Mobile Localisation

Karim Abed-Meraim ENST-PARIS, TSI department TSI abed@tsi.enst.fr

Generalities

Introduction

- **Objective:** Find the mobile position (x, y) in a cellular network.
- Interest:
 - Localisation services: Emergency, hotels, close restaurants, ...
 - Trafic Localisation, navigation, ...
- Possible approaches:
 - Use of GPS (satellite) system.
 - Terrestrial base station (BS) based localization: (Focus on the mobile localization in UMTS-FDD).
 - Hybrid solutions (GPS + BS).

Introduction: Some history...

• GPS is the first localization system (operational since 1991). Developped by US army mainly for military applications and navigation aid.

- New requirement by the FCC (federal communications commission) for all mobile operators to provide a localisation service for emergencies (911 service):
 - *Phase 1*: Localization with a precision ≤ 125 m in 67% of the cases.
 - *Phase 2*: Localization with a precision ≤ 300 m in 99% of the cases.

Localisation techniques

- 1. Distance measures \Rightarrow at least 3 base stations (BSs) :
 - Power measure : exists in the standard.
 - Time of arrival (TOA) : Synchronisation of the BSs.
- 2. Angle of arrival (AOA) \Rightarrow at least 2 BSs :
 - Installation of multi-sensor antennae : up-link.
- 3. Angle-distance measure \Rightarrow 1 BS :
 - AOA + distance measure (in the near field case).

- TA: Proportional to the propagation time between the BS and the mobile.
- Quantification with 6 bits of the TA \Rightarrow precision error of about 500m!!!
- Triangulation with the TA and al least 3 BS.

TOA / OTD (2)

- Time Of Arrival
 - Installation of heavy and expensive equipments at the BSs.
 - sensitive to multi-paths.
- Observed Time Difference
 - Certain improvement over the previous technique (signals are synchronized in the down-link).
 - Drawbacks:
 - * Generation of new mobiles.
 - * sensitive to multi-paths.

Power measures

•
$$P_r = P_e(\frac{\lambda}{4\pi d})^{\alpha}$$
.

- Advantages:
 - Exists already in the standard.
 - Triangulation possible with more than 3 BSs. de base.
- Drawbacks:
 - Very sensitive to the received power model (tough modelization problem!!).

- Very sensitive to the received model power.
- Requires time synchronization of the BS with the mobiles.

- Applicable only in the near-field!!

Differences between GSM & UMTS

- Advantages in favor of UMTS:
 - Better time resolution due to the oversampling w.r.t symbol duration.
 - Frequency re-use factor equal to 1: Mobile seen by neighboring cells.
- Advantages en faveur du GSM :
 - Relatively reduced multi-paths effect.

Preliminary results for the GSM

Power measure	140 meters (experiment realised in Paris)	
Timing Advance	550 meters	
OTA/TOA	110 meters	
GPS	5 to 10 meters	
Angle of arrival	≈ 100 meters	

Limiting factors in UMTS-FDD

- Estimation accuracy: An error of one chip period $T_c \Rightarrow$ an error of 73m.
- Hearing problem (particular to l'UMTS-FDD): communication between the mobile and the far-located BSs.
 - First considered solutions:
 - * Down-link: use of ldle periods.
 - ∗ Up-link: ∕ mobile power.
 - \implies Reduces the system capacity and the mobile autonomy.
- Non-line of sight (NLOS) problem:
 - Considered solutions: Use redundant measures and perform selection.

Mobile Localization in UMTS-FDD Using OTD (Down-link)

Signal Model

Tap	Retard relatif (ns)	Puissance relative σ_i (dB)	Spectr de Doppler $S(f)$
1	100	-3.2	CLASS
2	200	-ö	CLASS
3	500	-4.5	CLASS
4	600	-3.6	CLASS
õ	850	-3.9	CLASS
6	900	0.0	CLASS
7	1050	-3.0	CLASS
8	1350	-1.2	CLASS
9	1 450	-5.0	CLASS
10	1500	-3.5	CLASS

environment proposed by CODIT

The down link

- Why chosing the down-link:
 - A high power pilot existing during all the transmission period.
 - Transmitted signals are synchronized.
- Signal transmitted by the BS:

