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1. Introduction

Synchronization is fundamental to the proper operation of wireless sensor networks (WSNs)
and mobile ad hoc networks (MANETs). Synchronization may beperformed at various
levels: from very coarse to very fine-grained; the required accuracy depends upon the ap-
plication and the network environment, and hence can changedynamically. For example,
coarse time synchronization suffices for many detection andtracking applications, but finer
sync is required for distributed array procesisng, analog to digital conversion (ADC), slot
sync, and cooperative communications.

Network synchronization is a well-studied topic with an extensive history, especially for
wired networks, e.g., see Lindsey et al. [1], Bregni [2], andreferences therein. Typically,
these works assumed high quality devices, availability of fine control of the network, ex-
tensive connectivity with little or no mutual interference, as well as often assuming known
(or repeatable and measurable) propagation and processingdelays [3]. Surveys of WSN
sync protocols may be found in the papers by Sivrikaya and Yener [4], Johannessen [5],
Sundararaman et al. [6], [3], and [7].

According to Wiki, synchronization is timekeeping which requires the coordination of
events to operate a system in unison. The familiar conductorof an orchestra serves to keep
the orchestra in time. Systems operating with all their parts in synchrony are said to be
synchronous or in sync. Some systems may be only approximately synchronized, or ple-
siochronous. For some applications relative offsets between events need to be determined,
for others only the order of the event is important.

Wireless broadcast and sync are much older problems, of course. A fascinating book
by Peter Galison [8] describes the pioneering work of Einstein and Poincare on finding
common time references (circa 1909). Albert Einstein, thenan young, obscure German
physicist was experimenting with measuring time using telegraph networks and with the
coordination of clocks at train stations; the renowned mathematician Henri Poincaré, pres-
ident of the French Bureau of Longitude, was mapping time coordinates across continents.
Sundials and watches have been in use for centuries; they were relatively inaccurate; but
travel and communications were slow (until at least the end of the ninteenth century), and
those local time differences were of little importance. Story of Hugyens, 1665 and his
observation of syncing pendulums while on the sickbed

Even older of course are time-keeping mechansims in nature;Stogatz [9] provides an
elegant description of synchronization among fireflies in Malaysia, and circadian rhythms.
Studies of the robustness of circadian clocks (e.g., via clock neruons in the superchiasmatic
nucleuns) indicate that individual neurons are sloppy timekeepers but synchronized neurons
are precise clocks. could lead to development of algorithmsfor synchronizing communi-
cation networks (e.g., transmit beamforming, GPS) that exploit combinations of local and
global signaling [10].

Synchronization is crucial in diverse applications:

• In energy constrained WSNs and MANETs, accurate clock synchronization facili-
tates energy-efficient Medium Access Control (MAC).

• Reliable coherent communication systems require accuratesynchronization (timing
and frequency) and channel estimation, particularly when the data rate or bandwidth
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is large, and in multiple antenna systems. Blind estimationtechniques have been pro-
posed in order to save bandwidth; however, the tradeoff withpower and complexity
is ambiguous. Practical systems typically use some form of training which may be
prepended, appended, or embedded in the data packet. Training typically leads to
low complexity receivers and good performance with moderate sacrifice in rate.

• Synchronization is crucial to enabling distribted communications such as cooperative
communications and relaying, and in network managmeent (probing and monitor-
ing).

• Many networked signal processing tasks depend critically upon a common time ref-
erence; examples include event detection and target tracking, localization, (multi-
modal) sensor fusion, distributed array processing, and synchronization of distributed
information caches.

• In robotics, synchronization and delay management are crucial components of net-
worked control and acutation; poor synchornization can lead to control instabilities.
Other applications in collabortive robotics such as mapping or geolocation, also re-
quire a common time reference.

• WSN setup and maintenance also require synchronization. Node gelocation is typi-
cally required after deployment, and this, in turn, requires time synchronization.

We have alluded only to the time synchronization problem in the preceding paragraphs.
But frequency synchronization is equally crucial. The ensuing sections in this chapter will
study the synchronization problem im detail. Our focus is onsystems based on Orthogo-
nal Frequency Domain Access (OFDM). We will consider both the single and multi-user
problem, and the impact of flat-fading as well as frequency-selective channels. In these
sections, the focus is on time and frequency synchronization with a base station. In the last
chapter we will consider the network time synchronization problem, without the constraint
(or freedom) of OFDM.

The chapter is written at the beginner graduate level. The reader is assumed to have
a working knowledge of digital communications (e.g., [11],[12]), estimation theory (e.g.,
[13]).

2. Synchronization for flat fading channel

In this section, we assume that the the multipath delay spread in the propagation channel
does not lead to Inter-Symbol Interference (ISI). In practice, this holds if the symbol period
is sufficiently larger than the delay spread of the channel. The frequency response of the
channel is thus flat. As the channel does not induce ISI, the OFDM modulation sheme does
not provide any advantages and a (old-fashioned) single-carrier approach suffices.

From a practical point of view, such an assumption on the flat fading channel is sat-
isfied in satellite communications (e.g., DVB-S), anisotropic transmissions (e.g., between
two DVB-T transmitters), optical fiber communications (e.g., with pre-compensation of the
static chromatic dispersion) [14,15].
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The transmitted signal (in baseband) [11,12] is given by

xa(t) =
N−1

∑
n=0

snha(t −kTs)

where

• sn are the transmitted symbols belonging to ASK, PSK or QAM constellations or any
linearly precoded scheme.N is the sequence length used for estimating the synchro-
nization (sync) parameters;

• Ts is the symbol period which is assumed to be known throughout this chapter. For
more information about the blind estimation ofTs, the reader is referred to [16];

• ha(t) is the shaping filter that classically is a square-root Nyquist filter. For example,
in 3G, it is the square-root raised cosine filter with roll-off 0.35. The main property
that we need further is that the filter is band-limited with bandwidth between 1/Ts

and 2/Ts.

Fot the flat fading channel, the received signal (in baseband) is

ya(t) = xa(t − τ0)e
2π( f0t+φ0) +ba(t)

where

• the sync parameters are the symbol timingτ0, the (constant) phaseφ0, and the carrier
frequency offset (CFO)f0 [17,18,19].

• ba(t) is the complex-valued circularly-symmetric white zero-mean Gaussian process
with varianceN0 per real dimension (for more details about the assumption onthe
noise, see [12]). Note that the concept of circularity is of great importance and will
defined in detail later.

The received signal can be re-written as follows

ya(t) =

(
N−1

∑
n=0

snha(t −kTs− τ0)

)
e2iπ( f0t+φ0) +ba(t)

We would like to point out that we do not assume ana priori distribution for the tim-
ing and phase parameters. Indeed, the timing can belong uniformly ino the interval [0,Ts)
since the receiver and the transmitter are not synchronizedin time yet. Due to the chan-
nel propagation, the phase can take any value over[0,2π). In contrast, the CFO which
is due either to local oscillator mismatch or Doppler effects can only lie in a pre-defined
interval. To illustrate this let us consider the worst case when only a cheap local oscilla-
tor is available. Its precision is about 40ppm which leads toa CFO of 40 kHz at carrier
frequency 1GHz. Assuming a rather high vehicle speed of 360km/h, the Doppler induced
offset is upper-bounded by 333Hz Consequently, the CFO is much smaller than the typical
signal bandwidth which is of order MHz. Note that the main source of the CFO is the local
oscillator mismatch and not the Doppler effect. Indeed, theDoppler effect has a greater
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influence on the coherence time of the channel and thus on the statistical model of the chan-
nel (is it a fast flat fading channel or a slow flat fading channel?). The nature of the flat
fading channel (fast or slow) is crucial for designing properly the communication scheme
(feedback link, diversity management, etc.) but not the synchronization step since, except
in very infrequent cases, the synchronization step duration is always much smaller than the
channel coherence time.

Before going further, we recap the optimal symbol detector when synchronization is
perfect (τ0 = 0, φ0 = 0, and f0 = 0) [11,12,18,17]. If the information symbols are equally
likely, the maximum likelihood detector is the optimal one in the sense of error probability
minimization. Therefore, we have

{ŝn}N−1
n=0 = arg max

{sn}n=0,··· ,N−1

p(y(t)|{sn}n=0,··· ,N−1).

Due to the Gaussiannity of the noise process, we have [20]

p(y(t)|{sn}n=0,··· ,N−1) ∝ e−
∫
R|y(t)−∑N−1

n=0 snh(t−nTs)|2dt/2N0 .

Thus

ŝn = arg min
{sn}n=0,···,N−1

∫

R

∣∣∣∣∣y(t)−
N−1

∑
n=0

snh(t −nTs)

∣∣∣∣∣

2

dt

We finally obtain that
ŝn = arg min

{sn}n=0,···,N−1

JN(s)

where

JN(s) =

∫

R

|y(t)|2 dt+
N−1

∑
n,n′=0

sns∗n′ h̃(n−n′)−2
N−1

∑
n=0

ℜ{s∗nz(n)}

where

• za(t) = ha(−t)∗ ⋆ya(t) the continuous-time output of the so-called matched filter,

• z(n) = za(nTs) the sampled version (at symbol rate) of the matched filter output,

• h̃a(t) = ha(−t)∗ ⋆ha(t) the continuous-time equivalent filter,

• andh̃(n) = h̃a(nTs) the discrete equivalent filter.

We remark that the optimality criterion depends on the received signal only through the
discrete-time matched filter output. The introduction of the signalz(n) can be also justified
by following an alternative way: the received signal (underthe perfect synchronization
assumption), can be re-written as follows:

ya(t) = ∑
n

snΦn(t)+ba(t)

whereΦn(t) = ha(t − nTs). As the useful information inya(t) is the symbolssn, the re-
ceived signal can be split into two parts: the useful one associated with the signal subspace
spanned by the functionsΦn(t), and the other one generated by the space orthogonal to the
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signal subspace, the so-called "noise subspace". Let ˜z(n) =< ya(t)|Φn(t) > be the projected
signal onto the signal subspace where< •|• > denotes the canonical inner product. One
can easily check that ˜z(n) = z(n). As the noise is Gaussian, its contribution to the signal
subspace is independent of those to the orthogonal noise subspace. Therefore, without loss
of optimality, one needs to only work with ˜z(n) = z(n) and can drop the projection onto the
noise subspace.

Moreover, one can easily see that

z(n) = ∑
k

h̃(k)sn−k + b̃(n) (1)

whereb̃(n) = ha(−t)∗ ⋆ba(t)|t=nTs
is circularly-symmetric Gaussian noise with zero mean

and power spectral densityS̃b(e
2iπ f ) = 2N0h̃(e2iπ f ) = 2N0∑k h̃(k)e−2iπk f . The maximum

likelihood (ML) criterion depends on the shaping and propagation filters only through the
so-called discrete-time equivalent filterh̃. Therefore the system performance will only be
driven by the filter̃h and the SNR.

Now the second step of the optimal detector is to find the minimum ofJN(s). When the
shaping filterha(t) is a square-root Nyquist filter, it is well known thath̃a(t) is the Nyquist
filter and h̃(n) = δ0,n whereδ0,n is the Kronecker index. Thus the functionJN(s) can be
significantly simplified to

JN(s) =
N−1

∑
n=0

|z(n)−sn|2.

Consequently, the optimal detector is a symbol-by-symbol detector

ŝn = argmin
sn

|z(n)−sn|2

which is the so-called threshold detector. When the Nyquistcondition is not satisfied (es-
pecially when the channel is non flat fading), the minimization of JN(s) is much harder
and can be done via the famous Viterbi algorithm [21, 22]. When the Viterbi algorithm is
too complex (channel too long and/or high constellation size) suboptimal detectors, such as
the zero-forcing (ZF), minimum mean-square error (MMSE), decision-feedback equalizer
(DFE), can be used. For details, mathematical explanationsand derivations, we refer the
reader to [11,12]. The optimal receiver is summarized in Fig.1.

.

za(t)
nTs

ha(−t)∗
ŝz(n)

mins JN(s)
ya(t)

.

Figure 1: Optimal receiver structure (with perfect synchronization)

When the sync parameters are non-zero but known, the continuous-time received signal
is given by

ya(t) = ∑
n

snΨn(t −nTs)+ba(t)



Synchronization 7

with Ψn(t) = ha(t −nTs− τ0)e2iπ( f0t+φ0). Once again, the optimal operation at the receiver
side is to projectya(t) onto the functionΨn(t). Therefore the optimal receiver is now given
in Fig.2.

.

××
za(t)ha(−t)∗

ŝz(n)
mins JN(s)

ya(t)

e−2iπf0t

nTs + τ0

e−2iπφ0

.

Figure 2: Optimal receiver structure (with known synchronization paramters)

Notice that the phase compensator can be located anywhere inFig.2 since it commutes
with the other operators. The CFO compensator can be locatedanywhere iff the CFO is
small enough compared to the filter bandwidth1. This last assumption is usually satisfied as
mentioned earlier.

Let us now move on to some performance evaluation when the synchronization step is
not carried out. In order to understand the influence of each parameter, we will consider
parameters one by one, assuming all the others are known. Letus first focus on the timing.
In the flat fading context, the shaping filter is usually square-root Nyquist and more pre-
cisely a square-root raised cosine filter with roll-offρ . Under the perfect synchronization
assumption,z(n) is not distorted by Inter-Symbol Interference (ISI). But ifthe timing is not
perfectly known,z(n) will be affected by ISI. In Fig. 3 (left), we display the eye diagram
of za(t) whenτ0 = 0 andρ = 0.5 with BPSK odulation. We remark that if the sampling
operation is not done at a multiple ofTs, the eye will be less open and performance will be
degraded. In Fig. 3 (right), bit-error rate (BER) versus SNREb/N0 curves are shown for
different values ofτ0. Notice that performance degrades significantly when the timing error
exceeds 10% of the symbol period.
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Figure 3: Eye diagram (left) in noiseless case and BER (right) versusEb/N0 in presence of
timing mis-synchronization.

1Let h1(t) and h2(t) be two filters of bandwidth 1/Ts. Let us assume also thatf0Ts ≪ 1. We have
h1(t) ⋆ (h2(t)e2iπ f0t) = e2iπ f0t ∫ H2(ν)H1(ν + f0)e2iπνtdν = e2iπ f0t(h1(t) ⋆ h2(t)) + o( f0) where Hk is the
Fourier Transform ofhk. The second equality holds sincef0 is small compared to 1/Ts. We thus conclude
that the CFO operation can be permuted with the filtering operator.
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For Fig. 4,
We next consider perfect timing synchronization, but without any phase synchronizeation.

The shaping filter is once again a square-root raised cosine filter with roll-off ρ = 0.5. In
Fig. 4 (left), we plot the samplesz(n) (so before decision) when BSPK is employed and
the phase shift is equal to 0.1 at Eb/N0 = 10dB. The constellation is thus rotated and the
disk is now closer to the decision threshold which induces anincrease of the BER. In Fig. 4
(right), we display the BER versusEb/N0 for different values of phase shift. Performance
degradation is significant.
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Figure 4: Samplesz(n) before decision (left) whenφ0 = 0.1 andEb/N0 = 10dB and BER
(right) versusEb/N0 in the presence of phase mis-synchronization.

We next examine the influence of the CFO on performance. The same simulation set-up
is used as previously. In Fig. 5 (left), we plot the samplesz(n) when the CFO is equal to
0.01 atEb/N0 = 30dB. We remark that the BPSK constellation is rotated with different
rotation anglesf0n at each time indexn which leads to a circle if the frame is long enough.
Due to the noise, we observe a ring. In Fig. 5 (right), we compute the BER versusEb/N0

for different values of CFO. The frame length in this exampleis 1000 data symbols.
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Figure 5: Samplesz(n) before decision (left) whenf0 = 0.01 andEb/N0 = 30dB and BER
(right) versusEb/N0 in the presence of frequency mis-synchronization.

For each synchronization parameter, we saw a loss in performance that leads to com-
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munication failure. Therefore, we clearly need to add a synchronization step at the receiver
side in order to keep the performance as high as possible.

As we just saw, synchronization paramters have a great influence on system perfor-
mance, so that estimating these parameters is crucial:

• Why should we estimate the timing parameterτ0: Knowledge ofτ0 is crucial for
choosing the correct sampling time when the continuous-time signal is converted to
the (symbol rate) discrete-time signal (see Fig. 3). The need for sampling at the sym-
bol rate at the true timing offset has its origin on the non-satisfaction of the Nyquist-
Shannon sampling theorem. Therefore, by oversampling at least at the baud rate
(but in practice twice the symbol rate), the discrete-time signal ỹ(n) = ya(nTs/2)
contains all the information inya(t). Then the “symbol timing” matching can be
done via digital processing, namely, interpolation. More interestingly, by consider-
ing the bivariate processy(n) = [ya(nTs),ya(nTs+Ts/2)]T which corresponds exactly
to ỹ(n), a fractionally-spaced (FS) equalizer can be used to retrieve the informa-
tion symbol. To implement this, one needs to know the filtersh1(n) = ha(nTs) and
h2(n) = ha(nTs+ Ts/2). Thus the symbol timing estimation issue has been replaced
by a pair of filter estimation issues. Notice that at least onefilter (usuallyh2(n) does
not satisfy the Nyquist criterion) is non-flat fading in its discrete-time version. An-
other way to cope with timing offset is to incorporate the timing into the channel by
rewriting the received signal as:

ya(t) =

(
N−1

∑
n=0

snȟa(t −kTs)

)
e2iπ( f0t+φ0) +ba(t)

where

ȟa(t) = ha(t − τ0)

is the new equivalent channel. Now the channel is unknown since τ0 is unknown.
Therefore once again the timing estimation issue boils downto a channel estimation
issue.

• As the phase rotation is a linear time-invariant operation,it can be viewed as a filtering
operator and thus incorporated into the filter. Therefore wehave

ya(t) =

(
N−1

∑
n=0

snh̊a(t −kTs)

)
e2iπ f0t +ba(t)

where

h̊a(t) = ha(t − τ0)e
2iπφ0

and the phase estimation issue can be avoided.

• The CFO cannot be viewed as the modification of a linear filter since the CFO is
not a time-invariant transformation. Therefore the CFO estimation issue can not be
avoided.
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In the case of a flat fading channel, if channel estimation is used to synchronize in time
and phase (in order to avoid the “real” synchronization steps), we do not use all of our
knowledge about the signal, and in particular, its Nyquist property. Nevertheless, if the
synchronization step has to be avoided, the estimation issue deals with the joint frequency
and (non-flat) channel estimation issue. In the Data-aided mode, such a problem will be
studied in Section??. In the Non-data-aided mode, the CFO can be estimated regardless of
the channel, as shown in Section 2.2., and the channel can also be estimated by following
the approaches given in “Channel Estimation” E-reference.

The communications prootocol may permit the transmitter toexplicitly adjust its sig-
nalling so as to facilitate receiver side synchronization.Therefore, there are two main
classes of estimation problems:

• DA (Data-Aided)2: the receiver knows a sequence of transmitted symbolssn. These
symbols belong to the so-called “training sequence”. Obviously, this leads to a loss in
spectral efficiency since during the transmission of the training symbols, no informa-
tion symbols are sent. Nevertheless this approach (which isvery popular in civilian
applications such as GSM, 3G, DVB-S) has several advantagessince it enables us to
dramatically simplify the design and the implementation ofthe synchonization pa-
rameter estimators as will be seen later. Moreover, good performance can usually be
attained with only a few (training) symbols, and thus the cost in spectral efficiency
remains quite low and acceptable.

