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1. Introduction

Synchronization is fundamental to the proper operationimless sensor networks (WSNSs)
and mobile ad hoc networks (MANETS). Synchronization maypbdormed at various
levels: from very coarse to very fine-grained; the requireclieacy depends upon the ap-
plication and the network environment, and hence can chdypgamically. For example,
coarse time synchronization suffices for many detectiontiewting applications, but finer
sync is required for distributed array procesisng, anatodigital conversion (ADC), slot
sync, and cooperative communications.

Network synchronization is a well-studied topic with anesdive history, especially for
wired networks, e.g., see Lindsey et al. [1], Bredni [2], aeftrences therein. Typically,
these works assumed high quality devices, availability ro# ftontrol of the network, ex-
tensive connectivity with little or no mutual interferenees well as often assuming known
(or repeatable and measurable) propagation and procedsiags [3]. Surveys of WSN
sync protocols may be found in the papers by Sivrikaya andeN{], Johannessen![5],
Sundararaman et al.l[6].I[3], and [7].

According to Wiki, synchronization is timekeeping whiclyuires the coordination of
events to operate a system in unison. The familiar condwétan orchestra serves to keep
the orchestra in time. Systems operating with all theirpartsynchrony are said to be
synchronous or in sync. Some systems may be only approXimatachronized, or ple-
siochronous. For some applications relative offsets batvevents need to be determined,
for others only the order of the event is important.

Wireless broadcast and sync are much older problems, ofeouk fascinating book
by Peter Galison [8] describes the pioneering work of Einstsd Poincare on finding
common time references (circa 1909). Albert Einstein, taeryoung, obscure German
physicist was experimenting with measuring time usinggtelph networks and with the
coordination of clocks at train stations; the renowned maitician Henri Poincaré, pres-
ident of the French Bureau of Longitude, was mapping timedioates across continents.
Sundials and watches have been in use for centuries; they nekatively inaccurate; but
travel and communications were slow (until at least the drtti@ninteenth century), and
those local time differences were of little importance. r$tof Hugyens, 1665 and his
observation of syncing pendulums while on the sickbed

Even older of course are time-keeping mechansims in naBiogatz [[9] provides an
elegant description of synchronization among fireflies iddyisia, and circadian rhythms.
Studies of the robustness of circadian clocks (e.qg., viekah@ruons in the superchiasmatic
nucleuns) indicate that individual neurons are sloppy kiesepers but synchronized neurons
are precise clocks. could lead to development of algoritftensynchronizing communi-
cation networks (e.g., transmit beamforming, GPS) thatoi#txpombinations of local and
global signaling[[10].

Synchronization is crucial in diverse applications:

¢ In energy constrained WSNs and MANETS, accurate clock symiration facili-
tates energy-efficient Medium Access Control (MAC).

¢ Reliable coherent communication systems require accggaiehronization (timing
and frequency) and channel estimation, particularly wherdata rate or bandwidth
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is large, and in multiple antenna systems. Blind estimatohniques have been pro-
posed in order to save bandwidth; however, the tradeoff patlier and complexity
is ambiguous. Practical systems typically use some formaafing which may be
prepended, appended, or embedded in the data packet. niyaymically leads to
low complexity receivers and good performance with modesacrifice in rate.

e Synchronization is crucial to enabling distribted comneatibns such as cooperative
communications and relaying, and in network managmeebipg and monitor-

ing).

e Many networked signal processing tasks depend criticgdlynua common time ref-
erence; examples include event detection and target tgckbcalization, (multi-
modal) sensor fusion, distributed array processing, andsynization of distributed
information caches.

¢ In robotics, synchronization and delay management ardatroemponents of net-
worked control and acutation; poor synchornization cad teacontrol instabilities.
Other applications in collabortive robotics such as magmngeolocation, also re-
quire a common time reference.

¢ WSN setup and maintenance also require synchronizatione lgelocation is typi-
cally required after deployment, and this, in turn, requiime synchronization.

We have alluded only to the time synchronization problenhegreceding paragraphs.
But frequency synchronization is equally crucial. The émgsections in this chapter will
study the synchronization problem im detail. Our focus isgstems based on Orthogo-
nal Frequency Domain Access (OFDM). We will consider both $ingle and multi-user
problem, and the impact of flat-fading as well as frequeradgetive channels. In these
sections, the focus is on time and frequency synchronizatith a base station. In the last
chapter we will consider the network time synchronizatioobtem, without the constraint
(or freedom) of OFDM.

The chapter is written at the beginner graduate level. Thdeeis assumed to have
a working knowledge of digital communications (e.@.,/[11R]), estimation theory (e.g.,
[13]).

2. Synchronization for flat fading channel

In this section, we assume that the the multipath delay dprethe propagation channel
does not lead to Inter-Symbol Interference (ISI). In p@gtihis holds if the symbol period
is sufficiently larger than the delay spread of the channéle ffequency response of the
channel is thus flat. As the channel does not induce ISI, tHeNDFodulation sheme does
not provide any advantages and a (old-fashioned) singléecapproach suffices.

From a practical point of view, such an assumption on the #ldiny channel is sat-
isfied in satellite communication®.g, DVB-S), anisotropic transmissions.§, between
two DVB-T transmitters), optical fiber communicatioresd, with pre-compensation of the
static chromatic dispersion) [14,/15].
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The transmitted signal (in baseband)![11, 12] is given by

N-—-1
Xa(t) = z Siha(t —KTs)
n=0

where

e 5, are the transmitted symbols belonging to ASK, PSK or QAM telfegions or any
linearly precoded schemal is the sequence length used for estimating the synchro-
nization (sync) parameters;

e Tsis the symbol period which is assumed to be known throughustchapter. For
more information about the blind estimationf the reader is referred to [116];

e hy(t) is the shaping filter that classically is a square-root Nytfilter. For example,
in 3G, it is the square-root raised cosine filter with roll-0f35. The main property
that we need further is that the filter is band-limited witmtaidth between AT
and 2/Ts.

Fot the flat fading channel, the received signal (in basebiand
Ya(t) = Xq(t — 7o) ®) | by (1)
where

e the sync parameters are the symbol timigpgthe (constant) phasg, and the carrier
frequency offset (CFOJo [17,18/19].

e by(t) is the complex-valued circularly-symmetric white zeroaméSaussian process
with varianceNy per real dimension (for more details about the assumptiothen
noise, see [12]). Note that the concept of circularity is &fag importance and will
defined in detail later.

The received signal can be re-written as follows

ya(t) = (Nilsqha(t —KTs— r0)> Amfot+) 4 p.(t)
n=0

We would like to point out that we do not assumeaapriori distribution for the tim-
ing and phase parameters. Indeed, the timing can belongromyf ino the interval [Ol)
since the receiver and the transmitter are not synchronizéidhe yet. Due to the chan-
nel propagation, the phase can take any value {@r). In contrast, the CFO which
is due either to local oscillator mismatch or Doppler effecan only lie in a pre-defined
interval. To illustrate this let us consider the worst casemonly a cheap local oscilla-
tor is available. Its precision is about 40ppm which leada tOFO of 40 kHz at carrier
frequency 1GHz. Assuming a rather high vehicle speed of 8@kthe Doppler induced
offset is upper-bounded by 333Hz Consequently, the CFO hramaller than the typical
signal bandwidth which is of order MHz. Note that the mainrsewf the CFO is the local
oscillator mismatch and not the Doppler effect. Indeed, Diogpler effect has a greater
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influence on the coherence time of the channel and thus omatigtisal model of the chan-

nel (is it a fast flat fading channel or a slow flat fading chd®neThe nature of the flat

fading channel (fast or slow) is crucial for designing pmbpéhe communication scheme
(feedback link, diversity management, etc.) but not theekyonization step since, except
in very infrequent cases, the synchronization step durasi@lways much smaller than the
channel coherence time.

Before going further, we recap the optimal symbol detectbemvsynchronization is
perfect o = 0, @ = 0, andfy = 0) [11,12, 18, 1I7]. If the information symbols are equally
likely, the maximum likelihood detector is the optimal omethe sense of error probability
minimization. Therefore, we have

(& :arg{sn}max P(Y(t){snh}n=0,- N-1)-

n=0,-- ,N—1

Due to the Gaussiannity of the noise process, we have [20]

PO {Sn}no....n-1) O e e MO-SRSsn-nTy e/
Thus
2
dt

N—-1
§=arg min / y(t) — Z)aqh(t—nTs)
R K=

{sn}n=0,--,N-1
We finally obtain that
S=arg min (s
{sn}n=0- N1

where
N-1

N-1 .
W= [ MOPdt+ Y shin-r)-2 > Disiam)

n,n=0

e Z(t) = ha(—t)* *ya(t) the continuous-time output of the so-called matched filter,

e z(n) = z3(nTs) the sampled version (at symbol rate) of the matched filtgudut

ha(t) = ha(—t)* x ha(t) the continuous-time equivalent filter,

andh(n) = ha(nT;) the discrete equivalent filter.

