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Presentation Outline

• Concepts and preliminaries

• BSI for SISO systems (mono-channel case)

• BSI for SIMO systems

• BSI for MIMO systems

• Concluding remarks
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System identification

INPUT  SIGNAL OUTPUT  SIGNALLTI  SYSTEM

(CHANNEL)

OBJECTIVE : Given the output signal and eventually certain side

information (training sequence, physical or statistical information, partial

channel knowledge, etc.), our objective is to estimate the channel (i.e.,

system transfer function) and restore the input signal.
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Blind processing

We talk about‘BLIND PROCESSING’in the situation where‘NO

TRAINING SEQUENCE’is available.

BSI ⇐⇒ System identification usingonly the output data

Motivations:

• Increased channel throughput in communication systems.

• Robustness against channel modeling errors.

• Blind processing is necessary in certain applications (military

applications, seismology, etc.)

• Flexibility and increased system autonomy.
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Semi blind processing

Principle: Combining a data-aided (with training sequence) criterion JDA

with a blind criterionJB , i.e:

J(h) = αJDA(h) + (1− α)JB(h)

Criterion choice: The blind criterion should be chosen according to the
context. The data-aided criterion is usually chosen as the maximum
likelihood (=MMSE) one.

The optimal value ofα can be computed based on asymptotic performance
analysis (Buchoux et al 1999).

Result: Improve the estimation accuracy and/or shorten the training
sequence size and hence increase the ‘useful’ channel throughput.
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Identification versus deconvolution

• Blind identification : Estimation of the channel state information using

the observation data and certain ‘statistical’ information on the source

signal.

• Blind deconvolution: Estimation of the input or the channel inverse

(equalizer) usingonly the output (observation) signal. This is also

known as the blind equalization problem in communication application.
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Channel model

• Parametric versus non-parametric: Channel can be simply modeled by
certain physical or statistical parameters, e.g. the specular channel
model based on the paths delays, attenuations and angle of arrival.

• Instantaneous versus convolutive: In communication, convolutive
model occurs when the channel delay spread is larger than thesymbol
duration.

• Finite (FIR) versus infinite impulse response (IIR) channel: For long
memories channels (this is the case for example in echo cancellation),
one model the channel and an IIR one using for example statistical
ARMA representation.
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Channel model

• Linear versus non-linear: Linear-quadratic or post-linear channel

models have been considered in the literature. The non-linearity may

be due, for example, to amplificator saturation (e.g. satellite

communication).

• Stationary versus non-stationary: Stationarity is a ‘good’

approximation over a ‘large’ observation period in most real-life

applications. Non-stationary model has been considered, for example,

in the over-the-horizon channel deconvolution problem.
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How to cope with non-stationarity

• By using adaptive and tracking algorithms, e.g. LMS, RLS, PAST, etc.

• By using channel representation with known basis functions.

s(t)

H

H

H

1

2

M

x

x

x

  g (t)

g (t)

g (t)

1

2

M

+ x(t)

Known function

basis
Time−invariant

parameters

• By using time-frequency signal analysis.
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Inherent ambiguities

• Amplitude : y = h ⋆ s = λh ⋆ 1
λ
s.

• Phase: y = h ⋆ s = ejθh ⋆ e−jθs.

• Delay: In the stationary source case,s(t) ands(t + τ) have the same

statistical information.

• Permutation: This occurs in the multiple input case since the labeling

of the source signals is arbitrary.
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Application example: wireless communication

Moving  Receiver / Transmitter

Base Transmitter / Receiver

Reflector

Reflector Moving  Receiver / Transmitter

The objective here is to restore the transmitted signal thathas been distorted

by the propagation channel.

The blind processing helps in increasing the ‘information data’ throughput

of the channel (for example, in GSM system the training data represents

about25% of transmitted data).
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Application example: Image restoration

Object Image

Image Formation
      System

Objectives: From a blurred image retrieve the original one and/or the point
spread function (channel).

From several ‘low quality’ images form a ‘high or improved quality’ image.
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Application example: Exploration seismology

Source Receiver

(Blind) channel estimation is used here to get information on the
underground structure and the position of the reflectors.
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Application example: Over-The-Horizon Radar (OTHR)

Classical radar: Limited horizon

OTHR : Early detection at all altitudes.