• NDA (Non-Data-aided)3: the transmitter does not send any training sequences per
se; thus the receiver does not have deterministic knowledgeabout a symbol sub-
sequence. However, the receiver will have some structural or statistical information
about the symbols such as the nature of the constellation, the correlation between
the symbols, etc. Such a scenario obviously occurs in passive listening in security
applications. In civilian applications, the NDA approach is sometimes useful for
tracking parameter fluctuations or in broadcasting applications (e.g., TV). Indeed,
the TV application differs completely from a peer-to-peer application (such as GSM
between the mobile and the Base Station) since the TV receiver can be switched
on at any moment and will not warn the broadcast transmitter that it is switched on
(If it does, the broadcast transmitter will always be “interrupted”, since there is no
dedicated channel for learnign the channel and synchonization parameters). So the
broadcast transmitter will not transmit a training sequence as soon as a TV receiver
goes live in the network. To speed up the process, the TV receiver has to synchronize
itself in a blindly manner.

Some remarks before going further:

i) the main property here compared to the non-flat fading channel is that the channel
is assumed to be known. The fact that the filter is also a squared-root Nyquist is
absolutely not required but will greatly simplified some derivations and thus the al-
gorithms.

2also called, training approach, supervised mode, ...
3also called, blind, unsupervised, ...
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ii) the estimate that we will develop can be used and adapted (sometimes) in the non-flat
fading channel case.

iii) the trade-off between the estimation quality (provided by training) and the remaining
time for transmitting data can be studied by the framework ofthe information theory.
A Shannon capacity can be expressed by taking into account the channel uncertainty.
The whole system capacity is out of the scope of this tutorialbut has been only a few
analyzed in the literature for channel estimation in [23].

2.1. DA case

Let θ̂N be an unbiased estimator of the sought parameterθ relying onN observation sam-
ples. Based on [24,20], we know that the Mean Square Error (MSE), defined asE[‖θ̂ −θ‖2]
of any unbiased estimator ofθ is lower-bounded by the so-called Cramer-Rao bound (CRB)
which will be described mathematically later in this chapter. An estimator whose MSE is
equal to the CRB is calledefficient. Efficient estimators do not exist for many estimation
problems Therefore the notion of asymptotic efficiency has been introduced. This means
that the ratio between the MSE and the CRB tends to 1 as the number of samplesN goes to
infinity. Under mild conditions (given in [24, 20]), the Maximum-Likelihood estimator is
asymptotically efficient and it is asymptotically normal.

In view of the asymptotic efficiency and normality, it is natural to consider the maximum-
likelihod estimator first. If the ML estimator can be implemented, one often considers the
problem to be closed. In contrast, if the ML estimator cannotbe implemented (because
of its complexity or sometimes even intractability), the estimation issue is open and other
estimators have to be found. We hasten to add that if an efficient estimator does not exist,
then it may be possible to find better estimators than the ML. Second, the CRB may not
be tight when the number of samples (or SNR) is low, and tighter bounds may (such as the
Bhattacharya and Ziv-Zakai bounds) may need to be considered. We refer the reader to [24]
for details.

So let us start with the introduction of the ML estimator for the joint synchronization
parameters. The Likelihood can be written as follows

p(y(t)|τ ,φ , f ) ∝ e−
∫
R|y(t)−∑N−1

n=0 snha(t−nTs−τ)e2iπ( f t+φ )|2dt/2N0.

where the training sequence,{sn}, is known.
The ML estimator is obtained as follows

[τ̂N, φ̂N, f̂N] = arg min
τ ,φ , f

∫

R

∣∣∣∣∣y(t)−
N−1

∑
n=0

snha(t −nTs− τ)e2iπ( f t+φ)

∣∣∣∣∣

2

dt

Setting the derivative to zero, and assuming that the CFO is small compared to the
bandwidth, we obtain the following set of equations:






ℜ{∑N−1
n=0 s∗ne−2iπφ e−2iπ f Tsnz′τ(n)} = 0

ℑ{∑N−1
n=0 s∗ne−2iπφ e−2iπ f Tsnzτ(n)} = 0

ℑ{∑N−1
n=0 s∗ne−2iπφ ne−2iπ f Tsnzτ(n)} = 0

(2)
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where

zτ(n) =

∫

R

ya(t)ha(t −nTs− τ)∗dt = ha(−t)∗ ⋆ya(t)|t=nTs+τ

z′τ(n) =
∫

R

ya(t)h
′
a(t −nTs− τ)∗dt = h′a(−t)∗ ⋆ya(t)|t=nTs+τ

with h′a(t) is the derivative ofha(t).
A typical approach is variable elimination: we try to express a parameter in terms of

the others, and eliminate it by using the found expression. Here this algebraic manipulation
can be applied to the phase (as a function of the timing and theCFO), thanks to the second
line in Eq. (2). But the timing and the CFO cannot then be written as explicit functions due
to the non-linearity of these equations. Therefore the joint (timing, phase, CFO) problem is
intractable.

We remark that joint frequency and phase estimators can be developed when the timing
is known. Indeed, as we will see later, if the timing is known (and thus assumed to be
zero without loss of genrality), then the second and third equations can lead to practical
estimators with reasonable computational complexity. Therefore, we split our problem into
two different problems that will be treated separately : i) the timing issue and ii) the phase
and CFO estimation issues.

The ordering of the two problems has a great influence on the nature of estimators that
will be used, as we see next.

• First scheme: Timing is estimated first and then the phase and CFO are estimated,
assuming that the timing estimate is perfect. As the DA timing cannot be derived
in closed-form when the phase and CFO are unknown, we need to develop a NDA
timing estimator that is insensitive to the actual phase andCFO values. The second
part of this scheme deals with phase and CFO estimations issues. As the timing
is now known, DA estimators can be developed. If training is not available, NDA
estimators can also be considered.

• Second scheme:the phase and the CFO are estimated first; timing is then estimated,
assuming that the phase and CFO estimates are perfect, and thus perfectly corrected.
Once again, the phase and CFO estimators here have to be NDA and insensitive
to timing error. As the timing can be wrong, the sampled filtercan generate Inter-
Symbol Interference. Therefore, we need to design joint phase and CFO NDA esti-
mators that can work even when the (non-flat) fading channel is unknown. Assuming
that phase and CFO are perfectly compensated, the timing estimator can be blind or
aided by a training sequence.

The two schemes are summarized in Fig. 6.
Consequently, we need to solve the following issues (even iftraining sequences are

assumed available!):

• Problem 1: DA Phase and CFO estimation (when timing is known and so can be
considered to be zero, without loss of generality (wlog)).

• Problem 1’: DA Timing estimation (when Phase and CFO are known and so can be
assumed to be zero wlog).
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(if training available)

DA Phase and CFO

estimation

(if training unavailable)

estimation

NDA Phase and CFO

ya(t)

(insensitive to phase and CFO)

NDA Timing
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Flat channel

.

.

(if training available)

estimation

(if training unavailable)

estimation

ya(t)
estimation

DA Timing

NDA Timing

NDA Phase and CFO

(insensitive to timing )

Flat channel

Non flat channel

.

Figure 6: Summary of the first scheme (left) and the second scheme (right).

• Problem 2: NDA Phase and CFO estimation (insensitive to unknown timingand
hence a non-flat channel),

• Problem 2’: NDA Timing estimation (insensitive to unknown phase and CFO).

Notice that the first scheme (associated with Problems 1 and 2’) is used frequently and
advocated in a lot of practical systems. Hereafter, we first focus on Problem 1 and Problem
1’ relying on training sequences.

DA timing estimation issue

In this paragraph, we focus on the following estimation problem

ya(t) =
N−1

∑
n=0

snha(t −nTs− τ0)+ba(t).

After simple algebraic manipulations (similar to those associated with the maximum-likelihood
detector), the ML timing estimator can be obtained as follows

τ̂N = argmax
τ

N−1

∑
n=0

ℜ{s∗nzτ(n)}
︸ ︷︷ ︸

JN(τ)

(3)

where we recall thatzτ(n) is the output of the matched filter sampled atnTs+ τ .
Th cost functionJN(.) of (3) is plotted in Fig. 7 forEb/N0 = 5dB (left) andEb/N0 =

10dB (right) withN = 100. The shaping filter is a square-root raised cosine with roll-off
ρ = 0.5. The value of the soughtτ0 is 0.1Ts and the x-axis has been normalized byTs.

Observe that the cost function is concave around the true point. Therefore one can
proceed to find the maximum ofJN(.) in two steps.

• acoarsesearch through a 1-D grid which provides a first estimateτ̂ (0)
N of τ0.

• once the coarse search has roughly localized the maximum, one can use a gradient-
descent algorithm on the functionJN(.) initialized by τ̂ (0)

N , as follows

τ̂ (m)
N = τ̂ (m−1)

N + µJ′N(τ̂ (m−1)
N ) (4)

= τ̂ (m−1)
N + µ

N−1

∑
n=0

ℜ

{
s∗n

∂zτ(n)

∂τ

∣∣∣∣
τ̂ (m−1)

N

}
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Figure 7: Cost functionJN(τ) for Eb/N0 = 5dB (left) andEb/N0 = 10dB (right) withN =
100 andτ0 = 0.1Ts.

wherem is the iteration index of the gradient algorithm. The implementation of the
derivative term is actually quite easy since its corresponds to the sampled version (at
τ̂ (m−1)

N ) of the output of the received signal passed through the matched filter associ-
ated with the derivative filterh′a(t) . This can be done digitally (via interpolation) if
the received signalya(t) has been sampled at twice the symbol rate or faster.

In order to benchmark different estimators associated withthe same estimation issue,
it is useful to have a performance lower-bound on the MSE. TheCRB is the most popular
one because it is quite simple to derive (especially in DA mode) and tight (we remind that
under mild conditions, the ML is asymptotically efficient).Recall that the CRB definition
in the context of an unbiased estimator of the timing.

CRB(τ) =
1

E

[(
∂ log p(y|τ)

∂τ

∣∣∣
τ0

)2
] = − 1

E

[
∂ 2 log p(y|τ)

(∂τ)2

∣∣∣
τ0

]

After standard algebraic manipulations, we have

log p(y|τ) =
1
N0

ℜ

{
N−1

∑
n=0

s∗n

∫

R

ya(t)ha(t −nTs− τ)∗dt

}

+cste

Thus we obtain

∂ 2 logp(y|τ)

(∂τ)2 =
1
N0

ℜ

{
N−1

∑
n=0

s∗n

∫

R

ya(t)h
′′
a(t −nTs− τ)∗dt

}

with h
′′
a(t) the second derivative function ofha(t). By taking the mathematical expectation

(and using the zero-mean property of the noise), we obtain

E

[
∂ 2 log p(y|τ)

(∂τ)2

]
=

1
N0

ℜ

{
N−1

∑
n,n′=0

s∗nsn′

∫

R

ha(t −n′Ts)h
′′
a(t −nTs− τ)∗dt

}



Synchronization 15

Using Parseval’s identiy, we finally obtain

E

[
∂ 2 logp(y|τ)

(∂τ)2

]
= −4π2

N0
ℜ

{
N−1

∑
n,n′=0

s∗nsn′

∫

R

f 2|H( f )|2e2iπ(n′−n) f Tsd f

}

whereH( f ) is the Fourier transform ofha(t).
Consequently, the CRB for the timing estimation issue is given by

CRB(τ) =
N0

4π2ℜ
{

∑N−1
n,n′=0s∗nsn′

∫
R

f 2|H( f )|2e2iπ(n′−n) f Tsd f
}

This expression shows the influence of the shaping filter through the integral of the square of
f H( f ). But the influence of the training sequence (especially its size) is still quite unclear.
To address this issue, we will model our training sequence asa realization of a random pro-
cess. More precisely,sn is a realization of pseudo-noise stationary process. In practice, any
training sequence is generated through a shift register. Let us considerrs(m) = E[sn+ms∗n]
the autocorrelation function. and the associated spectrumSs(e2iπ f ) = ∑mrs(m)e−2iπm f . By
using some results on Cesaro sums, one can prove that

1
N

N−1

∑
n,n′=0

E[sn′s
∗
n]e

2iπ(n′−n) f Ts a.s.→ Ss(e
−2iπ f Ts), whenN → ∞.

As a consequence, we have

CRB(τ) =
N0

4π2N
∫
R

f 2|H( f )|2Ss(e−2iπ f Ts)d f

For channel estimation (when synchronization is perfectlydone), a white training se-
quence (i.e., with flat spectrum) is optimal [25,26]. But a white sequence is not necessarily
the best choice for the synchronization parameters4. Further, the best training sequence cor-
relation property may be different for different synchronization parameters. Since a white
sequence always leads to reasonable performance, it provides a good trade-off. Therefore,
a white training sequence is chosen in current real-life systems.

When the training sequence is white, the CRB simplifies to

CRB(τ) =
N0

4π2EsN
∫
R

f 2|H( f )|2d f

whereEs is the variance ofsn.
The CRB provides us some insights about the behavior of the estimates.

• The CRB isO(1/N). This is logical since the CRB associated with channel estima-
tion (cf. "Channel estimation" E-reference) is alsoO(1/N). We recall that the timing
could be incorporated into the channel estimation box without loss in performance.
Thus fortunately the CRB offers the same behavior.

4for instance, for the timing, the best sequence is one whose spectrum isSs(e2iπ f Ts) = σ2
s δ (( f − fmax)Ts)

where fmax = argmaxf f 2|H( f )|2.
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• The CRB isO(1/SNR). Once again, this result is consistent with that one associated
with channel estimation.

• The influence of the shaping filter can be analyzed, especially the influence of the
roll-off. Recall that the system is most sensitive to timingerror if the roll-off is
small and thus if the occupied extra bandwidth is small. Unfortunately, the quality
of estimation also decreases when the roll-off becomes small (see [18, 17] for more
details).

In Fig. 8, we plot MSE and CRB versusEb/N0 andN with BPSK modulation. Unless
otherwise stated,Eb/N0 = 10dB,N = 100, andρ = 0.5.
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Figure 8:MSE and CRB versusEb/N0 (left) andN (right).

So far we have considered a blockwise approach. In the past, adaptive approaches (i.e.,
sample-by-sample) were of great interest due to buffer sizelimitation and computational
complexity. Today, the adaptive approach is mainly useful for tracking parameter variations
during data (and not training) transmission. The parameterupdate can be implemented un-
der two different modes: i) the NDA mode since it is carried out during data transmission,
and ii) the Decision-Directed (DD) mode. In the NDA mode, different updates can be de-
veloped and usually are obtained through the adaptive version of the blockwise approaches
described in Section 2.2.. In the DD mode, different updatesare obtained by calculating
the adaptive version of the DA estimators and then replacingthe trainingsn with a decision
on data symbol ˆsn. Therefore it is useful to develop an adaptive version of thepreviously-
described DA ML timing estimator. Thus instead of working block-by-block, we work
sample-by-sample. The (stochastic) gradient-descent algorithm at timen can be derived
from the blockwise version of the gradient descent algorithm (cf. Eq. (4)) by keeping only
the derivative term associated with timen. We thus have

τ̂n = τ̂n−1 + µ ℜ

{

s∗n
∂zτ(n)

∂τ

∣∣∣∣
τ̂ (m−1)

N

}

︸ ︷︷ ︸
e(n)

(5)

where τ̂n is the estimated value ofτ0 at time n. Now the time index and the iteration
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number coincide. Such an adaptive algorithm can be fully analyzed by using the stochastic
approximation tool [27], but this analysis is out of the scope of this chapter.

In DD mode, the symbolsn which is unknown during data transmission has to be re-
placed with the (hard) decision of the symbol denoted by ˆsn. DD algorithm can be also
applied with soft decision on the symbol as was done in [28]. More details about the DD al-
gorithm with soft decision will be given later, in the context of phase estimation. To perform
well, the error probability should be small enough to limit the impact of error propagation.
Therefore DD mode is always implemented after an initialization step (feasible thanks to
the training sequence) in order to ensure low data detectionerror. In order to avoid the
calculation of the derivative at each symbol period (noticethat in the blockwise approach
the number of iteration and thus of derivative calculation is much smaller than the number
of samples), we replace it with

∂zτ(n)

∂τ

∣∣∣∣
τ̂ (m−1)

N

=
zτ̂ (m−1)

N +∆(n)−zτ̂ (m−1)
N −∆(n)

2∆

where∆ is a design parameter that must be carefully adjusted. We have just described the
very popular early-late (adaptive) estimator [29]. Noticethat other update equations with
ad hoc e(n) have been proposed in the literature [30,31] and often perform much better.

DA phase and CFO estimation issue

In this paragraph, we assi,e that the timing is known and thuscan be considered to be zero
wlog. Therefore our received signal model is

ya(t) =

(
N−1

∑
n=0

snha(t −nTs)

)

e2iπ( f0t+φ0) +ba(t)

Once again the likelihood can be written as follows

p(y(t)|φ , f ) ∝ e−
∫
R|ya(t)−∑N−1

n=0 snha(t−nTs)e2iπ( f t+φ )|2dt/2N0.

Recall that the sequence{sn} is known.
So the joint ML estimator for the phase and CFO takes the following form

[φ̂N, f̂N] = argmin
φ , f

∫

R

∣∣∣∣∣ya(t)−
N−1

∑
n=0

snha(t −nTs)e
2iπ( f t+φ)

∣∣∣∣∣

2

dt

︸ ︷︷ ︸
JN(φ , f )

By assuming that the CFO is small compared to the bandwidth and by developing the
square, we obtain that

JN(φ , f ) = −2ℜ

{
N−1

∑
n=0

s∗nz(n)e−2iπ( f Tsn+φ)

}
+cste (6)
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wherez(n) = ha(−t)∗ ⋆ ya(t)|t=nTs
and can be written as follows (under the small CFO

assumption)
z(n) = sne2iπ( f0Tsn+φ0) +b(n) (7)

where we can prove thatb(n) is still a white noise process due to the square-root Nyquist
property of the shaping filter.

By letting

αN( f ) =
1
N

N−1

∑
n=0

s∗nz(n)e−2iπ f Tsn

we have
JN(φ , f ) = −2Nℜ{αN( f )e−2iπφ}+cste

Then, it is easy to check that the termφ minimizing JN(φ , f ) for a given f , is

φ̂N =
1

2π
∠(αN( f )) =

1
2π

arctan

(
ℑ(αN( f ))
ℜ(αN( f ))

)
(8)

where∠ stands for the phase of a complex-valued number. Now by inserting Eq. (8) into
Eq. (6), we can easily show the frequency estimator is obtained by maximizing the modulus
of αN( f ). Therefore the joint DA ML phase and CFO estimates are as follow

f̂N = argmax
f

∣∣∣∣∣
1
N

N−1

∑
n=0

s∗nz(n)e−2iπ f Tsn

∣∣∣∣∣

2

andφ̂N =
1

2π
arctan

(
ℑ( 1

N ∑N−1
n=0 s∗nz(n)e−2iπ f̂NTsn)

ℜ( 1
N ∑N−1

n=0 s∗nz(n)e−2iπ f̂NTsn)

)

.

(9)
While the phase estimate is in closed-form, the CFO estimatestill needs a maximization
step. Actually the function to be maximized is the "periodogram". As in the case of timing,
this (periodogram) maximization step may be carried out in two steps: the coarse step
is done by a FFT of sizeN. The resulting frequency estimate enables us to initializea
gradient-descent algorithm around the true point, or to usea zoom-FFT.

Remark: The estimators have been developed by developing the MLE based on the
continuous-time received signal. Another way is as follows. The received signal can be
viewed as

ya(t) =
N−1

∑
n=0

sne2iπ( f0t+φ0)Φn(t)+ba(t)

whereΦn(t) = ha(t − nTs). As the shaping filter is a square-root Nyquist filter, the basis
functionsΦn(t) are orthogonal. In the absence of CFO, the useful part of the received signal
is generated byΦn(t); hence, we can project the received signal onto these basis functions
without loss of information on the data. Letu(n) =< ya(t)|Φn(t) > with < .|. > the inner
product. One can check thatu(n) = z(n) wherez(n) is given in Eq. (7). Developing the ML
estimator of the phase and CFO based onz(n) will lead fortunately to the equations reported
above. We can also prove that the CRBs obtained by both approaches are identical.