We remark that the optimality criterion depends on the raxkisignal only through the
discrete-time matched filter output. The introduction @& signalz(n) can be also justified
by following an alternative way: the received signal (untteg perfect synchronization
assumption), can be re-written as follows:

Ya(t) = Z $i®n(t) + ba(t)
n
where®,(t) = hy(t — nTs). As the useful information iy, (t) is the symbolss,, the re-
ceived signal can be split into two parts: the useful oneaatsd with the signal subspace
spanned by the functior,(t), and the other one generated by the space orthogonal to the
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signal subspace, the so-called "noise subspace'z(hptE< y,(t)|Pn(t) > be the projected
signal onto the signal subspace where|e > denotes the canonical inner product. One
can easily check tha(i) = z(n). As the noise is Gaussian, its contribution to the signal
subspace is independent of those to the orthogonal noispacd. Therefore, without loss
of optimality, one needs to only work witt{ri) = z(n) and can drop the projection onto the
noise subspace.

Moreover, one can easily see that

z(n) = Zﬁ(k)aq—kJrB(n) (1)

whereb(n) = ha(—t)" xba(t)t—nt, is circularly-symmetric Gaussian noise with zero mean
and power spectral densify,(e?™™) = 2Noh(e?™) = 2No ¥, h(k)e 2™, The maximum
likelihood (ML) criterion depends on the shaping and praim filters only through the
so-called discrete-time equivalent filter Therefore the system performance will only be
driven by the filtefh and the SNR.

Now the second step of the optimal detector is to find the muninof Jy (s). When the
shaping filteth,(t) is a square-root Nyquist filter, it is well known tHEat(t) is the Nyquist
filter and ﬁ(n) = & Wheredyp is the Kronecker index. Thus the functidq(s) can be
significantly simplified to

N-1
NE =Y |zm -2
n=0
Consequently, the optimal detector is a symbol-by-symbetéctor
§ = argminz(n) — [*

which is the so-called threshold detector. When the Nyaasdition is not satisfied (es-
pecially when the channel is non flat fading), the minim@atdf Jy(s) is much harder
and can be done via the famous Viterbi algorithml [21, 22]. Wiiee Viterbi algorithm is
too complex (channel too long and/or high constellatioe)stuboptimal detectors, such as
the zero-forcing (ZF), minimum mean-square error (MMSEgidion-feedback equalizer
(DFE), can be used. For details, mathematical explanatodsderivations, we refer the
reader to[[111, 12]. The optimal receiver is summarized iflig

Ya(t) ha(—t)* MM min, Jy(s) 43>

Figure 1: Optimal receiver structure (with perfect synctization)

When the sync parameters are non-zero but known, the conrtime received signal
is given by
n
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with Wp(t) = ha(t — nTy— 1)@ ™o+ ®) Once again, the optimal operation at the receiver
side is to projecy,(t) onto the functiori¥,(t). Therefore the optimal receiver is now given
in Fig2.

Ya() @ @ ha(—1)* Za(t) z(n) ming Jy(s) 4£>

i fot

2imgo

& &

Figure 2: Optimal receiver structure (with known synchration paramters)

Notice that the phase compensator can be located anywhEig[zhsince it commutes
with the other operators. The CFO compensator can be loeaigdhere iff the CFO is
small enough compared to the filter bandwlftitfihis last assumption is usually satisfied as
mentioned earlier.

Let us now move on to some performance evaluation when thehsynization step is
not carried out. In order to understand the influence of eachmeter, we will consider
parameters one by one, assuming all the others are knownislfiest focus on the timing.
In the flat fading context, the shaping filter is usually sguarot Nyquist and more pre-
cisely a square-root raised cosine filter with roll-pff Under the perfect synchronization
assumptionz(n) is not distorted by Inter-Symbol Interference (I1SI). Buthé timing is not
perfectly knownz(n) will be affected by ISI. In FigLB (left), we display the eyeadram
of z(t) whenty = 0 andp = 0.5 with BPSK odulation. We remark that if the sampling
operation is not done at a multiple ©f, the eye will be less open and performance will be
degraded. In Fid.13 (right), bit-error rate (BER) versus SEJZN, curves are shown for
different values ofp. Notice that performance degrades significantly when thag error
exceeds 10% of the symbol period.

Eye diagram (noiseless, roll-0ff=0.5)

BER with timing error
. 4 T

Figure 3: Eye diagram (left) in noiseless case and BER (rigdnisusE, /Ny in presence of
timing mis-synchronization.

ILet hy(t) and ho(t) be two filters of bandwidth ATs. Let us assume also thdgTs < 1. We have
hy(t) * (ha(t)e?Tot) = 7t [H,(v)Hy (v + fo)e?™dv = €@l (hy(t) % hy(t)) 4 o fg) where H is the
Fourier Transform ohy. The second equality holds sindg is small compared to/IIs. We thus conclude
that the CFO operation can be permuted with the filteringatper
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For Fig.[4,

We next consider perfect timing synchronization, but withemy phase synchronizeation.
The shaping filter is once again a square-root raised cosiaeiith roll-off p = 0.5. In
Fig.[4 (left), we plot the samplexn) (so before decision) when BSPK is employed and
the phase shift is equal toDatE,/Ny = 10dB. The constellation is thus rotated and the
disk is now closer to the decision threshold which inducemarease of the BER. In Figl 4
(right), we display the BER versus, /N for different values of phase shift. Performance
degradation is significant.

BPSK constellation with phase shift 0.1 at E,/N,=10d8 BER with phase error
T T T

imaginary part

-15,
-2

Figure 4: Sampleg(n) before decision (left) whem = 0.1 andE,/No = 10dB and BER
(right) versusE, /Ny in the presence of phase mis-synchronization.

We next examine the influence of the CFO on performance. Trhe sanulation set-up
is used as previously. In Figl 5 (left), we plot the sam@gy when the CFO is equal to
0.01 atE,/No = 30dB. We remark that the BPSK constellation is rotated wifferent
rotation angledgn at each time inder which leads to a circle if the frame is long enough.
Due to the noise, we observe a ring. In Fig. 5 (right), we camplie BER versu&;, /Ny
for different values of CFO. The frame length in this examipl&000 data symbols.

BPSK constellation with frequency shift 0.01 at E,/N=30dB BER with frequency error

imaginary part
E
8,

i I I i s | | i I I i i i I
-15 -1 -05 0 05 1 15 0 1 2 3 4 5 6 7 8 9 10
real part E/N,

Figure 5: Sampleg(n) before decision (left) wheffiy = 0.01 andE, /Ny = 30dB and BER
(right) versusEy/Np in the presence of frequency mis-synchronization.

For each synchronization parameter, we saw a loss in peafiwenthat leads to com-
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munication failure. Therefore, we clearly need to add a kyowization step at the receiver
side in order to keep the performance as high as possible.

As we just saw, synchronization paramters have a great imftuen system perfor-
mance, so that estimating these parameters is crucial:

¢ Why should we estimate the timing parametgr Knowledge oftg is crucial for
choosing the correct sampling time when the continuous-siignal is converted to
the (symbol rate) discrete-time signal (see Eig. 3). Thelfie@esampling at the sym-
bol rate at the true timing offset has its origin on the notisézction of the Nyquist-
Shannon sampling theorem. Therefore, by oversamplingast k& the baud rate
(but in practice twice the symbol rate), the discrete-tingnal y(n) = ya(nTs/2)
contains all the information iy,(t). Then the “symbol timing” matching can be
done via digital processing, namely, interpolation. Mareiestingly, by consider-
ing the bivariate procesgn) = [ya(nTs),Ya(NTs+Ts/2)]T which corresponds exactly
to y(n), a fractionally-spaced (FS) equalizer can be used to vetribe informa-
tion symbol. To implement this, one needs to know the filter®) = ha(nTs) and
ha(n) = ha(nTs+ Ts/2). Thus the symbol timing estimation issue has been replaced
by a pair of filter estimation issues. Notice that at leastfitex (usuallyh,(n) does
not satisfy the Nyquist criterion) is non-flat fading in itscrete-time version. An-
other way to cope with timing offset is to incorporate theitighinto the channel by
rewriting the received signal as:

Ya(t) = (Ni shha(t — kTS)> o+ @) 4 (1)

where

is the new equivalent channel. Now the channel is unknoweesig is unknown.
Therefore once again the timing estimation issue boils dmxmchannel estimation
issue.

e Asthe phase rotation is a linear time-invariant operatitman be viewed as a filtering
operator and thus incorporated into the filter. Thereforénane

N-1 _
ya(t) = Z) shha(t — KTg) | €70t 4 by(t)
n=
where
ha(t) = ha(t — 1p)€? ™
and the phase estimation issue can be avoided.

e The CFO cannot be viewed as the modification of a linear filtecesthe CFO is
not a time-invariant transformation. Therefore the CFOngation issue can not be
avoided.
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In the case of a flat fading channel, if channel estimatiorsédito synchronize in time
and phase (in order to avoid the “real” synchronization Stepve do not use all of our
knowledge about the signal, and in particular, its Nyquistpprty. Nevertheless, if the
synchronization step has to be avoided, the estimatiom ideals with the joint frequency
and (non-flat) channel estimation issue. In the Data-aidedansuch a problem will be
studied in Sectior??. In the Non-data-aided mode, the CFO can be estimated tegaraf
the channel, as shown in Section P.2., and the channel caalestimated by following
the approaches given in “Channel Estimation” E-reference.