• Propagation channel assumed constant during the slot period l:

$$h^{l}(t) = \sum_{r=1}^{R} \beta_{r,l} g(t - \tau_{r})$$

Estimation of TOAs

• Principle (RAKE estimator):

- Estimation of $\hat{h}_l(k)$: Correlation between the *l*-th slot received signal and the shifted version of the pilot signal.
- TOAs Estimation: Averaging over L slots.

$$\hat{h}(k) = \frac{1}{L} \sum_{l=1}^{L} |\hat{h}_l(k)|$$

• Estimation accuracy: $T_c/2$

Refining the accuracy:

- By oversampling.
- By using high resolution methods.
- Floor effect: RAKE estimator is not robust against interferences.

Hearing problem

- **Objective:** Improve the robustness of channel estimate against interferences especially for far-located BSs.
- **Difficulty:** The mobile does not know the other user's signatures.
- Proposed solutions:
 - Projection of the channel estimate onto the principal subspace of its covariance matrix Γ (RAKE-SP).

$$\mathbf{h}_l = \mathbf{U}\mathbf{g}_l$$

where U represents the matrix of principal eigenvectors of Γ .

 Remove (substract) the pilot signal of the serving BS to estimate the channels of far-located BSs.

$$\tilde{x}_l(i) = x_l(i) - \hat{p}_l^1(i)$$

High resolution (MUSIC) algorithm

• : Estimation of the channel covariance matrix

$$\hat{\boldsymbol{\Gamma}} = \frac{1}{J} \int_{j=1}^{J} \hat{\mathbf{h}}_{j} \hat{\mathbf{h}}_{j}^{H} \longrightarrow_{J \to \infty} \mathbf{A}(\tau) \mathbf{G} \mathbf{A}(\tau)^{H} + \sigma_{0} \mathbf{R}_{0}$$

• Estimation of the generalized eigenvectors of $\hat{\Gamma}$:

$$\mathbf{\hat{\Lambda}}\mathbf{e}_i = \lambda_i \mathbf{R}_0 \mathbf{e}_i$$

• Delay estimation by minimising:

$$v(\tau) = \frac{\mathbf{r}_{\tau}\mathbf{r}_{\tau}^{H}}{\mathbf{r}_{\tau}\mathbf{E}\mathbf{E}^{H}\mathbf{r}_{\tau}^{H}}$$

where **E** represents the matrix of noise eigenvectors of Λ and \mathbf{r}_{τ} is the pilot signal autocorrelation vector evaluated for a time lag τ .

Discussion

- MUSIC allows a better estimation of the time delay (see simulation results).
- However, MUSIC is relatively expensive ⇒ especially for the down-link (limited mobile power).
- One should reduce its complexity (size of vector h) by using a windowing around the first peak of the RAKE ⇒ Two step procedure where MUSIC represents the 'refinement' step.

Triangulation with more than 3 BSs

• Relation between the TOAs and the mobile position (x, y):

$$\hat{t}_i = \frac{\sqrt{(x - x_i)^2 + (y - y_i)^2}}{c} + t_0 + w_i$$

 t_0 = temps de référence et w_i = bruit d'estimation.

- System resolution:
 - Solving the system in the least squares sence (non-linear equations).
 - Explicit solution (after linearization):

$$\begin{pmatrix} c^{2}(t_{2}^{2}-t_{1}^{2}) \\ \vdots \\ c^{2}(t_{I}^{2}-t_{1}^{2}) \end{pmatrix} = -2 \begin{pmatrix} x_{2,1} & y_{2,1} & c(t_{2}-t_{1}) \\ \vdots & \vdots & \vdots \\ x_{I,1} & y_{I,1} & c(t_{I}-t_{1}) \end{pmatrix} \begin{pmatrix} x \\ y \\ t_{0} \end{pmatrix} + \begin{pmatrix} K_{2}-K_{1} \\ \vdots \\ K_{C}-K_{1} \end{pmatrix}$$

