unbiased estimator 6f ¢(7") is not in general
an unbiased estimate 9ff).

e For example, ifl" is an unbiased estimate 6ghenT is not an
unbiased estimate ¢f. Indeed, we have

Eg(T?) = varg(T) + (E¢(T))* = varg(T) + 6°.
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Mean squares error

Another pertinent performance measure is the mean squaocegMSE).

The MSE measures the dispersion of the estimator arroundrtree value
of the parameter:

MSE(T,0) = R(T,0) = E(T(X) — 6)°.
The MSE can be decomposed into:

MSE(T,0) = (b(T,0))* + varg(T).
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Example: MSE of the empirical mean

e (X4, --+,X,)n-sample iid observation of law (u, 02).

e EmpiricalmeanX =n"'3 " | X;.

e Unbiased estimator and

K. ABED-MERAIM

ENST PARIS



Brief review on estimation theory. Oct. 2005 23

Estimator’s comparison: Risk measure

e \We have considered previously theadratic risk (loss) function
1(0,a) = (0 — a).

e Other risk (loss) functions are possible and sometimes swtable:
1- Absoluve-value errori(6, o) = 0 — «,
2- Truncated quadratic risk functiol(d, o) = min((6 — «)?, d?).

3- The 0-1 risk functioni{(6,a) =0if 8 —a < eandl(f,a) =1
otherwise.

e The mean risk value for an estimator is defined-l(7'(X),0)).
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Estimator’s comparison

One can compare 2 estimators w.r.t. their risk values.

e An estimator! is said ‘better’ than another estimaftbf if

R(T,0) < R(T',0), ¥ 6¢cO

with strict inequality for at least one value of the paraméte

e EXcept for ‘very particular cases’, it does not exist anreator
uniformlybetter than all other estimators.
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Reducing the class of estimators

e Unbiased estimatorave seek for the unbiased estimator with the
minimum quadratic risk value.

e Invariance One might be interested in estimators satisfying certain
Invariance property. For example, in a translation mods, is
Interested in the estimators that satisfy:

T(X1+c¢- -, Xn+c)=c+T(X1,--+, Xp).

e Linearity. One seeks here for the best linear estimator. This is thes cds
for example, in the linear regression problem (e.g. Theorem o
Gauss-Markov).
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Cramer Rao Bound: regular model

e For ‘regular’ statistical models it is possible to deterenanlower bound
for the quadratic risk (MSE). It is the Cramer-Rao Bound (CRB)

e A statistical model is regular if:

1- The model is dominated: i.6%(A) = [, po(z)p(dz) ¥V A € B(X).
2- O is an open set dR? anddp(x; §) /06 exists for allz and alld.

3- The pdfs have the same support for all valueg, ofe. for
A € B(X),we have eithePy(A) =0V 0 or Py(A) >0V 6.

4- [ spp(@; 0)ulde) = 55 [ po(z)p(dz) = 0.
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Cramer Rao Bound: likelihood & score function

e The functiond — p(x; 0) is calledlikelihoodof the observation.

e For aregular model, the functidgh— S(x;0) = Vg log p(x;0) is
calledscorefunction of the observation.

e When for allf, E(S(X:;0)?) < oo, one define th&isher Information
Matrix (FIM) as:

1(0) = Eg[S(X;0)S(X;0)"].
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Fisher information: Properties

e Additivity for iid observations:

I,(0) = Covg(Vglogp( X1, -+, X,;0)) =ni(0)

where
i(0) = Covg(Vglogp(X1;0))

In other words, each new information contributes in an idahtvay to
the global information.

e \When the score function is twice differentiable, we have:

Io(0) = —Ep(Vilog p(X1, -+, X3 0)).
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Cramer Rao Bound

e LetT(X) be a statistic such thdf, (T(X)?) < oo, V § and assume
that the considered statistical model is regular.

o Lety(0) = Ey(T(X)). Then

varg(T(X)) > Ve () I (0) Ve ().

