Estimation Lower Bounds and
 Synchronization Issue in Single Carrier System

```
Alexandre Renaux and Pascal Larzabal
```

Ecole Normale Supérieure de Cachan, France

Estimation Lower Bounds and Synchronization Issue in Single Carrier System

Outline

Estimation Lower Bounds
Estimator Perfomance $\mathcal{B r e a k d o w n}$
Relative Insufficiency of De terministic Bounds
Baye sian Bounds of the Weiss-Weinste in Family

Synchronization Issue in Single Carrier System
Problem Setup

Deterministic Bounds
$\mathcal{W e}$ iss \mathcal{G} Weinste in Family Bounds

Estimator Perfomance Breakdown

Estimator Perfomance Breakdown

Estimator Perfomance Breakdown

Estimator Perfomance Breakdown

Insufficiency of the Cramér. Rao Bound

Asymptotic Area

Insufficiency of the Cramér. Rao Bound
\mathcal{N} on-asymptotic Area

- the $\mathcal{C R B}$ is too optimistic
the CRB doesn't exhibit threshold phenomenon

Q1S Relative Insufficiency of Deterministic Bounds
$\xrightarrow[\square]{\square}$ The parameters are assumed to be deterministic

> Unific ation of deterministic lower bounds
\mathcal{B} ounds $=\operatorname{Minimum} \mathcal{M S} \mathcal{E}$ of anestimator in θ_{0} witf contraints onthe bias (in possible other points)

QNS Relative Insufficiency of $\operatorname{Deterministic~Bounds~}$

$$
M S E=\text { bias }^{2}+\text { variance }
$$

Solution of the constraints optimization problem

Cramér-Rao bound
Bhattacfaryya bound

Q SACHAN Relative Insufficiency of Deterministic Bounds

True value of the parameter
\mathcal{N} test points: Barankin bound
1 test point: Chapman-Robins bound

QNS Relative Insufficiency of Deterministic Bounds
Test points ???

$$
\text { bound }=f\left(h_{1}, h_{2}, \ldots, h_{K}\right)
$$

$$
\text { bound }_{\text {best }}=\max _{h_{1}, h_{2}, \ldots, h_{K}} f\left(h_{1}, h_{2}, \ldots, h_{K}\right)
$$

$\mathcal{H u g e}$ computationalcost

Bayesian Bounds of the

The parameters are assumed to be random (take into account the a prior pdf)

Bayesian Bounds of the We iss - Weinste in Family

Bayesian Bounds of the We iss - Weinste in Family

Bayesian Bounds of the We iss - Weinste in Family

Unification of Bayesian lower bounds

In the Baye sian context, the best Bayesian bound is given by the Conditional Me an Estimator

$$
\hat{\theta}_{M M S E E}=\int \theta p(\theta \mid \mathbf{x}) d \theta
$$

which is the solution of

$$
\min \int_{\Omega} \int_{\Theta}(\hat{\theta}(\mathbf{x})-\theta)^{2} p(\mathbf{x}, \theta) d \theta d \mathbf{x} \quad \text { Gloбal } \mathcal{M S} \mathcal{E}
$$

Bayesian Bounds of the We iss - Weinste in Family

Unification of Bayes sian lower bounds

$$
\min \int_{\Omega} \int_{\Theta}(\hat{\theta}(\mathbf{x})-\theta)^{2} p(\mathbf{x}, \theta) d \theta d \mathbf{x}
$$

$\min _{v} \iint_{\Omega \Theta} v^{2}(\mathbf{x}, \theta) p(\mathbf{x}, \theta) d \theta d \mathbf{x}$