- If the number of BS is 3:
 - One solves w.r.t. r_1 :

$$\begin{pmatrix} x \\ y \end{pmatrix} = -\begin{pmatrix} x_{2,1} & y_{2,1} \\ x_{3,1} & y_{3,1} \end{pmatrix} \begin{bmatrix} r_{2,1} \\ r_{3,1} \end{bmatrix} r_1 + \frac{1}{2} \begin{pmatrix} r_{2,1}^2 - K_2 + K_1 \\ r_{3,1}^2 - K_3 + K_1 \end{pmatrix}$$

– Then, we solve a second order polynomial equation in r_1 :

$$r_1^2 = (x \quad y) \quad \left(\begin{array}{c} x \\ y \end{array}\right) - (2x_1 \quad 2y_1) \quad \left(\begin{array}{c} x \\ y \end{array}\right) + (x_1 \quad y_1) \quad \left(\begin{array}{c} x_1 \\ y_1 \end{array}\right)$$

• Among the 2 possible solutions, one choses the one withing the area covered by the serving BS.

MICRO & MACRO cells)

(g) Micro-cell (Manhattan)

Simulation

- Simulation in a micro-cell environment (Manhattan).
- Three paths per channel, triangulation with 4 BSs.
- Additif noise representing 10% of the total received power of the furthest BS.
- Loose power control (the ratio between the maximal and minimal powers is ≤ 10).

RAKE-SP

• Comparison of the performance obtained by MUSIC, RAKE-SP and RAKE.

Dealing with NLOS

- **Proposed solution:** Selection of the 3 'most coherent' TOA measures (we assume mobile hearing by more than 3 BSs).
- Coherence criterion:
 - Coherence of the estimated position $M_{i,j,l}(t_i, t_j, t_l)$ (using BSs i, j and l) with TOA t_k assuming a time reference t_0 known:

$$\xi_{i,j,l}^{k}(t_0) = \|\sqrt{(x_{i,j,l} - x_k)^2 + (y_{i,j,l} - y_k)^2} - c(t_k - t_0)\|^2$$

Minimisation of $\xi_{i,j,l}^k$ over all possible choices of i, j, l

$$\hat{i}, \hat{j}, \hat{l} = \arg\min_{i,j,l,k} \xi_{i,j,l}^k(t_0)$$

- The time reference t_0 being unknown (one minimizes numerically):

$$\hat{i}, \hat{j}, \hat{l}, \hat{t_0} = \arg \min_{i, j, l, k, t_0} \xi_{i, j, l}^k(t_0)$$

random position of the mobile at each run, L = 120 slots, 8 BSs, K=15

Mobile Localisation Using

Angle of Arrival (Up-Link)

Estimation of the AOA

- Requires at least two sensors \Rightarrow Applicable in the uplink.
- Possible with existing BSs but poor estimation accuracy.
- Estimation using 'smart antennae' ⇒ array processing for source localization.

Array Processing: Basic Concepts

Objectives

- Signal processing extracts information from measured signals.
- Array signal processing uses a group of sensors:
 - Signal enhancement / noise reduction.
 - * Coherence adding.
 - * Spatial filtering.
 - Source / channel characterizations :
 - * number of sources.
 - * location 'direction finding'.
 - * waveforms 'information from the sources'.

- Wireless communications.
- Interference mitigation.
- Radar / Sonar.
- Biomedical.
- Speech.
- Seismic.
-

Coherent adding

• Let us have an array of M sensors $(m = 1, \dots, M)$:

$$x_m(t) = s(t) + n_m(t)$$
, noise variance σ^2

• If the noise on the antennas is uncorrelated, then

$$y(t) = \frac{1}{M} \sum_{m=1}^{M} x_m(t) = s(t) + \frac{1}{M} \sum_{m=1}^{M} n_m(t), \text{ noise variance } \frac{1}{M} \sigma^2$$

Hence the noise power is reduced by a factor M.