As an illustration, we plot in Fig. 9 (left) a realization of 1000 samples ofz(n) when
φ0 = 0.1 and f0Ts = 0.01 atEb/N0 = 30dB with BSPK modulation. In Fig. 9 (right) the cor-
responding cost functionJN(φ , f ) has been displayed forN = 100. A peak can be observed
around the true values ofφ0 and f0.
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Figure 9: Samplesz(n) (left) and corresponding cost function(φ , f ) 7→ JN(φ , f ) (right).

Let us now analyze the CRB associated with this estimation issue. In case of estimation
of more than one parameter, the CRB is defined through a matrixas follows

CRB(φ , f ) = F−1(φ , f )

whereF(φ , f ) is the Fisher Information Matrix whose components here are

F(φ , f ) = −




∂ 2 log p(y|φ , f )

(∂φ)2
∂ 2 logp(y|φ , f )

∂φ∂ f
∂ 2 log p(y|φ , f )

∂ f ∂φ
∂ 2 logp(y|φ , f )

(∂ f )2





After straightforward algebraic manipulations, we obtainthe CRB associated with the phase,
that is defined as the first element of the diagonal of CRB(φ , f ), as [32]

CRB(φ) =
N0w2

4π2N(w0w2−w2
1)

where, for any integer k

wk =
1

N(k+1)

N−1

∑
n=0

nk|sn|2.

The CRB associated with the frequency is the second element of the diagonal of CRB(φ , f ),
and is given by

CRB( f ) =
N0w0

T2
s 4π2N3(w0w2−w2

1)
.

These expressions can be simplified ifN ≫ 1. We then obtain the so-called asymptotic
CRB. One can prove that

wk
a.s.→ σ2

s

k+1
.

Consequently, we have

CRB(φ) ≈ 1
π2

N0

Es

1
N

, and CRB( f ) ≈ 3
T2

s π2

N0

Es

1
N3 . (10)
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Notice that in [33], the (large samples) MSEs of the ML have been calculated and are
identical to those given by the asymptotic CRB. Consequently the ML is asymptotically
efficient and thus we do need to spend time to design other estimators since the ML is
almost optimal and can be implemented easily in practice.

Thanks to these expressions, some insights about the estimation performance can be
given.

• The phase MSE isO(1/N) andO(1/SNR). The behavior mimics that of the channel
estimator. This is logical since the phase rotation can be viewed a one-tap linear filter.

• In contrast, the MSE for the CFO decreases much faster asO(1/N3). The conver-
gence speed seems to be very high. We will see that we need to have this high conver-
gence speed for the system to operate properly. Let us consider a frame with a training
sequence of lengthNT followed by a data sequence of lengthND. For the system to
operate well, the phase rotation due to the CFO should be keptas low as possible. At
the end of the frame, the phase rotation (after correction) is 2πTs( f̂N − f )(NT +ND)

which is of orderO((NT + ND)/N3/2
T ). Assume a constant ratioβ betweenNT and

ND. Thusβ = NT/ND and corresponds to the loss in spectral efficiency caused by
the training. Then the phase rotation is proportional to 1/

√
ND and this tends to zero

when the frame is large enough. Notice that if the frequency MSE wasO(1/Np) with
p≤ 2, the system cannot perform well due to the unbounded phase rotation associ-
ated with CFO.
The influence of the noise is similar since the MSE is of orderO(1/SNR).

In Fig. 10, we plot the MSE of the phase and CFO Ml estimate and the corresponding
CRB: versusEb/N0 (left) with N = 32,Ts = 1s, and versusN (right) with Eb/N0 = 3dB and
Ts = 1s. The training sequence was BPSK modulated.
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Figure 10: MSE and CRB for phase and CFO versusEb/N0 (left) andN (right).

We first observe that when the SNR and the number of samples arehigh enough, MLE
performance perfectly matches the CRB as expected. We also observe a strange phe-
nomenon at low SNR and/or when the number of samples is not large enough: There is
a mismatch between the theoretical performance and the empirical one. Moreover the ML
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is no longer efficient. This is the so-called outliers effect[34, 35, 36, 37]. It is associated
with the failure of the first step of the periodogram maximization. This phenomenon has
been analyzed in the literature, and modified expressions for MSE, taking into account this
effect have been derived. The most interesting question is:can we fill up the gap between
the ML and the CRB by using another estimator? The answer is no. To answer this, some
other lower bounds have been developed and analyzed. One canmention the Barankin-
like bounds [38, 39, 40, 41, 42], the Bhattacharya-like bounds [43], and the Ziv-Zakaï-like
bounds [44, 45, 46, 47]. A lot of work has been done on derivingsuch bounds for the har-
monic retrieval issue, where it has been shown that the CRB was not tight at low SNR.
Other bounds (especially the Ziv-Zakaï one) are actually very close to ML performance, so
that it is hard to find better estimates.
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Figure 11: MSE, CRB, BB, and ZZB for CFO versusEb/N0 (left) andN (right).

In Fig. 11, we plot the Cramer-Rao Bound (CRB), the (first-order) Barankin Bound
(BB), the Ziv-Zakaï Bound (ZZB) and the MSE of the ML estimator for CFO parameter
versusEb/N0 (left) whenN = 32 and versusN (right) whenEb/N0 = 3dB. Notice that
the threshold (from which the ML performance can be distinguished from the CRB) can be
moved to the left by increasing the SNR (whenN is fixed) or by increasingN (when the
SNR is fixed) in order to obtain the target performance.

Let us now move on to the adaptive version of the ML. As the CFO can be viewed as a
phase variation (with a very specific structure), the adaptive algorithm which has the ability
of tracking phase variation, has been almost always developed under the assumption that
only the phase is non-zero and that the CFO is zero. Thereforewe work with the following
discrete-time signal:

z(n) = sne2iπφ +b(n) (11)

and the (blockwise) ML for the phase leads to the following cost function (cf. Eq.(6))

φ̂N = argmax
φ

N−1

∑
n=0

ℜ
{

s∗nz(n)e−2iπφ}

Following an approach similar to that for timing,φ̂n, the estimate of the phase at then-th
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iteration of the (stochastic) gradient algorithm, is updated as follows

φ̂n = φ̂n−1 + µ
∂ℜ
{

s∗nz(n)e−2iπφ}

∂φ

∣∣∣∣∣
φ̂n−1

= φ̂n−1 + µ ℑ
{

s∗nz(n)e−2iπφ̂n−1

}

︸ ︷︷ ︸
e(n)

(12)

Thanks to this update equation, we can introduce the famous digital Phase-Locked Loop
(PLL) framework.

.

X ℑ{•}

z−1

φ̂n

e(n)

X

s∗n

z(n)

e−2iπφ̂n−1

First-order filter

Phase comparator

e−2iπ• 1
1−z−1

Filter

Loop
K(z) = µ

.

Figure 12: PLL scheme (in DA context).

Note thatφ̂n − φ̂n−1 can be written as[1− z−1].φ̂n which means that̂φn is obtained
adfter the phase errore(n) is passed through a filter whose Z-transform isz 7→ 1/(1−z−1).
Therefore the PLL scheme can be described as in Fig. 12.

We would now like to inspect the convergence of the PLL first when the phase is fixed,
and then when the phase is time-varying. To do this, we consider thatφ0 is fixed for the first
1000 samplesz(n), and then is time-varying for the next 1000 samples as follows

φ0,n = φ0,n−1 +wn, for n = 1001, · · · ,2000

whereφ0,1000= φ0 andwn is a real-valued i.i.d. Gaussian process with zero-mean andvari-
anceσ2

w. In Fig. 13, we display a realization of the estimatedφ̂n and the true phaseφ0,n with
σ2

w = 10−4 andEb/N0 = 20dB .
We remark that proper choice ofµ is crucial for good PLL performance. Ifµ is high,

the PLL will rapidly reach an interval around the true value but then will oscillate around
the true point without converging. Moeover, a high value ofµ enables us to efficiently track
the phase variation/noise. In contrast, whenµ is small, the convergence speed is low but
the phase estimate does not oscillate very much around the true point. But the small value
of µ prevents us from following the (too-fast) phase variation/noise.

Indeed, if the phase to be estimated is fixed, it is well known that it is best to consider
a time-varying step sizeµn satisfying∑n µn = +∞ and∑n µ2

n < +∞ [27]. Thereforee an
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Figure 13: Estimated phase and true phase versus the number of iterations/samples for
µ = 0.01 (left) andµ = 0.001 (right).

appropriate choice isµn = µ/n when the phase is fixed. However such a choice leads to
very poor performance if the phase becomes time-varying. A lof of work has been done on
design ofµn adapted to phase noise [27].

2.2. NDA case

Here we will develop NDA estimators

• for timing insensitive to phase and CFO (Problem 2’),

• for phase and frequency insensitive to timing (Problem 2).

As before, we will start with the ML estimators. As in DA mode,the global estimation
issue (for timing, phase and frequency) is not tractable. Therefore, we will focus on

• NDA timing ML estimator when phase and CFO are known and thus zero wlog.

• NDA phase and CFO ML estimators when timing is known and thus zero wlog.

NDA ML timing estimator

Now the symbolssn are unknown. We just assume thatsn belongs to a particular constel-
lation with P states (P-PAM, P-PSK,P-QAM) and that each constellation point is equi-
likely. We denote by{s(p)}p=0,··· ,P−1 the set of these constellation points. We also denote
by sN = [s0, · · · ,sN−1]

T the set of transmitted data symbols. The likelihood takes a much
more complicated form due to the need to average over all the potential symbols. Therefore
we have

p(y|τ) =
∫

· · ·
∫

p(y|τ ,sN)ps(sN)dsN

whereps(.) is the probability density function ofsN Obviously, we have

p(y|τ ,sN) ∝ e−
∫
R|y(t)−∑N−1

n=0 snha(t−nTs−τ)|2dt/2N0 .
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and

ps(sN) =
N−1

∏
n=0

(
1
P

P−1

∑
p=0

δ (sn−s(p))

)

assn are i.i.d..
After simple but tedious algebraic manipulations (using the fact that the shaping filter

is a square-root Nyquist filter), we obtain

τ̂N = argmax
τ

N−1

∑
n=0

log

(
1
P

P−1

∑
p=0

e−
|s(p) |2

2N0 e
ℜ{(s(p))∗zτ (n)}

N0

)

When BPSK is employed, we obtain that

τ̂N = argmax
τ

N−1

∑
n=0

log

(
cosh

(
ℜ{zτ (n)}

N0

))

At low SNR, the Taylor series expansion of log(cosh(.)) can be used to yield

τ̂N = argmax
τ

N−1

∑
n=0

(
ℜ{zτ (n)2}+ |zτ(n)|2

)
(BPSK at low SNR).

When QPSK is employed, similar derivations lead to

τ̂N = argmax
τ

N−1

∑
n=0

|zτ(n)|2 (QPSK at low SNR).

We will see that the NDA ML approach for timing is very complicated except for BPSK
and QPSK. To handle constellations with more states, Expectation-Maximization (EM) al-
gorithm can be employed and will be explained later in the section devoted to Code-aided
synchronization. Notice that in [48] EM algorithm is also implemented but in another way:
indeed, the timing error is viewed as the nuisance parameterwith an a priori distribution
while the data are viewed as the useful parameters to be detected. The authors thus attempt
to extend the Maximum Likelihood Sequence Estimator to the case of timing error and are
able to correct it through an iterative implementation.

We observe, from Fig. 14, that this timing estimator is very sensitive to phase and CFO.
Therefore, we do not continue its analysis in depth. Obviously, an adaptive version may be
implemented and the early-late trick can be employed here.

It is clear that in the NDA case, we need to develop a sub-optimal (non-ML) timing
estimator which is insensitive to phase and CFO. We do so next.

NDA ML phase and CFO estimator

We now assume that the timing is known and thus zero wlog. Onceagain, we would like to
characterize the NDA joint ML phase and CFO estimator.

By following the same reasoning as for the timing, we obtain that

[φ̂N, f̂N] = argmax
φ , f

N−1

∑
n=0

log

(
1
P

P−1

∑
p=0

e−
|s(p) |2

2N0 e
ℜ{(s(p))∗z(n)e−2iπ( f Tsn+φ )}

N0

)
. (13)
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Figure 14: MSE for NDA ML based timing estimator for BPSK versus phase mismatch
(left) and CFO mismatch (right).

In contrast with the DA case, we are not able to writeφ with respect tof . As a con-
sequence, the maximization remains a 2-D search which is extremely time consuming.
Therefore, we could focus on i) CFO estimation issue when phase is known, and ii) phase
estimation when CFO is known. The first scheme is clearly unrealistic, and thus will be
omitted. In contrast, the second scheme is of interest, especially in the tracking regime.

We now assume thatCFO is known and thus can be assumed to be zero wlog.
Eq. (13) can be simplified as follows

φ̂N = argmax
φ

N−1

∑
n=0

log

(
1
P

P−1

∑
p=0

e−
|s(p)|2

2N0 e
ℜ{(s(p))∗z(n)e−2iπφ }

N0

)
. (14)

In Fig. 15, we have plotted the cost function given in Eq. (14)for various QAM constella-
tions. Notice that the smaller the constellation, the sharper is the cost function. Therefore
it is easier to estimate phase for small constellation sizes. When a high-order constella-
tion is used, the SNR must be high enough to ensure accurate synchronization (this is not
necessarily a drawback since high-order modulation requires high SNR for detection) and
the number of samples must be large enough as well (which clearly may become an issue).
Fig. 16 depicts the, MSE of NDA ML based phase estimate versusSNR,N and the timing
error respectively for BPSK constellation. The MSE decreases proportionally to 1/SNR
and 1/N. Morever it is insensitive to timing error.

To overcome the implementation issues due to the highly complicated shape of the cost
function, EM algorithm can be employed as in [49].

Once again, as with the NDA ML based timing estimate, the costfunction in Eq. (14)
can be simplified when BPSK is used.

φ̂N = argmax
φ

N−1

∑
n=0

log

(
cosh

(
ℜ{z(n)e−2iπφ }

N0

))
(BPSK) (15)
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Figure 15: Cost function of NDA ML phase estimate (withφ0 = 0.1, Eb/N0 = 20dB,N =
100) for variousP-QAM.

An exhaustive search to solve Eq. (15) would be quite time consuming. However, at low
SNR, as with the timing case, we obtain that

φ̂N = argmax
φ

N−1

∑
n=0

ℜ{z(n)2e−2iπ2φ} ⇔ φ̂N =
1
2
∠

(
N−1

∑
n=0

z(n)2

)
[π] (BPSK at low SNR).

The NDA ML phase estimate is equivalent to the so-called Square-Power estimate at low
SNR which can be easily implemented. Similar results can be obtained for anyP-QAM or
anyP-PSK. Indeed, the NDA ML phase estimate is equivalent to theM-th Power estimate
with M = 4 for anyP-QAM and M = P for any P-PSK [50]. Further information about
other phase estimators, with PSK modulation, can be found in[51].

Let us considerBPSK case in more detail. We would like to implement Eq. (15) in
an adaptive manner. Let̂φn be the value of the estimated phase at timen (i.e., at then-th
iteration). the update equation is

φ̂n = φ̂n−1 + µ
∂ log

(
cosh

(
ℜ{z(n)e−2iπφ }

N0

))

∂φ

∣∣∣∣∣∣
φ̂n−1

= φ̂n−1 + µℑ
{

šnz(n)e−2iπφ̂n−1

}

with

šn = tanh

(
ℜ{z(n)e−2iπφ̂n−1}

N0

)

. (16)

Notice that the update equation is very similar to that in theDA case (cf. Eq.( 12)) except
thatsn has been replaced with ˇsn. Be looking at carefully ˇsn, we observe that it corresponds
to the so-called soft decision under BPSK constellation assumption. If the soft decision
is replaced with a hard decision, then wew are in the DecisionDirected context, and the
estimator ˇsn becomes

šn = sign

(
ℜ{z(n)e−2iπφ̂n−1}

N0

)
(Decision-Directed).
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Figure 16: MSE of NDA ML phase estimate with BPSK modulation versusEb/N0 (top),N
(middle), andτ0 (bottom).

If a decision is made (other than soft or hard), the term ˇsn can be written as

šn =
ℜ{z(n)e−2iπφ̂n−1}

N0
(No data decision)

and corresponds to the famous Costas loop originally introduced for contuinuous-time
amplitude-modulated signals [52,53].

In conclusion, we recall that the joint NDA sync parameters estimation issue is in-
tractable. To simplify it, we first focus on the timing. The NDA ML timing estimator is
quite complicated and very sensitive to phase and CFO. So it is useless in practice. We next
consider phase and CFO estimation issues. Clearly the jointproblem is still intractable.



28 M. Ghogho, P. Ciblat and A. Swami

Therefore we only focus on the phase estimation issue assuming CFO is known. When the
constellation size is small enough, the NDA ML phase is implementable in blockwise or
adaptive manner and is not too sensitive to timing error.

Consequently, in order to build practical system, we still need sub-optimal (non-ML)
blind methods

• for estimating the timing without the knowledge of the phaseand the CFO.

• for estimating the CFO without the knowledge of the timing and the phase

• for estimating the phase when the constellation size becomes high. The insensitivity
to the timing and the CFO is not required since the phase estimator is often carried
out after timing and CFO correction.

Sub-optimal estimators

In this section, we will develop sub-optimal estimators forthe sync parameters. To do that,
we will analyze carefully some statistical properties of the received signal. Based on this
properties, we will be able to introduce some powerful estimators. The main statistical tools
we need are briefly described below

• The Cyclostationarity tool: for sake of simplicity, we will only define second-order
cyclostationarity. For more details about any-order cyclostationarity, the reader may
refer to [54, 55]. Let us considerx(t) a (complex-valued) continuous-time process
and its correlation function(t,τ) 7→ r(t,τ) = E[x(t + τ)x(t)∗]. When the process
is second-oder stationary, then the function(t,τ) 7→ r(t,τ) is independent oft. In
contrast, if the function(t,τ) 7→ r(t,τ) is periodic with respect tot (and the period
is independent ofτ), the process is said to be cyclostationary. LetTc be the period
of the correlation function.Tc is called the cyclic period. By doing a Fourier series
expansion, we have

r(t,τ) = ∑
k

r(k)(τ)e2iπk/Tc

where

– fk = k/Tc is the so-calledk-th cyclic frequency,

– τ 7→ r(k)(τ) is the cyclic correlation (at cyclic frequencyk),

– S(k)(e2iπ f ) = ∑τ r(k)(τ)e−2iπ f τ is the cyclic spectrum (at cyclic frequencyk).

A similar analysis can be done with the pseudo-correlation(t,τ) 7→ u(t,τ) = E[x(t +
τ)x(t)] if it is not identically zero.

• The Non-Circularity tool: let us consider a random (complex-valued) zero-mean
scalar variablex. A variable is said to be circularly-symmetric (or simpler circular)
if x and x̃ = e2iπθ x have the same distribution regardless of the rotation angleθ .
Consequently the distribution is rotationally invariant.By assuming the moment at
any order exists, we haveE[xpx∗

q
] = E[x̃px̃∗

q
] which implies thatE[xpx∗

q
] = 0 as soon

as p 6= q. Thus, when a variable is circularly-symmetric, only the moment at even
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orders may be non-zero. Moreover only the moments dependingon a power of|x|
are non-zero. In digital communications, many variables are circular not for arbitrary
orders but only until a certain order. If

E[xpx∗
q
] = 0

for p 6= q and p+q< M, the random variablex is said to be circular until the(M−1)-
th order or equivalently to be non-circular from theM-th order. For more details about
the non-circularity, the reader may refer to [56,50,12].

