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System identification

INPUT SIGNAL
>

LTI SYSTEM

(CHANNEL)

OUTPUT SIGNAL

OBJECTIVE : Given the output signal and eventually certain side
iInformation (training sequence, physical or statistic&brmation, partial
channel knowledge, etc.), our objective is to estimate tlageal (i.e.,

system transfer function) and restore the input signal.

>
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Blind processing

We talk aboutBLIND PROCESSINGINn the situation wher&NO
TRAINING SEQUENCHS available.

BSI <=  System identification usingnly the output data

Motivations:
e Increased channel throughput in communication systems.
e Robustness against channel modeling errors.

e Blind processing is necessary in certain applicationsitanyl
applications, seismology, etc.)

e Flexibility and increased system autonomy.
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Semi blind processing

Principle: Combining a data-aided (with training sequence) criterip 4
with a blind criterionJp, 1.€e:

J(h) =aJpa(h)+ (1 —a)Jp(h)

Criterion choice: The blind criterion should be chosen according to the
context. The data-aided criterion is usually chosen as #samum
likelihood (=MMSE) one.

The optimal value oér can be computed based on asymptotic performange
analysis (Buchoux et al 1999).

Result Improve the estimation accuracy and/or shorten the trgini
seguence size and hence increase the ‘useful’ channebtipat
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|dentification versus deconvolution

e Blind identification : Estimation of the channel state information using
the observation data and certain ‘statistical’ informatm the source
signal.

e Blind deconvolution: Estimation of the input or the channel inverse
(equalizer) usingnly the output (observation) signal. This is also
known as the blind equalization problem in communicatiopligption.
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Channel model

e Parametric versus non-parametri€hannel can be simply modeled by
certain physical or statistical parameters, e.g. the spechhannel
model based on the paths delays, attenuations and anglevelf.ar

e |Instantaneous versus convolutive communication, convolutive
model occurs when the channel delay spread is larger thasythkol
duration.

e Finite (FIR) versus infinite impulse response (IIR) chankelr long
memories channels (this is the case for example in echo tainoe),
one model the channel and an IIR one using for example stalist
ARMA representation.
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Channel model

e Linear versus non-linean_inear-quadratic or post-linear channel
models have been considered in the literature. The noasiyanay
be due, for example, to amplificator saturation (e.g. s&elli
communication).

e Stationary versus non-stationargtationarity is a ‘good’
approximation over a ‘large’ observation period in most-tda
applications. Non-stationary model has been consideoe@xample,
In the over-the-horizon channel deconvolution problem.
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How to cope with non-stationarity

e By using adaptive and tracking algorithms, e.g. LMS, RLS, PA&Q.

e By using channel representation with known basis functions

)

parameters basis

e By using time-frequency signal analysis.
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Inherent ambiguities
o Amplitude: y = hxs = A« 5s.
e Phasey =hxs=e%hxe 7.

e Delay: In the stationary source cas€t) ands(t + 7) have the same
statistical information.

e Permutation: This occurs in the multiple input case since the labeling
of the source signals is arbitrary.

1
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Application example: wireless communication

Reflector Q Moving Receiver / Transmitter

=

—7/>;‘_\—
Base Transmitter / Receiver _@_e_l
—d
—4 .

o :
— \A / VE/;.—E—'

Moving Receiver / Transmitter

Reflector

The objective here is to restore the transmitted signaltaateen distorted
by the propagation channel.

The blind processing helps in increasing the ‘informatiatadthroughput
of the channel (for example, in GSM system the training dapaasents
about25% of transmitted data).
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Application example: Image restoration

\ Object

J

Image

A

Image Formation
System

Objectives From a blurred image retrieve the original one and/or thatpo
spread function (channel).