e If T Is an unbiased estimator 6fthen the CRB becomes:

varg(T(X)) > I71(6).
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Example: Empirical mean for gaussian process

e (X4, ---,X,)n-sample iid observation of law (x, 02) (c? known).

e The Fisher information for the mean parameter is given by:
I,(0) =n/o?.

e The empirical mean MSE reaches the CRB and hence it is the best
estimator (for the quadratic risk) in the class of unbiasstheates.
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Example: Linear model

e Observation modelX = Z0 + ¢ whereX = [X, .-, X,,]! is the
observation vectoy is a full rank known matrix and is the error
vector of zero-mean and covarianBéce’’) = o21.

e The least squares estimatefofiven by
0=27X

IS unbiased and of MSE

Varg(0) = o2(272)7L.

e If ¢ is a gaussian noise, then the FIM is givenlyy) = (Z1'Z)/o*
and hence the LS estimate iIs the best unbiased estimate her.t. t
guadratic risk.
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Efficiency

e An unbiased estimate éfwhich reaches the CRB is saadficient It is
an unbiased estimate with minimum error variance.

e Efficient estimators exist for the class of exponentialrthstions
where

p(z;0) o< exp(A(0)T' (z) — B(6)).
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Asymptotic approach

e Study of the estimators in the limit of ‘large sample sizeg,n — oo.

e For usual models, the estimates converge to the exact vathe o
parameterconsistency

e We then study the dispersion of the estimators around thevatued.

e Our tools are: the law of large numbers and the central lin@btem.
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n—oo

Consistency

e Let (X4, .-, X, ) bean observation of a statistical mod&}, 0 € ©).

e T, =T,(X1,---,X,) is asequence of consistent estimatorg ffor
all # the sequence of random variablEsconverges in probability t6:

lim Py(T,, —0>9)=0 Vb8 e0O,§>0.
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Large numbers law

e The consistency is often a consequence ofdige numbers law

e Large numbers lawLet (X, -+, X,,) be a sequence of iid random
variables such that’(X) < oco. Then

1 n
n
1=1
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Consistency & continuous transform

e LetT;, be a consistent sequence of estimator8, af, —, 6.

e Let ¢ be a continuous function i6.

e ¢(T,) is then a sequence of consistent estimatoks(6§.
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Convergence rate

e The consistency is an interesting property but does notugve
Information on how fast the estimator converges to the hmite.

e In the case of the empirical mean one can easily verify that

the convergence speed!!

v/n(X,, — ) is bounded in probability which gives us a rough idea op
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Asymptotically normal estimator

e An estimator sequencg, of 4 is said asymptotically normal if

Vn(T, —0) —4 N(0,5%(9)).

whereo?(0) is theasymptotic variancef the considered estimator.

e This asymptotic result allows us to evaluate (often in a $amyway) the
dispersion of the estimators aroud the true value of thenpatier.
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Convergence In distribution

Let (X,,,n > 0) be a sequence of random variablés, is said to converge

in distribution toX (i.e. X,, —4 X) if one of the following equivalent
properties is verified:

e For any bounded continuous functign
limy, 0 E(f (X)) = E(f(X)).

e Forallu, lim,,_ o, E(e’Xn) = E(e“X)

e For all subsets! € B(IR) such thatP(X € 0A) = 0 we have
limy, o P(X, € A) = P(X € A).
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Confidence interval

e Let(7;,,n > 0) be a sequence of random variables such that
(T, —0) —4 TN(0,02).

e Let A =[—a, a] suchthatP(T € {a,—a}) = 0, then we have

1 a
ligbn Py(v/n(T,—0) € [—a, a]) = \/W/ exp(—x*/20%)dx = a, V4.

e Consequently,

lignPg(@ e T, —a/vn, T, +a/\/n]) =a, V6

which represents a confidence interval of levdor 6.
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Central limit theorem

The asymptotic normality of the estimators comes fromadetral limit
theorenthat can be stated as follows:

Let (X4, -+, X, ) asequence of iid random variables of meaand
variancer? = E(X?) < oo. Then,

% Z(Xz' — ) —a N(0,0%).
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g(0).