The rest of this section is now organized as follows: we focuson the timing estimator
(based on the cyclostationary tool), then the CFO estimator(based on the cyclostationary
or non-circularity tools), and the phase estimator (based on the non-circularity tool).

Timing estimation issue:

We observe that the signalya(t) is cyclostationary with periodTs. Consequently the
discrete-time (over-sampled) signal ˜y(n) = ya(nTs/Q) is also cyclostationary with period
Q, i.e., the sequenceE[ỹ(n+m)ỹ(n)∗] = E[ỹ(Q+n+m)ỹ(Q+n)∗] is period for any integer
m. Notice that if the continuous-time received signal is sampled at the symbol rate,Q = 1
and thusy(n) is stationary. In contrast, as soon asQ≥ 2, ỹ(n) is strictly cyclostationary.

First of all assuming that the CFO is zero, it has been remarked in [57] thatr(k)(m) =
αk,me−2iπkτ/Ts for k 6= 0, with αk,m a known complex-valued constant depending on the
shaping filter. Thanks to this relationship betweenr(k)(m) and τ , the following ad hoc
estimator was proposed in [57]:

τ̂N = −Ts ∑
k∈K∗

∑
m∈M

1
k
∠

(
r̂(k)(m)α−1

k,m

)
(17)

whereK
∗ is any set of integers, not including 0, andM is any set of integersm such that

r(k)(m) 6= 0. The term ˆr(k)(m) is the the empirical estimate ofr(k)(m) based onN samples,
and is given by

r̂(k)(m) =
1
N

N−1

∑
n=0

ỹ(n+m)ỹ(n)∗e−2iπnk/Q (18)

The performance of such an empirical cyclic correlation estimate can be found in [16, 58,
59,57].

Notice that the timing estimator is insensitive to the phase, and thus can be used before
the phase estimation step. In contrast, when the CFO is not zero, it must be estimated first;
the timing estimate is then modified as follows

τ̂N = −Ts ∑
k∈K∗

∑
m∈M

1
k
∠

(
r̂(k)(m)α−1

k,me−2iπmf̂NTs/Q
)

(19)

where f̂N is the CFO estimate.
WhenK = {1}, M = {0}, and the conjugate operation on ˜y is removed, we obtain the

heuristic algorithm introduced in [60] which actually is well-suited for BPSK constellation.
WhenK = {1} andM is any singleton, we obtain the algorithm in [61]. WithK = {−1,1}
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andM = {0}, the estimator reduces to that in [62]. This last algorithm has the great advan-
tage of being insensitive to the CFO since, form= 0, Eq. (17) is identical to Eq. (19).

All these timing estimators have been theoretically analyzed and closed-form expres-
sions for the Mean-Square Error are given in [63].

The question now is: what is the best blind estimator for timing relying on the cyclic
correlation. WhenP = 2, the answer can be found in [63] and corresponds to the weighted
covariance matching principle [64,65]. The gain in performance is only incremental at the
expense of higher complexity. Therefore the NDA timing estimator proposed in Eq. (17)
(especially that in [62] which is insensitive to CFO) is a strong candidate for our problem.

CFO estimation issue:
The cyclostationarity property can also be used for estimating the CFO blindly. Indeed,
in [57], it has been remarked thatr(k)(m) = αk,me2iπkτ/Tse2iπm f Ts/Q with βk a complex valued
scalar which induces the following estimator

f̂N =
P

4πTs
∑

k∈K∗
∑

m∈M∗

1
m

∠

(
r̂(k)(m)r̂(−k)(m)α−1

k,mα−1
−k,m

)
(20)

whereM
∗ corresponds to any set of integers that does not contain zero. This estimator is

insensitive to timing and phase. Once again, by taking specific value of the setK andM, we
obtain the estimators introduced in [61] and [62]. The analytical analysis of the estimator
has been done in [66].

Another approach to estimate the CFO independent of the timing and the phase is to
use the non-circularity property of the received signalya(t). Indeed, it is easy to check [50]
that

E[sM
n ] 6= 0

with

• M = 2 for P-PAM constellation

• M = P for P-PSK constellation

• M = 4 for P-QAM constellation

Consequently the receive signal is also non-circular atM-th order. For the sake of simplicity,
let us consider that the receive signal has been sampled at the symbol rate after passing
through the matched filter. Extension to the oversampled case is straightforward. Then

y(n) =

(
L

∑
ℓ=0

g(ℓ)sn−ℓ

)

e2iπ f Tsn +b(n)

whereg(n) = h̃a(nTs− τ0)e2iπφ0, (L + 1) is the channel length andb(n) the additive white
Gaussian noise. Notice that if the timing has been perfectlycorrected and the shaping filter
is a square-root Nyquist filter, we haveg(n) = δ0,ne2iπφ0 and thusL = 0. When the timing
is not fully corrected, the filterg(n) is no longer a one-tap filter and ISI occurs. Moreover
asτ0 andφ0 are unknown, we have to assume thatg(n) is unknown as well.
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We can rewritey(n) as

y(n) = a(n)e2iπ f Tsn +b(n) where a(n) =
L

∑
ℓ=0

g(ℓ)sn−ℓ

Our estimation problem is then equivalent to the estimationof a harmonicf disturbed by
additive white Gaussian noiseb(n) and multiplicative noisea(n). A lot of work has been
done on the problem of harmonic retrieval in multiplicativeand additive noise. We will
summarize the essential results.

Let us first assumeP-PAM constellation. Letua(m) = E[a(n+m)a(n)] be the pseudo-
correlation at lagm. As PAM is employed, there exists at least one lag such thatua(m) is
non-zero. Letpm(n) = y(n+m)y(n). We have

pm(n) = ua(m)e2iπ(2 f Ts)n+em(n)

whereem(n) is a zero-mean process which can be viewed as noise. But this noise is not
Gaussian, nor white, nor stationary. Nevertheless by working with pm(n), we now have
to estimate an harmonic (2f ) disturbed only by additive noise. The multiplicative noise
has been removed. We recall that ife(n) is Gaussian white and stationary, the ML based on
pm(n) will lead to peak-picking the periodogram. Even ife(n) does not satisfy thee standard
assumptions, it is still usual practice to estimate the frequency through peal-picking the
periodogram (even if it no longer has any link with the ML). Then, we have

f̂N = argmax
f

∑
m

∣∣∣∣∣
1
N

N−1

∑
n=0

pm(n)e−2iπ(2 f )Tsn

∣∣∣∣∣

2

.

Whenm= 0 , we have

f̂N = argmax
f

∣∣∣∣∣
1
N

N−1

∑
n=0

y(n)2e−2iπ(2 f )Tsn

∣∣∣∣∣

2

which is the well-known (and classical) square-power estimator.
To analyze the theoretical performance of these estimators, the standard work on har-

monic retrieval (which assumes the additive noise is Gaussian) cannot be applied [67, 68,
69]. However the analysis has been done quite recently in [70]. Notice that the above ap-
proach holds ifa(n) is real-valued without assuming any specific structure [59,71]. How-
ever, the previous estimator has imited impact since the PAMconstellation is not spectrally
efficient.

We now considerP-PSK andP-QAM constellations. LetM be the non-circularity order.
Recall thatM = P for PSK andM = 4 for QAM. Let q(n) = y(n)M . Then

q(n) = E[yM(n)]e2iπ(M f )n +e′(n).

wheree′(n) is a zero-mean process that can be interpreted as additive noise. Once again
one can carry out periodogram peak-picking for retrievingf . Thus, we have

f̂N = argmax
f

∣∣∣∣
1
N

y(n)Me2iπ(M f )Tsn

∣∣∣∣
2

. (21)
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This estimator has been introduced by [72] for PSK. Several extensions of these estimators
may be introduced. For example, instead of relying only ony(n)M , one could also work
with y(n)y(n+m1) · · ·y(n+mM−1). This has not been done in the literature. One could also
find the best non-linear transformationF such that peak-picking the periodogram based on
F(y(n)) has some desired properties. One can find some results about optimization ofF
in [73].

In Figs. 17-18, we plot the theoretical and empirical performance of theM-th power
estimate for various QAM constellation, varying the SNR andthe number of samplesN
respectively.
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Figure 17: Theoretical and Empirical MSE ofM-th power CFO estimate versusEb/N0 for
4-QAM (left) and 256QAM (right) withN = 128.
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Figure 18: Theoretical and Empirical MSE ofM-th power CFO estimate versusN for 4-
QAM at Eb/N0 = 5dB (left) and 256QAM atEb/N0 = 20dB (right).

For QAM, we observe a self-noise phenomenon since the performance has an error
floor with respect to SNR. It is due to the fact thats4

n 6= E[s4
n]. A recent approach can be

used to remove the self-noise (see [74]).
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The outliers effect still occurs as in any approach based on peak-picking periodogram.
The theoretical MSE taking into account the outliers has been analyzed in [37] for modu-
lated signals and [34] for unmodulated signals.

Phase estimation issue:
For estimating the phase, we will assume that the timing and CFO have already been cor-
rectly compensated. Then we focus on the sampled (at the symbol rate) output of the
matched filter. Therefore, we have

z(n) = sne2iπφ0 +b(n).

The approach for estimating the phase will be similar to thatfor the estimation of CFO
by using the non-circularity property of the constellation. Since

q(n) = y(n)M = E[sM
n ]e2iπ(Mφ0) +e(n)

wheree(n) is a zero-mean process andE[sM
n ] is assumed to be known with phaseφ∗. Then

it is easy to build a simple estimator as follows

φ̂N =
1
M

∠

(
1
N

N−1

∑
n=0

y(n)M

)

−φ∗ (22)

Obviously we have an ambiguity of 2π/M since the constellation is invariant to rotations of
angle 2πk/M, for any integerk. We recall that this estimate is close to the ML at low SNR.

This approach was introduced for PSK by [72] and for QAM by [50]. Notice that
other less powerful estimates of the phase have been introduced in the literature. A deep
theoretical analysis of the estimators can be found in [75].

CRB

In the DA case, we have observed that the derivations of the CRB was not a difficult task.
Morevoer, we were able to obtain rather nice closed-form expression that enable us to pro-
vide some interesting insights. In the NDA case, in contrast, the CRB derivations in closed-
form is much more difficult due to the presence of the unknown data sequence. We thus
work in the framework of the CRB with nuisance parameters. Obviously the nuisance pa-
rameters here are the data. Why is it difficult? To calculate the CRB, we need at least to
have a closed-form expression for the likelihood. As noted earlier in the discussion of blind
ML estimators, a closed-form expression of the likelihood is very difficult to obtain.

The main idea is to define a variant of the CRB assuming a specific property for the data
sequence (the nuisance parameters). In order to be useful, these CRB variations should be
easier to derive and should provide some insights. Typically, these CRB variants will not
be as tight as the classical CRB, and hence they will be optimistic.

A lot of work has been done on the derivation of the CRB for synchronization parame-
ters and/or channel estimators [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]. We will summarize
the main principle in deriving CRB with nuisance parameters. Applications to phase and
CFO estimation are provided with more details.

Let us start with the definition of several CRBs :
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• True-TCRB(also called Unconditional-UCRB or Stochastic-SCRB) : thedata se-
quence is viewed as a random process with a known distribution (a product of sum of
Dirac distributions). Letθ be the synchronization parameter vector [82, 83, 84, 86].
The true Fisher Information Matrix is defined as

Ft(θ) = −E

[
∂ 2 log(p(y|θ)

∂θ(∂θ)T

]

with the true likelihood

p(y,θ) = Es[p(y|θ ,s)] =

∫
· · ·
∫

p(y, |θ ,s)p(s)ds

Then the true CRB is obtained as

TCRB(θ) = Ft(θ)−1

The main drawback is that it is usually intractable to express this in closed-form.
Some expressions are given in [83] but it is not really in closed-form due to the huge
number of sums and products.

• Conditional-CCRB(also called Deterministic-DCRB) : the data sequence is assumed
to be of interest and are added to the parameters to be estimated. Notice that the
structure of the data sequence (i.e. data belong to a specificdiscrete constellation) is
not taken into account. If we would like to take this structure into account, we should
calculate the CRB when strong constraints on the parametershave to be satisfied.
Such a problem is very hard [87, 88] and thus we are far away from our objective
of simplifying the CRB derivations. The difficulty can be partially overcome by
consideringBayesianCRBs which usea priori distributions on the data [24]. Let us
come back to the CCRB [76].

Fc(θ) = −E

[
∂ 2 log(p(y|θ , ŝN)

∂θ(∂θ)T

]

whereŝN is obtained by maximizing overs (by omitting all the constraints ons) the
conditioned likelihoods 7→ p(y|θ ,s). Then the conditioned CRB is obtained as

CCRB(θ) = Fc(θ)−1

Usually the asymptotic version is used i.e., the number of samples is assumed to be
large.

• Gaussian-GCRB: The true CRB is very difficult to compute due to the distribution
of s. To overcome this problem, one can assume thats is Gaussian distributed (even
if though this is not true). The GCRB is thus obtained by usingthe same definition
of the true CRB but by assuming a Gaussian data sequence. Obviously this GCRB is
not generally a bound since it implicitly assumes that the higher-order cumulants are
zero. For example, if the data is PSK and QAM, we have seen thatthe higher-order
moments are very important through theM-th power estimate and thus the GCRB
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does not capture this information. Nevertheless the GCRB has two advantages :
it is quite easy to derive in closed-form, and it is a bound on the MSE for all the
estimates based on second-order statistics (even if the data sequence is not Gaussian)
[78,79,85].

• Modified-MCRB : data are assumed to be known in order to calculate the Fisher
Information Matrix. In order to have a Fisher Information Matrix (FIM) independent
of data, the data-dependent FIM is averaged over the data. Therefore, we have

Fm(θ) = −Es

[
Ey

[
∂ 2 log(p(y|θ ,s)

∂θ(∂θ)T

]]
.

Then the MCRB [77,80,81] is

MCRB(θ) = Fm(θ)−1

In terms of derivations, the main difference from the TCRB isthat the average over
the data is outside the log (for MCRB) and inside the log for the TCRB. This quite
small difference leads to tractable MCRB and usually intractable TCRB. Indeed, the
log will be removed by the exp inp(y) due to the Gaussian additive noise. In MCRB,
log will directly remove the exp although it is not the case for TCRB, thus leading to
very hard calculations.

In the sequel, we provide some general results on the links between the various CRBs.
This relationship is independent of the estimation prolbem.

• At low SNR, the TCRB is much more tractable by doing a Taylor series expansion of
ex for smallx [82,84,86].

• At any SNR, the MCRB is a bound but sometimes too optimistic and thus not tight
enough.

• At any SNR, we have TCRB≥ MCRB and CCRB≥ MCRB [76].

• At high SNR, if the data sequence belongs to a discrete set, wehave TCRB/MCRB→
1. So in our context where data belong to a finite constellation, this property holds
and thus the MCRB is very useful as soon as the SNR is large enough [82].

Let us now focus on our specific estimation problem: for timing estimation (when phase
and CFO are perfectly corrected), there already exists a very good tutorial [76]. Therefore
we focus on phase and CFO estimation (when timing is known andthus zero wlog). Then
we work with the (symbol-rate) sampled output of the matchedfilter. Thus our signal model
is

y(n) = sne2iπ( f0Tsn+φ0) +b(n).

Let us focus on a "toy" example to highlight some interestingbehaviors. We first assume
thatsn can be decomposed as follows

sn = σRs(R)
n + iσIs

(I)
n
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wheres(R)
n ands(I)

n are two unit-variance white BPSK sequences independent of each other;
σ2

R = (1+u)/2 andσ2
I = (1−u)/2 with u∈ [0,1] such that the correlationE[|sn|2] = 1 and

E[s2
n] = u. Notice that ifu = 1, thensn becomes a standard BPSK. And ifu = 0, sn is not a

(second-order) non-circular process anymore. Even thoughboth phase and CFO have to be
estimated, we only provide the expressions for CRB associated with the CFO estimate.

• TCRB derivations: As the nuisance parameter is discrete, we know that at high SNR
the TCRB is equivalent to the MCRB; the latter can be calculated very easily by
averaging the FIM given in Eq. (10). Therefore, we have

TCRB( f )|high SNR=
3N0

π2T2
s N3

At low SNR [82], a derivation based on the Taylor series expansion ofx 7→ ex leads
to

TCRB( f )|low SNR =
3N2

0

π2u2T2
s N3

We observe that the non-circularity power (induced byu) has a great impact at low
SNR where the performance is proportional to SNR2/u2.

• CCRB derivations: as we deal with the (symbol rate) sampled signaly(n), the CCRB
corresponds to an underdetermined estimation problem: we haveN samples to esti-
mateN+2 parameters, and no additional constraints. As a consequence, the CCRB
is not finite. To overcome the problem, we need to work with theoversampled ver-
sion of the received signal. This is out of the scope of our toyexample. For more
details, please refer to [89,76].

• GCRB derivations: the expressions can be found in [85] and are reported below

GCRB( f ) =
3(1−u2 +4N0+4N2

0)

4π2u2T2
s N3 (for N large enough)

Once again the non-circularity power (u) has a great impact which verifies that the
non-circularity property is an important tool in blind estimation of frequency and
phase. We can even show that whenu 6= 0 (and especially foru = 1, i.e., BPSK), the
square-power estimate MSE is identical to the GCRB. Therefore the square-power
estimator for non-circular white multiplicative noise is the best second order estima-
tor.

If u = 0, sn is not (second-order) non-circular anymore. The second order statistics
reduce to the correlationry(m) = rs(m)e2iπ f0Tsm + 2N0δ (m). If sn is white, we do
not have information aboutf and the GCRB will go to infinity. In contrast, ifsn is
colored, we can easily build an estimate as follows:f̂N = (∠r̂y(m)−∠(rs(m)))/m
where ˆry(m) is the empirical estimate ofry(m) andrs(m) is, known. The frequency
is thus viewed as the phase of the correlation function. The GCRB is given by [79]

GCRB( f )|circular case=
1

N
∫ 1

0

(
S′s(e2iπ f )

Ss(e2iπ f )+2N0

)2
d f

(for N large enough)
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whereSs(e2iπ f ) is the power spectrum ofsn andS′s(e
2iπ f ) its derivative function. We

note that the GCRB decreases as 1/N which is the convergence speed associated
with the phase estimation issue. So clearly, to have faster convergence, we need to
use high-order statistics ofsn when it is second-order circular.

• MCRB derivations: we just have to average the FIM and it is the term given in
Eq. (10).

MCRB( f ) =
3N0

π2T3
s N3 .

The MCRB does not capture the influence of the non-circularity; it is not tight enough
and is too optimistic except at high SNR.

Let us now assume thatsn belongs is an iid sequence drawn from a PSK or QAM
constellation. The GCRB, MCRB are not modified at all although the process is no longer
(second-order) non-circular. In contrast the TCRB (at low SNR) is completely different and
is given [82] by

TCRB|low SNR, M−th order non. circ = O(1/SNRM)

Once again the non-circularity tool is fundamental for estimating the CFO and the phase.
The the TCRB has similar behavior as the MSE of theM-th power (if outliers effect is not
taken into account) at low SNR.

In Figs. 19-20-21, we plot various CRBs and empirical MSE of theM-th power estimate
versus SNR,N andu respectively for the processsn used in the toy example.