From several ‘low quality’ images form a ‘high or improvedadjty’ image.
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Application example: Exploration seismology

Source Receiver

(Blind) channel estimation is used here to get informatiorhe
underground structure and the position of the reflectors.
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Application example: Over-The-Horizon Radar (OTHR)

Classical radar. Limited horizon

ionosphére

j/_\ OTHR: Early detection at all altitudes.
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Application example: Over-The-Horizon Radar (OTHR)

Distance de groupe

RADAR NOSTRADAMUS
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Other potential applications

e Blind deconvolution for ultrasonic non-destructive tegt(Nandi et al
1997, C.H. Chen et al 2002)

e ECG data processing (Sabry-Rizk et al., 1995): Fetal
electro-cardiogram extraction,

e Acoustical and environmental robustness in automaticdpee
recognition (A. Acero et al 1993)

e Military applications, e.g. interference mitigation (M. Amat al
1997), signal interception (Ph. Loubaton et al 2000), etc.
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Multichannel processing: Diversity

Multichannel processing is intimately linked to the conaafpdiversity:

Diversity: We would say that we have an ordef diversity in the situation
where we have several() replicas of the same input signal observed
throughM different and ‘independent’ channels.
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Diversity gain

e Improved restoration quality : In communication, one can decrease
the bit error rate (BER) by a factor @ff (M being the diversity order)

ST~ BER without diversity

BER

\ Diversity gain

(slope M times higher)

SNR

e Increased transmission rate The diversity increases the channel
capacity.

o
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Example: Monochannel image restoration

Original Image Blurred Image : motion filter Deblurred image

TESTR TESTR TEST
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Example: Multichannel image restoration

Blurred noisy image: Motion filter Degraded noisy image: Average filter Original image

TECTE TESTE TEST

Degraded noisy image: Gaussian filter@0r83 noisy image : Gaussian filter(v=1) Deconvolved image

TESTM TESTE TEST
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Multichannel system: processing strategy

e Separate processingerform the blind deconvolution for each channe
followed by a maximum ratio combiner of the channel outputs
(simplicity, SNR gain but loss of the multichannel divey¥it

e Selective approaciDeconvolution based only on the ‘best’ channel
(simplicity but difficulty to define the best channel in thengolutive
case).

e Joint processingProcess the channel outputs jointly in order to restofe
the input signal (leads to the best performance gain).
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Channel type (system dimension)

We consider a linear time-invariant finite impulse respaisannel in the
following three cases:

e Single Input Single Output (SISGhannel: This model is the most
standard and the one considered first in the literature.

e Single Input Multiple Output (SIMGJhannel: This is the situation for
example when a multi-sensor antenna is used at the receiver.

e Multiple Input Multiple Output (MIMOXxhannel: This is an extension
of the SIMO case when multiple users (signals) are consid&#idO
and MIMO cases have been studied extensively during the laatige
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Data model

Noiseless observation:

h(k) represents a LTI finite impulse response filter af¥d) is a zero-mean
stationary sequence of 1.i.d (independent and identicadliriduted)
non-gaussiamandom-variables of varianee’.
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Need for higher order statistics (HOS)

e Second order statistics (SOS) information The power spectral
density of the output data is:

= No channel phase information from the observation SOS. Bifigu
the data SOS is only possible if the channel is of minimum ehas

e HOS information: Data HOS are needed to estimate the missing
channel phase information.

= the source signal must lm®n gaussian
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HOS-based BSI

e Explicit HOS methods: Direct system identification through explicit
use of the signal HOS, e.g. 4th order cumulant-based metldoals (
Cadzow et al 1996), polyspectra based methods (C. Nikidslo03,
D. Hatzinakos et al 1991), etc.

e Implicit HOS methods: Identification of the channel inverse filter
(equalizer) through optimization of appropriate non-éineost
functions, Sato algorithm (Y. Sato 1975), CMA algorithm (Dodard,
Treichler et al 1980), Bussgang algorithms (A. Benvenistd £980),
etc.
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Example of an explicit HOS method