K. A BED-MERAIM ENST PARIS



Blind System Identification. Oct. 2005 16

�

�

�

�

Application example: Over-The-Horizon Radar (OTHR)
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Other potential applications

• Blind deconvolution for ultrasonic non-destructive testing (Nandi et al
1997, C.H. Chen et al 2002)

• ECG data processing (Sabry-Rizk et al., 1995): Fetal
electro-cardiogram extraction,

• Acoustical and environmental robustness in automatic speech
recognition (A. Acero et al 1993)

• Military applications, e.g. interference mitigation (M. Aminet al
1997), signal interception (Ph. Loubaton et al 2000), etc.
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Multichannel processing: Diversity

H_M

H_1

H_2s(k)

Multichannel processing is intimately linked to the conceptof diversity:

Diversity: We would say that we have an orderM diversity in the situation

where we have several (M ) replicas of the same input signal observed

throughM different and ‘independent’ channels.
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Diversity gain

• Improved restoration quality : In communication, one can decrease

the bit error rate (BER) by a factor ofM (M being the diversity order)

B
E

R

SNR

Diversity gain
(slope M times higher)

BER without diversity

• Increased transmission rate: The diversity increases the channel

capacity.
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Example: Monochannel image restoration

Original Image Blurred Image : motion filter Deblurred image
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Example: Multichannel image restoration

Blurred noisy image: Motion filter Degraded noisy image: Average filter

Degraded noisy image: Gaussian filter(v=0.8)Blurred noisy image : Gaussian filter(v=1)

Original image

Deconvolved image
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Multichannel system: processing strategy

• Separate processing: Perform the blind deconvolution for each channel

followed by a maximum ratio combiner of the channel outputs

(simplicity, SNR gain but loss of the multichannel diversity).

• Selective approach: Deconvolution based only on the ‘best’ channel

(simplicity but difficulty to define the best channel in the convolutive

case).

• Joint processing: Process the channel outputs jointly in order to restore

the input signal (leads to the best performance gain).
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Channel type (system dimension)

We consider a linear time-invariant finite impulse responsechannel in the

following three cases:

• Single Input Single Output (SISO)channel: This model is the most

standard and the one considered first in the literature.

• Single Input Multiple Output (SIMO)channel: This is the situation for

example when a multi-sensor antenna is used at the receiver.

• Multiple Input Multiple Output (MIMO)channel: This is an extension

of the SIMO case when multiple users (signals) are considered. SIMO

and MIMO cases have been studied extensively during the last decade.
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Data model

s yh

Noiseless observation:

y(k) = h(k) ⋆ s(k)

h(k) represents a LTI finite impulse response filter ands(k) is a zero-mean

stationary sequence of i.i.d (independent and identically distributed)

non-gaussianrandom-variables of varianceσ2
s .
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Need for higher order statistics (HOS)

• Second order statistics (SOS) information: The power spectral

density of the output data is:

Sy(f) = |H(f)|2σ2
s

⇒ No channel phase information from the observation SOS. BSI using

the data SOS is only possible if the channel is of minimum phase.

• HOS information : Data HOS are needed to estimate the missing

channel phase information.

⇒ the source signal must benon gaussian.
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HOS-based BSI

• Explicit HOS methods: Direct system identification through explicit

use of the signal HOS, e.g. 4th order cumulant-based methods (J.A.

Cadzow et al 1996), polyspectra based methods (C. Nikias et al 1993,

D. Hatzinakos et al 1991), etc.

• Implicit HOS methods: Identification of the channel inverse filter

(equalizer) through optimization of appropriate non-linear cost

functions, Sato algorithm (Y. Sato 1975), CMA algorithm (D. Godard,

Treichler et al 1980), Bussgang algorithms (A. Benveniste et al 1980),

etc.
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Example of an explicit HOS method

s(k) y(k)
g(k)h(k)

z(k)

Shavi-Weinstein method: Estimate the channel inverse filterg(k) in such a

way that we maximize the (absolute value) of its outputz(k) fourth order

cumulant (under constant power constraint).