9(T,)?7?

The §/-method

e LetT,, a consistent sequence of estimators.of

e The continuity theorem states thatl;,) is a consistent estimate of

e However, this result does not give any information about the
convergence rate nor about the asymptotic normality of stienator
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The §/-method

e Suppose thay/n(T,, — ) —4 T and letg be a locally differentiable
function atf. Then:

V(g(Tn) — 9(8)) —a g'(0)T.

o If T =N(0,0?),then/n(g(T,) — g(#)) is asymptotically normal
N(0,9'(0)%0?).

K. ABED-MERAIM ENST PARIS



Brief review on estimation theory. Oct. 2005

45

Relative asymptotic efficiency

e LetT,, ands,, be two asymptotically normal estimatorsebf

V(T — 0) —a N(0,07.(0))
VI (Sy —0) —q N(0,0%(9))

e T, Is said ‘asymptotically better’ theff,, if

07:(0) < o%(0) V0.
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Moments method

e (X1, ---,X,)niidrandom variable$Fy,0 € ©).

o Letu;(0) = FEy(9:(X)) (95,2 = 1,-- - d are given functions).

e Moments method consists in solvingérthe equations

pi(0) = i, i=1,-d.

where/; are empirical (sample averaged) moments.
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Moments method

e Several moment choices exist. They should be chosen suich tha

1- One can express explicitely the considered moment fomat terms
of 6.

2- Insure a bi-univoque relation between the moments anddbkeed
parametep.

e The method is applicable in simple cases only where we hanead s
number of parameters and there is no ambiguity w.r.t. the enafithe
statistics.
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Consistency of the moment’s estimator

e Using the large numbers law, we have:

e If the functiony: © — R? is invertible with a continuous inverse
function, then the continuity theorem states that

0 =p~ (1)
IS a consistent estimate 6f Similarly, one can establish the asymptotit

normality of the moment’s estimator using the central lithéorem
and they-method.
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Maximum likelihood method

e Let X = (X4, --,X,,) asequence of random variables corresponding
to the model Py, 6 € ©). Letpy represents the pdf of .

e Likelihood 6 — p(x;#) seen as a function &t

e Maximum likelihood estimatiorestimation o such that

AN

p(w;0) > maxp(z;0).

o If p(x;0) is differentiable, therd is a solution of

Aglogp(z;0) = 0.
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Log-likelihood function
e Log-likelihood L(z;0) = logp(z;0).

e In the case of iid observations:

1
- log p(z;60), — K(6o,0)

whereK (6y, 0) is the Kullback-Leibler information defined by

K (6,0) = —Ep, llog P(X;:0) ] .

p(X;00)
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Kullback information

The Kullback-Leibler information is a ‘distance’ measuetween two pdf
satisfying:

¢ K(p907p9) > 0

o K(py,,pp) = Oiff

Py (@ : p(z;600) = p(x;0)) = 1.
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Mean and variance of a gaussian

e Log-likelihood:

log p(; 1, 02) = —= log(27) — = log(0?) — ~—
2 2 207 £

e Likelihood equations:

op, . .o op , . .o
(‘M(  f1;67) =0, @(w;u;v ) = 0.
e Solutions:
=iy x e = Ly
nzzl ; nizl Z
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Non-unicity of ML estimate: Uniform distribution

e (X1, ---,X,)liid random variables of uniform distribution in
0 —0.5 6+ 0.5].

e Likelihood

p(x;0) = |
0 otherwise

e The likelihood is constant in the interval

lmax(X;) — 0.5, min(X;) + 0.5].
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e M-estimation,

e Z-estimation

e Robust estimation

Other methods

e Minimum contrast method,

o
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