K. ABED-MERAIM

Baseband signal

• An antenna receives a real valued bandpass signal with center frequency f_c ,

$$z(t) = \Re\{s(t)e^{j2\pi f_c t}\} = x(t)\cos(2\pi f_c t) - y(t)\sin(2\pi f_c t)$$

• The baseband signal is

$$s(t) = x(t) + jy(t)$$

It is the complex envelope of z(t)

• s(t) is recovered from z(t) by demodulation : multiplying the received signal with $\cos(2\pi f_c t)$ and $\sin(2\pi f_c t)$ followed by low pass filtering.

Small delays of narrow band signals

• Recall $z(t) = \Re\{s(t)e^{j2\pi f_c t}\}$. We investigate the effect of small delays of z(t) on the baseband signal s(t)

$$z_{\tau}(t) \triangleq z(t-\tau) = \Re\{s(t-\tau)e^{-j2\pi f_c\tau}e^{j2\pi f_c\tau}\}$$

• The complex envelope of the delayed signal is

$$s_{\tau}(t) = s(t-\tau)e^{-j2\pi f_c\tau}$$

Small delays of narrow band signals

• Let W be the bandwidth of s(t). If $e^{-j2\pi f\tau} \approx 1$ for all frequencies $|f| \leq \frac{W}{2}$, then

$$s(t-\tau) = \int_{-\frac{W}{2}}^{\frac{W}{2}} S(f) e^{j2\pi f(t-\tau)} df \approx \int_{-\frac{W}{2}}^{\frac{W}{2}} S(f) e^{j2\pi ft} df = s(t)$$

For narrowband signals, time delays shorter than the inverse bandwidth amount to phase shifts of the complex envelope.

Antenna array response

- Let s(t) be the baseband signal at the first antenna : $x_1(t) = a(\alpha)s(t)$
- The signal received by x₂ at a distance of Δ wavelengths experiences an addition delay τ.
- If τ is small compared to the inverse bandwidth of s(t), then

$$s_{\tau}(t) = s(t)e^{-j2\pi\Delta\sin(\alpha)}$$

• Collect the received signals into a vector $\mathbf{x}(t)$:

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_M(t) \end{bmatrix} = \begin{bmatrix} e^{-j2\pi\Delta_1 \sin(\alpha)} \\ \vdots \\ e^{-j2\pi\Delta_M \sin(\alpha)} \end{bmatrix} a(\alpha)s(t) = \mathbf{a}(\alpha)s(t)$$

 $\mathbf{a}(\alpha)$ is the array response vector. For uniform linear array $\Delta_k = (k-1)\Delta$.

Array manifold

 $\mathbf{x}(t) = \mathbf{a}(\alpha)s(t)$

• The array manifold :

$$\mathbf{\Omega} = \{ \mathbf{a}(\alpha) : -\pi \le \alpha \le \pi \}$$

• The knowledge of Ω allows direction finding (i.e. determine α from x).

Spatial Localisation

- Find the number and positions of the sources.
- Sweep all space directions using beamforming
 - Matched filter \Rightarrow Bartelett's method.
 - MVDR \Rightarrow Capon's method.
- Exploit the data model & covariance matrix structure
 - MUSIC (subspace) algorithm
 - ESPRIT algorithm.

Bartlett's method

• Estimate the covariance and sweep all angles

$$\varphi(\theta) = E(|y(t)|^2) = \mathbf{w}^H \mathbf{R} \mathbf{w}$$

• Sum-delay (matched filter) beamforming

$$\mathbf{w} = \frac{\mathbf{a}(\theta)}{\mathbf{a}(\theta)^H \mathbf{a}(\theta)} \Rightarrow \varphi(\theta) = \frac{\mathbf{a}(\theta)^H \mathbf{R} \mathbf{a}(\theta)}{(\mathbf{a}(\theta)^H \mathbf{a}(\theta))^2}$$

• For a uniform linear array (ULA)

$$\varphi(\theta) = \frac{1}{N^2} \mathbf{a}(\theta)^H \mathbf{R} \mathbf{a}(\theta)$$

Computation using Fourier transform

• Development of the quadratic transform

$$\varphi(\theta) = \mathbf{a}(\theta)^H \mathbf{R} \mathbf{a}(\theta) = \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} \alpha_n^* R_{nm} \alpha_m$$