Idea: maximize the nongaussianity ofz(k) by maximizing its 4th order

cumulant.
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Example of an implicit HOS method

Constant Modulus Algorithm (CMA) : Introduced in communication

(initially) for constant modulus constellation signals:

g = arg minE(|z(k)|2 −R)2

Idea: Restore the constant modulus property of the source signalat the

equalizer output.
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General features of HOS-based methods

• In general, HOS based methods require large sample sizes to achieve

‘good’ estimation performances.

• Non-linear optimization techniques are needed to estimatethe channel

(or the inverse channel) parameters. Often, stochastic gradient

techniques are used for the optimization.

• The HOS based criteria suffer from the existence of local-minima.

• Convergence analysis is possible only in the noiseless case.
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Motivation for multichannel processing

Blind deconvolution using SOS:

• Single channel case: Not possible unless the channel is

minimum-phase. The minimum phase condition in the SISO caseis a

‘strong’ condition that is, in general, not met in practice.

• Multichannel case: Almost always possible⇒ More robust and more

accurate estimation. In fact, the minimum phase condition in the SIMO

case is a ‘mild’ condition that is satisfied when the channelsare

sufficiently independent from one another.
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Motivation for multichannel processing

More channel capacityin communication systems

• Single channel case:

C = log2(1 + ρ)

• Multichannel case: (M transmit and receive channels)

C = log2 det(1 +
ρ

M
HHH)

M→∞
−→ M log2(1 + ρ)

The capacity gain comes from the fact that having several replicas of the

transmitted signal observed through independent channelsreduces

significantly the risk of information loss.
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Space Diversity (Multiple receivers)

{s}

{y 1}

{y 2}

{s}

{y 2}

h 1
{y 1}

h 2

• s(n) : the source signal.

• hi(z) : models the propagation between the emitting source and the
i-th sensor.

hi(z) =
∑

k

hi(k)z−k

• yi(n) : output at the i-th sensor.
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Time diversity (oversampling)

{s}
h(t)

T/2
T/2

{s}

{y }

{y }

h

h

1

2
 2

1

 T

T

    {y}

{y }

 {y }

1

 2

y(t) =
∑

k

h(t− kT )s(k) cyclostationary

⇒ Exploit the cyclostationarity (time diversity) by oversampling wrt the
symbol duration.
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Time diversity (oversampling)

By oversampling we have multiple ‘virtual’ channels:







h1(z) =
∑

k h(kT )z−k

h2(z) =
∑

k h(kT + T/2)z−k

The cyclostationary oversampled signal can be representedas astationary

multivariatesignal as:







y1(k) = x(kT )

y2(k) = x(kT + T/2)
stationary
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Multichannel model







y1(k) = s(k) ∗ h1(k)

y2(k) = s(k) ∗ h2(k)
...

yM (k) = s(k) ∗ hM (k)

k = 0, · · · , N − 1

• s(n): single unknown source signal.

• To each outputi corresponds the FIR transfer functionhi(z)

hi(z) =
L∑

k=0

hi(k)z−k
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Multichannel model

y =








y1

...

yM








=








H1

...

HM















s(−L)
...

s(N − 1)








= Hs

s is the input vector,yi is the observation vector at sensori andHi is the

N × (N + L) Sylvester matrix

Hi =








hi(L) · · · hi(0) · · · 0
...

...
...

...

0 · · · hi(L) · · · hi(0)
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Some properties of SIMO systems

• Weakminimum phase condition

h(z)
def
=








h1(z)
...

hM (z)







6= 0 for |z| > 1

Satisfied as soon ashi(z), 1 ≤ i ≤M do not share common zeros.

• Left invertible system: as soon as theMN × (N + L) matrixH is

full column rank, i.e. when we have more equations than unknowns.
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Some properties of SIMO systems

• Finite zero-forcing inverse filters: if h(z) 6= 0, ∀ z,

∃ g(z) = [g1(z), · · · , gM (z)] a polynomial vector such that:

g(z)h(z) =

M∑

k=1

gi(z)hi(z) = 1

︸ ︷︷ ︸

Bezout equality

• Exact identification in the noiseless case from a finite sample size

observation vector.
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SIMO versus SISO

• FIR equalizer for SIMO versus IIR equalizer for SISO.

• Causal equalizer for SIMO versus non-causal equalizer for SISO.