The communications prootocol may permit the transmitteexplicitly adjust its sig-
nalling so as to facilitate receiver side synchronizatiofherefore, there are two main
classes of estimation problems:

e DA (Data—AidedE: the receiver knows a sequence of transmitted syndolShese
symbols belong to the so-called “training sequence”. Qlslig this leads to a loss in
spectral efficiency since during the transmission of thiaitng symbols, no informa-
tion symbols are sent. Nevertheless this approach (whighrispopular in civilian
applications such as GSM, 3G, DVB-S) has several advantges it enables us to
dramatically simplify the design and the implementatiortraf synchonization pa-
rameter estimators as will be seen later. Moreover, godoimeance can usually be
attained with only a few (training) symbols, and thus thet qospectral efficiency
remains quite low and acceptable.

e NDA (Non-Data—aidecﬁ: the transmitter does not send any training sequences per
se; thus the receiver does not have deterministic knowledgeit a symbol sub-
sequence. However, the receiver will have some structursiatistical information
about the symbols such as the nature of the constellatiencdlrelation between
the symbols, etc. Such a scenario obviously occurs in padistening in security
applications. In civilian applications, the NDA approachsometimes useful for
tracking parameter fluctuations or in broadcasting aptioa (e.g., TV). Indeed,
the TV application differs completely from a peer-to-pepplecation (such as GSM
between the mobile and the Base Station) since the TV raceam be switched
on at any moment and will not warn the broadcast transmitiat it is switched on
(If it does, the broadcast transmitter will always be “intgxted”, since there is no
dedicated channel for learnign the channel and synchamizaarameters). So the
broadcast transmitter will not transmit a training seqeeas soon as a TV receiver
goes live in the network. To speed up the process, the TVwreckas to synchronize
itself in a blindly manner.

Some remarks before going further:

i) the main property here compared to the non-flat fading clkis that the channel
is assumed to be known. The fact that the filter is also a sduai@ Nyquist is
absolutely not required but will greatly simplified someidations and thus the al-
gorithms.

2also called, training approach, supervised mode, ...
3also called, blind, unsupervised, ...
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i) the estimate that we will develop can be used and adagtmddtimes) in the non-flat
fading channel case.

iii) the trade-off between the estimation quality (provddey training) and the remaining
time for transmitting data can be studied by the frameworthefinformation theory.
A Shannon capacity can be expressed by taking into accoaichénnel uncertainty.
The whole system capacity is out of the scope of this tuttwmidhas been only a few
analyzed in the literature for channel estimation_in [23].

2.1. DAcase

Let By be an unbiased estimator of the sought parantetetying onN observation sam-
ples. Based o [24,20], we know that the Mean Square ErroE)yi&fined a&[||6 — 6/|?]

of any unbiased estimator 6fis lower-bounded by the so-called Cramer-Rao bound (CRB)
which will be described mathematically later in this chap#n estimator whose MSE is
equal to the CRB is calledfficient Efficient estimators do not exist for many estimation
problems Therefore the notion of asymptotic efficiency hasnbintroduced. This means
that the ratio between the MSE and the CRB tends to 1 as theamushbampledN goes to
infinity. Under mild conditions (given in_[24, 20]), the Marum-Likelihood estimator is
asymptotically efficient and it is asymptotically normal.

In view of the asymptotic efficiency and normality, it is nagLto consider the maximum-
likelihod estimator first. If the ML estimator can be implemed, one often considers the
problem to be closed. In contrast, if the ML estimator carmtimplemented (because
of its complexity or sometimes even intractability), théiraation issue is open and other
estimators have to be found. We hasten to add that if an effiestimator does not exist,
then it may be possible to find better estimators than the Mico8d, the CRB may not
be tight when the number of samples (or SNR) is low, and tighd@nds may (such as the
Bhattacharya and Ziv-Zakai bounds) may need to be considgYe refer the reader to [24]
for details.

So let us start with the introduction of the ML estimator fbe foint synchronization
parameters. The Likelihood can be written as follows

PY(D)[T, @, ) O g JalyO-3N8 sahalt-nTe- )21 Pt/ 20

where the training sequences, }, is known.
The ML estimator is obtained as follows

2
N-1 _

y(t) = ¥ sha(t —nTs— 1)@ 9) dt
n=0

[va (h\h 1E\N] =arg mln/
7,0.f JR

Setting the derivative to zero, and assuming that the CFOnalscompared to the
bandwidth, we obtain the following set of equations:

o

O{Spgse 2 2z () —
H{S g se f”“’e* "f Nz:(n)}
D{Xw:—(;[Sﬁe—Zlnqone—meTsnzr(n)} - 0

I
o

(2)
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where
2(n) = [ Ya(Dalt =T )0t = ha(—1)" YaO) e
40 = [ YOt =T )"t = M) Yall) i

with hj(t) is the derivative ohj,(t).

A typical approach is variable elimination: we try to exgesparameter in terms of
the others, and eliminate it by using the found expressi@relthis algebraic manipulation
can be applied to the phase (as a function of the timing an@H), thanks to the second
line in Eq. [2). But the timing and the CFO cannot then be emiths explicit functions due
to the non-linearity of these equations. Therefore the jgiming, phase, CFO) problem is
intractable.

We remark that joint frequency and phase estimators canvgageed when the timing
is known. Indeed, as we will see later, if the timing is knovamd thus assumed to be
zero without loss of genrality), then the second and thirdagigns can lead to practical
estimators with reasonable computational complexity.rétoee, we split our problem into
two different problems that will be treated separately hg timing issue and ii) the phase
and CFO estimation issues.

The ordering of the two problems has a great influence on theeaaf estimators that
will be used, as we see next.

e First scheme: Timing is estimated first and then the phase and CFO are dstima
assuming that the timing estimate is perfect. As the DA tgniannot be derived
in closed-form when the phase and CFO are unknown, we neeevedap a NDA
timing estimator that is insensitive to the actual phase@R@ values. The second
part of this scheme deals with phase and CFO estimationssissAs the timing
is now known, DA estimators can be developed. If trainingas available, NDA
estimators can also be considered.

e Second schemethe phase and the CFO are estimated first; timing is then a&stin
assuming that the phase and CFO estimates are perfect,umnpetiectly corrected.
Once again, the phase and CFO estimators here have to be NdDAsansitive
to timing error. As the timing can be wrong, the sampled fitten generate Inter-
Symbol Interference. Therefore, we need to design joinseleand CFO NDA esti-
mators that can work even when the (non-flat) fading chasnatknown. Assuming
that phase and CFO are perfectly compensated, the timiimgagst can be blind or
aided by a training sequence.

The two schemes are summarized in Elg. 6.
Consequently, we need to solve the following issues (evéraiiing sequences are
assumed available!):

e Problem 1. DA Phase and CFO estimation (when timing is known and so can be

considered to be zero, without loss of generality (wlog)).

e Problem 1': DA Timing estimation (when Phase and CFO are known and soean b
assumed to be zero wlog).
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DA Phase and CFO DA Timing
estimation — estimation —

(if training available) (if training available)

v »
‘ Ya(t) NDA Phase and CFO N emeeo

\ NDA Timing
Ya(t) Ya X .
— estimation /77777 Flat channel 1

— estimation
(insensitive to phase and CFQ

S (insensitive to timing ) /
LY y

NDA Phase and CFO e N NDA Timing
estimation — estimation —

Semmeeo- ‘ (if training unavailable) (if training unavailable)

Figure 6: Summary of the first scheme (left) and the seconemel{right).

e Problem 2: NDA Phase and CFO estimation (insensitive to unknown tinang
hence a non-flat channel),

e Problem 2': NDA Timing estimation (insensitive to unknown phase and GFO

Notice that the first scheme (associated with Problems 1 grigl @sed frequently and
advocated in a lot of practical systems. Hereafter, we fact$ on Problem 1 and Problem
1’ relying on training sequences.