S(k) y(k) Z(k)
" 0K 1 g(k) -

Shavi-Weinstein method Estimate the channel inverse filtgfk) in such a
way that we maximize the (absolute value) of its outpt) fourth order
cumulant (under constant power constraint).

|dea: maximize the nongaussianity ofk) by maximizing its 4th order
cumulant.
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Example of an implicit HOS method

Constant Modulus Algorithm (CMA) : Introduced in communication
(initially) for constant modulus constellation signals:

g = arg min E(\z(k)\Q — R)2

Idea: Restore the constant modulus property of the source sajiniaé
equalizer output.
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General features of HOS-based methods

e In general, HOS based methods require large sample sizekigva
‘good’ estimation performances.

e Non-linear optimization techniques are needed to estithaehannel
(or the inverse channel) parameters. Often, stochastitagra
techniques are used for the optimization.

e The HOS based criteria suffer from the existence of locaisma.

e Convergence analysis is possible only in the noiseless case
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Motivation for multichannel processing

Blind deconvolution using SOS

e Single channel case Not possible unless the channel is
minimum-phase. The minimum phase condition in the SISO izaze
‘'strong’ condition that is, in general, not met in practice.

e Multichannel case Almost always possible> More robust and more
accurate estimation. In fact, the minimum phase conditnahe SIMO
case is a ‘mild’ condition that is satisfied when the chanasts
sufficiently independent from one another.
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Motivation for multichannel processing

More channel capacityin communication systems

e Single channel case
C' =logy(1+ p)

e Multichannel case(M transmit and receive channels)
_ P H\ M—c0
C' = log, det(1 + MHH ) — Mlog,(1+ p)

The capacity gain comes from the fact that having severaicapof the
transmitted signal observed through independent chanmedisces
significantly the risk of information loss.
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Space Diversity (Multiple receivers)

’T‘ WA
{y &
i > {s}
{s}
{vy 2 M, | {y 2

e s(n): the source signal.

I-th sensor.

hi(z) =Y hi(k)z™"
k

e y;(n): outputat the i-th sensor.

e h;(z): models the propagation between the emitting source and the

K. ABED-MERAIM

ENST PARIS



Blind System Identification. Oct. 2005 35

Time diversity (oversampling)

T2
T/2

{s}

® ® ° o W

h(t)

vi — e ® o e {v}

{s}

h, {v} vz

y(t) = Z h(t — kT)s(k) cyclostationary
k

= EXxploit the cyclostationarity (time diversity) by oversping wrt the
symbol duration.
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Time diversity (oversampling)

By oversampling we have multiple ‘virtual’ channels:

hi(z) = >, h(kT)z""
hao(z) = S, W(kT +T/2)z"

The cyclostationary oversampled signal can be represastasitationary
multivariatesignal as:

NA

) = a(kT)
) = x(kT +T/2)

Y (

stationary
ya(

T
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Multichannel model

/

yi(k) = s(k)=*hi(k)
< yg(k) = s(k) * hao(k) B0 N—1
yrm (k) = s(k)*ha (k)

\

e s(n): single unknown source signal.

e To each output corresponds the FIR transfer functibp z)
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Multichannel model

Y1 H,; s(—L)

N x (N + L) Sylvester matrix

Y HM S(N—l)

s IS the input vectory; is the observation vector at sens@ndH, is the
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Some properties of SIMO systems

e Weakminimum phase condition

hl(Z)
h(z) = # 0 for |z] > 1

Satisfied as soon d5(z), 1 <+ < M do not share common zeros.

e Leftinvertible system: as soon as th&/ N x (N + L) matrixH is
full column rank, i.e. when we have more equations than unkisow
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Some properties of SIMO systems

e Finite zero-forcing inverse filters: if h(z) #£ 0, V z,
dg(z) = [91(2), -, gm(z)] a polynomial vector such that:

g(2)h(z) = ) gi(x)hi(2) = 1

\ - 7
~"