• Exact estimation using finite sample size for SIMO (not possible for

SISO).

• Equalizer delay plays an important role in SIMO case and not inthe

SISO case.

• SOS-based BSI for SIMO versus HOS-based BSI for SISO.
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Strict identifiability

Definition

The system isstrictly identifiableif a given outputy implies a unique input

s and a unique system matrixH up to an unknown scalar, i.e.,

H′s′ = Hs =⇒ s′ = αs and h′(z) =
1

α
h(z)

whereα is a given non-zero scalar.
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Strict identifiability

Necessary condition: The system is identifiable only if the followings are

true:






h(z) 6= 0, ∀z

p ≥ L + 2

N ≥ L + 2

wherep is the number of modes in the input sequence.
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Strict identifiability

Sufficient condition : The system is identifiable if the followings are true:






h(z) 6= 0, ∀z

p ≥ 2L + 1

N ≥ 3L + 1
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Strict identifiability

The identifiability conditions shown above essentially ensure the following

intuitive requirements:

• All channels in the system must be different enough from eachother.

They can not be identical, for example.

• The input sequence must be complex enough. It can not be zero, a

constant or a single sinusoid, for example.

• There must be enough number of output samples available. A set of

available data can not yield sufficient information on a larger set of

unknown parameters, for example.
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Estimation techniques

• Direct estimation ofsystem function:

– Maximum likelihood (ML) method.

– Cross-relations (CR) method.

– Channel subspace (CS) method.

• Direct estimation ofsystem input:

– Signal subspace (SS) method.

– Mutually referenced equalizers (MRE) method.

– Linear prediction (LP) method.
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Maximum likelihood method

Principle: Assuming a circular white Gaussian noise vectorw

p(y) =
1

πNσ2N
exp(−

1

σ2
‖y −Hs‖2)

Thus the ML estimate is given by(H, s)ML = arg minH,s ‖y −Hs‖2

Least squares fitting

Observation Data model
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Maximum likelihood method

Separable problem: Minimize overs:

sML = (HHH)−1HHy

Then overH:

HML = arg min
H
‖P⊥

Hy‖2

P⊥
H = orthogonal projection matrix onto Range(H)⊥.
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Orthogonal Complement Matrix (OCM)

Idea: One can obtain noise vectors by observing that

i-th j-th
[0, · · · ,−hj(z), 0, · · · , 0, hi(z), · · · , 0]








h1(z)
...

hM (z)








= 0

Result (Y. Hua 1995) : One can form an OCMG that is a linear function of

the channel parameters such that its column vectors form a basis of the

noise subspace, i.e.

PG = P⊥
H
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Two step estimation technique

ML criterion :

hML = arg min
‖h‖=1

yHG(GHG)#GHy

whereh is the vector of all channels’ impulse responses. From the

commutativity propertyof linear convolution:

GHy = Yh

we obtain

hML = arg min
h

hHYH(GHG)#Yh
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Two step estimation technique

Two Step Maximum Likelihood (TSML) :

1. hc = arg min hHYHYh

2. he = arg min hHYH(GH
c Gc)

#Yh, whereGc is G constructed

from hc.

At each step the solution is given by the least eigenvector associated to the

least eigenvalue of the considered quadratic form.
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Cross-relations (CR) method

s

h

h

f = h

f = h

+

−

ε=0

y

y

1

2
2

1 2

12

1

• Principle: For every pair of channels, we have

yi(k) ∗ hj(k) = yj(k) ∗ hi(k)

• Algorithm : By collecting all possible pairs ofM channels, one can
easily establish a set of linear equations:

Yh = 0

This yields tohCR = arg minhHYHYh (first step of TSML).
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Subspace method

x(1)
x(2)

x(t)

Signal Subspace
θ∗Range(A( )) )(

Range(A(θ∗)) )(The orthogonal of

Noise subspace

Range(A( ))θ

Principle: Assume the following model: x(n) = A(θ)s(n) with

Range(A(θ)) = Range(A(θ′))⇐⇒ θ = θ′

Thus,θ can be estimated as:

θ̂ = arg min
θ

d(Range{x(n)}, Range(A(θ)))
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Channel subspace (CS) method

• Model:

y(n) = Hs(n) n = 0, ..., N −W

y(n) = [yT
1 (n), · · · ,yT

M (n)]T

yi(n) = [yi(n), · · · , yi(n + W − 1)]T

In our case: A←→ H and θ ←→ h.