• For ULA

$$\alpha_n = (e^{-j2\pi\nu_\theta})^n \Rightarrow \varphi(\theta) = \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} R_{nm} (e^{-j2\pi\nu_\theta})^{n-m}$$

• Fourier transform

$$\varphi(\theta) = \sum_{q=-N+1}^{N-1} (e^{-j2\pi\nu_{\theta}})^q \sum_{n=\max(0,q)}^{N-1+\min(0,q)} R_{n,n-q}$$

Capon's method (MVDR)

• Sweep all angle positions with the MVDR spatial filter

$$\mathbf{w} = \frac{\mathbf{R}^{-1}\mathbf{a}(\theta)}{\mathbf{a}(\theta)^{H}\mathbf{R}^{-1}\mathbf{a}(\theta)}$$

• The localisation function becomes

$$\varphi(\theta) = \frac{1}{\mathbf{a}(\theta)^H \mathbf{R}^{-1} \mathbf{a}(\theta)}$$

$$\operatorname{car} \varphi(\theta) = \mathbf{w}^H \mathbf{R} \mathbf{w} = \frac{\mathbf{a}(\theta) \mathbf{R}^{-1}}{\mathbf{a}(\theta)^H \mathbf{R}^{-1} \mathbf{a}(\theta)} \mathbf{R} \frac{\mathbf{R}^{-1} \mathbf{a}(\theta)}{\mathbf{a}(\theta)^H \mathbf{R}^{-1} \mathbf{a}(\theta)}$$

• Can be computed using Fourier transform but with \mathbf{R}^{-1} instead of \mathbf{R} .

MUSIC

• Estimate the signal (resp. noise) subspace as the principal (resp. minor) eigen-subspace of the data covariance matrix \mathbf{R}_x :

$$\mathbf{R}_{x} = \sum_{n} \mathbf{x}(n) \mathbf{x}^{H}(n) = \begin{bmatrix} \mathbf{E}_{s} \ \mathbf{E}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_{s} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{E}_{s}^{H} \\ \mathbf{E}_{n}^{H} \end{bmatrix}$$

where $\operatorname{Range}(\mathbf{E}_s) = \operatorname{Range}(A(\theta)) \perp \operatorname{Range}(\mathbf{E}_n).$

• Orthogonal relation still valid if additive white noise.

MUSIC

• The source angle locations are estimated by minimizing:

$$\min_{\theta} \mathbf{a}(\theta)^H \mathbf{E}_n \mathbf{E}_n^H \mathbf{a}(\theta)$$

• Or equivalently by maximizing the MUSIC localisation function

$$\varphi(\theta) = \frac{1}{\mathbf{a}(\theta)^H \mathbf{E}_n \mathbf{E}_n^H \mathbf{a}(\theta)}$$

The P sources locations correspond to the P maximus of the above function.

K. ABED-MERAIM

K. Abed-Meraim

K. Abed-Meraim

K. ABED-MERAIM

ESPRIT Method

- Consider a ULA
- Structure of the directional vector

$$\mathbf{a}(\theta) = \begin{bmatrix} 1\\ e^{-j2\pi f \frac{d}{C} \sin \theta}\\ \vdots\\ e^{-j2\pi f (N-1) \frac{d}{C} \sin \theta} \end{bmatrix} = \begin{bmatrix} 1\\ e^{-j2\pi\nu_{\theta}}\\ \vdots\\ (e^{-j2\pi\nu_{\theta}})^{N-1} \end{bmatrix}$$

 By removing the first or the last entry of this vector, one obtains two linearly dependent subvectors of a(θ).

Rotational invariance

• Oo the directional vector

$$\mathbf{a}(\theta) = \begin{bmatrix} \mathbf{a}_1(\theta) \\ \operatorname{row} N \end{bmatrix} = \begin{bmatrix} \operatorname{row} 1 \\ \mathbf{a}_2(\theta) \end{bmatrix} \Rightarrow \mathbf{a}_2(\theta) = \mathbf{a}_1(\theta) e^{-j2\pi\nu_{\theta}}$$

• On matrix **A**

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}(\theta_1), \mathbf{a}(\theta_2), \cdots, \mathbf{a}(\theta_P) \end{bmatrix}$$
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \operatorname{row} N \end{bmatrix} = \begin{bmatrix} \operatorname{row} 1 \\ \mathbf{A}_2 \end{bmatrix} \Rightarrow \mathbf{A}_2(\theta) = \mathbf{A}_1 \Phi$$
$$\Phi = \operatorname{diag}(e^{-j2\pi\nu_{\theta_P}})$$

• Matrix Φ provides directly the desired angles.