−20 −15 −10 −5 0 5 10 15 20
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0

M
S

E

Various CRB and MSE of square−power estimate (u=1, N=100)

 

 
TCRB (high SNR)
TCRB (low SNR)
GCRB
MCRB
MSE of Square−Power Estimate

−20 −10 0 10 20 30 40
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0

M
S

E

Various CRB and MSE of square−power estimate (u=0.5, N=100)

 

 
TCRB (high SNR)
TCRB (low SNR)
GCRB
MCRB
MSE of Square−Power Estimate

Figure 19: Various CRBs and MSE versusEb/N0 for u = 1 (left) and foru = 0.5 (right).

Code-Aided synchronization

When the SNR is low, the NDA estimators may offer poor performance with realistic num-
ber of samples. Until now, we have not exploited the usual structure of the data. Indeed, in
order to obtain the targeted BER in current systems, channelcoding is used. There are two
ways of using the channel structure to improve the synchronization step
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Figure 20: Various CRBs and MSE versusN for u = 1 (left) and foru = 0.5 (right).
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Figure 21: Various CRBs and MSE versusu (EB/N0 = 10dB andN = 200).

• DD with hard/soft decision: the hard decision has already been introduced in this
tutorial when hard decision has be done after the channel decoding. Hard decision
can be replaced with soft decision. As soft decision is usually needed for iterative
decoding, we can implement jointly the decoding of turbo or LDPC and the synchro-
nization which leads to the so-called turbo-synchronization concept. More details
will be given below.

• LLR maximization : the performance of the system will be better (and so more reli-
able) if the sync parameters are well chosen. Therefore one can develop sync estima-
tors based cost function dealing with reliable functions. [90].

Hree, we will focus on DD with soft decision. The use of soft decision is really inter-
esting at low SNR when synchronization is very difficult. Usually at low SNR, the chan-
nel coding requires the use of Turbo-codes or LDPC, namely, of iterative coding. There-
fore the next synchronization way is usually called "turbo-synchronization" developed by
Vandendorpe-Luise, and others. A nice tutorial treatment is given in [28]. Here, we briefly
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provide the main points. For simplicithy of exposition, we focus only on phase estimation
(assuming the other synchronization parameters are known)

Let φ̂ (n) be the phase estimator at then-th iteration. The EM algorithm has two basic
steps:

E-Step : Q(φ , φ̂ (n)) =

∫
p(ỹ|y, φ̂ (n)) log(p(ỹ|φ)dỹ

M-Step : φ̂ (n+1) = argmax
φ

Q(φ , φ̂ (n))

where

• ỹ is thecompleteset of data

• y is theincompleteset of data.

By considering the complete set of data as the received signal and the transmitted sym-
bols, i.e., ˜y = [y,sN], one can obtain that

Q(φ , φ̂ (n)) = ℜ

{
N−1

∑
n=0

šn,φ̂ (n)z(n)e−2iπφ

}
(23)

where

šn,φ̂ (n) =
P−1

∑
p=0

s(p) p(sn = s(p)|y, φ̂ (n)). (24)

Thus the M-step leads to the following solution

φ̂ (n+1) = ∠

(
N−1

∑
n=0

šn,φ̂ (n)z(n)

)

We thus remark that the phase estimator is very similar to DA or DD estimator but now
the symbol is neither known, nor decided, but is replaced with the mean of the a posteriori
distribution.

The previous EM approach can be considered with or without coding. The performance
will just be different because the a posteriori mean will be more or less accurate compared
to the true transmitted symbol (see [48] for non-coded case). In order to connect some
previous results, let us consider the non-coded BPSK case. We then have that

šn,φ̂ (n) = p(sn = 1|y, φ̂ (n))− p(sn = −1|y, φ̂ (n)) (25)

= tanh

(
1
2

log

(
p(sn = 1|y, φ̂ (n))

p(sn = −1|y, φ̂ (n))

))
(26)

= tanh




ℜ
{

z(n)e−2iπφ̂ (n)
}

N0



 (27)

Eq. (26) corresponds to the LLR of the symbol, and Eq. (27) corresponds to the standard
soft decision on the BPSK symbol. We remark that the EM approach (which is strongly
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connected to ML) leads "fortunately" to the same equation ofthe true ML developed for
the non-coded BPSK in Eq. (16) even though the iteration doesnot mean the same thing.
In the EM approach, we iterate inside a data block, whereas inEq. (16) we iterate at each
ongoing sample. The non-coded BPSK based example shows thatthere exists a strong link
between EM and LLR. Nevertheless, this link cannot be extended directly to coded system
(whatever the constellation). For more details, we refer the reader to [28].

In terms of complexity, we need to compute Eq. (24). For (coded) BPSK, the BCJR
algorithm can be used. For other constellation, usually approximations are done [91, 92].
Notice that we need the soft decision directed approach onlyat low SNR when the constel-
lation size is in practice small enough which reduces the computational load for obtaining
Eq. (24).

Conclusion

In Table 1, we summarize the links between the various estimators that we have discussed
and the assumptions under which they work. We also indicate whether each of the problems
(1,1’,2,2’) has a solution.

Problem Algorithms

1 (DA phase and CFO estimation with null timing) (9)
1’ (DA Timing estimation with null phase and CFO) (3)
2 (NDA Phase and CFO estimation insensitive to timing)(20,21,22)
2’ (NDA Timing estimation insensitive to phase and CFO)(19) if M = {0}

Table 1: Some algorithms associated with each problem statement.

3. Synchronization for non-flat fading channels

When the channel is frequency-selective, the orthogonal frequency-division multiplexing
(OFDM) modulation scheme is the standard of choice. OFDM hasbeen widely employed in
various commercial applications that include wireless local area networks (IEEE 802.11a/g/n
and HIPERLAN/2), wireless metropolitan area networks (WMAN/WiMax, IEEE 802.16),
terrestrial digital audio broadcasting (DAB) and terrestrial digital video broadcasting (DVB)
systems in Europe, Multimedia Mobile Access Communications (MMAC) in Japan. The
popularity of OFDM stems from its ability to transform a wideband frequency-selective
channel to a set of parallel flat-fading narrowband channels, which substantially simpli-
fies the channel equalisation problem. Because of the time-frequency granularity that it
offers, OFDM appears to be a natural solution when the available spectrum is not con-
tiguous, for overlay systems, and to cope with issues such asnarrowband jamming. In
the multiuser context, this granularity also accommodatesvariable quality-of-service (QoS)
requirements and bursty data. A noticeable example of this multiuser application is the
combination of OFDM with frequency-division multiple access (FDMA) protocol, i.e.,
orthogonal frequency-division multiple access (OFDMA), which has become part of the
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Figure 22: The operational principle of an OFDM system

IEEE 802.16 standards for WMAN. Since subcarriers are allocated to distinct users in a
non-overlapping manner, one attractive feature of OFDMA isits capability to mitigate the
effects of multiple-access interference (MAI). Another appealing feature of OFDMA is dy-
namic subcarrier assignment which enables it to optimally allocate system resources such
as transmission power and spectrum.

Despite the above-mentioned appealing features, the synchronization task turns out to
be a critical issue for OFDM based systems. The synchronization problems of OFDM
based systems include timing and frequency synchronization. Tming and frequency offsets
come from two sources. One source is the local oscillator frequency mismatch between the
transmitter and the receiver, and the other is the Doppler spread due to the relative motion
between the transmitter and the receiver. Both timing and frequency synchronization errors
introduce extra interference to OFDM systems and result in performance degradation. In
addition, timing synchronization may affect the performance of channel estimation [93].
Therefore, effective synchronization is a key to improve the performance of an OFDM
based system.

3.1. Signal model and preliminaries

The operational principle of an OFDM system is that the available bandwidth is divided
into a large number of subchannels, over each of which the wireless channel can be consid-
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ered non-dispersive or flat fading. The original data streamat rateR is split intoN parallel
data streams, each at rateR/N. The symbol duration,Ts, for these parallel data streams is
therefore increased by a factor ofN, i.e.,T = NTs as shown in Figure 22.a. Conceptually,
each of the data streams modulates a carrier with a differentfrequency and the resulting sig-
nals are transmitted simultaneously. The carriers for eachsubchannels are made orthogonal
to one another, allowing them to be spaced very close together with no overhead. This is
shown in Figure 22.b for four carriers. Correspondingly, the receiver consists ofN parallel
receiver paths. Due to the increased symbol duration, the intersymbol interference (ISI)
over each channel is reduced to⌈τmax/(NTs)⌉ symbols. Thus, an advantage of OFDM is
that, for frequency-selective fading channels, the OFDM symbols are less affected by chan-
nel fades than are single-carrier transmitted symbols. This is due to the increased symbol
duration in an OFDM system. While many symbols during a channel fade might be lost
in a single-carrier system, the symbols of an OFDM system canstill be correctly detected
since only a fraction of each symbol might be affected by the fade. On the other hand, if
the channel is time selective, i.e., the channel impulse response varies significantly within
the OFDM symbol period, then the channel matrix is no longer Toeplitz and conventional
OFDM would fail.

Since multicarrier modulation is based on a block transmission scheme, measures have
to be taken to avoid or compensate for interblock interference (IBI), which contributes to
the overall ISI. OFDM systems can be categorised by the way they handle IBI. In the most
popular systems, a guard time is inserted between consecutive OFDM symbols in the form
of a cyclic prefix (CP); i.e., the tail of the OFDM symbol is prefixed as shown in Figure 22.c.
The length of the CP is chosen to be larger than the expected delay spread; after proper time
synchronization, the receiver discards the CP and thus the IBI is eliminated. Time guarding
by zero padding the OFDM symbols has also been proposed in [94, 95]. The issue here is
one of turning the transmitter on and off and increased receiver complexity vs. the increased
signal-to-noise ratio (SNR) and decreased symbol error rate (SER). Comparisons between
cyclic-prefixing and zero-padding OFDM systems may be foundin [96]. In this chapter,
we focus on CP based OFDM systems only.

The choice of the OFDM parameters is a trade-off between various, often conflicting
requirements. The length of the CP is dictated by the delay spread of the channel. Intro-
duction of the CP entails a reduction in rate (or wasted bandwidth), as well as an SNR loss;
to minimise these inefficiencies, the number of subcarriers, N, should be large. However,
a large number of subcarriers induces high implementation complexity, increased sensitiv-
ity to frequency offset and phase noise (since the subcarriers get closer to each other asN
increases), and increased peak-to-average power ratios (PAPRs).N is dictated by concerns
regarding practical FFT sizes as well as the coherence time of the channel. We will not
address the issue of practical choice of OFDM parameters here; we refer the reader to [97]
and references therein. In this chapter, we address the crucial issue of timing and frequency
offsets estimation.

Subcarrier allocation strategies

Conventionally, all subcarriers are allocated to one specific user in single user OFDM sys-
tems. For multiuser OFDM or OFDMA systems, subcarrier allocation strategies are needed.
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Figure 23: Illustration of subcarrier allocation schemes

Let N andKu denote the total number of subcarriers and maximum number ofactive users,
respectively. The current number of usersM is limited to Ku, i.e., M ≤ Ku. Let Ii andIi

indicate the number and indices of subcarriers allocated tothe i-th user, respectively; we
have that

M

∑
i=1

Ii ≤ N (28)

Ii ∩ I j = /0, i 6= j (29)

As shown in Figure 23, generally, there are three subcarrierallocation schemes. For illus-
tration purposes, we setN = 32, M = 3, Ku = 4 and Ii = 8 in Figure 23. Thesubband
carrier allocation scheme(CAS) is shown in Figure 23(a). A group ofIi adjacent subcar-
riers is assigned to thei-th user in the subband CAS so that the signal of each user can
be separated easily at the base station (BS) through a filter bank. However, subband CAS
prevents the possibility of optimally exploiting the channel diversity. A deep fade might
hit a substantial number of subcarriers of a given user if they are close together [98]. To
reserve some multipath diversity,interleaved CASshown in Figure 23(b) can be adopted for
an uplink OFDMA system. The assigned subcarriers of thei-th user are equi-spaced with
a distanceKu in interleaved CAS. More dynamic resource allocation and flexibility can be
achieved by employinggeneralised CAS, where no strict association between subcarriers
and users is required, as illustrated in Figure 23(c). However, generalised CAS will increase
the synchronization complexity significantly as shown later.

OFDM transmission

The discrete-time block diagram of a standard downlink OFDMA transmission system is
depicted in Figure 24. According to the CAS employed,Ii data symbols for each user and
N−∑M

i=1 Ii zeros are assembled into one OFDM symbol as

X(k) =

{
Xi(k), if k∈ Ii

0, otherwise
(30)
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Figure 24: Discrete-time complex baseband representationof downlink OFDMA transmis-
sion

After the inverse DFT modulation, each OFDM block is preceded by a CP whose duration
is usually longer than the delay spread of the propagation channel, so that IBI can be elimi-
nated at the receiver without affecting the orthogonality of the subcarriers. The time-domain
samples after CP insertion can be expressed as

x̃(n) =

{
x(N+n), −Ng ≤ n≤−1

x(n), 0≤ n≤ N−1
(31)

wherex(n) = 1√
N ∑N−1

k=0 X(k)ej2πnk/N. The(Na = N + Ng) samples of each block are then
pulse shaped, upconverted to the carrier frequency, and transmitted sequentially through the
channel.

In this chapter, we model the frequency-selective channel as a finite impulse response
(FIR) filter with channel impulse response (CIR)h = [h(0), · · · ,h(L−1)]T , whereL is the
channel order and is determined by the maximum channel delayspread and data sampling
rate. In practice, the system is usually designed such thatL ≤ Ng ≤ N. We assume that the
CIR is time invariant overNT ≥ 1 consecutive symbol blocks, but could vary from one set
of NT blocks to the next.

At the receiver, the signal is downconverted to baseband andsampled at the rate ofNa

samples per extended OFDM symbol. We will index these received samples by[−Ng, · · · ,N−
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1]. Discarding the samples with indicesn = −Ng, · · · ,−1 is known as discarding the cyclic
prefix. In a perfectly synchronised system, the received signal can be written as

r(n) =
L−1

∑
l=0

h(l)x̃(n− l)+ υ(n) (32)

for n = 0, · · · ,N−1; hereυ(n) is complex-valued additive white Gaussian noise (AWGN)
with varianceσ2

υ . Recall that with the insertion of CP, collected samples{r(n)}N−1
n=0 can be

expressed as
r = Hx+ υ (33)

whereH is an(N×N) circulant matrix whose first column is[h(0),h(1), · · · ,h(L−1),0, · · · ,0]T .
The circulant matrixH can be written asH = FHHF, whereF is the DFT matrix with
[F]m,n = 1√

N
e− j2πmn/N andH = diag{H(0), H(1), · · · ,H(N−1)} with

H(k) =
L−1

∑
l=0

h(l)e− j2πkl/N . (34)

Hence, after performing DFT, the outputRcan be expressed as

R= HX + ϒ (35)

whereX = [X(0), · · · ,X(N−1)]T andϒ = [ϒ(0), · · · ,ϒ(N−1)]T is again AWGN with co-
variance matrixσ2

υ I . SinceH is a diagonal matrix, equation (35) indicates that the effect
of the frequency-selective channel on the OFDM signal is completely captured by scalar
multiplications of the data symbols by the frequency responses of the channel at the subcar-
rier frequencies. Further, demodulation at the receiver does not colour the additive noise.
If none of the channel zeros coincide with an activated subcarrier, maximum likelihood
detection of the symbols is straightforward. Zero-forcingand minimum mean square error
(MMSE) equalisers can also be applied on a per-carrier basis.

As we mentioned previously, the signal model (35) is only valid for an ideal timing and
frequency synchronised system. However, in practical systems, Doppler shifts and instable
oscillators result in a carrier frequency offset (CFO)f0 between the received carrier and the
local sinusoids used for signal demodulation. In addition,unknown transmission timing and
propagation delay cause the DFT window to be placed in a wrongposition at the receiver.
This results in a timing error, denoted bytd, which must properly be compensated to avoid
severe performance degradation. Since fractional (normalised to sampling period) timing
offsets can be absorbed into the channel, it is a common practice to model the timing offsets
as a multiple of the sampling period. Lettingω (a real number) andτ denote the CFO
normalised to the subcarrier spacing and the integer part ofthe timing offset normalised to
the sample period, respectively, i.e.,ω = N f0Ts andτ = ⌊td/Ts⌋, in the presence of timing
and frequency offsets, then equation (32) becomes

r(n) = ej2πωn/N
L−1

∑
l=0

h(l)x̃(n− l − τ)+ υ(n) (36)

For single timing and frequency offset, the timing and frequency offsets can be esti-
mated and corrected as shown in Figure 24. However, it is a tough task to estimate and
compensate multiple timing and frequency offsets. Next, wewill review the effects of tim-
ing and frequency offsets on the performance of OFDM systems.
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Figure 25: Illustration of the effect of multipath dispersion on CP

Effects of timing errors on system performance

Due to the multipath dispersion, the tail of each received block extends over the firstL−1
samples of the successive OFDM block as shown in Figure 25. Byinserting a CP which
consists of more thanL−1 samples, the interference from the previous OFDM block can
be readily removed by properly determining the starting point of the OFDM symbol. How-
ever, the inaccuracy of timing offset estimation will causeperformance degradation. To
quantify the effect of timing errors on system performance,we assume perfect frequency
synchronization here, i.e.,ω = 0.

Since the length of CP is (assumed to be) always larger than the maximum channel
delay spread, and using the time-shift property of the Fourier transform, we find that the
timing error∆τ = τ̂ − τ within interval [−Ng+L−1, 0] only causes a linear phase rotation
across the subcarriers as

R(k) = ej2πk∆τ/NH(k)X(k)+ ϒ(k) (37)

The effect of this timing error can be readily compensated bythe channel equaliser. On
the other hand, if the timing error is outside interval[−Ng + L− 1, 0], samples from ad-
jacent OFDM blocks not only cause IBI, but also result in a loss of orthogonality among
subcarriers which generates inter-carrier interference (ICI). A comprehensive mathematical
analysis of the effects of timing errors is discussed in [93]and [99]. For the second timing
error case, the received signal after DFT can be written as

R(k) =
αd

N
(k)ej2πk∆τ/NH(k)X(k)+ γ(k)+ ϒ(k) (38)

where

αd(k) =

{
(1−ej2πkd/N)/(1−ej2πk/N), k 6= 0
N−d, k = 0

(39)

d =

{
∆τ , if ∆τ > 0
max{L−1− (Ng+ ∆τ),0}, if ∆τ ≤ 0

(40)

andγ(k) is the combination of IBI and ICI which is defined as [99]. Following the same
lines as derived in [99], the signal-to-interference (SIR)in the presence of timing errors can
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Figure 26: SIR versus timing error∆τ

be expressed as

SIR=
(N−d)2

d(2N−d)−2N−d
σ2

h
β (d)

(41)

whereσ2
h =

L−1
∑

l=0
σ2

h(l) and

β (d) =






d−1
∑

m=0

L−1
∑

l=m+1
σ2

h(l), ∆τ > 0

d−1
∑

m=0

Ng+∆τ+m−1

∑
l=0

σ2
h(l), ∆τ ≤ 0

(42)

Figure 26 shows the SIR versus timing error∆τ for N = 64. Both the exponential power
delay profile, i.e., E

{
|h(l)|2

}L−1
l=0 =Cexp(−0.2l) whereC is a scalar factor that ensures that

the total energy of the channel taps is normalised to unity, and the uniform power delay
profile, i.e., E

{
|h(l)|2

}L−1
l=0 = 1/L profile, have been tested. The length of the CP and CIR

are set to 16 and 8, respectively, i.e.,Ng = 16 andL = 8. As discussed previously, the timing
error within interval[−Ng + L−1, 0], which is [−9, 0] for our simulation setup, will not
cause ICI and IBI. The timing error outside the interval[−9, 0] results in a significant SIR
loss, especially for positive timing errors. To keep the SIRdegradation within a tolerable
level, accurate timing offset estimation is necessary.
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Effects of carrier frequency offsets on system performance

As we mentioned in a previous section, CFO is caused by Doppler shifts and mismatched
oscillators. In general, the CFO can be several times the subchannel spacing. Thus, the
CFO is usually divided into an integer part and a fractional part by normalising to the
subcarrier spacing. Assuming perfect timing synchronization and using the frequency-shift
property of the Fourier transform, the received signal under an integer valued CFOω can
be expressed as

R(k) = H((k−ω) modN)X((k−ω) modN)+ ϒ(k) (43)

It can be seen from the above equation that the integer valuedCFO causes a circular shift of
the transmitted symbols, but does not cause ICI; i.e., the orthogonality of the subcarriers is
maintained. The fractional part, however, causes ICI. Assuming that CFOω is a fractional
value, the received signal can be written as

R(k) =
N−1

∑
n=0

H(n)X(n) f (ω +n−k)+ ϒ(k) (44)

where

f (n) =
sin(πn)

Nsin(πn/N)
ejπn(N−1)/N (45)

Equation (44) can be re-written as

R(k) = H(k)X(k) f (ω)+ γ(k)+ ϒ(k) (46)

whereγ(k) =
N−1
∑

n=06=k
H(n)X(n) f (ω + n− k) is the zero-mean ICI term with powerσ2

γ (ω).