• Main result : If W ≥ L + 1 and theM channels do not share a
common zero, then

Range(H) = Range(H′)⇐⇒ h′ = αh

whereα is a scalar constant.
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CS algorithm

• Estimate the signal (resp. noise) subspace as the principal(resp. minor)

eigen-subspace of the data covariance matrixRy:

Ry =
∑

n

y(n)yH(n) = [Es En]




Λs 0

0 0








EH

s

EH
n





where Range(Es) = Range(H) ⊥ Range(En).

• Compute the least square error solution to

hCS = arg min
‖h‖=1

‖EH
n H‖2.
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Comparison of the ML, CR, and CS methods

• ML method

– Large computational cost

– Very good estimation accuracy

• CR method

– Low computational cost

– Moderate estimation accuracy

• CS method

– Moderate computational cost

– Good estimation accuracy
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Signal Subspace (SS) method

=   Channel

matrix
Source signal matrixData matrix

Channel subspace

Signal subspace

= hθ

s θ = 

• Model: Y = [y(0), · · · ,y(N −W )] = HS

S being a the source signal matrix of Hankel structure.

• Principle: A←→ S and θ ←→ s

ŝ = arg min
s

= d(Row(Y), Row(S))
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Signal Subspace (SS) method

• Result (Xu et al 1995): Assume thatH is full column rank and that the

input sequence{s(n)}−L≤n≤N−1 contains more thanW + L + 1

modes, then

Row(S) = Row(S′)⇐⇒ s′ = αs

whereα is a scalar constant.
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SS algorithm

• Perform the SVD of the data matrixY = [y(0), · · · ,y(N −W )]

Y = U




Σs 0

0 0








VH

s

VH
n





Vn is the orthogonal matrix to the row space ofS

VnSH = 0

• Estimates by minimizing the quadratic criterion

ŝ = arg min
‖s‖=1

‖VnSH‖2
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Blind equalization

• Definition: g(z) is a blind equalizer iff:

g(n) ∗ y(n) = αs(n−m) ⇐⇒ g(z)h(z) = αz−m

• Characterization:

– Statistical criterion: If s(n) is i.i.d.

g(z) −→ ŝ(n) = g(n) ∗ y(n) is i.i.d.

e.g., Linear prediction , Bussgang , etc.

– Geometrical criterion: If s(n) ∈ A

g(z) −→ ŝ(n) = g(n) ∗ y(n) ∈ A

e.g., CMA algorithms.
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Mutually referenced equalizers (MRE) method

y

Equalizer  g

Equalizer  g z

+

−

ε=0

0

1

−1s(t)

s(t−1)

MRE relations: Let gi(n) i = 0, · · · , W + L− 1 be equalizer filters
satisfying

gi(n) ⋆ y(n) = αs(n− i), i = 0, 1, · · ·

Then, filtersgi should satisfy (MRE relations):

gi ⋆ y(n) = gi+1 ⋆ y(n + 1)
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Mutually referenced equalizers (MRE) method

• Result (D. Gesbert et al 1994) : Vice versa, the previous relations

characterize uniquely the equalizer filters, i.e. ifg0, · · · ,gd−1

(d = W + L) satisfy the MRE relations, then

gi(n) ⋆ y(n) = αs(n− i), ∀ i

• Algorithm : {gi} are estimated by minimizing (under a suitable

constraint) the quadratic criterion

J =
∑

n,i

‖gi ⋆ y(n)− gi+1 ⋆ y(n + 1)‖2
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Linear prediction (LP) method

• Model:






y(n) = [y1(n), · · · , yM (n)]T = [h(z)]s(n), s(n) : i.i.d

h(z) = [h1(z), · · · , hM (z)]T 6= 0,∀ z

• Principle: Bezout equality: ∃ g(z) = [g1(z), · · · , gM (z)] such that
g(z)h(z) = 1

=⇒ [g(z)]y(n) = s(n)

• Result: y(n) is an AR process of orderL. Its innovation process is
i(n) = h(0)s(n).
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LP algorithm

y(t)

Hy

h(0) x s(t)

Prediction (projection) subspace

• Estimate the prediction coefficients ofy(n) by solving the Yule-Walker
equations:

y(n) +
P∑

k=1

A(k)y(n− k) = i(n) = h(0)s(n)

• Estimate vectorh(0) (up to a constant) as the principal eigenvector of
the innovation covariance matrixD = E(i(n)i(n)H) = h(0)h(0)H .