ESPRIT method

• The same transform on the eigenvectors of the signal subspace leads to

 $\mathbf{U}_1 = \mathbf{A}_1 \mathbf{T}, \ \mathbf{U}_2 = \mathbf{A}_2 \mathbf{T}$

$$\mathbf{U}_2 = \mathbf{A}_1 \Phi \mathbf{T} = \mathbf{U}_1 \mathbf{T}^{-1} \Phi \mathbf{T}$$

• Il suffit de trouver Ψ tel que $\mathbf{U}_2 = \mathbf{U}_1 \Psi$ By least squares estimation:

 $\Psi = (\mathbf{U}_1^H \mathbf{U}_1)^{-1} \mathbf{U}_1^H \mathbf{U}_2$

• Φ and Ψ have the same eigenvalues

$$\operatorname{Eig}(\Psi) = \operatorname{diag}(e^{j2\pi\nu_{\theta_p}})$$

'Generalized' ESPRIT method

ESPRIT can be used, not only for ULA but for any array containing 2 sub-arrays such that the 2nd is the translated version of the first one. Hence, for a source located at *θ*

$$\begin{bmatrix} \mathbf{x}_1(t) \\ \mathbf{x}_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1(\theta) \\ \mathbf{a}_2(\theta) \end{bmatrix} s(t) \text{ with } \mathbf{a}_2(\theta) = \mathbf{a}_1(\theta)e^{-j2\pi\nu_{\theta}}$$

• Space shift: plays the role of the inter-sensors distance in ULA.

$$\begin{bmatrix} \mathbf{x}_1(t) \\ \mathbf{x}_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \mathbf{s}(t) \Rightarrow \mathbf{A}_1 = \mathbf{A}_2 \Phi$$

ESPRIT method: algorithm

• Eigen-decomposition of the covariance algorithm (noiselesss case)

$$\mathbf{R} = \mathbf{E} \left(\left[\begin{array}{c} \mathbf{x}_1(t) \\ \mathbf{x}_2(t) \end{array} \right] \left[\begin{array}{c} \mathbf{x}_1(t) \\ \mathbf{x}_2(t) \end{array} \right]^H \right) = \left[\begin{array}{c} \mathbf{U}_1 \\ \mathbf{U}_2 \end{array} \right] \Lambda \left[\begin{array}{c} \mathbf{U}_1 \\ \mathbf{U}_2 \end{array} \right]^H$$

• Rotational invariance property for A and U_s

$$egin{array}{rcl} \mathbf{U}_1 &=& \mathbf{A}_1 \mathbf{T} \ \mathbf{U}_2 &=& \mathbf{A}_2 \mathbf{T} \end{array}$$

 $\exists \Psi$ such that $\mathbf{U}_2 = \mathbf{U}_1 \Psi$

• Matrix Φ is the matrix of eigenvalues of Ψ

$$\operatorname{Eig}(\Psi) = \operatorname{diag}(e^{j2\pi\nu_{\theta_p}})$$

Other localization methods: ML

• In the AWGN and deterministic inputs case, the likelihood function can be expressed as:

$$L(\theta, s(t), \sigma^2) = \prod_{t=1}^{T} (\pi \sigma^2)^{-N} e^{-\frac{\|x(t) - As(t)\|^2}{\sigma^2}}$$

• Let Π_A be the orthogonal projection matrix on Range(A)

$$\Pi_{A} = \mathbf{A} (\mathbf{A}^{H} \mathbf{A})^{-1} \mathbf{A}^{H} \Rightarrow \mathbf{A} \hat{\mathbf{s}}(t) = \Pi_{A} \mathbf{x}(t)$$
$$\overline{\Pi}_{A} = \mathbf{I} - \Pi_{A} \Rightarrow \theta = \arg\min_{\theta} \operatorname{Tr}(\overline{\Pi}_{A} \hat{\mathbf{R}})$$