Bezout equality

e Exact identification in the noiseless case from a finite sample size
observation vector.
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SIMO versus SISO

e FIR equalizer for SIMO versus IIR equalizer for SISO.
e Causal equalizer for SIMO versus non-causal equalizer f80SI

e EXxact estimation using finite sample size for SIMO (not pdeditr
SISO).

e Equalizer delay plays an important role in SIMO case and ntiten
SISO case.

e SOS-based BSI for SIMO versus HOS-based BSI for SISO.
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Strict identifiability

Definition

The system istrictly identifiableif a given outputy implies a unique input
s and a unigue system matHt up to an unknown scalar, i.e.,

1
H's" = Hs = s’ = as and h'(z) = —h(z)
o)

where« Is a given non-zero scalar.
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Strict identifiability

Necessary condition The system is identifiable only if the followings are
true:

/

h(z) # 0, Vz
§ p>L+2
N>L+2

\

wherep is the number of modes in the input sequence.
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Strict identifiability

Sufficient condition : The system is identifiable if the followings are true:

p

h(z) # 0, Vz
y p=>2L+1
N >3L+1
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Strict identifiability

The identifiability conditions shown above essentiallyweagshe following
Intuitive requirements:

e All channels in the system must be different enough from etheh
They can not be identical, for example.

e The input sequence must be complex enoligtan not be zero, a
constant or a single sinusoid, for example.

e There must be enough number of output samples availAxdet of
available data can not yield sufficient information on adarget of
unknown parameters, for example.
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Estimation technigues

e Direct estimation obystem function
— Maximum likelihood (ML) method.
— Cross-relations (CR) method.

— Channel subspace (CS) method.

e Direct estimation oBystem input
— Signal subspace (SS) method.
— Mutually referenced equalizers (MRE) method.

— Linear prediction (LP) method.
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Maximum likelihood method

Principle: Assuming a circular white Gaussian noise veator

1 1
= ——|ly — Hs||?
P(Y) = —xaw exp(=—lly — Hs|")

Thus the ML estimate is given byH, s),z = arg ming s ||y — Hs||?

Least squares fitting

Data model
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Maximum likelihood method

Separable problem Minimize overs:
sy = (HYH) 'HYy
Then overH:
H,/;, = argmHin ]|P]§y|\2

P+ = orthogonal projection matrix onto Rand#)-.
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Orthogonal Complement Matrix (OCM)
Idea: One can obtain noise vectors by observing that

i-th j-th
[0’...7_}&].(2)707...7()7}%(2)7...’0] — 0

Result (Y. Hua 1995) : One can form an OC# that is a linear function of
the channel parameters such that its column vectors forrnsia bbthe
noise subspace, i.e.

P, =P34
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Two step estimation technigue

ML criterion :

hy, = arg‘ﬁﬂ'in yI1G(GHG)"GHy
=1

whereh is the vector of all channels’ impulse responses. From the
commutativity propertpf linear convolution:

GHy =Yh

we obtain
harr = argmin h?YH(G"G)#Yh

K. ABED-MERAIM ENST PARIS



Blind System Identification. Oct. 2005 51

Two step estimation technigque

Two Step Maximum Likelihood (TSML) :

1. h, = argmin h” Y#Yh

2. h, = argmin h#Y#(GHG,)#Yh, whereG. is G constructed
from h..

At each step the solution is given by the least eigenvecto@ated to the
least eigenvalue of the considered quadratic form.
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Cross-relations (CR) method

=0

h, Yz f=h,

e Principle: For every pair of channels, we have

yi(k) * hj(k) = y; (k) * hi(k)

Yh =0

e Algorithm : By collecting all possible pairs ¥/ channels, one can
easily establish a set of linear equations:

This yields toh-r = arg min h? Y# Yh (first step of TSML).
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Subspace method

Range(A®))

X(Z)f x(1)
Signal Subspa

.
(Range(A(8Y)) )\ — \

x(t)

Noise subspace
(The orthogonal oRange(A@)) )