K. A BED-MERAIM ENST PARIS



Blind System Identification. Oct. 2005 65

�

�

�

�

Comparison of the SS, MRE, and LP methods

• SS method
– Large computational cost

– Good estimation accuracy

– Deterministic input

• MRE method
– Moderate computational cost

– Good estimation accuracy

– Deterministic input

• LP method
– Low computational cost

– Moderate estimation accuracy

– Stochastic decorrelated input
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The situation of interest

���
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���

SENSOR  1
SENSOR   2

SOURCE  1
SOURCE  2

M different (possibly noisy) linear combinations ofN independent source

signals are observed at the sensors.
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Convolutive linear mixture model

s

s

s

y

y

1

System

transfer

function

2

N M

y2

1

y(n) = H(n) ⋆ s(n)

• y(n): M × 1 observation vector (array output),

• s(n): N × 1 unknownsource vector,

• H(z) =
∑

n H(n)z−n: M ×N unknowntransfer function matrix
assumed, in general, of finite impulse response, i.e. deg(H(z)) = L.
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Basic assumptions

• System dimension: We assume here strictlymore sensors than

sources, i.e. M > N .

• Source signals: They are assumed to bemutually independent

stationary random processes.

• System matrix: The transfer functionH(z) is assumed to be

irreducible(rank(H(z)) = N for all z) andcolumn reduced

(rank(H(L)) = N ).
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Objectives

• SIMO case: In the SIMO case we have to get rid of the inter-symbol

interference (ISI) only(blind equalization problem).

• MIMO case: In the MIMO case we have to get rid of the ISI(blind

equalization problem)and to get rid also of the inter-user interferences

(blind source separation (BSS)).

MIMO blind deconvolution ⇐⇒ Blind equalization + BSS.
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Deconvolution approach

using SOS

equalization

Blind

STEP  1

Convolutive mixture Instantaneous mixtureBlind source

using HOS

source signals

STEP  2

separation

• Step 1: Blind equalization using second order statistics. This step

transforms the convolutive mixture into an instantaneous mixture.

• Step 2: Application of a BSS algorithm (using, in general, the data

HOS) to the instantaneous mixture obtained at the previous step.
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Other possible deconvolution approaches

• Blind identification and deconvolution using HOS (Nikias etal 1993,
Liu et al 2002, etc.).

• Blind separation followed byM parallel SIMO blind equalization
(Bousbia-Salah et al 2000).

• Joint blind equalization and source separation by decorrelation (Y. Hua
et al 2000).

• Iterative blind deconvolution with interference cancellation (Delfosse et
al 1996).
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First step: Blind equalization

The same algorithms (except for certain details) for SIMO blind

identification can be applied to MIMO identification.

However, in the SIMO case we estimate the channel transfer function (resp.

the source signal) up to a1× 1 constant factorα, i.e. ĥ(z) = h(z)α, while

in the MIMO case we estimate the channel transfer function (resp. the

source vector) up to aN ×N constant matrixA, i.e. Ĥ(z) = H(z)A.
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Second step: Blind source separation

s

s

x

x

s

s

Instantaneous

A

Blind

 mixture
separation

source

1

N

1

N

1

N

Instantaneous linear mixture model:

x(t) = As(t)
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BSS versus ICA (Independent Component Analysis)

1. BSS = signal synthesis: Identify the mixture matrix and/or recover

the input signals from the observed signal by exploiting thestatistical

independenceor other features of the sources.

2. ICA = signal analysis: Analyse a multi-variate signal by

decomposing it into a set of independent components (independent

component analysis ICA).
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ICA versus PCA

• Principal component analysis: seeks directions in feature space that

best represent the data inleast squaressense.