After some manipulations as shown in [100], we have

σ2
γ (ω) = σ2

x (1−| f (ω)|2)

Thus, the SIR can be expressed as

SIR=
| f (ω)|2

1−| f (ω)|2 (47)

The SIR versus CFOω for N = 64 is shown in Figure 27. Notice that the SIR decreases
rapidly as the CFO increased. Again, to keep the SIR degradation to a tolerable level,
effective CFO estimation and compensation methods are required. More precise techniques
for computing the SNR loss due to CFO can be found in [101].

3.2. Downlink OFDMA

As shown in Figure 28, the BS broadcasts training sequences followed by data blocks to the
potential users and each user operates independently in downlink OFDMA transmission.
Thus, the synchronization problem in downlink OFDMA is similar to that of single-user
OFDM systems. Generally, synchronization can be divided into a coarse acquisition phase
and a fine tracking phase. In this section, we provide a brief survey of existing synchroniza-
tion techniques in the downlink OFDMA scenario.
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Figure 27: SIR versus fractional carrier frequency offsetω

Figure 28: Downlink OFDMA representation
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Figure 29: Training symbols of S&C algorithm

Coarse synchronization methods

The coarse synchronization task typically has two sub-tasks, i.e., finding the start of an
OFDM frame over an approximate range of sample values and aligning the local oscillator
of the receiver to the received carrier frequency. Coarse timing acquisition is usually the
first task performed in the synchronization procedure. In practice, the CFO is assumed to
be completely unknown at this stage. Hence, the orthogonality of the subcarriers may not
be retained to provide a useful post-FFT signal. Consequently, coarse timing acquisition
is obtained in the time domain. In coarse frequency synchronization, the usual approach
is to decompose the CFO into a fractional part plus an integerpart. Pre-FFT or post-FFT
methods may be adopted to estimate the CFO.

Depending on the system requirements, coarse timing and frequency acquisition can
be carried out by exploiting either the repeated cyclic prefix [102, 103, 104] or specially
designed training sequences (preambles) [105, 106, 107, 108]. Exploiting the correlation
of the CP, the CP based algorithms can work blindly without the overhead of an explicit
training sequence. However, as standardised in many commercial systems, reliable coarse
acquisition methods for frequency-selective channels arebased on a training sequence with
a repetitive structure. The motivation behind this idea is that the repetitive property is
preserved after propagation through a multipath channel, except for a phase rotation due
to the CFO. In this chapter, we consider training-sequence based synchronization in the
following.

Second-order statistics based methods
There are basically two methods for training-sequence based coarse synchronization,

i.e., first-order statistics based and second-order statistics based methods. The latter class
was first proposed by Moose in [109] and further studied by Schmidl and Cox (S&C) in
[105], where two identical slots with length ofN/2 were used in the first training symbol
as shown in Figure 29. The CFO normalised to the subcarrier spacing is decomposed into
two parts as

ω = ν +2ε (48)

whereν ∈ (−1,1] andε is an integer. To generate the repetitive-structure of the first training
symbol, we can simply transmit a pseudonoise (PN) sequence on the even subcarriers, while
zeros are used on the odd subcarriers. For the second training symbol, a PN sequence PN1
is transmitted on the odd subcarriers which may be employed in channel estimation; and a
differentially-modulated PN sequence PN2 deployed on the even subcarriers is used for the
integer CFO estimation. Let{r(n)}N−1

n=0 denote the received signals, we have

r(n) = z(n)+ υ(n) (49)
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where

z(n) = ej2πωn/N
L−1

∑
l=0

h(l)x(n− τ − l) (50)

x(n) =
1√
N

N/2−1

∑
k=0

X(2k)e− j4πkn/N (51)

whereτ , an integer, is the normalised nonfractional part of the timing offset,ω is the CFO
normalised to the subcarrier spacing,x(n) andX(k) are respectively the transmitted time
domain and frequency domain training sequences,h(l) is thel th tap of the CIR andυ(n) is
an AWGN with varianceσ2

υ . It can be easily verified that the first and second halves of the
received signal can be expressed as

r(n) = z(n)+ υ(n), τ ≤ n≤ τ +
N
2
−1 (52)

r(n+
N
2

) = ejπν z(n)+ υ(n+
N
2

), τ ≤ n≤ τ +
N
2
−1 (53)

Exploiting the correlation between first and second halves,the S&C timing estimator can
be expressed as

τ̂ = argmax
τ̃

Λ(τ̃) (54)

where

Λ(τ̃) =

∣∣∣∣∣
τ̃+N/2−1

∑
n=τ̃

r∗(n)r(n+ N
2 )

∣∣∣∣∣

2

(
τ̃+N/2−1

∑
n=τ̃

|r(n+ N
2 )|2

)2

Moreover, assuming perfect timing synchronization, the estimate of fractional part CFOν
can be obtained as

ν̂ =
1
π

arg

{
τ+N/2−1

∑
n=τ

r∗(n)r(n+
N
2

)

}
(55)

In practice, the timing offsetτ in eq. (55) can be replaced by its estimated valueτ̂ given
in eq. (54). If the normalised CFO can be guaranteed to be lessthan 1, the second train-
ing symbol would not be needed. Otherwise, the second training symbol and a post-FFT
method can be adopted to estimate the integer part of the CFO,ε , as we describe next.

After compensating the fractional offset by multiplying the two training symbols by
e− j2πν̂n/N, the FFT output of two training symbols, denoted asR1(k) and R2(k), can be
expressed as

R1(k) = Z1(k)+W1(k) (56)

R2(k) = Z2(k)+W2(k) (57)

for k = 0, · · · ,N−1 and

Z1(k) = H((k−2ε)modN)X1((k−2ε)modN) (58)

Z2(k) = ejφ H((k−2ε)modN)X2((k−2ε)modN) (59)
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whereφ = 4πε(N + Ng)/N. Let d(k) = X2(k)
X1(k)

represent the differentially-modulated PN
sequence on the even subcarriers of the second training symbol, we have

Z2(k) = ejφ d((k−2ε)modN)Z1(k) (60)

for evenk. Thus, the estimator of the integer part of the CFO,ε , can be expressed as

ε̂ = argmax
ε̃

Ψ(ε̃) (61)

where

Ψ(ε̃) =

∣∣∣∣ ∑
k even

R∗
1(k)d

∗((k−2ε̃)modN)R2(k)

∣∣∣∣
2

2

(
∑

k even
|R2(k)|2

)2 (62)

and integer̃ε varies over the range of possible frequency offsets. Then, the frequency offset
estimate would bêω = ν̂ +2ε̂.

The S&C timing estimator (54) is expected to capture a peak when the correlation win-
dow is perfectly aligned with the received training sequence. Unfortunately, as shown in
Figure 30, the timing metric of the S&C estimator exhibits a "plateau" which reduces the
acquisition accuracy significantly. To obtain a steeper timing metric trajectory, many train-
ing patterns were proposed in [106, 107]. In [107], a training of the form [B,B,−B,B]
in time domain was proposed by Shi and Serpedin (S&S). Arranging the receivedN sam-
ples[r(τ̃) · · · r(τ̃ + N−1)]T into four parts as{r i(τ̃) = [r(iN/4+ τ̃) · · · r((i + 1)N/4+ τ̃ −
1)]T}3

i=0, the S&S timing estimator can be expressed as

τ̂ = argmax
τ̃

Λ(τ̃) (63)

where

Λ(τ̃) =
∑2

i=0 |Pi(τ̃)|
3
2 ∑3

i=0‖r i(τ̃)‖2

and

P0(τ̃) = rH
0 (τ̃)r1(τ̃)− rH

1 (τ̃)r2(τ̃)− rH
2 (τ̃)r3(τ̃)

P1(τ̃) = rH
1 (τ̃)r3(τ̃)− rH

0 (τ̃)r2(τ̃)

P2(τ̃) = rH
0 (τ̃)r3(τ̃)

Since the training symbol is divided into four parts, we find that the CFO causes a phase
shift of πω/2 in each part for a flat fading channel. Thus, the CFO estimator of S&S
algorithm for practical systems can be expressed as

ω̂ =
2
π

arg{P0(τ̂)} (64)

Compared to the S&C CFO estimator (55), we can see that the acquisition range of (64)
increased to[−2,2).
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Figure 30: Timing metrics for S&C and S&S estimators,N = 128, Ng = 16, L = 16,
SNR=20dB

Both timing metrics of the S&C and S&S timing estimators,Λ(τ̃), are illustrated in
Figure 30, where∆τ = τ̃ − τ . The results are obtained under the exponential power delay
profile channel introduced previously and the SNR is defined as σ2

x /σ2
υ . We can see that

the "plateau" present in the S&C estimator is significantly reduced in the S&S estimator.
As pointed out in [106], a steeper timing metric trajectory can be obtained by increasing the
number of repetitive slots.

Although the correlation method adopted in S&C and S&S estimators has low com-
putational complexity, those estimators will exhibit a floor effect since they are still based
on second-order statistics of the received signal. As shownin [110], much more accurate
timing and frequency estimation can be achieved by using thefirst-order statistics, at the
expense of a slight increase in implementation complexity.

First-order statistics based methods
Using the signal model (49), the mean of the received signal is given by

E{r(n)} = ej2πωn/N
L−1

∑
l=0

h(l)x(n− τ − l),n = τ −Ng, · · · ,τ +N+L−1 (65)

Let r τ̃ = [r(τ̃), · · · , r(τ̃ +N−1)]T and E{r τ̃} , µ = Γ(ω)Xh, whereΓ(ω) = diag{1, · · · ,
ej2πω(N−1)/N}. X is a circulant matrix whose first column isx.

The variance of the received signal is

var{r(n)} =

{
σ2

υ , n = 0, · · · ,τ +N−1
> σ2

υ , n > τ +N−1
(66)
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Figure 31: Real part of one realisation of the received signal as well as the corresponding
instantaneous mean and variance

Thus, the variance of the received signal is minimum during the noise-only period, which
precedes reception of the frame, and during the reception ofthe training block. During data
reception, it is equal toσ2

υ + ‖h‖2, where we assume that data symbols have unit power,
without loss of generality. Figure 31 illustrates these observation. Ifµ were known,τ could
be estimated by minimising the Euclidean distance betweenr τ̃ andµ over τ̃. Since this is
not the case and in order to avoid the noise-only period, [110] proposed two estimators
which are obtained by minimising the following modified versions of the nonlinear least-
squares (NLLS) criterion:

C1(τ̃ , ω̃ , h̃) =
‖r τ̃ − µ̃‖2

‖r τ̃‖2 (67)

and
C2(τ̃, ω̃ , h̃) = ‖r τ̃ − µ̃‖2−‖r τ̃‖2 (68)

overτ̃ , ω̃ andh̃, whereµ̃ is obtained as inµ after replacinghandω by h̃andω̃ , respectively.
Both the normalisation factor in (67) and the second term of the RHS of (68) guarantee

the uniqueness of the solution, i.e., avoid the noise-only (i.e., h̃ = 0) solution. Indeed, in
the noise-only period, the minima of E{C1} and E{C2}, which are obtained with̃h= 0, are
(approximately) one and zero, respectively. During data reception, the minima of E{C1}
and E{C2} are again obtained with̃h= 0 and are also approximately equal to one and zero,
respectively. During the reception of the training sequence, the minima of the E{C1} and
E{C2} are (approximately) 1/(1+ SNR) and−‖h‖2, respectively, where SNR is defined
as SNR= ‖rτ‖2/(Nσ2

υ). These minima are smaller than those obtained in the noise-only
and data transmission periods. Hence, when the processed signal contains the received
preamble, the minima of E{C1} and E{C2} are achieved if and only if̃τ = τ and µ̃ = µ .
Figure 31 illustrates some of these results.

Since the statistical expectation ofC1 andC2 are unknown, only estimates of the un-
known parameters can be obtained by minimisingC1 andC2 themselves. The obtained es-
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timators were referred to as modified nonlinear least squares estimators (MNLLS) in [110],
since they combine the NLLS estimation method and detection. The above optimisation
problems can be simplified by noting thatC1 andC2 are quadratic iñh. Thus, closed-form
expressions for̂h1 andĥ2 can be obtained as

ĥi = X†ΓH(ω̂i)r τ̂i , i = 1,2 . (69)

Substituting the above estimates forh̃ in C1 andC2, the equivalent criterion is to maximise

C′′
i (τ̃, ω̃) = gi(τ̃)rH

τ̃ Γ(ω̃)ΠXΓH(ω̃)r τ̃ , i = 1,2 (70)

whereg1(τ̃) = ‖r τ̃‖−2 andg2(τ̃) = 1, andΠX = X(XHX)−1XH , which is a fixed matrix and
can thus be precomputed and stored at the receiver.

The above optimisation problems are two-dimensional. Although they are discrete in
one dimension, they are still computationally challengingto solve. To reduce the compu-
tational complexity, timing acquisition usingC′′

i is performed by ignoring the CFO-related
terms. It was shown that a coarse but closed-form estimate ofthe CFO for each timing
offset candidate is good enough to (nearly) obtainτ̂1 and τ̂2. To obtain the CFO estimate,
the repetitive structure of the training block and the second-order statistic-based method
in [105] were adopted to estimate the fractional part ofω , i.e., ν . The estimate of the
integer part ofω , ε̂ and timing offsetτ̂i are given by

{τ̂i, ε̂i} = argmax
τ̃ ,ε̃

gi(τ̃)rH
τ̃ Γ(ε̃ + ν̃)ΠXΓH(ε̃ + ν̃)r τ̃ (71)

where candidate values for
tildeepsilonare in(−Q+1,Q−1), andν̃ is given by [105]

ν̃ =
1
π

arg

{
τ̃+N/2−1

∑
n=τ̃

r∗(n)r(n+N/2)

}

(72)

Although the optimisation problem (71) is two-dimensional, it is discrete and the possible
values ofε dictated byQ may be small in practice. It is worth pointing out that the optimi-
sation problems can be reduced to one-dimensional problemsif the preamble is made ofQ
repetitive slots, since in this case, a closed-form estimate of ω can be obtained (see [111]
and [112]). However, the performance of timing acquisitionin this case becomes similar to
that of existing methods, unlessN >> 2Q(L+1).

Onceτ andε are estimated, estimates ofω are obtained aŝωi = ν̂ + ε̂, whereν̂ is given
by (72) withτ̃ = τ̂. A more accurate estimate can be obtained by maximisingC′′

i (τ̂ , ω̃) over
ω̃ after initialising withω̂i . Since this is results in the optimisation of a continuous-valued
variable,ω , it may not be appropriate in practice, especially for the downlink. Moreover,
simulations have show that the performance improvement is not significant.

Finally, as a product of the above synchronization method, estimates of the channel can
be obtained from (69) after replacingτ andω by the above estimates.

To further reduce the complexity of the computation of the cost functionsC′′
i , the pro-

jection matrixΠX can be replaced by(1/N)XXH obtained by approximatingXHX by NI ,
sinceN/2 > L + 1, and using the law of large numbers. Using this,C′′

2 is obtained as
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the squaredL2-norm of a vector andC′′
1 is its normalised version, and the corresponding

estimates ofτi andεi are given by

{τ̌i , ε̌i} = argmax
τ̃,ε̃∈(−Q/2,Q/2)

N−1gi(τ̃)‖XHΓH(ν̃ + ε̃)r τ̃‖2 (73)

Note that the computation ofXHy requires only changing the sign of some of the elements
of the vectory and additions. Also, note that the computation of the simplified version of
C′′

2 is simpler than that ofC′′
1 since in the former,‖r τ̃‖2 needs to be computed. However,

the normalisation inC′′
1 is desirable for reducing the complexity of the search procedure for

real-time implementation.

Fine synchronization methods

In certain applications, due to unstable oscillators or high-mobility environment, the coarse
estimates may be inadequate for the entire frame. Thus, timing and frequency tracking
are required to compensate the short-term variations produced by oscillator drifts and/or
time-varying Doppler shifts.

Fine timing synchronization can be achieved through correlation either in the time do-
main [113,114] or in the frequency domain [115,116,117,118]. A timing tracking scheme
based on time-domain PN-sequence correlation and a weighted time correlation scheme ex-
ploiting the redundancy in both the cyclic prefix and available pilot symbols were shown to
provide better performance than repetitive-structured OFDM symbols in [113] and [114],
respectively. Frequency-domain based schemes model the timing error as part of the CIR
vector. This is motivated by the fact that the estimated CIR shifts cyclicly with respect to
the FFT-window. Since the frequency-domain based schemes can resolve channel multi-
paths effectively, they generally provide better performance than the time-domain schemes
in multipath fading channels. There are several approachesto update the coarse timing es-
timate in frequency-domain based tracking algorithms. Onemethod is to locate the peak
position of the estimated CIR̂h [116]. Many modified peak-finding versions were studied
in [106], to take into account both the effects of noise, as well as the fact the first peak may
not be the largest peak in the CIR. Another method which maximises the energy window of
the channel estimation has been investigated in [115, 103].Exploiting the timing informa-
tion embedded in pilot-aided channel estimation, timing can be estimated without a specific
training sequence, as was shown in [119] and [120].

Similar to fine timing synchronization, frequency trackingcan be performed either in
the time domain [121, 102] or in the frequency domain [122, 123]. In [121, 102], the cor-
relation between the CP and the lastNc samples of each block is exploited to estimate the
residual frequency offset. The residual CFO was tracked using the temporal correlation in
the data-aided post-FFT stage and the frequency domain channel estimate was adopted to
deduce the weights for a weighted-least-squares CFO estimator in [122] and [123], respec-
tively. Several blind CFO estimation methods, e.g., [124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 134], also can be employed during the tracking stepwithout increasing synchro-
nization overhead.
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Simulation results for downlink OFDMA systems

We consider an downlink OFDMA system with a total ofN = 128 subcarriers. In the
simulation, we assume that the CIR length isL = 16, and a cyclic prefix of lengthNg =
16. The channel tapsh(l) are uncorrelated zero-mean Gaussian random variables with

exponential power delay profile E
{
|h(l)|2

}L−1
l=0 = Cexp(−0.2l), whereC is a scalar factor

that ensures that the total energy of the channel taps is normalised to unity. Correspondingly,
the SNR of received signal is equal toσ2

x /σ2
υ , whereσ2

x is the power allocated to each
subcarrier. Since only the fractional part of the CFO can be estimated by the S&S algorithm
in [107], we generateω randomly from the interval[−0.5, 0.5] and generate a new random
channel for each Monte Carlo run. Moreover, as the integer part of the CFO is zero, the
second training symbol shown in Figure 29 is unnecessary andwe setQ = 1 for the first-
order statistics based methods.