$\begin{aligned} \text { S. t. } \iint_{\Omega} v(\mathbf{x}, \theta)\left[\left(\frac{p(\mathbf{x}, \theta+h)}{p(\mathbf{x}, \theta)}\right)^{s}-\right. & \left.\left(\frac{p(\mathbf{x}, \theta-h)}{p(\mathbf{x}, \theta)}\right)^{1-s}\right] p(\mathbf{x}, \theta) d \theta d \mathbf{x} \\ & =h \int_{\Omega} \int_{\Theta}\left(\frac{p(\mathbf{x}, \theta-h)}{p(\mathbf{x}, \theta)}\right)^{1-s} p(\mathbf{x}, \theta) d \theta d \mathbf{x}\end{aligned}$
$\forall h$ and $\forall s$

Bayesian Bounds of the We iss - Weinste in Family

Unification of $\mathcal{B a y e}$ sian lower bounds

$\forall h$ and $\forall s \longleftrightarrow$ Infinite number of constraints

$\not \subset h$ and $X s$ \triangle Something less than the Gest Bayesian bound (due to the constraints relaxation)

Minimal bounds on the MS E

Bayesian Bounds of the We iss $-\mathcal{W e}$ inste in $\mathcal{F a m i l y}$

Unification of Baye sian lower bounds

$\forall h$ and $\forall s \longleftrightarrow$ Infinite number of constraints

$\Varangle h$ and $X s$

\longrightarrow Something less than the Conditional Me an Estimator $\mathcal{M S} \mathcal{E}$ (due to the constraints re(axation)

Solution of the constrained optimization problem

Degrees of freedom: choice of h and s

Bayesian Bounds of the We iss - Weinste in Family

Unification of Bayesian lower bounds

Baye sian Bhattacharyya bound
$\xrightarrow[\square]{\square}$ solution $=[1,0, \cdots, 0] \mathbf{B}^{-1}[1,0, \cdots, 0]^{\mathrm{T}}$
$\mathcal{W}_{i t \kappa} \quad B_{i, j}=\int_{\Omega} \int_{\Theta} \frac{1}{p(\mathbf{x}, \theta)} \frac{\partial^{i} p(\mathbf{x}, \theta)}{\partial \theta^{i}} \frac{\partial^{j} p(\mathbf{x}, \theta)}{\partial \theta^{j}} d \theta d \mathbf{x}$
Bayesian Cramér-Rao bound
Particular case

$$
K=1 \xrightarrow[\square]{\text { ticular case }} \boldsymbol{K} \text { solution }=\left(\int_{\Omega} \int_{\Theta} \frac{1}{p(\mathbf{x}, \theta)} \frac{\partial p(\mathbf{x}, \theta)}{\partial \theta} d \theta d \mathbf{x}\right)^{-1}
$$

Bayesian Bounds of the We iss - Weinste in Family

Unification of Bayesian lower bounds

Particular case

$$
K=1 \quad \leadsto \text { solution }=\frac{h^{2}}{\iint_{\Omega \Theta} \frac{p^{2}(\mathbf{x}, \theta+h)}{p(\mathbf{x}, \theta)} d \theta d \mathbf{x}-1}
$$

Bayesian Bounds of the We iss - Weinste in Family

Unification of $\mathcal{B a y e}$ sian lower bounds

$$
\begin{gathered}
\begin{array}{c}
\mathbf{h}=\left[h_{1}, h_{2}, \cdots, h_{K}\right]^{\mathrm{T}} \\
\mathbf{s}=\left[s_{1}, s_{2}, \cdots, s_{K}\right]^{\mathrm{T}}
\end{array} \begin{array}{c}
\text { Weiss-Weinstein } \mathcal{B} \text { ound } \\
\text { solution }=\boldsymbol{\xi}^{\mathrm{T}} \mathbf{W}^{-1} \boldsymbol{\xi}
\end{array} \\
W_{i, j}=E\left[\left(L^{s_{i}}\left(\mathbf{x} \mid \theta+h_{i}, \theta\right)-L^{1-s_{i}}\left(\mathbf{x} \mid \theta-h_{i}, \theta\right)\right)\left(L^{s_{j}}\left(\mathbf{x} \mid \theta+h_{j}, \theta\right)-L^{1-s_{j}}\left(\mathbf{x} \mid \theta-h_{j}, \theta\right)\right)\right] \\
L\left(\mathbf{x} \mid \theta_{1}, \theta_{2}\right) \triangleq \frac{p\left(\mathbf{x}, \theta_{1}\right)}{p\left(\mathbf{x}, \theta_{2}\right)} \\
\boldsymbol{\xi}=\left[\begin{array}{c}
h_{1} E\left[L^{1-s_{1}}\left(\mathbf{x} \mid \theta-h_{1}, \theta\right)\right] \\
h_{2} E\left[L^{1-s_{2}}\left(\mathbf{x} \mid \theta-h_{2}, \theta\right)\right] \\
\vdots \\
h_{K} E\left[L^{1-s_{K}}\left(\mathbf{x} \mid \theta-h_{K}, \theta\right)\right]
\end{array}\right]
\end{gathered}
$$