• Independent component analysis: seeks directions in feature space

that are mostindependentfrom one another.
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BSS approaches

Moment Theory Moment Theory
Second−orderLower−order  Fractional Higher−order

Moment Theory

0 0.5 0.8 1 1.5 1.8 2 3 4

• HOS-based methods: Exploit the observations higher order statistics
either explicitely by processing their higher order cumulants or
implicitely through the optimization of non-linear functions given by
information-theoretic criteria.

• SOS-based methods: When the sources are ‘temporally colored’, one
can achieve BSS using signal decorrelation.

• FLOM-based methods: Dedicated to the separation of impulsive
signals, e.g. alpha-stable signals (these signals have infinite 2nd and
higher order moments).
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Information theoretic principles

sAs x B ?

B is computed such that its outputs are most independent from one another:

• By minimizing the mutual information between the components of ŝ(t).

• By minimizing the Kullbak-Leibler distance in between the pdf of ŝ(t)
and the product of its components pdfs, i.e.

KL(p(ŝ(t)),
∏

k

pk(ŝk(t)).

• My maximizing the nongaussianity ofŝ(t) (measures of nongaussianity
include the Kurtosis -fourth order cumulant- and the Negentropy
-differential entropy-).
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BSS by decorrelation

Basic assumptions:

• The mixing matrixA is full column rank.

• The sources are temporally coherent but mutually uncorrelated, i.e.,

Rs(τ)
def
= E(s(t + τ)s(t)H) =








ρ1(τ) 0

. ..

0 ρn(τ)








Rx(τ) = ARs(τ)AH
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Separation by decorrelation

• Principle: B = A−1 is the linear transform that decorrelate the signal

components at all time lags, i.e.

BRx(τ)BH = Rs(τ)

is diagonal for allτ .

• A two step procedure:

– Datawhitening: The whitening matrix transformsA into a unitary

matrix.

– Diagonalization: Estimate the unitary matrix by diagonalizing the

non-zero lag correlation matrices.
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Whitening

Whitening Matrix : Let W denotes an×m matrix, such that

(WA)(WA)H = UUH = I

W can be computed as an inverse square root of covariance matrix of the

observation vector (assuming unit-power sources).

Whitened correlations: Defined as

Rx(τ) = WRx(τ)WH = URs(τ)UH
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Diagonalization

• Diagonalization ofonesingle normal matrixM
⇐⇒ Minimizing under unitary transform the sum of squared moduliof
the off-diagonal elements. This is equivalent to the maximization under
unitary transformV = [v1, · · · ,vn] the sum of the squared moduli of
the diagonal elements:

C(M,V) =
∑

i

|v∗
i Mvi|

2

• For a setof d matrices:

C(V) =
d∑

k=1

C(Mk,V) =
∑

k,i

|v∗
i Mkvi|

2

=⇒ Joint diagonalization criterion .
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Identifiability

Objectives: Given a set ofK correlation matricesRx(τ1), · · · ,Rx(τK)

answer the following:

• Is it possible to separate the sources given this statistics?

• If no, what it the best we can do (partial identifiability)?

• Is it possible to test the identifiability condition?
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Theorem 1: Identifiability

• Define for each sourcei

ρi = [ρi(τ1), ρi(τ2), · · · , ρi(τK)] and ρ̃i = [ℜ(ρi),ℑ(ρi)]

Then, BSS can be achieved using the output correlation matrices at
time lagsτ1, τ2, · · · , τK iff ∀ i 6= j

ρ̃i and ρ̃j are (pairwise) linearly independent

• If this condition is satisfied thenB is a separating matrix iff∀ i 6= j

rij(k) = 0 and

τK∑

k=τ1

|rii(k)| > 0 (1)

whererij(k)
def
= E(zi(t + k)z∗j (t)), z = Bx andk = τ1, τ2, · · · , τK .
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Discussion

• Theorem 1 gives anecessaryand sufficientcondition to achieve BSS.

• It is possible to separate the sources from onlyonecorrelation matrix.

• K −→∞ =⇒ 2 sources are separable iff they havedifferent spectral
shape.