The results of timing and frequency estimates are calculated using 20000 Monte Carlo
runs. The figures show that the first-order statistics based methods significantly outperform
the second-order statistics based methods in terms of timing and CFO estimation. For tim-
ing estimation, MNLLS1 outperforms MNLLS2. The simplified MNLLS algorithms yield
the same timing estimation performance. In Figure 33, the probability of exact timing refers
to the probability that the associated algorithm identifiesτ without error. For comparison,
Figure 34, we also show the Cramér-Rao bound (CRB) for the case where timing is perfect.
Using the method in [135], the CRB is found to be

var{ω̂} ≥ CRB(ω̂) =
2σ2

υ
Nπ2σ2

x
(74)

Notice that the performance of first-order statistics basedmethods is close to CRB. The sim-
plified MNLLS methods have the same CFO estimation performance merits as the MNLLS
methods. From the simulation results, we can see that the S&Salgorithm achieves more
accurate timing estimation performance than the S&C algorithm at the price of a decrease
in the CFO estimation performance. As we discussed previously, the gains of first-order
statistics based methods come along with the increasing complexity. For real-time imple-
mentation, it is important to set a threshold on the synchronization criterion so that com-
plexit can be reduced by pruning the set of timing candidates. Details of implementation
issues of first-order statistics based methods can be found in [110].

4. Multiuser synchronization

4.1. Uplink signal model and synchronization policy

We consider an uplink OFDMA system whereM active users simultaneously communicate
with the BS as shown in Figure 35. The users’ data streams are assembled into OFDM
symbols according to the CAS employed.

Let r(n) denote the signal received at the BS; we have that

r(n) =
M

∑
i=1

z(i)(n)+ υ(n) (75)
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Figure 32: Standard deviation of timing estimates for downlink OFDMA
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Figure 33: Probability of exact timing acquisition for downlink OFDMA
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Figure 34: Mean square error of CFO estimates for downlink OFDMA

Figure 35: OFDMA uplink representation
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Figure 36: Timing and frequency offsets estimation for subband CAS uplink OFDMA

wherez(i)(n) is the signal transmitted from theith user and can be expressed as

z(i)(n) = ej2πωin/N
L−1

∑
l=0

hi(l)xi(n− l − τi) (76)

and

xi(n) =
1√
N

∑
k∈Ii

X(k)e− j2πkn/N (77)

It can be seen from eq. (75) that the received signal at BS is the combination of the sig-
nal from all active users. Thus, the uplink synchronizationis a multi-parameter estimation
procedure. To guarantee that the residual synchronizationerrors of the uplink transmission
are much smaller than that of a completely asynchronous system, before uplink transmis-
sion, an initial synchronization is performed during downlink procedure. The timing offsets
among users in the uplink are mainly due to different propagation distances between users
and BS. The frequency offsets between users and BS are causedby the Doppler spread
and/or the instability of local oscillators. Generally, after the synchronization performed
via downlink transmission, the CFO can be guaranteed to be ina small range. In this chap-
ter, we assume the frequency offset is smaller than half the subcarrier spacing.

To combat the residual synchronization errors simply and directly, a method based on
downlink control channel is suggested in [136, 98], where the synchronization parameters
are estimated at the BS and adjustment is performed at the user side based on the infor-
mation derived from feedback channel. A similar idea is adopted in IEEE 802.16e [137]
standard to accomplish the synchronization task. By using interference cancellation or mul-
tiuser detection algorithms, e.g., [138, 139, 140, 141] andreferences therein, the effects or
multiple frequency offsets also can be mitigated at the BS atthe price of increased receiver
complexity. In this chapter, we focus only on the estimationof the timing and frequency
offsets at the BS. Dependent on the CAS employed, the synchronization task in uplink
OFDMA can be categorised into three cases as explained next.
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4.2. Synchronisation with subband CAS

The ML estimation of timing and frequency offsets for subband CAS uplink OFDMA was
first studied in [136], where the users’ signals are separated by a bank of band-pass filters
at BS as shown in Figure 36. After signal separation, the timing and frequency offsets can
be estimated independently for each active user, which is similar to the downlink OFDMA
case. Since perfect signal separation is impractical, the filtered ith subband signalr(i)(n)
can be written as

r(i)(n) = z(i)(n)+ Φ(i)(n)+ υ(i)(n) (78)

where theΦ(i)(n) andυ(i)(n) denote the inter-carrier interference due to imperfect sepa-
ration and noise corresponding toith subband signal. Possible ways of reducing the in-
terference termΦ(i)(n) include the adoption of higher order band-pass filters or increasing
the number of guard carriers used between adjacent frequency bands. The timing and fre-
quency offsets estimators in [136] exploit the redundancy of CP; the estimates for theith
user can be expressed as:

τ̂i = argmax
τ̃i

{Λi(τ̃i)−ρiCi(τ̃i)} (79)

ω̂i =
1

2π
arg{Λi(τ̂i)} (80)

where

Λi(τ̃i) =
τ̃i−1

∑
n=τ̃i−Ng

r∗(i)(n)r(i)(n+N) (81)

Ci(τ̃i) =
1
2

τ̃i−1

∑
n=τ̃i−Ng

(
|r(i)(n)|2 + |r(i)(n+N)|2

)
(82)

andρi = σ2
x /(σ2

x +σ2
υ). The estimates in (79) and (80) are one-shot estimators in the sense

that the estimates are based on the observation of a single OFDM symbol. More accurate
estimates can be obtained by averaging the cost function over Q successive OFDM blocks
as

hatτi = argmax
τ̃i

{
Q−1

∑
q=0

(Λi(τ̃i +q(N+Ng))−ρiCi(τ̃i +q(N+Ng)))

}
(83)

ω̂i =
1

2π
arg

{
Q−1

∑
q=0

Λi(τ̂i +q(N+Ng))

}

(84)

An alternative blind scheme to obtain estimates of timing and frequency offsets for
subband CAS can be found in [142]. As pointed out in [143], thesubband CAS offers the
possibility of separating signals from different users through a simple filter bank even in
a completely asynchronous scenario with arbitrarily largetiming errors. Synchronisation
algorithms for the downlink OFDMA can be easily extended to subband-based OFDMA
systems. On the other hand, grouping subcarriers together makes systems vulnerable to
frequency-selective fading. The adoption of an interleaved CAS can provide users with
some form of frequency diversity at the expense of slightly increasing the complexity of
synchronization.



62 M. Ghogho, P. Ciblat and A. Swami

4.3. Synchronisation with interleaved CAS

Interleaved subcarrier allocation minimises the distances between subcarriers assigned to
different users; hence, in the presence of frequency synchronization errors, signals from
different users will overlap in the time domain and interfere with each other in the frequency
domain due to loss of orthogonality [144]. Thus, it is a challenging task to separate the
multiple user signals compared to the subband CAS. However,advanced signal-processing
algorithms, e.g., subspace decomposition based methods, can be employed to reduce the
synchronization complexity of interleaved systems.

Subspace-based CFO estimation algorithms are studied in [144] and later in [145,146]
for the uplink OFDMA systems; the ke is to exploit the periodic structure of the interleaved
transmission. Generalised subspace-based CFO estimationalso have been studied by [125,
130, 128, 112] for single user OFDM systems. LetIi = {ηi + pKu}P−1

p=0 denote the indices
set of the subcarriers allocated toith user, whereηi is an integer in the interval[0,Ku−1]
andηi 6= η j if i 6= j, Ku is the maximum number of users andP = N/Ku. We assume that
the total number of subcarriersN is an integer multiple ofKu in this chapter. The signal
from ith user, given in equation (76), can be re-written as

z(i)(n) = αej2π(ωi+ηi)n/N
P−1

∑
p=0

Hi(ηi + pKu)Xi(ηi + pKu)e
j2π p(n−τi )/P (85)

for n = 0, · · · ,N−1 andα = e− j2πηi τi/N. It can be found readily that

z(i)(n+ µP) = ejµθi z(i)(n) (86)

for n = 0, · · · ,P−1, µ = 0, · · · ,Ku−1 andθi = 2π(ωi + ηi)/Ku. From eq. (75), we get

r(n+ µP) =
M

∑
i=1

ejµθi z(i)(n)+ υ(n+ µP)

n = 0, · · · ,P−1, µ = 0, · · · ,Ku−1

(87)

We arrange the{r(n)}N−1
n=0 samples into aKu×P matrix

R =





r(0) · · · r(P−1)
r(P) · · · r(2P−1)

...
.. .

...
r((Ku−1)P) · · · r(N−1)





Ku×P

(88)

Letting Rp denote thepth column of matrixR, we have that

Rp = Gzp + υ p, p = 0, · · · ,P−1 (89)

wherezp =
[
z(1)(p) z(2)(p) · · · z(M)(p)

]T
andG is a(Ku×M) matrix given by

G =





1 1 · · · 1
ejθ1 ejθ2 · · · ejθM

...
...

. . .
...

ej(Ku−1)θ1 ej(Ku−1)θ2 · · · ej(Ku−1)θM





Ku×M
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Once we express the received samples as in eq. (87), CFO estimation can be carried
out using a signal subspace decomposition approach. The dimension of the null subspace
is dictated by the number of null subcarriers, which is equalto (Ku −M)P. The main
idea behind the low-complexity CFO estimation algorithms studied in [144, 145, 146] is to
estimate theθi ’s, which are distinct from each other if|ωi |< 0.5. Indeed, theθi ’s in eq. (87)
cause phase shifts to identicalP-sample long segments. Hence, the subspace approach can
in a way be seen as an extension of the repetitive-slot CFO estimation approach (see e.g.,
[111], [108]) to the case of multiple CFO estimation. Employing the estimation of signal
parameters via rotational invariance technique (ESPRIT) algorithm, the multiple CFOs can
be estimated using the following steps:

Step 1) Arrange the received signal{r(n)}N−1
n=0 into matrixR.

Step 2) The covariance matrixΩ = E
{

RpRH
p

}
of Rp is estimated by

Ω̂ =
1
P

RRH

Step 3) Compute singular value decomposition (SVD) ofΩ̂:

Ω̂ = [Us Uz]

[
Σs 0
0 Σz

][
UH

s
UH

z

]
(90)

whereUs is aKu×M matrix composed ofM eigenvectors corresponding to theM
largest eigenvaluesλ1 ≥ λ2 ≥ ·· · ≥ λM andUz is aKu×(Ku−M) matrix composed
of Ku−M eigenvectors corresponding to the rest eigenvaluesλM+1 ≥ ·· · ≥ λKu.

Step 4) LetUs1 denote the first(Ku−1) rows ofUs andUs2 denote the last(Ku−1) rows
of Us. Theθi ’s are estimated as

θ̂i = ∠(βi) (91)

where∠(·) denotes the angle of the complex number and{βi}M−1
i=0 are the eigen-

values of
Ξ =

(
UH

s1Us1
)−1

UH
s1Us2

Step 5) After estimating thêθi ’s, the estimate of CFOωi can be computed as

ω̂i =
Kuθ̂i

2π
−ηi, i = 1, · · · ,M (92)

Another subspace-based method, the spectral multiple signal classification (MUSIC) algo-
rithm can also be applied to estimate the multiple CFOs by replacing Step 4 above by

Step 4) Find theM largest peaks of following metric:

Λ(θ̃ ) =
1

|aH(θ̃ )UzUH
z a(θ̃ )|2

(93)

wherea(θ̃ ) = [1,ej θ̃ , · · · ,ej(Ku−1)θ̃ ]T .
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Figure 37: CP for quasi-synchronous uplink OFDMA uplink

As compared in [146], the ESPRIT based estimation algorithmoutperforms the Spec-
tral MUSIC based estimation algorithm at low SNR region. Moreover, ESPRIT algorithm
avoids the search operation required by Spectral MUSIC. Thus, the ESPRIT based estima-
tion algorithm is preferred in practice. As shown in [146], the estimation error of CFOs can
be reduced by using more than one OFDM block.

To apply the subspace-based CFO estimation algorithm, we have to find the starting
point of the receive signal first. As argued in [144], the CFO estimation algorithm is ap-
plicable to a quasi-synchronous system. The starting pointis determined by the downlink
procedure and the effect of timing offsets due to propagation delay can be removed by intro-
ducing a long CP. As shown in Figure 37, the CP is composed of two partsNg = Nch+Ndl,
whereNch is the portion of the CP for accommodating channel delay spreads, while the ad-
ditional Ndl samples are intended for accommodating different timing offsets among users.
To completely remove the inter-block interference, a necessary condition is thatNch ≥ L
andNdl ≥ ∆M−1, whereL is the maximum channel delay spread and∆M−1 is the maximum
timing offset among users. In this case, the extra overhead,i.e.,Ndl, will be increased by an
increasing∆M−1. To reduce the overhead, accurate knowledge of the timing offset of each
user is necessary to align all user signals at BS. As shown in [147] and [143], a possible
way to estimate the multiple timing offsets is to estimate the timing offsets together with the
channel responses. Similar to fine timing estimation in downlink OFDMA, the maximum
energy criterion for timing offset estimation can be expressed as

τ̃i = argmax
τ̃i

{
τ̃i+L−1

∑
l=τ̃i

|ĥ′i(l)|2
}

(94)

whereĥ′i(l) is thel th entry ofĥ′i andh′i = [0τi hi 0Lex−τi−L]
T is the extended channel vector

with lengthLex. We can setLex = Ng for simplicity.
Alternative timing estimation algorithms can be found in [148] and [149]. However, the

introduced iterative approaches make the algorithms much more complicated compared to
the maximum energy criterion discussed above.

4.4. Synchronisation with generalised CAS

As mentioned before, since there is no rigid constraint between subcarriers and users in
generalised CAS, this subcarrier allocation scheme is moreflexible than the subband or
interleaved CAS. The BS can assign the best subcarriers which are currently available to a
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user according to the users’ channel condition. Thus, the generalised CAS can improve the
systems performance significantly. On the other hand, lack of constraint among subcarriers
makes the synchronization task even more challenging than that of interleaved CAS.

The joint ML estimation of timing and frequency offsets for the generalised CAS was
first studied by Morelli in [98] and a suboptimal solution wasproposed based on repetitively
transmitted training symbols. However, it assumes that only one new user enters the net-
work at each time, which may be too strict in practical applications. Alternative ML-based
synchronization schemes for the generalised CAS are described in [147] and [150], where
iterative alternating projection and space-alternating generalised expectation-maximisation
(SAGE) algorithms are employed to reduce the complexity of ML estimation, respectively.
Similar to the subspace-based algorithm for interleaved CAS, the iterative-based algorithms
studied in [147] and [150] are only applicable to a quasi-synchronous system.

Under the quasi-synchronous assumption as shown in Figure 37, after removing the CP,
the IBI free received signal expressed in (75) can be re-written in matrix form as

r =
M

∑
i=1

Γ(ωi)A ih
′
i + υ (95)

or equivalently

r =
M

∑
i=1

Γ(ωi)Di(τi)hi + υ (96)

where

r = [r(0), · · · , r(N−1)]T (97)

Γ(ωi) = diag{1,ej2πωi/N, · · · ,ej2πωi (N−1)/N} (98)

[A i ]m,n = [xi ](m−n) modN,0≤ m≤ N−1,n = 0≤ n≤ Ng−1 (99)

[Di(τi)]m,n = [xi ](m−n−τi) modN,0≤ m≤ N−1,n = 0≤ n≤ L−1 (100)

hi = [hi(0), · · · ,hi(L−1)]T (101)

h′i = [0T
τi×1 hT

i 0T
(Ng−L−τi)×1]

T (102)

where[Ai ]m,n denotes the(m,n)th entry of matrixAi and[xi]m represents themth entry of
vectorxi . Rewrite (95) as

r = B(ω)h′ + υ (103)

whereB(ω) = [Γ(ω1)A1 Γ(ω2)A2 · · · Γ(ωM)AM] andh′ = [(h′1)
T · · · (h′M)T ]T . The log-

likelihood function for the frequency offsetsω and extended equivalent channelh′ can be
expressed as

Λ(ω̃ , h̃
′
) = −N ln(πσ2

υ )− 1
σ2

υ
‖r −B(ω̃)h̃

′‖2 (104)

whereω̃ andh̃
′
are trial values ofω andh′ respectively. Thus, the joint ML estimates ofω

andh′ can be obtained as

ω̂ = argmax
ω̃

{
‖ΠB(ω̃)r‖2} (105)

ĥ
′
=
(
BH(ω̂)B(ω̂)

)−1
BH(ω̂)r (106)
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whereΠB(ω̃) = B(ω̃)
(
BH(ω̃)B(ω̃)

)−1
BH(ω̃). The maximisation in (105) requires a grid-

search over the multidimensional domain spanned byω̃ , which is too cumbersome in prac-
tice [147]. A simple way to reduce the complexity is to use theiterative alternating projec-
tion method studied in [147].

Let ω̂(k)
i denote the estimate ofωi at thekth iteration and define theM−1 dimensional

vectorω̂(k)
i as

ω̂(k)
i = [ω̂(k+1)

1 , · · · , ω̂(k+1)
i−1 , ω̂(k)

i+1, · · · , ω̂
(k)
M ]T (107)

At the ith step of the(k+ 1)th iteration, the estimate ofωi is updated by the alternating
projection frequency estimator (APFE) as

ω̂(k+1)
i = argmax

ω̃i

{
‖ΠB(ω̃i , ω̂

(k)
i )r‖2

}
(108)

Exploiting the structure ofB(ω̃i , ω̂
(k)
i ), the estimator (108) can be further simplified as

ω̂(k+1)
i = argmax

ω̃i

{
‖ΠCB(ω̃i , ω̂

(k)
i )r‖2

}
(109)

where

ΠCB(ω̃i , ω̂
(k)
i ) = CB(ω̃i , ω̂

(k)
i )
(

CH
B (ω̃i , ω̂

(k)
i )CB(ω̃i , ω̂

(k)
i )
)−1

CH
B (ω̃i , ω̂

(k)
i ) (110)

CH
B (ω̃i , ω̂

(k)
i ) = IN −ΠC(ω̂(k)

i )Γ(ω̃i)A i (111)

ΠC(ω̂(k)
i ) = C(ω̂ (k)

i )
(

CH(ω̂(k)
i )C(ω̂ (k)

i )
)−1

CH(ω̂(k)
i ) (112)

C(ω̂(k)
i ) =

[
Γ(ω̂(k+1)

1 )A1 · · · Γ(ω̂(k+1)
i−1 )A i−1 Γ(ω̂(k)

i+1)Ai+1 · · · Γ(ω̂(k)
M )AM

]
(113)

ComputingΠCB(ω̃i , ω̂
(k)
i ) only requires the inversion of aNg×Ng matrix, which is signifi-

cantly less complex than computingΠB(ω̃i , ω̂
(k)
i ). From (109), we see that theM-D search

required by the ML estimator (105) is split into a series of 1-D maximisation problems, and
is this much more effective than the original maximisation problem. After obtaining the
frequency estimateŝω , the ML estimates of timing offsets can be derived from eq. (96) as

τ̂ = argmax
τ̃

{‖ΠΨ(ω̂ , τ̃)r‖} (114)

where

ΠΨ(ω̂ , τ̃) = Ψ(ω̂ , τ̃)
(
ΨH(ω̂ , τ̃)Ψ(ω̂ , τ̃)

)−1ΨH(ω̂ , τ̃) (115)

Ψ(ω̂ , τ̃) = [Γ(ω̂1)D1(τ̃1) · · · Γ(ω̂M)DM(τ̃M)] (116)

Similar to the problem in (105), the maximisation problem in(114) can be efficiently solved
by resorting to iterative alternating projection methods;the resulting estimator is referred to
as alternating projection timing estimator (APTE) in [147]. Since the timing and frequency
estimators introduced above are iterative, initial estimates ofω andτ, referred to aŝω(0)

and τ̂(0) respectively, are required. A simple way to initialise the estimates of CFOs is to
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use the expected value ofωi , i.e ω̂(0)
i = 0. Alternatively,ω̂(0) can be taken as the output

of the frequency estimator proposed in [151]. The initial estimatesτ̂ (0) can be obtained by
first estimatingh′i according to eq. (106) and then exploiting the specific structure of ĥ

′
i.