DA timing estimation issue

In this paragraph, we focus on the following estimation peob
N-1
n=0
After simple algebraic manipulations (similar to thosecassted with the maximum-likelihood
detector), the ML timing estimator can be obtained as falow
A N-1
in =argmaxy 0{sz(n)} 3)
n=0
~—_——
IN(T)
where we recall that; (n) is the output of the matched filter samplechd + 1.

Th cost functiondy(.) of (3) is plotted in Fig[l7 forE,/No = 5dB (left) andEp/No =
10dB (right) withN = 100. The shaping filter is a square-root raised cosine witfofb
p = 0.5. The value of the soughy is 0.1T; and the x-axis has been normalizedTay

Observe that the cost function is concave around the truet.pdiherefore one can
proceed to find the maximum d&f;(.) in two steps.

e acoarsesearch through a 1-D grid which provides a first estinfé%of Tp.

e once the coarse search has roughly localized the maximuencamuse a gradient-
descent algorithm on the functidy (.) initialized by £\, as follows

U L EETS (G i) (4)

e }

. 0z¢(n

- ml+uzo {S“ ot
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Cost function for timing (with t;=0.1T_, N=100, and E, /N =5d8) Cost function for timing (with 7;=0.1T_, N=100, and E, /N =10d8)

Figure 7: Cost functiody (1) for Ep/No = 5dB (left) andEp/No = 10dB (right) withN =
100 andrp = 0.1Ts.

wherem is the iteration index of the gradient algorithm. The impétation of the
derivative term is actually quite easy since its correspdndhe sampled version (at
f,E,m_”) of the output of the received signal passed through thehsdtélter associ-
ated with the derivative filtel(t) . This can be done digitally (via interpolation) if
the received signagly(t) has been sampled at twice the symbol rate or faster.

In order to benchmark different estimators associated thithsame estimation issue,
it is useful to have a performance lower-bound on the MSE.CR8 is the most popular
one because it is quite simple to derive (especially in DA @)ahd tight (we remind that
under mild conditions, the ML is asymptotically efficienBecall that the CRB definition
in the context of an unbiased estimator of the timing.

)

CRB(1) = ! = 1

5 _
9%logp(y|1)
E <0Iogapr(yr) To) ] E[W

After standard algebraic manipulations, we have

1 N-1
logp(y|T) = 0O { Zsﬁ/ Ya(t)ha(t —nTs— r)*dt} -+ cste
No | & /r
Thus we obtain

9%logp(ylt) _ 1 _ [t : .
ol =D n_osh/Rya(t)ha(t—nTs—T) dt

with h,(t) the second derivative function bf(t). By taking the mathematical expectation
(and using the zero-mean property of the noise), we obtain

02|og p(y|T) B 1 N-1 . / ) *
£ {W] “N” n.nZ:oS“S”' /R ha(t — W' T)hy(t — nTe— 7)*dt
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Using Parseval’s identiy, we finally obtain

d%log p(y|r)} 471 N—1 / 5 > Dimir—
El—————1f| =——01 fso [ F2H())2ATM - Tsq £
[ (91)2 No rmZ:OSnSn = IH(f)]

whereH () is the Fourier transform dfy(t).
Consequently, the CRB for the timing estimation issue igigiby

No

CRB(1) =
420 { 5N Lo sisy fi T2H(F)[262m0 =0 T £}

This expression shows the influence of the shaping filteutjinghe integral of the square of
fH(f). But the influence of the training sequence (especiallyizs)ss still quite unclear.
To address this issue, we will model our training sequeneeraalization of a random pro-
cess. More precisely, is a realization of pseudo-noise stationary process. Ictioeg any
training sequence is generated through a shift registarug.eonsiders(m) = E[s,:mS;]
the autocorrelation function. and the associated specByed’™ ) = 5, rs(me-2™f By
using some results on Cesaro sums, one can prove that

i E[S’]/S?:I]EZin(n’,n)fTs as Ss(e72in'fTs)’ whenN — .

As a consequence, we have

No

CRB(1) = 412N [, F2[H(F)[2S(e 27 Ts)d f

For channel estimation (when synchronization is perfedtye), a white training se-
guence (i.e., with flat spectrum) is optimal [25, 26]. But atelsequence is not necessarily
the best choice for the synchronization param&erurther, the best training sequence cor-
relation property may be different for different synchiation parameters. Since a white
sequence always leads to reasonable performance, it poaidood trade-off. Therefore,
a white training sequence is chosen in current real-liféesys.

When the training sequence is white, the CRB simplifies to

No

CRB(T) = 2N L (T 2d

whereE; is the variance o$,.
The CRB provides us some insights about the behavior of tirea&ss.

e The CRB isO(1/N). This is logical since the CRB associated with channel estim
tion (cf. "Channel estimation” E-reference) is at$al/N). We recall that the timing
could be incorporated into the channel estimation box withoss in performance.
Thus fortunately the CRB offers the same behavior.

“for instance, for the timing, the best sequence is one whasetrsim isSy(€?7s) = 625((f — fmax) Ts)
where fmax = argmax f2|H(f)|2.
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e The CRBisO(1/SNR). Once again, this result is consistent with that one astsatia
with channel estimation.

e The influence of the shaping filter can be analyzed, espgdiadl influence of the
roll-off. Recall that the system is most sensitive to timieigor if the roll-off is
small and thus if the occupied extra bandwidth is small. dnfmately, the quality
of estimation also decreases when the roll-off becomes| ¢s&d [18], 17] for more
details).

In Fig.[8, we plot MSE and CRB versiE,/Ng andN with BPSK modulation. Unless
otherwise stateds,/No = 10dB,N = 100, andp = 0.5.

Cost function for timing (with 1;=0.1T_, N=100, and E,/N =5dB)

100
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0
uT,
s

Figure 8:MSE and CRB versug,/Np (left) andN (right).

So far we have considered a blockwise approach. In the kegttige approachesé€.,
sample-by-sample) were of great interest due to buffer Igizigation and computational
complexity. Today, the adaptive approach is mainly usefutricking parameter variations
during data (and not training) transmission. The paramgidate can be implemented un-
der two different modes: i) the NDA mode since it is carried during data transmission,
and ii) the Decision-Directed (DD) mode. In the NDA modefatiént updates can be de-
veloped and usually are obtained through the adaptiveoredithe blockwise approaches
described in Section 2]2.. In the DD mode, different updatesobtained by calculating
the adaptive version of the DA estimators and then replattiagrainings, with a decision
on data symbos,. Therefore it is useful to develop an adaptive version ofptieiously-
described DA ML timing estimator. Thus instead of workingdK-by-block, we work
sample-by-sample. The (stochastic) gradient-desceptitdigh at timen can be derived
from the blockwise version of the gradient descent algoritof. Eq. [4)) by keeping only
the derivative term associated with timeWe thus have

dz:(n)
f(le)} (5)

fn: fn71+HD {S: T
where 1, is the estimated value afy at timen. Now the time index and the iteration

T
ot

e(n)
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number coincide. Such an adaptive algorithm can be fullyyaed by using the stochastic
approximation tool[[2]7], but this analysis is out of the seap this chapter.

In DD mode, the symbad, which is unknown during data transmission has to be re-
placed with the (hard) decision of the symbol denotedsbyDD algorithm can be also
applied with soft decision on the symbol as was dong in [2&)rétletails about the DD al-
gorithm with soft decision will be given later, in the contex phase estimation. To perform
well, the error probability should be small enough to lirhie impact of error propagation.
Therefore DD mode is always implemented after an initisilimastep (feasible thanks to
the training sequence) in order to ensure low data deteetioor. In order to avoid the
calculation of the derivative at each symbol period (notfe in the blockwise approach
the number of iteration and thus of derivative calculati®miuch smaller than the number
of samples), we replace it with

dZT (n) Zf§m71)+ﬂ(n) - Zfrslm—l) 7A(n)

0T |+m1 2A

In

whereA is a design parameter that must be carefully adjusted. We jnav described the
very popular early-late (adaptive) estimator|[29]. Notibat other update equations with
ad hoc €n) have been proposed in the literaturel[30, 31] and often parfouch better.