• It is well known that HOS methods can achieve BSS when no more

than one Gaussian source is present. In contrast, SOS methods can

achieve BSS when no more than one temporally white source is

present.
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Theorem 2: Partial Identifiability

Assume there ared distinct groups of sourceseach of them containingdi

source signals with same (up to a scalar) correlation vectorρ̃i, i = 1, · · · , d,
i.e.,s = [sT

1 , · · · , sT
d ]T .

Let z(t) = Bx(t) be anm× 1 random vector satisfying equation (1).

Then, there exists a permutation matrixP and non-singular matricesUi

such that

Pz(t) = [zT
1 (t), · · · , zT

d (t)]T

zi(t) = Uisi(t)

Moreover, sources belonging to the same group, i.e., having same (up to a
scalar) correlation vector̃ρi can not be separated using only the correlation
matricesRx(k), k = τ1, · · · , τK .
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Theorem 3: Testing of Identifiability Condition

Let τ1 < τ2 < · · · < τK beK distinct time lags andz(t) = Bx(t). Assume

thatB is such a matrix thatz(t) satisfies equation (1). Then there exists a

generalized permutation matrixP such that fork = τ1, · · · , τK :

Rz(k) = E(z(t + k)zH(t)) = PRs(k)PT

In other words,z1, · · · , zm have the same (up to a permutation) correlation

factors ass1, · · · , sm at time lagsτ1, · · · , τK .
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Discussion

• Two situations may happen:

1. For all pairs (i, j), ρ̃i andρ̃j are pairwise linearly independent.

Then we are sure that the sources have been separated and that

z(t) = s(t) up to a scalar and a permutation.

2. A few pairs (i, j) out of all pairs satisfỹρi andρ̃j linearly

dependent. Therefore the sources have been separated in blocks.

• The angle betweeñρi andρ̃j can be used as a measure of the quality of

separation between sourcei and sourcej.
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Simulation Examples

• Simulation context:

– ULA with M = 5 sensors,N = 2 unit-norm independent sources
andT = 1000 samples.

• Criteria :

– Rejection level criterion:

Iperf i

def
=

∑

j 6=i

E

{

ρj(0)|(B̂A)ij |
2

ρi(0)|(B̂A)ii|2

}

– Identifiability criterion:

ϑρ
def
=

∣
∣
∣
∣
∣

|ρ̃1ρ̃
T
2 |

‖ρ̃1‖‖ρ̃2‖
− 1

∣
∣
∣
∣
∣
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Simulation examples

Table 1. Separation performance versusϑρ.

Sources ϑρ Iperf (dB)

2 AR1 signals 0.213 -26.23

2 CWGP signals 0.007 -5.14
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Figure 1. Separation Performance versusδθ (SNR=25dB): 2 AR1 sources with

a1 = 0.95 exp(j0.5) anda2 = 0.5 exp(j(0.5 + δθ)).
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Simulation examples
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Figure 2. Separation Performance versus the SNRs:m = 3 sources 2 of them are

CWGP signals and the third is AR1..
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Simulation examples
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Figure 5. Comparison with EASI (Laheld & Cardoso 1996): 2 AR1 sources with

QAM4 innovation processes &SNR = 30dB. .
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Concluding remarks

• A common feature of all presented methods is the use of time and/or

spacediversity.

• Extensionto IIR case or multiple input case is possible.

• Partial knowledgeof the channels can be incorporated in the blind

criteria, e.g., DOA of multi-paths, pulse-shape filters, spreading

sequence in CDMA systems, etc.

• Robustnessto channel order estimation errors: The last 3 methods (SS,

MRE, LP) are more robust than the first 3 methods (ML, CR, CS).
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Some hot topics & perspectives

• Semi-blind methods: i.e., combining blind and non-blind criteria (i.e.,

training sequence) to improve the estimation accuracy.

• Induced cyclostationarity or pre-filtering : i.e., modify the signal

modulation at the transmission side in such a way to suit and simplify

the blind system identification (BSI).

• Space time coding: BSI is a tool to exploit the diversity at the

reception. The space-time coding is to create the diversityat the

transmission.
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Some hot topics & perspectives

• Application-oriented BSI methods: Derive or adapt blind system

identification (BSI) methods for specific applications (this allows to

exploit a maximum of side-information).

• Robustness: Improve the robustness of BSI methods against noise and

modellization errors.

• Under-determined case: BSI for systems with more sources than

sensors.
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