Principle: Assume the following model: x(n) = A(#)s(n) with

Range(A(0)) = Range(A(0')) <= 60 = ¢’

Thus,f can be estimated as:

0 = arg m@in d(Range{x(n)}, Range(A(#)))
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Channel subspace (CS) method

e Model:
y(n) = Hsn)n=0,...N—-W
y(n) = [yi(@). - yu@)]"
vi(n) = [yi(n),- y(n+ W =D
In our case: A +—— H and 6 «—— h.

e Mainresult: If W > L + 1 and theM channels do not share a
common zero, then

Range(H) = Range(H') <= h' = ah

wherea 1s a scalar constant.
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where

CS algorithm

A; O

Ry:;y(n)y (n) = [€s & N

Range(&s) = Range(H) 1 Range(&,).

e Compute the least square error solution to

hos = arg min EEHI 2.
min [€17H|

e Estimate the signal (resp. noise) subspace as the prir{ocgsgl. minor)
eigen-subspace of the data covariance majrjx
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Comparison of the ML, CR, and CS methods

e ML method
— Large computational cost
— Very good estimation accuracy

e CR method
— Low computational cost
— Moderate estimation accuracy

e CS method
— Moderate computational cost
— (Good estimation accuracy
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Signal Subspace (SS) method

Channel Signal subspac
Data matrix = |“NANE | Source signal matrix<— §=s
matrix

T

Channel subspace
B=h

e Model: Y =|y(0), - -, y(N — W) =HS
S being a the source signal matrix of Hankel structure.

e Principle: A«——S and 6#+—s

s = argmin = d(Row(Y), Row(S))
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Signal Subspace (SS) method

e Result(Xu et al 1995). Assume th& is full column rank and that the
iInput sequencés(n)}—r<n<n—1 CONtains more thaW’ + L + 1
modes, then

Row(S) = Row(S') <= s’ = as

wherea Is a scalar constant.
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e Perform the SVD of the data matriX = |

SS algorithm
] . _
Y=U
0 0

VvV, S7 =0

VH

V., is the orthogonal matrix to the row spaceSf

e Estimates by minimizing the quadratic criterion

§ = arg min ||V, S|

Is[|=1
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Blind equalization

e Definition: g(z) is a blind equalizer iff:
gn)xyn) =as(n —m) <= g(z)h(z) =az™™

e Characterization:
— Statistical criterion If s(n) isi.i.d.

g(z) — §(n) =g(n) *y(n)isi.i.d.

e.g., Linear prediction , Bussgang, etc.

— Geometrical criterionIf s(n) € A

g(z) — 8(n) = g(n) *y(n) € A
e.g., CMA algorithms.

K. ABED-MERAIM ENST PARIS



Blind System Identification. Oct. 2005 61

Mutually referenced equalizers (MRE) method

Equalizer g s(Y Z

€=0

1N
N

Equalizer g S(t-1)

MRE relations Letg;(n):=0,---,W + L — 1 be equalizer filters
satisfying

gz(n> *xy(n)=as(n—1),1=0,1,---

Then, filtersg; should satisfy (MRE relations):

gixy(n) =git1xy(n+1)
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Mutually referenced equalizers (MRE) method

e Result(D. Gesbert et al 1994) : Vice versa, the previous relations
characterize uniquely the equalizer filters, l.egdf - - -, gq_1
(d = W + L) satisfy the MRE relations, then

gi(n)xy(n) =as(n—1), Vi

e Algorithm: {g;} are estimated by minimizing (under a suitable
constraint) the quadratic criterion

J = Z lgi xy(n) — giv1 xy(n +1)|°
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Linear prediction (LP) method

e Model:

e Principle: Bezout equality. dg(z) = [91(2), -, gm(2)] such that
g(z)h(z) =1

e Result y(n)is an AR process of orddr. Its innovation process is
i(n) =h(0)s(n).
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LP algorithm

v ﬁ h(0) x s(t)