DA phase and CFO estimation issue

In this paragraph, we assi,e that the timing is known and thasbe considered to be zero
wlog. Therefore our received signal model is

Ya(t) = (Nfsnha(t — nTs)> mfot+®) | b, (t)
n=0

Once again the likelihood can be written as follows
pY(t)|@, ) O e JalVa®-Shg sha(t-nT) 9t/ 20

Recall that the sequends,} is known.
So the joint ML estimator for the phase and CFO takes thewatig form

2

N—1 .
[WfN]Zafgmm/ Ya(t)_ZO%ha(t_nTs)ez'"(fH‘q’) dt
o.f JR &

JN((pvf>

By assuming that the CFO is small compared to the bandwidthibgndeveloping the
square, we obtain that

N-1 _
In(o, f) =—20 { st,ﬁz(n)e‘z'"(”sn*“’)} +cste (6)
n=
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wherez(n) = ha(—t)* x Ya(t)t—n1, @and can be written as follows (under the small CFO
assumption) ‘
z(n) = 5,201+ ®) 4 hp) 7)

where we can prove th&i(n) is still a white noise process due to the square-root Nyquist
property of the shaping filter.
By letting

1Nt AT,
an(f) ==Y spz(nje ™"
N 2,
we have _
In(e, f) = —2NO{an(f)e 2™} 4 cste

Then, it is easy to check that the tegrminimizing Iy (g, f) for a givenf, is

= 2 (an(F)) = iarctan<w> ®)

21 21T

where/ stands for the phase of a complex-valued number. Now bytingeEq. [8) into
Eq. (8), we can easily show the frequency estimator is obthiny maximizing the modulus
of an(f). Therefore the joint DA ML phase and CFO estimates are agwoll

2

fy =argma 1 Nilsﬁz(n)e*z"”sn
f IN &

and@:iarctan D(%Z#;&Sﬁz(n)e—ﬂ-nffﬁsn) |
2m O(% Shoo siz(n)e2minTsn)
9)

While the phase estimate is in closed-form, the CFO estimidteneeds a maximization
step. Actually the function to be maximized is the "periodog”. As in the case of timing,
this (periodogram) maximization step may be carried outwa steps: the coarse step
is done by a FFT of siz&l. The resulting frequency estimate enables us to initisdize
gradient-descent algorithm around the true point, or tocauseom-FFT.

Remark: The estimators have been developed by developing the MLe&dbais the
continuous-time received signal. Another way is as followWwée received signal can be

viewed as
N-1

Yal) = 5 sn€? O Ry (1) + by (t)
n=0

where®,(t) = ha(t — nTs). As the shaping filter is a square-root Nyquist filter, theidas
functions®,(t) are orthogonal. In the absence of CFO, the useful part oftteved signal
is generated by, (t); hence, we can project the received signal onto these hasitidns
without loss of information on the data. Lefn) =< ya(t)|®n(t) > with < .|. > the inner
product. One can check thafn) = z(n) wherez(n) is given in Eq.[(¥). Developing the ML
estimator of the phase and CFO basea(on will lead fortunately to the equations reported
above. We can also prove that the CRBs obtained by both agipeare identical.

As an illustration, we plot in Fid.]9 (left) a realization 06Q0 samples of(n) when
@ = 0.1 andfyTs = 0.01 atE,/No = 30dB with BSPK modulation. In Figl 9 (right) the cor-
responding cost functiody (@, f) has been displayed fof = 100. A peak can be observed
around the true values @f and fo.
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Observed samples (with ¢;=0.25, f=0.01, N=200, and E /N =30dB) Cost function (with ¢;=0.25, f=0.01, N=200, and E /N,=30dB}
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Figure 9: Sampleg(n) (left) and corresponding cost functidm, f) — In (g, f) (right).

Let us now analyze the CRB associated with this estimatgureisin case of estimation
of more than one parameter, the CRB is defined through a nestriellows

CRB(¢, f) =F (e, )
whereF (@, f) is the Fisher Information Matrix whose components here are

d%logp(yle.f)  3%logp(yle.f)

_ 002 2o f
Flo,f)=- dzlo(g S’Z)yw,f) 9%logp(yle.f)
9o@ (@1)2

After straightforward algebraic manipulations, we obthie CRB associated with the phase,
that is defined as the first element of the diagonal of GRB), as [32]

Nows
AT2N (WoWo — W2)

CRB(¢) =

where, for any integer k
N-1

1 K| |2
Wi = n®|snl|<.
N(k+1) n;

The CRB associated with the frequency is the second eler#re diagonal of CRBgp, f),
and is given by
B Nowo
 T24TN3(Wowp — W2)

These expressions can be simplifietllif> 1. We then obtain the so-called asymptotic
CRB. One can prove that

CRB(f)

2
(0}
a.s. S

k+1°

Wi
Consequently, we have

3 N1

1No1
CRB(¢) = gy @M CRB) ~ 175 s (10)
S
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Notice that in [33], the (large samples) MSEs of the ML haverbealculated and are
identical to those given by the asymptotic CRB. Consequeh# ML is asymptotically
efficient and thus we do need to spend time to design othenastis since the ML is
almost optimal and can be implemented easily in practice.

Thanks to these expressions, some insights about the @stinperformance can be
given.

e The phase MSE i§(1/N) andO(1/SNR). The behavior mimics that of the channel
estimator. This is logical since the phase rotation can&eetd a one-tap linear filter.

e In contrast, the MSE for the CFO decreases much fastér(#8\3). The conver-
gence speed seems to be very high. We will see that we needdadHis high conver-
gence speed for the system to operate properly. Let us @resfcame with a training
sequence of lengtNy followed by a data sequence of lengih. For the system to
operate well, the phase rotation due to the CFO should bedsdptv as possible. At
the end of the frame, the phase rotation (after correct®@jis(fy — f)(Nr +Np)
which is of orderO((Nr + ND)/NE/Z). Assume a constant ratj® betweenNy and
Np. Thusp = Nt /Np and corresponds to the loss in spectral efficiency caused by
the training. Then the phase rotation is proportional t¢/lp and this tends to zero
when the frame is large enough. Notice that if the frequen§EMas)(1/NP) with
p < 2, the system cannot perform well due to the unbounded pluésigon associ-
ated with CFO.

The influence of the noise is similar since the MSE is of ofligl/ SNR).

In Fig.[10, we plot the MSE of the phase and CFO Ml estimate hadcorresponding
CRB: versus, /Ny (left) with N = 32,Ts = 1s, and versuBl (right) with Ep/Np = 3dB and
Ts = 1s. The training sequence was BPSK modulated.

MSE and CRB (with N=32 and TS=1S) MSE and CRB (with N=32 and TSZIS)
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Figure 10: MSE and CRB for phase and CFO versyd\p (left) andN (right).

We first observe that when the SNR and the number of sampldsgirenough, MLE
performance perfectly matches the CRB as expected. We &lsene a strange phe-
nomenon at low SNR and/or when the number of samples is rge kmough: There is
a mismatch between the theoretical performance and theieaigne. Moreover the ML
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is no longer efficient. This is the so-called outliers effi@#,[35/ 36/ 37]. It is associated
with the failure of the first step of the periodogram maxinima. This phenomenon has
been analyzed in the literature, and modified expressiangl&E, taking into account this
effect have been derived. The most interesting questiocais:we fill up the gap between
the ML and the CRB by using another estimator? The answer.iFmanswer this, some
other lower bounds have been developed and analyzed. Onmemation the Barankin-

like bounds[[38, 39, 40,41, 42], the Bhattacharya-like losu®3], and the Ziv-Zakai-like

bounds|([44, 45, 46,47]. A lot of work has been done on deriginch bounds for the har-
monic retrieval issue, where it has been shown that the CR8ne&tight at low SNR.

Other bounds (especially the Ziv-Zakai one) are actualty gse to ML performance, so
that it is hard to find better estimates.

MSE, CRB, BB, and ZZB (with N=32 and TS:IS) MSE, CRB, BB, and ZZB (with Eb/NDZSdB and T5=1s)

- - —MSE
T T CRB
—e—BB

1 ~

10F N ——7ZB |3

Si
.
5,

Figure 11: MSE, CRB, BB, and ZZB for CFO vershg/Ny (left) andN (right).

In Fig.[11, we plot the Cramer-Rao Bound (CRB), the (firstevydBarankin Bound
(BB), the Ziv-Zakai Bound (ZZB) and the MSE of the ML estimafor CFO parameter
versusEp /Ny (left) whenN = 32 and versudN (right) whenE,/Np = 3dB.  Notice that
the threshold (from which the ML performance can be distisiged from the CRB) can be
moved to the left by increasing the SNR (whiens fixed) or by increasingN (when the
SNR is fixed) in order to obtain the target performance.