Other methods: Weighted subspace fitting

• Exploits the relation between \mathbf{U}_s and \mathbf{A}

 $\exists \mathbf{T} \text{ such that } \mathbf{U}_s = \mathbf{AT}$

• Minimise the LS distance

$$\{\hat{\theta}, \hat{\mathbf{T}}\} = \arg\min_{\theta, \mathbf{T}} \|\hat{\mathbf{U}}_s - \mathbf{AT}\|_W^2$$

• Solving in T first followed by an estimation of θ

$$\hat{\mathbf{T}} = \mathbf{A}^{\#} \mathbf{U}_{s}$$
 with $\mathbf{A}^{\#} = (\mathbf{A}^{H} \mathbf{A})^{-1} \mathbf{A}^{H}$
then $\hat{\theta} = \arg \min_{\theta} \operatorname{Tr}(\overline{\Pi}_{A} \mathbf{U}_{s} \mathbf{W} \mathbf{U}_{s})$
Asymptotic optimal weighting $\mathbf{W} = (\Lambda_{s} - \sigma^{2} \mathbf{I})^{2} \Lambda_{s}^{-1}$

Discussion

- Many existing localizaton methods.
- Compromise between resolution (MUSIC, ESPRIT, ..) and robustness and computational complexity (Beamforming).
- Many existing extentions:
 - Joint estimation of angles and delays (JADE algorithm)
 - Generalisation to wide-band sources,
 - Tracking and adaptive processing, ...

Application to Mobile

Localisation in UMTS-FDD

Joint AOA and TOA estimation

• **Raison:** Correspondance between the AOAs and TOAs of the multi-paths ⇒ for joint angle-delay localization. Also, the direct path is chosen as the one associated with the smallest TOA.

• State of the art

- Maximum likelihood approach [Wax & al. 1997].
- Subspace methods: Time Space Time-MUSIC [Wax & al. 2001].
- ESPRIT-like methods [Vanderveen & al. 1998].

• Proposed method:

- Delay estimation using the channel FT matrix by ESPRIT.
- Estimation of only the desired angle (i.e. the one corresponding to the smallest delay).

Hearing problem

- AOA-TOA estimation algorithms require a first channel estimation:
 - RAKE-type estimator: non-robust to near-far effect (interferences).
 - RAKE-estimator with interference cancellation (PIC):

Localization with antenna array:

• Channel model:
$$\mathbf{h}(t) = \begin{bmatrix} h_1(t) \\ \vdots \\ h_N(t) \end{bmatrix} = \sum_{i=1}^d \mathbf{a}(\theta_i)\beta_i \mathbf{g}(t-\tau_i)$$

• For a uniform circular array :
$$\mathbf{a}(\theta_i) = \begin{bmatrix} e^{j\xi\cos(\theta_i - \gamma_1)} \\ \vdots \\ e^{j\xi\cos(\theta_i - \gamma_N)} \end{bmatrix}$$

• Channel matrix :

$$\mathbf{H} \triangleq \begin{bmatrix} \mathbf{h}(0) \mathbf{h}(\frac{T}{P}) \cdots \mathbf{h}(LT - \frac{T}{P}) \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{a}(\theta_1) \cdots \mathbf{a}(\theta_d) \end{bmatrix} \begin{bmatrix} \beta_1 & 0 \\ \vdots \\ 0 & \beta_d \end{bmatrix} \begin{bmatrix} \mathbf{g}_{\tau_1} \\ \vdots \\ \mathbf{g}_{\tau_d} \end{bmatrix}$$
$$= \mathbf{A}(\theta) \mathbf{BG}(\tau)$$

ENST PARIS

K. Abed-Meraim

Delays Estimation

• The FT of **H** transforms $\mathbf{G}(\tau)$ (up to a diagonal matrix) into:

$$\mathbf{V}(\tau) = \begin{bmatrix} 1 & \chi_1 & \chi_1^2 & \cdots & \chi_1^{LP-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \chi_d & \chi_d^2 & \cdots & \chi_d^{LP-1} \end{bmatrix}$$

where $\chi_i = e^{\frac{-j2\pi\tau_i}{L}}, \ 1 \le i \le d$.