The index of the first significant element ofĥ
′
i is taken aŝτ (0)

i .
Another alternative approach to avoid the multidimensional search in ML based estima-

tor is employing the SAGE algorithm as in [149] and [150]. Since the estimates of timing
offsets can be obtained via (94), we assume that the timing offsets are estimated first for
SAGE algorithm. From eq. (96), theith cycle of thekth iteration of the SAGE algorithm
can be performed as follows.

1. Expectation step: Compute

y(k)
i = r −

i−1

∑
j=1

r̂(k)
j −

M

∑
j=i+1

r̂(k−1)
j (117)

2. Maximisation step: The likelihood function for the unknown frequency offsetωi and
channelhi can be expressed as

Λ(ω̃i , h̃i) = −N ln(πσ2
υ)− 1

σ2
υ
‖y(k)

i −Γ(ω̃i)Di(τ̂i)h̃i‖2 (118)

Thus, the joint ML estimates ofωi andhi can be written as

ω̂(k)
i = argmax

ω̃i

{
‖ΠW(ω̃i)y

(k)
i ‖2

}
(119)

ĥ
(k)
i =

(
DH

i (τ̂i)Di(τ̂i)
)−1

DH
i (τ̂i)ΓH(ω̂(k)

i )y(k)
i (120)

whereΠW = Γ(ω̃i)Di(τ̂i)
(
DH

i (τ̂i)Di(τ̂i)
)−1

DH
i (τ̂i)ΓH(ω̃i). After obtaining the esti-

matesω̂(k)
i and ĥi , r̂(k)

i which is utilised in the Expectation step of the next cycle or
iteration can be updated as

r̂(k)
i = Γ(ω̂(k)

i )Di(τ̂i)ĥ
(k)
i (121)

Again, the initial estimates of CFOs for the SAGE algorithm can be obtained via itera-
tive alternating projection methods. Moreover, we can see from eq. (121) that initial chan-
nel estimates are required for the SAGE algorithm while no such requirement is needed for
the iterative alternating projection methods. Inaccuratechannel estimates will deteriorate
the SAGE performance significantly. With the aim of obtaining a tradeoff between per-
formance and complexity, several non-ML based multiple CFOs estimators were proposed
in [152] and [153].

4.5. Simulation results for uplink OFDMA systems

The synchronization of uplink OFDMA systems depends on the subcarrier allocation schemes.
Here, we compare the synchronization performance of subspace based and ML based meth-
ods, based on interleaved CAS. The total number of subcarriers is set to 512 with a CP of
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Figure 38: Mean square error of CFO estimates for uplink OFDMA without timing offsets

length 32, i.e.,N = 512 andNg = 32. The maximum and active numbers of users are set
to 4 and 3, respectively, i.e.,Ku = 4 andM = 3. The channel with the exponential power
delay profile, introduced previously, is considered. The maximum channel delay spreadL
is equal to 16 and the channels for different users are assumed uncorrelated. We set the
CFOs of the three users to−0.1,−0.2 and 0.3, respectively.

Figure 38 shows the CFO estimation performance without timing offsets. From eq.
(95), the CRB of ML based CFO estimation algorithm is given in[147] as

var{ω̂i} ≥ CRBω̂i =
N2σ2

υ
8π2

[(
ℜ
{

ΨHΠ⊥
B Ψ
})]

i,i
(122)

whereΨ = [Ψ1, · · · ,ΨM], Ψi = WΓ(ωi)A ih
′
i with W = diag{0,1, · · · ,N− 1}; Π⊥

B = I −
ΠB(ω). The CRB of subspace decomposition based CFO estimation algorithm is given in
eq. (??). From Figure 38, we can find that ML based algorithms, i.e., APFE and SAGE,
have identical performances and provide nearly 3-dB gains over ESPRIT algorithm. This
can be ascribed to the fact that subspace decomposition based CFO estimation is actually
a non-data aided method. Both ML and subspace decompositionbased CFO estimation
algorithms can achieve their ’corresponding CRBs’.

Under the quasi-synchronous assumption, we assume that thefirst arriving signal is
known perfectly by the BS and the timing offsets of other two user’s signals are normally
distributed in an interval[0, 16]. Figure 39 shows the timing estimation performance of
ESPRIT and SAGE based estimators, and the ML estimator (114), i.e., APTE. As we can
see from the figure, the ML estimator outperforms the maximumchannel energy based es-
timators significantly at the price of increased computational complexity. Since APFE and
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Figure 39: Standard deviation of timing estimates for uplink OFDMA

ESPRIT based CFO estimators can work without timing offset information, we estimate
CFO prior to timing offset estimation. On the other hand, timing offsets information is cru-
cial to the SAGE based CFO estimator. Thus we perform timing offset estimation before
SAGE based CFO estimation. From Figure 39, we see that ESPRITbased timing estimator
outperforms SAGE. This can be ascribed to the fact that employing the CFO estimates ob-
tained in the ESPRIT based CFO estimator improves timing estimation. Figure 40 shows
the CFO estimation performance with timing offsets estimation. We see that the perfor-
mance of SAGE based CFO estimator is affected significantly by the inaccuracy of timing
estimation. On the other hand, both ESPRIT and APFE estimators are robust to timing
inaccuracies.

5. Network synchronization

In this section, we discuss the challenges in the network time synchronization problem and
the performance metrics of interest. We provide a brief overview of current devices and
their limitations, and describe common clock models. We then describe a taxonomy of
network time sync protocols and provide some examples.

As stated in the Introduction to this chpater, network synchronization is a well-studied
topic with an extensive history, especially for wired networks, e.g., see Lindsey et al. [1],
Bregni [2], and references therein. Typically, these worksassumed high quality devices,
availability of fine control of the network, extensive connectivity with little or no mutual
interference, as well as often assuming known (or repeatable and measurable) propagation
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Figure 40: Mean square error of CFO estimates for uplink OFDMA with timing offsets

and processing delays [3]. Surveys of WSN sync protocols maybe found in the papers by
Sivrikaya and Yener [4], Johannessen [5], Sundararaman et al. [6], [3], and [7].

The network synchronization problem is to ensure that all nodes in the network operate
on a common clock, i.e., have a common time reference.

Challengesin synchornization in WSN stem from several sources, broadly related to
the transmitter, the propagation channel, and the receiver.

1. Channel conditions (such as fading, shadowing, interference) lead to time-varying
connectivity even for static nodes: scatterers move in any case; mobility adds its own
challenges.

2. The devices are cheap and clocks drift, often erratically, due to fluctuations in ambient
temperature, and with age. The time difference between two clocks may be fixed (a
fixed offset) or may vary with time (due to clock oscillator frequency drifts).

3. Queuing and processing delays are variable (thus rendering it difficult to use standard
protocols such as NTP). There is variability in the time it takes ofr a packet to go
from the application layer to the MAC layer, variable delayswithin the MAC layer
(the major source of error), in packet generation and transmission at the PHY layer.
There are similar variations at the receiver, including inaccuracy in detecting packet
arrival.

4. Varibilities in propgation time due to non-line of sight issues, and non-reciprocity of
the channel. Typically, the propagation time is neglighblecompared with the queue-
ing and processing delays.



Synchronization 71

5. Communication rates are variable in a large network; if a node is involved infre-
quently in regular communications, then ‘heartbeat’ signals may be essential to keep
the node in quasi-sync with the rest of the network, and thus connected to the net-
work.

6. Protocols must be scalable to a large number of nodes, and must deal with heterogen-
ity of nodes.

7. These devices are often battery powered so that energy is afinite resource, and energy
consumption directly affects node lifetime.

8. Given energy constraints, WSN nodes must exploit external assets which may have
more relaxed energy constraints; e.g., basestations, UAVs, various broadcast beacons.

Metrics: How should one evaluate the performance of a network sync protocol? When
GPS is available, a reasonable metric could be the bias compared to the ‘true’ time. But
access to GPS can be difficult, particularly indoors, under canopy, and in other challenging
conditions. Often, it suffices that the nodes converge on some common time reference
(regardless of whether it is ‘true’). Some commonly used metrics are:

• Synchronization accuracy: Worst case (or average case) pair wise error between any
one-hop neighbors

• Energy efficiency: The number of packet transmissions and receptions necesary to
achieve sync, and the rate and frequency of messages that need to be exchanged to
maintain sync.

• Synchronization convergence time: The time taken for all nodes (or a given percent-
age of nodes) to be in sync with one-hop neighbors.

• Fault tolerance: The robustness of sync schemes under (intermittent) failure of (criti-
cal) nodeds and/or links; robustness to (slow) time variations in clock parameters and
clock jitter.

• Scalability with network size: Does the sync-error increase with size? Does conver-
gence time increase (only) with the diameter of the network?Or other aspects of
topology such as degree distribution?

• Imapact of stochastic channel conditions: How well does the protocol perform in
the presence of stochastic channel conditions (congestion, mobility, duty cycling,
queueing delays, propgation delays, processing times)?

• Engineering desing: Is the protocol simple vs. complex

From the above questions, it is clear that a given protocol offers a set of alternatives in this
rich tradespace.
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5.1. Clock Models

Let Tk(t) denote the local time at nodek, wheret denotes the ‘true’ time; often, we will
drop the node indexk. Formally,clock drift is defined as

ρ(t) =
dT(t)

dt
−1 .

A reasonable assumption is that the drifts are bounded, and the clocks do not run backwars,
which translate to

|ρ(t)| < ρmax; ρ(t) > −1.

A Taylor expansion of the local clock timeT(t) wrt the global clockt yields

Tk(t) = αk + βkt + γkt
2 + · · · (123)

whereinα is theoffsetandβ the skew. The quadratic term, denoted byγ , is typically used
only to test for departures from the linear model. Skew has been modeled as an AR process
in [154]

Accuracy Lifetime
(PPM) Power in hours

AA battery
GPS 10−8 ˜ 10−11 180 mW 16.7 hours

Chip-Scale
Atomic Clock 10−11 30 mW 100 hours

MCXO 3×10−8 75 mW 40 hours
TCXO 6×10−6 6 mW 21 days

Watch clock 200×10−6 1 µW 342 years

Table 2: Compariosn of clock characteristics

5.2. Net Sync Protocols

With the above background, we can broadly classify net sync protocols into four broad
categories:

1. Broadcast protocols: Based on the notion of broadcast, possibly over a hierarchical
tree topology

2. Distributed synchronization: builds consensus on clockparameters in a peer-to-peer
setting.

3. Unilateral sync to an external (broadcast) reference clock.

Other classifications are possible depending upon the viewpoint: e.g., client (sensor node)
initiated vs. server (gateway) initiated.
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Many WSN synchronization protocols have been proposed. Popular ones include the
Reference Broadcast Systems (RBS) [155], a time-stamp transformation approach based
on bounded offsets [156], the Tiny/Mini-Sync (TMS) protocol [157], Timing-sync Protocol
for Sensor Networks (TPSN) [158], Lightweight Tree-based Synchronization (LTS) [159],
and the networked Control Time Protocol (CTP) [160]. Probabilistic approaches were con-
sidered in [161], and refined and extended in [162]. Bounds under various assumptions are
derived in [163], [164] and [165].

Among the above protocols, several primary themes emerge. One natural and common
notion is the use of time-stamps: time-stamp a packet with the transmitter’s clock, time-
stamp the reception time, use these stamps to estimate the round trip time (RTT), which
is then used to synchronize the two clocks. RTT is often highly variable, and often has a
heavy-tailed distribution, which naturally calls for the use of robust estimation techniques.
Reliability increases as the number of such exchanges increases, but with a concomitant
increase in delay and energy, and sometimes (more than linear) complexity. A second
recurring theme is that the estimation of relaitve clock offset and skew can be case as a
linear estimation problem. and complexity.

Unilateral synchronization

Assume that an external source broadcasts time-stamped messages at ‘true’ timesT(i),
which are received by a node atR(i) on its local clock. Then from the clock model consid-
ered earlier in (123, we have

R(i) = α + βT(i)+ ε(i), i = 1, ..., I (124)

wheren is the number of observations. Hereε(i) represents the modeling errors. Let1
be I × 1 vector of ones,t = [T(1), ...,T(I)]′, r = [R(1), ...,R(I)]′, Z = [1, t]. Then linear
regression yields [

α̂
β̂

]
= (Z′Z−1Z′r

which is the best linear estimate if theε(i) are zero-mean. Note that in this unilateral
scheme, one cannot account separately for the propagation delay, or a non-zero-meanε :
both are absorbed into the offset. Thus clocks that are at relatively different distances from
the broadcast source will not be in sync with each other.

Pairwise synchronization

As in the classical Network Time Protocol (NTP) [166], clockoffset can be estimated by ex-
changing time-stamped messages and computing the round trip time (RTT). If the queuing
delays are exponentially distributed with the same mean delay then the MLE of the offset is
given by the minimum of the observed delays [167]; if the meandelays vary from node to
node, then the bootstrap-bias correction method of [168] can be used. Further details may
be found in [169].

In these pair-wise protocols, a node ‘B’ synchronizes with anode ‘A’ which is treated
as the reference node. Letα andβ denote the relative offset and skew of node B wrt node
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A. Nodes exchange multiple time-stamped messages as follows. Nodes A sends a time-
stamped message to node be at its local timeTA,k, wherek is the round number. Node B
receives it at its local timeRB,k. At TB,k, it sends a time-stamped message which includes
RB,k; this is received by nodeA at RA,k. K such rounds of message exchange take place.
Let δ denote the fixed portion of the delay andεAB,k,εBA,k, the variable portion; delay here
includes propagation delay, processing delay and queueingdelay. The time-stamps are
related via:

RB,k = (TA,k + δ + εAB,k)β + α (125)

TB,k = (RA,k−δ − εBA,k)β + α (126)

Assuming that the delays are independent and exponentiallydistributed, it is shown in [167,
169] that the MLE ofα is given by

α̂ =
1
2

[
min

k
(RB,k−TA,k)−min

k
(RA,k−TB,k)

]
.

Let i = argmink(RA,k−TA,k) and j = argmink,k6=i(RA,k−TA,k), which are the first two order
statistics ofRA,k−TA,k. Then the proposed estimator of the skew in [169] is

β̂ =
RB,i +TB,i −RB, j −TB, j

RA,i +TA,i −RA, j −TA, j
.

Onceα , β have been estimated, it is easy to estimate the propagation delay as well. These
algorithms have been shown to be robust to other delay models.

In the RBS protocol [155], a beacon node transmits a reference packet (as above), but
the K receiving nodes exchange time-of-receipt to estimate offsets and skews. Consider
(124), now indexed by the receiving node’s id:

Ri(n) = αi + βiT(n)+ εi(n), (127)

Defining∆i j := αi −βi j α j andβi j := βi
β j

, as the relative offset and skew, one can eliminate

T(n) to obtain

Ri(n) = βi j Rj(n)+ ∆i j + εi j (n)

Notesi and j can estimate the relative skew and offset via linear regression.
The tree-based sync protocol in [158] is similar to the abovealgorithms in the estimation

part. Here a root node broadcasts a beacon. Its set of 1-hop neighbors (i.e., those who hear
the root directly) are called level 1 nodes. Level 1 nodes, inturn, relay the beacon to level-2
nodes, and so on. Nodes at leveli synchronize to a parent node at leveli −1. The relative
skew is assumed to be unity, so the focus is on estimating offsets. Consider a pair of parent-
child nodes; one can write the packet reception times as

RB,k = TA,k + α + δ + εAB,k

RA,k = TB,k−α + δ + εBA,k
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After K messages, one can estimate

α̂ =
1

2K

K

∑
k=1

(RB,k−RA,k +TB,k−TA,k)

δ̂ =
1

2K

K

∑
k=1

(RB,k +RA,k−TB,k−TA,k)

Under the assumption that the noise terms, theε ’s are zero-mean and indepdent, one obtains
the following equation for the variance of the estimatosrs:

var(β̂ ) = var(δ̂ ) =
σ2

12+ σ2
21

K
.

The TPSN protocol is easy to implement. However, it assumes unit skew. Tine-Sync and
Mini-Sync are variations that can cope with skew [157].

Another variation was proposed in [3]. The basic idea is thatif node A transmits a pair
of time-stamped messagesρ units apart on its own clock, then node B should be able to
estimate the relative skew.

5.3. Distributed Clock Sync

The notion of distributed consensus, i.e., distributed agreement on a parameter (vector) via
repeated exchange of messages has recently become popular,and several protocols have
been proposed. Here, the idea is that there is no single root node and hence no single
point of failure. These protocols seek to achieve global consensus via local exchange of
information. They rely upon the broadcast nature of the wireles slink.

Bio-Inspired Approaches The seminal work of Mirollo and Strogatz [170] introduced
the basic idea that a population of “integrate-and-fire” oscillators will start firing simulta-
neously after a finite time starting from all almost any iniital condition. Empirical evidence
for this is the well-cited firefly sync [9] and circadian sync [10]. The work nwas extended
to multi-hop and time-varying topologies in [171] who made use of results from Algebraic
Graph theory. These results have been recently refined, corrected and extended by [172].
The Mirollo-Strogatz model has been exploited in in [173] for network time sync. Another
consensus-based approach is the so-called diffusion-based approach of [174].

Consensus-type approachesWe consider next one example of a consensus-based ap-
proach [175]. This scheme assumes the presence of a reference node (i.e., a root node
whose clock is assumed to be correct, and which does not update its clock). Mutliple
consistent reference nodes may be present as well. For simplicity assume that all nodes
have unit skew, and nodei has offsetαi wrt the reference node. Using one of the pairwise
schemes described earlier, nodes can obtain an estimate of the relative offset

yi, j = αi −α j + εi, j

whereεi, j is measurement noise which we model as zero-mean and with varianceσ2
i, j . A

nodei would have such an estimate for eachj ∈ Ni , the set of neighbors that it can hear.
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At every iteration, a node receives the current estimates ofits neighbors which are used to
update its own estimate. Nodei’s estimate of its offsetαi in thek-th iteration is given by

α̂i(k) =

(

∑
j∈Ni

1

σ2
i, j

)−1

∑
j∈Ni

1

σ2
i, j

(α̂ j(k−1)+yi j )

The convergence if this algoritihm was studied in [175].
Convergence depends upon the topology, the coupling and themeasurement statistisc.

We can associate a graphG = (V,E) with this problem; hereV is the set of nodes, and
E the set of edges representing one-hop links. The energy (convergence time) spent for
achieving consensus is proprotional to 1/λ2(L) whereL is the graph Laplacian andλ2(.)
is the second-largest eigenvalue. The algebraic network connectivity (the so-called Fiedler
value),λ2(L) can be increased by increasing the transmit power, i.e., making the graph more
connected. However, this also increases the total energy consumption, since the total power
consumed by the nettwork is proportional topT/λ2(L(pT)), whereL(pT) is the Laplacian
of the graph corresponding to transmit powerpT . A question then is: does a global trade-
off exist between local transmit power, convergence rate and network topology? Analysis
in [176] indicates that when the path loss is high, the optimal topology tends to be sparse,
with few connections.

6. Conclusions
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