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G/VS Estimator Perfomance Breakdown
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No Information
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Estimator Perfomance Breakdown

Maximum Likelihood Estimator --- Single Noisy Cisoide
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G/VS Estimator Perfomance Breakdown
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Maximum Likelihood Estimator --- Single Noisy Cisoide
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G/VS Estimator Perfomance Breakdown
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4 )
. Goals
% _ - Approximation of the MSE curve over all
— No Information the SNR range
o 4
- \_- Good estimation of threshold SNRy,,
L]
O
L
©
>
o
n
c
©
o)
=

>
SNR4 Signal to Noise Ratio (dB)

Alex - 6
Thurday, 27th October 2005
NEWCOM Automn School 2005



VS Insufficiency of the Cramér-Rao Bound
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Asymptotic Area

>

Efficient estimator

(asymptotically !!!)
>
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VS Insufficiency of the Cramér-Rao Bound
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Non-asymptotic Area

~
g What’s happen

- the CRB is too optimistic

>

- the CRB doesn’'t exhibit threshold phenomenon
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VS Relative Insufficiency of Deterministic Bounds
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D:> The parameters are assumed to be deterministic
Unification of deterministic lower bounds

with contraints on the bias

(z—_(i‘ Bounds = Minimum MSE of an estimator in 90
= (in possible other points)
. 2
min |f (9 — 90) p (x]0o) dx | — M=E
st. |/ (9 = 90) p (x]60) gi (x) dx = ¢,
k=0, K—1

Bias constraints
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VS Relative Insufficiency of Deterministic Bounds
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MSE = bias® + variance
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. . Cramér-Rao bound
Solution of the constraints ﬂﬂ:>

optimization problem Bhattacharyya bound
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N test points: Barankin bound

1 test point: Chapman-Robins bound
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VS Relative Insufficiency of Deterministic Bounds
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Test points ???

bound = f (hi,ho,...,h)

boundp.ss = max [ (hy, ho,....,h)
hi.ha,....h

Huge computational cost
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VS Bayesian Bounds of the

chcHAn ~.  Weiss-Weinstein Family
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solution W——>| Bayesian Bounds;J

The parameters are assumed to be random (take into account the a priori pdf)
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Bayesian Bounds of the
G/Vs Weiss-Weinstein Family

[Two FamiliesJ

M-hypothesis testing Covariance inequality
problem principle
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Bayesian Bounds of the
G/Vs Weiss-Weinstein Family

Unification of Bayesian lower bounds

In the Bayesian context, the best Bayesian bound is given by the
Conditional Mean Estimator

OMMSEE = /910 (0|x) db

which Is the solution of

) 2
min // (9 (x) — 9) p(x,0)dfdx  Global MSE

6
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Bayesian Bounds of the
G/Vs Weiss-Weinstein Family

Unification of Bayesian lower bounds
R 2
min /f (9 (x) — 9) p(x,0)dAdx
Qe ﬁ

i 111111 [ [v*(x,60) p(x,6) didx
Q6

| s 6. [ [v(x.0) [(Fﬁ;}f;j‘) - (255 _ﬂ (x.0) dfdx

\ (e
_f//( Xe_h) p(x,6) dddx

Yh and Vs

h € parameter range
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Bayesian Bounds of the
G/Vs Weiss-Weinstein Family

Unification of Bayesian lower bounds

YVh and Ys <> Infinite number of constraints

)({ h and )(7/5 ﬂﬂ:> Something less than the best Bayesian bound
(due to the constraints relaxation)

Minimal bounds on the MSE
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Bayesian Bounds of the
G/Vs Weiss-Weinstein Family

Unification of Bayesian lower bounds

YVh and Ys <> Infinite number of constraints

){{h/ and )(7/5 ﬂﬂ:> Something less than the Conditional Mean
@ Estimator MSE (due to the constraints

relaxation)

Solution of the constrained optimization problem

Degrees of freedom: choice of h and s
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Bayesian Bounds of the
G/Vs Weiss-Weinstein Family

Unification of Bayesian lower bounds

Bayesian Bhattacharyya bound

s=1 _
IC—> solution = 1,0,---,0|B 1[1,0,.-- jO]T
h—0
i 37
ot With B ;= // : dp‘()i?Q) 0 p(x, %) df dx
I | /) p(x,0) 90 a0’

Bayesian Cramér-Rao bound
Particular case —1

K =1 WC__)> solution = // ! dp(xﬁ)d@dx
p(x,0) 08

Qo
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Bayesian Bounds of the
G/Vs Weiss-Weinstein Family

Unification of Bayesian lower bounds

Reuven-Messer bound (Bayesian Barankin bound)
=3
> solution = h" (D — 11T) h

With Di‘j://p(x,9+hi)p(x,6’+hj)d9dx
| p(x,6)

Qe

Bobrovsky-Zakai bound
Particular case (Bayesian Chapman-Robins bound)

2
K = |]|]|::> solution = P2 (x Qj_Lh)
££ p(é,e) dfdx—1
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Bayesian Bounds of the
G/Vs Weiss-Weinstein Family

Unification of Bayesian lower bounds

Weiss-Weinstein Bound

solution = £'W1¢

W, ;= FE[(L% (x|0 + h;,0) — L= (x]0 — hs, 0)) (L% (x| + h;,0) — L1=si (x|6 — h;,0))]

h.-lE [Ll_sl (X‘Q — h"la 9)}
th [Ll—.s'g (X‘Q — }1-2? 9)}

i higE [Ll_SK (X‘Q - h.-K,_ 9)}
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NS Problem Setup
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Data Model

z. =|pape’™® +ny | with k=0,...,N—1

{ar} : training sequence 0 : parameter of interest

{nr} ~ Nc(0,Iy) 0> =SNR

Bayesian case

0 ~ N (0,0)
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O/VS Deterministic Bounds
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1
. N1 2 .
2,02 |CL/{| ]{72
k=0

CRB (0) =

h2

ChRB (0y) = sup N-
0<h<m 4p2 Z |ak|2(1_cos(kh,))
k=0

e —1
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G/VS Deterministic Bounds

C ACHAMWN

Chapman-Robins Bound -

ML Estimator empirical MSE

MSE (dB)

Cramér-Rao Bound

10 Observations BPSK

SNR (dB)
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CNVS Weiss & Weinstein Family Bounds
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5
BCRB = ———0
20202 % ap]® k2 + 1
k=0
h?
BZB = sup

N-—-1
h 4p2 3 |ak|?(1—cos(hk))—2h2 ( ‘)12 —2)
V209 F=0 e — 1

( h2i? (s, h
WWB = sup v (5,1)
hos 1(28,R) +1(2 — 2s,—h) — 217 (s, 2h)

\ N—1
| —2p%a(l—a) 3 ak|2(l—cos(ﬁ:;ﬁ’))—a.,s‘j’g( L —oc)
n (o, B) = V204e k=0 295

\
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% Weiss & Weinstein Family Bounds
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