Prediction (projection) subspace

e Estimate the prediction coefficients pfn) by solving the Yule-Walker
equations:

e Estimate vectoh(0) (up to a constant) as the principal eigenvector of
the innovation covariance mat@ = E(i(n)i(n)") = h(0)h(0)*.
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Comparison of the SS, MRE, and LP methods

e SS method
— Large computational cost

— (Good estimation accuracy

— Deterministic input

e MRE method
— Moderate computational cost

— (Good estimation accuracy

— Deterministic input

e LP method
— Low computational cost

— Moderate estimation accuracy

— Stochastic decorrelated input
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The situation of interest

SOURCE 1
O SOURCE =

SENSOR 2
SENSOR 1

M different (possibly noisy) linear combinations &findependent source
signals are observed at the sensors.
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Convolutive linear mixture model

s, - system  — Yo
transfer

function

y(n) = H(n) xs(n)

e y(n): M x 1observation vector (array output),
e s(n): N x 1unknownsource vector,

e H(z) =)  H(n)z~": M x N unknowntransfer function matrix
assumed, in general, of finite impulse response, i.e(idég)) = L.
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sourcesi.e. M > N.

(rank H(L)) = N).

Basic assumptions

e System dimensionWe assume here strictiyore sensors than

e Source signals They are assumed to Ipeutually independent
stationary random processes.

e System matrix The transfer functioM(z) is assumed to be
irreducible (rank H(z)) = N for all z) andcolumn reduced
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Objectives

Interference (ISI) onlyblind equalization problem)

e MIMO case: In the MIMO case we have to get rid of the I@lind
(blind source separation (BSS))

MIMO blind deconvolution <= Blind equalization + BSS.

e SIMO case In the SIMO case we have to get rid of the inter-symbol

equalization problemand to get rid also of the inter-user interferences
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Deconvolution approach

STEP 1 STEP 2
. . Blind _ : .
Convolutive mixture Instantaneous m|xtureBIInOI SOUICe| source signal
equalizatio separation
using SOS using HOS

e Step 1 Blind equalization using second order statistics. Thep st
transforms the convolutive mixture into an instantaneoudure.

HOS) to the instantaneous mixture obtained at the previmys s

e Step 2 Application of a BSS algorithm (using, in general, the data
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Other possible deconvolution approaches

e Blind identification and deconvolution using HOS (Nikiasa€1993,
Liu et al 2002, etc.).

¢ Blind separation followed by/ parallel SIMO blind equalization
(Bousbia-Salah et al 2000).

¢ Joint blind equalization and source separation by deairosl (Y. Hua
et al 2000).

e |terative blind deconvolution with interference cancedtla (Delfosse et
al 1996).
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First step: Blind equalization

The same algorithms (except for certain details) for SIM@dbli
identification can be applied to MIMO identification.

However, in the SIMO case we estimate the channel transfetium(resp.
the source signal) up tolax 1 constant factor, i.e. h(z) = h(z)a, while
in the MIMO case we estimate the channel transfer functiomn(ré
source vector) up to & x N constant matrixA, i.e. H(z) = H(2)A.
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Second step: Blind source separation

>

Instantaneouis Blind

mixture Source

A | separation

K. ABED-MERAIM ENST PARIS



Blind System Identification. Oct. 2005 75

BSS versus ICA (Independent Component Analysis)

1. BSS = signal synthesigdentify the mixture matrix and/or recover
the input signals from the observed signal by exploitingdtagistical
Independencer other features of the sources.

2. ICA = signal analysis Analyse a multi-variate signal by
decomposing it into a set of independent components (inokpe
component analysis ICA).
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|CA versus PCA

e Principal component analysis seeks directions in feature space that
best represent the dataleast squaresense.

¢ Independent component analysisseeks directions in feature space
that are mosindependentrom one another.