Let us now move on to the adaptive version of the ML. As the CEOlme viewed as a
phase variation (with a very specific structure), the aslaglgorithm which has the ability
of tracking phase variation, has been almost always degdlopder the assumption that
only the phase is non-zero and that the CFO is zero. Therefergork with the following
discrete-time signal:

2(n) = 5™ + b(n) (11)

and the (blockwise) ML for the phase leads to the followingtdanction (cf. Eql(b))
R N-1 .
=argmaxy 0{s;z(nje <™
@ = argm n; {shz(n)e 27}

Following an approach similar to that for timinq]h, the estimate of the phase at th¢h
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iteration of the (stochastic) gradient algorithm, is updeaas follows

. o0 {s;z(n)e-2m}
7}

S
th Gh-1+HU 0 )
th-1
= gratuD{szne 2} (12)
e(n)

Thanks to this update equation, we can introduce the famgitsld®Phase-Locked Loop
(PLL) framework.

S

=

=
-

? () [ et |
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Phase comparator Loop

First-order filter Filter

& A T

Figure 12: PLL scheme (in DA context).

Note thatgh — ¢gh_1 can be written asl —z !].g, which means thatp, is obtained
adfter the phase errexn) is passed through a filter whose Z-transforrasis 1/(1—z1).
Therefore the PLL scheme can be described as i Flg. 12.

We would now like to inspect the convergence of the PLL firsewkhe phase is fixed,
and then when the phase is time-varying. To do this, we cenglidtg, is fixed for the first
1000 sampleg(n), and then is time-varying for the next 1000 samples as fallow

@n = Pon—1+ Wy, forn=1001---,2000

where@ 1000 = ¢ andw, is a real-valued i.i.d. Gaussian process with zero-mearvarid
ancec?. In Fig.[13, we display a realization of the estimaigdand the true phasg) , with
02 =10"% andEp /Ny = 20dB .

We remark that proper choice gfis crucial for good PLL performance. [f is high,
the PLL will rapidly reach an interval around the true valug then will oscillate around
the true point without converging. Moeover, a high valugi@nables us to efficiently track
the phase variation/noise. In contrast, whers small, the convergence speed is low but
the phase estimate does not oscillate very much aroundubedtint. But the small value
of u prevents us from following the (too-fast) phase variatioige.

Indeed, if the phase to be estimated is fixed, it is well knomat it is best to consider
a time-varying step sizg, satisfyingy, tn = +o andy u2 < +oo [27]. Thereforee an
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PLL for fixed phase until n=2000 and then time-varying phase (E,/N=20dB, 1=0.01, and o2 =1e-4) PLL for fixed phase until n=2000 and then time-varying phase (E,/N,=20dB, 1=0.001, and 62 =1e-4)
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Figure 13: Estimated phase and true phase versus the nurhiierations/samples for
u = 0.01 (left) andu = 0.001 (right).

appropriate choice igl, = ¢/n when the phase is fixed. However such a choice leads to
very poor performance if the phase becomes time-varyingf Aflwork has been done on
design ofu, adapted to phase noise [27].
2.2. NDA case
Here we will develop NDA estimators

e for timing insensitive to phase and CFO (Problem 2’),

e for phase and frequency insensitive to timing (Problem 2).

As before, we will start with the ML estimators. As in DA modbge global estimation
issue (for timing, phase and frequency) is not tractablerdfore, we will focus on

e NDA timing ML estimator when phase and CFO are known and tleus wlog.

e NDA phase and CFO ML estimators when timing is known and ttewe wlog.

NDA ML timing estimator

Now the symbolss, are unknown. We just assume tlsgtbelongs to a particular constel-
lation with P states P-PAM, P-PSK, P-QAM) and that each constellation point is equi-
likely. We denote by{sP'} .. p_1 the set of these constellation points. We also denote
by sy = [So,---,Sn_1]' the set of transmitted data symbols. The likelihood takesiahm
more complicated form due to the need to average over alldtenpal symbols. Therefore
we have

pyIT) = [+ [ pyIT.su)ps(sn)ds

whereps(.) is the probability density function &y Obviously, we have

p(yIT,5y) O & JayO-Sh-dshalt-nTer)[dt/280
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and

N-1/qP-1
po(s) = [ (5 205(31—5“’))>
n—= P=

ass, are i.i.d..
After simple but tedious algebraic manipulations (using fiict that the shaping filter
is a square-root Nyquist filter), we obtain

. N-1 1P P2 (P my
Ty = arg maxz log | = z e Me N
U > P p=0

When BPSK is employed, we obtain that

In = arg rqaxN;jlog <cosh<m+én)}> )

At low SNR, the Taylor series expansion of ([@gsh.)) can be used to yield

N—-1
fy = argmaxy (O{z(n)?} +|z(n)|?) (BPSKatlow SNR)
n=0

When QPSK is employed, similar derivations lead to

N-1
iy = arg rqaxz) 1z(n)|> (QPSK at low SNR)
n—

We will see that the NDA ML approach for timing is very compalied except for BPSK
and QPSK. To handle constellations with more states, EapentMaximization (EM) al-
gorithm can be employed and will be explained later in theiseaevoted to Code-aided
synchronization. Notice that in [48] EM algorithm is alsoglemented but in another way:
indeed, the timing error is viewed as the nuisance paraméteran a priori distribution
while the data are viewed as the useful parameters to beteetelthe authors thus attempt
to extend the Maximum Likelihood Sequence Estimator to Heeof timing error and are
able to correct it through an iterative implementation.

We observe, from Fid. 14, that this timing estimator is vaagsitive to phase and CFO.
Therefore, we do not continue its analysis in depth. ObWoas adaptive version may be
implemented and the early-late trick can be employed here.

It is clear that in the NDA case, we need to develop a sub-@bt{mon-ML) timing
estimator which is insensitive to phase and CFO. We do so next

NDA ML phase and CFO estimator

We now assume that the timing is known and thus zero wlog. @gaa, we would like to
characterize the NDA joint ML phase and CFO estimator.
By following the same reasoning as for the timing, we obthat t

A N-1 1P P2 o) e 2mfTsn+¢)y
[N, fn] =argmaxy log[ = Y e Toe No
o.f & P &

(13)
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Figure 14: MSE for NDA ML based timing estimator for BPSK versus phassmatch
(left) and CFO mismatch (right).

In contrast with the DA case, we are not able to weitavith respect tof. As a con-
sequence, the maximization remains a 2-D search which iemgty time consuming.
Therefore, we could focus on i) CFO estimation issue whe@lmknown, and ii) phase
estimation when CFO is known. The first scheme is clearly alistic, and thus will be
omitted. In contrast, the second scheme is of interestcedfein the tracking regime.

We now assume thaFO is known and thus can be assumed to be zero wlog
Eq. (I3) can be simplified as follows

; N1 (1Pl DR () ame 20y
@ = arg maxzolog = Z e M e 3 . 14
0 L P <

In Fig.[18, we have plotted the cost function given in Eql (fo4)various QAM constella-
tions. Notice that the smaller the constellation, the shaipthe cost function. Therefore
it is easier to estimate phase for small constellation siX¥ken a high-order constella-
tion is used, the SNR must be high enough to ensure accunat@rsyization (this is not
necessarily a drawback since high-order modulation regquiigh SNR for detection) and
the number of samples must be large enough as well (whichycleay become an issue).
Fig.[18 depicts the, MSE of NDA ML based phase estimate ve8®R,N and the timing
error respectively for BPSK constellation. The MSE deagsgsroportionally to ASNR
and 1/N. Morever it is insensitive to timing error.

To overcome the implementation issues due to the highly doatpd shape of the cost
function, EM algorithm can be employed as|in|[49].

Once again, as with the NDA ML based timing estimate, the ftosttion in Eq. [14)
can be simplified when BPSK is used.

0

@ = arg maxNZjlog <cosh<M>> (BPSK) (15)
o & N
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Figure 15: Cost function of NDA ML phase estimate (with= 0.1, E,/Np = 20dB,N =
100) for variousP-QAM.