Estimation Lower Bounds and Synchronization Issue in Single Carrier System

Outline

Estimation Lower Bounds
Estimator Perfomance $\mathcal{B r e a k d o w n}$
Relative Insufficiency of De terministic Bounds
Baye sian Bounds of the Weiss-Weinste in Family

Synchronization Issue in Single Carrier System
Problem Setup

Deterministic Bounds
$\mathcal{W e}$ iss \mathcal{G} Weinste in Family Bounds

Problem Setup

Data Model

$$
x_{k}=\rho a_{k} e^{j k \theta}+n_{k} \quad \text { with } \quad k=0, \ldots, N-1
$$

$\left\{a_{k}\right\}$: training sequence $\quad \theta$: parameter of interest

$$
\left\{n_{k}\right\} \sim \mathcal{N}_{c}\left(\mathbf{0}, \mathbf{I}_{N}\right) \quad \rho^{2}=S N R
$$

Bayesian case

$$
\theta \sim N\left(0, \sigma_{\theta}^{2}\right)
$$

Deterministic Bounds

$$
C R B\left(\theta_{0}\right)=\frac{1}{2 \rho^{2} \sum_{k=0}^{N-1}\left|a_{k}\right|^{2} k^{2}}
$$

$$
\operatorname{ChRB}\left(\theta_{0}\right)=\sup _{0 \leq h \leq \pi} \frac{h^{2}}{e^{4 \rho^{2} \sum_{k=0}^{N-1}\left|a_{k}\right|^{2}(1-\cos (k h))}-1}
$$

Deterministic Bounds

$\mathcal{S} \mathcal{N} \mathcal{R}(d \mathcal{B})$

We iss \mathfrak{G} Weinste in Family Bounds

$B C R B=\frac{\sigma_{\theta}^{2}}{2 \sigma_{\theta}^{2} \rho^{2} \sum_{k=0}^{N-1}\left|a_{k}\right|^{2} k^{2}+1}$

$$
\begin{gathered}
B Z B=\sup _{h} \frac{h^{2}}{\sqrt{2} \sigma_{\theta} e^{4 \rho^{2} \sum_{k=0}^{N-1}\left|a_{k}\right|^{2}(1-\cos (h k))-2 h^{2}\left(\frac{1}{2 \sigma_{\theta}^{2}}-2\right)}-1} \\
\left\{\begin{array}{l}
W W B=\sup _{h, s} \frac{h^{2} \eta^{2}(s, h)}{\eta(2 s, h)+\eta(2-2 s,-h)-2 \eta(s, 2 h)} \\
\eta(\alpha, \beta)=\sqrt{2} \sigma_{\theta} e^{-2 \rho^{2} \alpha(1-\alpha) \sum_{k=0}^{N-1}\left|a_{k}\right|^{2}(1-\cos (k \beta))-\alpha \beta^{2}\left(\frac{1}{2 \sigma_{\theta}^{2}}-\alpha\right)}
\end{array}\right.
\end{gathered}
$$

We iss \mathfrak{G} Weinste in Family Bounds