K. ABED-MERAIM

ENST PARIS



Blind System Identification. Oct. 2005 77

BSS approaches
Lower—order Fractional Second-order Higher—order
Moment Theory Moment Theory Moment Theory
L | |
0 05 o8l 1 15 18 2 3 | 4

e HOS-based methodExploit the observations higher order statistics
either explicitely by processing their higher order cumitgaor
implicitely through the optimization of non-linear funatis given by
Information-theoretic criteria.

e SOS-based methadd/hen the sources are ‘temporally colored’, one
can achieve BSS using signal decorrelation.

e FLOM-based method®Pedicated to the separation of impulsive
signals, e.g. alpha-stable signals (these signals havéeimd and
higher order moments).
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Information theoretic principles

n>

S A X B ?

B is computed such that its outputs are most independent frananother:
e By minimizing the mutual information between the composef§(t).

e By minimizing the Kullbak-Leibler distance in between thdf pf s(¢)
and the product of its components pdfs, i.e.

KL(p(3(t)), | [ pr(3x(2))-

)

e My maximizing the nongaussianity 6{t¢) (measures of nongaussianity
Include the Kurtosis -fourth order cumulant- and the Neggy
-differential entropy-).
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Basic assumptions:

BSS by decorrelation

e The mixing matrixA is full column rank.

p1(7)

e The sources are temporally coherent but mutually uncdee|a.e.,

Pn (T)
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Separation by decorrelation

e Principlee B = A~! is the linear transform that decorrelate the signa
components at all time lags, i.e.

IS diagonal for allr.

e A two step procedure
— Datawhitening The whitening matrix transformA into a unitary
matrix.

— Diagonalization Estimate the unitary matrix by diagonalizing the
non-zero lag correlation matrices.
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Whitening

Whitening Matrix : Let W denotes a x m matrix, such that
(WA)(WA)? =UU" =1

W can be computed as an inverse square root of covariancexrogthe
observation vector (assuming unit-power sources).

Whitened correlations; Defined as
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Diagonalization

e Diagonalization obnesingle normal matrixvi
<= Minimizing under unitary transform the sum of squared moddli
the off-diagonal elements. This is equivalent to the mazanon under
unitary transformV = [vq, - - -, v, ] the sum of the squared moduli of

the diagonal elements:
= Z [viMv;|?

e Fora setof d matrices:

—> Joint diagonalization criterion.
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|dentifiability

Objectives Given a set ofK” correlation matriceR ,(71), - -, Rz (7x)
answer the following:

e |s it possible to separate the sources given this stattstics

e If no, what it the best we can do (partial identifiability)?

e IS it possible to test the identifiability condition?
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Theorem 1: ldentifiability

e Define for each source
p; = |pi(11),pi(12), -, pi(Tk)] and p; = [R(p;), S(p;)]

Then, BSS can be achieved using the output correlation ceatat
timelagsr, 7, -, 7 Iff V i#£ 75

p; and p; are (pairwise) linearly independent

e If this condition is satisfied theB is a separating matrix iffy 7 £ 5

J

wherer;; (k) € E(z(t + k)z%(t)), z = Bx andk = 1, 72, - - , Tc.

(1)
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Discussion

e Theorem 1 gives aecessaryand sufficientcondition to achieve BSS.

e |t is possible to separate the sources from amlg correlation matrix.

e K — oo = 2 sources are separable iff they haerent spectral
shape

e |tis well known that HOS methods can achieve BSS when no more
than one Gaussian source is present. In contrast, SOS rsetand
achieve BSS when no more than one temporally white source is
present.
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Theorem 2: Partial Identifiability

Assume there are distinct groups of sourcasach of them containing

source signals with same (up to a scalar) correlation veggtar= 1, - - -, d,
" T T
l.e.,s =[s{,---,s;]".