• Matrix \mathbf{H}_F has the rotational invariance property that allows for the estimation of τ_i using ESPRIT algorithm.

Angle estimation

- Once the delays are estimated we estimate the angle of the LOS path according to:
 - Inversion of the delays matrix:

$$\mathbf{H}' = \mathbf{H}\mathbf{G}(\tau)^{-1}$$

– Selection of the first column h_1 de H' and estimation of the AOA of the first path by maximizing :

 $\|\mathbf{a}(\theta)^H \mathbf{h}_1\|$

Proposed method for the NLOS

- Idea: Selection of the 2 'most reliable' measures: Coherence criterion of 2 given AOAs.
- Coherence measure:
 - If we know the distribution of the mobile position D_k w.r.t. a BS k:

$$P(\theta_i, \theta_j / D_k) = D_k(M)$$

- $\Rightarrow \text{ We would select the}$ $pair (\theta_i, \theta_j) \text{ that maximizes}$ $P(\theta_i, \theta_j/D_k).$
- To give equal opprtunity to all BSs, we chose:

$$\hat{i}, \hat{j} = \arg \max_{i,j,k} P(\theta_i, \theta_j / D_k)$$

K. Abed-Meraim

ENST PARIS

'A priori' mobile position distribution

Many possible distributions: We have chosen the Gaussian distribution.

- σ_r et σ_{θ} are ad-hoc.
- $\mu_{\theta} = \theta_k$.
- $\mu_r = d_k : t_k$ is linked to d_k via the relation:

$$d_k = c(t_k - t_{0_k})$$

Synchronisation constraint

• **Problem:** Necessitates between the mobile and the BSs. Too constraining!!

$$d_{k} = c(t_{k} - t_{0_{k}})$$

e Timing

by mini-
$$d_{i}$$

$$d_{j}$$

$$d_{j}$$

$$d_{j}$$

$$d_{j}$$

$$d_{j}$$

$$d_{j}$$

$$d_{j}$$

$$d_{j}$$

$$d_{j}$$

$$BS_{i}$$

$$r_{i,j}$$

$$BS_{i}$$

$$BS_{i}$$

$$BS_{i}$$

$$BS_{j}$$

$$BS_{j}$$

• Alternative solution:

- Use a similar technique to the Timing Advance in GSM.
- Estimate the time references by minimizing:

$$\hat{t}_{0_1}, \dots, \hat{t}_{0_I} = \arg\min\sum_{i=1}^{I} \sum_{j=1}^{I} \|d_j(t_{0_j}) - d_j(t_{0_i})\|$$

where
$$d_{i,j}$$
 is given by:
 $\sqrt{r_{i,j}^2 + d_i^2 - 2\cos(\theta_{i,j})r_{i,j}d_i}$

• Comparison with standard triangulation techniques.

ENST PARIS

Concluding Remarks

Conclusion

- Main difficulties (Hearing + NLOS): No fully satisfactory solution (i.e. still an open problem). We have presented certain solutions using, when possible, partial interference cancellation and selection of the 'best' AOA/TOA estimates. Other solutions exist, e.g.
 - Using 'a priori' learning of the dependence of the channel impulse response on the mobile position (too expensive and requires regular up-dating),
 - Using a 'super calculator' which captures both the transmitted and received signals to extract the desired information,
 - Using Idle periods: reduces significantly the system capacity.

Conclusion

- Estimation accuracy: The best estimates are computationally demanding and the power in the downlink is 'restricted'. Good 'intermediate' solutions especially in adaptive schemes.
- **Tracking**: Many tracking algorithms exist using subspace tracking, Kalman filtering, particular filtering, gradient techniques, etc. Tracking might improve the estimation accuracy (at least for slowly moving mobiles) due to memory effect.
- **Hybrid solution**: Use both GPS and terrestrial BS signals for mobile location.