An exhaustive search to solve EQ.J(15) would be quite timeseoning. However, at low
SNR, as with the timing case, we obtain that

N-1 _ A N-1
@ = arg maxZ) O{z(n)2e 2%} =@ = 1, ( Z)z(n)2> (M (BPSK atlow SNR)
9 n= 2 n—

The NDA ML phase estimate is equivalent to the so-called 8gBawer estimate at low
SNR which can be easily implemented. Similar results canbbaired for anyP-QAM or
anyP-PSK. Indeed, the NDA ML phase estimate is equivalent taMikéh Power estimate
with M = 4 for any P-QAM and M = P for any P-PSK [50]. Further information about
other phase estimators, with PSK modulation, can be foufsilh

Let us consideBPSK case in more detail. We would like to implement Hg.l(15) in
an adaptive manner. Let, be the value of the estimated phase at tim@e., at then-th
iteration). the update equation is

dlog (cosh(_D{Z(n’)\E*Zi”“’} ))
o

A

h o= Goatp

= @_1+u0 {gz(n)e*z”‘;’“*l}

& = tanh( D{Z(”)e_zm@l}> . (16)

with

No

Notice that the update equation is very similar to that inftecase (cf. Eq.[(12)) except
thats, has been replaced with. Be looking at carefullys,, we observe that it corresponds
to the so-called soft decision under BPSK constellatiomraggion. If the soft decision
is replaced with a hard decision, then wew are in the DeciBimacted context, and the
estimatorsy becomes

4*22i7T4514,1
§ = sign(D{Z(n)E }> (Decision-Directedl.
0
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MSE for ML NDA phase estimate (N=100)
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Figure 16: MSE of NDA ML phase estimate with BPSK modulati@nsusEy, /Ny (top), N
(middle), andry (bottom).

If a decision is made (other than soft or hard), the tefrmah be written as

. 0{z(n)e2m-1}
§= NC

(No data decision

and corresponds to the famous Costas loop originally ined for contuinuous-time
amplitude-modulated signals [52,)53].

In conclusion, we recall that the joint NDA sync parametestngation issue is in-
tractable. To simplify it, we first focus on the timing. The KDL timing estimator is
quite complicated and very sensitive to phase and CFO. Saigdless in practice. We next
consider phase and CFO estimation issues. Clearly the poiattiem is still intractable.
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Therefore we only focus on the phase estimation issue asgu@#O is known. When the
constellation size is small enough, the NDA ML phase is imm@atable in blockwise or
adaptive manner and is not too sensitive to timing error.

Consequently, in order to build practical system, we sgka sub-optimal (non-ML)
blind methods

¢ for estimating the timing without the knowledge of the phagsd the CFO.
e for estimating the CFO without the knowledge of the timingl éime phase

e for estimating the phase when the constellation size besdngh. The insensitivity
to the timing and the CFO is not required since the phase attimns often carried
out after timing and CFO correction.

Sub-optimal estimators

In this section, we will develop sub-optimal estimatorstfoe sync parameters. To do that,
we will analyze carefully some statistical properties af tkeceived signal. Based on this
properties, we will be able to introduce some powerful egtors. The main statistical tools
we need are briefly described below

e The Cyclostationarity tool: for sake of simplicity, we will only define second-order
cyclostationarity. For more details about any-order cstelbonarity, the reader may
refer to [54[55]. Let us consideq(t) a (complex-valued) continuous-time process
and its correlation functiorft, 7) — r(t,7) = E[x(t + 1)X(t)*]. When the process
is second-oder stationary, then the functioir) — r(t,7) is independent of. In
contrast, if the functiorit, 7) — r(t,7) is periodic with respect to (and the period
is independent of), the process is said to be cyclostationary. Tgebe the period
of the correlation functionT is called the cyclic period. By doing a Fourier series
expansion, we have

r(t,7) = Zr(k)(r)ezi"k/Tc

where

— fk=Kk/T. is the so-callek-th cyclic frequency,
- T r(k)(r) is the cyclic correlation (at cyclic frequenéy,
— S (@) = 5,1 (1)e"27T is the cyclic spectrum (at cyclic frequenky.

A similar analysis can be done with the pseudo-correlation) — u(t, 7) = E[x(t +
T)X(t)] if it is not identically zero.

e The Non-Circularity tool: let us consider a random (complex-valued) zero-mean
scalar variablex. A variable is said to be circularly-symmetric (or simpl@rcalar)
if x andX'= e?™x have the same distribution regardless of the rotation afgle
Consequently the distribution is rotationally invarial®ty assuming the moment at
any order exists, we ha@xPx*'] = E[%°%"'] which implies thaf£[xPx*'] = 0 as soon
asp # g. Thus, when a variable is circularly-symmetric, only themeamt at even
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orders may be non-zero. Moreover only the moments deperatirg power of{x|
are non-zero. In digital communications, many variablescancular not for arbitrary
orders but only until a certain order. If

E[xPx*'] =0

for p#gand p+q< M, the random variableis said to be circular until theM — 1)-
th order or equivalently to be non-circular from tkleth order. For more details about
the non-circularity, the reader may refertol[56,50, 12].

The rest of this section is now organized as follows: we famushe timing estimator
(based on the cyclostationary tool), then the CFO estim@ased on the cyclostationary
or non-circularity tools), and the phase estimator (basethe non-circularity tool).

Timing estimation issue:

We observe that the signg(t) is cyclostationary with periods. Consequently the
discrete-time (over-sampled) signdh) = y,(nTs/Q) is also cyclostationary with period
Q, i.e, the sequend@y(n+ m)y(n)*] = E[Y(Q+n+m)y(Q+n)*] is period for any integer
m. Notice that if the continuous-time received signal is sid@t the symbol rate) = 1
and thusy(n) is stationary. In contrast, as soon@s$> 2, y(n) is strictly cyclostationary.

First of all assuming that the CFO is zero, it has been rendairkg57] thatr ¥ (m) =
akme*zmkr/Ts for k # 0, with axm a known complex-valued constant depending on the
shaping filter. Thanks to this relationship betwaéfi(m) and 1, the following ad hoc
estimator was proposed in [57]:

N 1 /. _
=Ty 5 (FHmai) )
keK* meM
whereK* is any set of integers, not including 0, aiflis any set of integers such that

r(K(m) # 0. The termr®(m) is the the empirical estimate of(m) based orN samples,

and is given by
1 N-1

F(m) = N ZOY/(H m)y(n)*e 2R (18)

The performance of such an empirical cyclic correlatiotingste can be found in [16,58,
59/57].

Notice that the timing estimator is insensitive to the phasel thus can be used before
the phase estimation step. In contrast, when the CFO is notitenust be estimated first;
the timing estimate is then modified as follows

W=-T3 Y }4(r‘(k)(m)akfr}]e*Zi"mfANTS/Q> (19)
keK* meM

where fy is the CFO estimate.

WhenK = {1}, M = {0}, and the conjugate operation giis"removed, we obtain the
heuristic algorithm introduced in [60] which actually is Wwsuited for BPSK constellation.
WhenK = {1} andM is any singleton, we obtain the algorithm in[61]. With= {—1,1}
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andM = {0}, the estimator reduces to thatin[62]. This last algorittas the great advan-
tage of being insensitive to the CFO since, fioe= 0, Eq. [17) is identical to Eq._(19).

All these timing estimators have been theoretically aredyand closed-form expres-
sions for the Mean-Square Error are given_in [63].

The question now is: what is the best blind estimator forrignielying on the cyclic
correlation. WherP = 2, the answer can be found [n [63] and corresponds to the wezigh
covariance matching principle [64,/65]. The gain in perfante is only incremental at the
expense of higher complexity. Therefore the NDA timingrastior proposed in Eq[(17)
(especially that in [62] which is insensitive to CFO) is asiy candidate for our problem.

CFO estimation issue:
The cyclostationarity property can also be used for estmgahe CFO blindly. Indeed,
in [57], it has been remarked tha¥) (m) = ay ,€? ™7/ Tse2™/Q with B, a complex valued
scalar which induces the following estimator

P 1

= =/ (f®(mFk ~1,-1
artty 2y, mé (r (M (may po ) (20)

fi
meM*
whereM* corresponds to any set of integers that does not contain Zéris estimator is
insensitive to timing and phase. Once again, by taking fipeeilue of the seK andM, we
obtain the estimators introduced [n [61] ahd|[62]. The atiedy analysis of the estimator
has been done in [66].