Letz(t) = Bx(t) be amm x 1 random vector satisfying equation (1)

Then, there exists a permutation mafihand non-singular matricds;
such that
Pz(t) = [z1(t),--,2z4()]"
Z; (t) — UZ'Si (t)
Moreover, sources belonging to the same group, i.e., having éajpto a

scalar) correlation vectgs, can not be separated using only the correlatiop
matricesR.(k), k=1, -+, Tk.
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Theorem 3: Testing of Identifiability Condition

Letm <1y < --- < 7 be K distinct time lags and(¢) = Bx(t). Assume
thatB is such a matrix that(¢) satisfies equation (1). Then there exists a
generalized permutation matx such that folk = 7, - - -, 7

R.(k) = E(z(t + k)z" (t)) = PR, (k)P*

In other wordsz4, - - -, z,, have the same (up to a permutation) correlatiory
factors assy,-- -, s, attime lagsr,-- -, 7.
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Discussion

e Two situations may happen:

1. For all pairs{; j), p, andp; are pairwise linearly independent.
Then we are sure that the sources have been separated and that
z(t) = s(t) up to a scalar and a permutation.

2. Afew pairs (, j) out of all pairs satisfyp, andp, linearly
dependent. Therefore the sources have been separatedks.blo

e The angle betweep; andp; can be used as a measure of the quality pf
separation between sourcand source.
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Simulation Examples

e Simulation context

and7’ = 1000 samples.

e Criteria:
— Rejection level criterion:

-

Py (

— ULA with M = 5 sensors)N = 2 unit-norm independent sources

)|(BA),;|?

I perf, det Z E
JF+t

|

p1oy|
ENIEN

— ldentifiability criterion:

def
9p L

pi(0)|(BA);;|?

|

1
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Simulation examples

Table 1. Separation performance versigs

Sources Vp Iperf (dB)
2 AR1 signals | 0.213 -26.23
2 CWGP signals| 0.007 -5.14

an rejection level (dB)

“Spectral shift

Figure 1. Separation Performance ver8i$SNR=25dB): 2 AR1 sources with
a1 = 0.95exp(j0.5) andaz = 0.5exp(j5(0.5 4 66)).
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-10 f”,’— —_ T |
- - - Iperfl
== lIperf2
15| —  lperf3 i
o
=
0
[}
>
2 _20 I —
o
=]
8
o
[0
o
_25 — -
_30 - -
-35 | | | | |
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SNR in dB

Figure 2. Separation Performance versus the SMiRs: 3 sources 2 of them are
CWGP signals and the third is AR1.
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Simulation examples

|
[y
o

-15

Mean Rejection Level (dB)

|
N
o

-25
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Time Step

Figure 5. Comparison with EASI (Laheld & Cardoso 1996): 2 AR(rses with
QAM4 innovation processes & NR = 30dB. .
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Concluding remarks

e A common feature of all presented methods is the use of tirdéan
spacdliversity.

e Extensionto IIR case or multiple input case is possible.

e Partial knowledge of the channels can be incorporated in the blind
criteria, e.g., DOA of multi-paths, pulse-shape filters, agneg
sequence in CDMA systems, etc.

e Robustnesdo channel order estimation errors: The last 3 methods ($S,
MRE, LP) are more robust than the first 3 methods (ML, CR, CS).
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Some hot topics & perspectives

e Semi-blind methods: i.e., combining blind and non-blind criteria (i.e.,
training sequence) to improve the estimation accuracy.

e Induced cyclostationarity or pre-filtering : i.e., modify the signal
modulation at the transmission side in such a way to suit anglgy
the blind system identification (BSI).

e Space time coding BSl is a tool to exploit the diversity at the
reception. The space-time coding is to create the diveasitiye
transmission.
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Some hot topics & perspectives

identification (BSI) methods for specific applications gthllows to
exploit a maximum of side-information).

modellization errors.

Sensors.

e Application-oriented BSI methods Derive or adapt blind system

e RobustnessImprove the robustness of BSI methods against noise ahd

e Under-determined case BSI for systems with more sources than
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