Another approach to estimate the CFO independent of thagirand the phase is to
use the non-circularity property of the received signdl). Indeed, it is easy to check [50]
that

E[sy] # 0
with

e M = 2 for P-PAM constellation
e M = P for P-PSK constellation
e M = 4 for P-QAM constellation

Consequently the receive signal is also hon-circuld-déih order. For the sake of simplicity,
let us consider that the receive signal has been sample@ aythbol rate after passing
through the matched filter. Extension to the oversampled isastraightforward. Then

L .
y(n) = (;)9(5)&—4> "4 b(n)

whereg(n) = ha(nTs— 70)€?™, (L + 1) is the channel length arta(n) the additive white
Gaussian noise. Notice that if the timing has been perfettiyected and the shaping filter
is a square-root Nyquist filter, we hagén) = 50,ne2‘"% and thus. = 0. When the timing

is not fully corrected, the filteg(n) is no longer a one-tap filter and ISI occurs. Moreover
astp andg are unknown, we have to assume th@at) is unknown as well.
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We can rewritey(n) as
y(n) = a(n)é®™ ™"+ b(n) where a(n) = Zg(ﬁ)m

Our estimation problem is then equivalent to the estimatiba harmonicf disturbed by
additive white Gaussian noisgn) and multiplicative noise(n). A lot of work has been
done on the problem of harmonic retrieval in multiplicataved additive noise. We will
summarize the essential results.

Let us first assumB-PAM constellation. Leti;(m) = E[a(n+ m)a(n)] be the pseudo-
correlation at lagn. As PAM is employed, there exists at least one lag suchuk(a) is
non-zero. Lepm(n) = y(n+m)y(n). We have

Pm(n) = Ua(M)e* ™" 1 ey (n)

whereen(n) is a zero-mean process which can be viewed as noise. Butdlss i$ not
Gaussian, nor white, nor stationary. Nevertheless by wgrkiith pn(n), we now have

to estimate an harmonic {2 disturbed only by additive noise. The multiplicative reis
has been removed. We recall thag(h) is Gaussian white and stationary, the ML based on
pm(n) will lead to peak-picking the periodogram. Ever(h) does not satisfy thee standard
assumptions, it is still usual practice to estimate theUdesgy through peal-picking the
periodogram (even if it no longer has any link with the ML).efty we have

2

R 1 N-1 o
— - —2im(2f)Tsn
fn = arg rqax}m N n§: pm(n)e

Whenm= 0, we have
2

N 1 N-1 .
fN — argmax — y(n)Ze—Zl m(2f)Tsn

which is the well-known (and classical) square-power estim

To analyze the theoretical performance of these estimatwesstandard work on har-
monic retrieval (which assumes the additive noise is Gan¥giannot be applied [67,168,
69]. However the analysis has been done quite recently i N6tice that the above ap-
proach holds ifa(n) is real-valued without assuming any specific structuré{39, How-
ever, the previous estimator has imited impact since the Banstellation is not spectrally
efficient.

We now consideP-PSK andP-QAM constellations. LeM be the non-circularity order.
Recall thatM = P for PSK andM = 4 for QAM. Letq(n) = y(n)M. Then

a(m) = EYM ()™ 0" 1 €(n).

where€(n) is a zero-mean process that can be interpreted as additise. n@nce again
one can carry out periodogram peak-picking for retrieving hus, we have

2
fy = arg rr}ax{ %y(n)'\"e2i mMETsn) (21)
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This estimator has been introduced byi [72] for PSK. Sevetaihsions of these estimators
may be introduced. For example, instead of relying onlyyam™, one could also work
with y(n)y(n+my) - --y(n+mu_1). This has not been done in the literature. One could also
find the best non-linear transformati@nsuch that peak-picking the periodogram based on
F(y(n)) has some desired properties. One can find some results ghtimization of ¥
in [[73].

In Figs.[17:18, we plot the theoretical and empirical parfance of theM-th power
estimate for various QAM constellation, varying the SNR #mel number of samplel
respectively.

Theoretical and Empirical MSE versus Eb/N0 (N=128, QPSK/4QAM) Theoretical and Empirical MSE versus Eb/NO (N=128, 256QAM)
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Figure 17: Theoretical and Empirical MSE i-th power CFO estimate verség /Ny for
4-QAM (left) and 256QAM (right) withN = 128.
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Figure 18: Theoretical and Empirical MSE bf-th power CFO estimate versisfor 4-
QAM at Ep /Ny = 5dB (left) and 256QAM aE;,/Ng = 20dB (right).

For QAM, we observe a self-noise phenomenon since the pesfoce has an error
floor with respect to SNR. It is due to the fact tisdt# E[s?]. A recent approach can be
used to remove the self-noise (see [74]).
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The outliers effect still occurs as in any approach basedeafpicking periodogram.
The theoretical MSE taking into account the outliers hasls®lyzed in[[3[7] for modu-
lated signals and [34] for unmodulated signals.

Phase estimation issue:
For estimating the phase, we will assume that the timing ah@ Gave already been cor-
rectly compensated. Then we focus on the sampled (at theadyrate) output of the
matched filter. Therefore, we have

z(n) = $,&#™ 4+ b(n).

The approach for estimating the phase will be similar to thiathe estimation of CFO
by using the non-circularity property of the constellati&ince

Q) = y(m" = B[] +-e(n

wheree(n) is a zero-mean process aRs"] is assumed to be known with phage Then
it is easy to build a simple estimator as follows

R 1 1 N-1
=57 (N n;y(n)“”) - (22)

Obviously we have an ambiguity ofZM since the constellation is invariant to rotations of
angle 2ik/M, for any integek. We recall that this estimate is close to the ML at low SNR.
This approach was introduced for PSK by [[72] and for QAM by][50lotice that
other less powerful estimates of the phase have been imteddun the literature. A deep

theoretical analysis of the estimators can be found_in [75].

CRB

In the DA case, we have observed that the derivations of thB ®&s not a difficult task.
Morevoer, we were able to obtain rather nice closed-fornresgon that enable us to pro-
vide some interesting insights. In the NDA case, in contthst CRB derivations in closed-
form is much more difficult due to the presence of the unknoata dequence. We thus
work in the framework of the CRB with nuisance parametersvi@isly the nuisance pa-
rameters here are the data. Why is it difficult? To calculate@RB, we need at least to
have a closed-form expression for the likelihood. As notatier in the discussion of blind
ML estimators, a closed-form expression of the likelihosdery difficult to obtain.

The main idea is to define a variant of the CRB assuming a spgcdperty for the data
sequence (the nuisance parameters). In order to be usefse CRB variations should be
easier to derive and should provide some insights. Typictdese CRB variants will not
be as tight as the classical CRB, and hence they will be ogtiitni

A lot of work has been done on the derivation of the CRB for $yanization parame-
ters and/or channel estimators [76/[77[ 78, 79,80, 81, 884585/, 86]. We will summarize
the main principle in deriving CRB with nuisance parametekpplications to phase and
CFO estimation are provided with more details.

Let us start with the definition of several CRBs :
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e True-TCRB(also called Unconditional-UCRB or Stochastic-SCRB) : tlada se-
quence is viewed as a random process with a known distrib@@@roduct of sum of
Dirac distributions). LeB be the synchronization parameter vector| [82), 83, 84, 86].
The true Fisher Information Matrix is defined as

92 log(p(yle)}

R(6) = _E[ 96(30)T

with the true likelihood
P(Y; 8) = Es[p(y6,9)] = // p(Y;|6,9)p(s)ds
Then the true CRB is obtained as
TCRB(8) =R(6) !

The main drawback is that it is usually intractable to exprégs in closed-form.
Some expressions are givenlin[83] but it is not really inetbform due to the huge
number of sums and products.

¢ Conditional-CCRBalso called Deterministic-DCRB) : the data sequence israsd

to be of interest and are added to the parameters to be estimalotice that the
structure of the data sequence (i.e. data belong to a spéisifiete constellation) is
not taken into account. If we would like to take this struetinto account, we should
calculate the CRB when strong constraints on the parametess to be satisfied.
Such a problem is very hard [87,/88] and thus we are far away fvar objective
of simplifying the CRB derivations. The difficulty can be pally overcome by
consideringBayesianCRBs which use priori distributions on the data [24]. Let us
come back to the CCRB [76].

F.(0) = _E {62Iog(p(y|9,§N)]

00(00)T

where§y is obtained by maximizing ovex(by omitting all the constraints os) the
conditioned likelihoods— p(y|6,s). Then the conditioned CRB is obtained as

CCRB(O) =F(0) !

Usually the asymptotic version is used i.e., the number wiptes is assumed to be
large.

e Gaussian-GCRBThe true CRB is very difficult to compute due to the distribat
of s. To overcome this problem, one can assume $tisiGaussian distributed (even
if though this is not true). The GCRB is thus obtained by ushmysame definition
of the true CRB but by assuming a Gaussian data sequenceou8hwthis GCRB is
not generally a bound since it implicitly assumes that tlyghéi-order cumulants are
zero. For example, if the data is PSK and QAM, we have seeritibdtigher-order
moments are very important through thkth power estimate and thus the GCRB
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does not capture this information. Nevertheless the GCRBtiva advantages :
it is quite easy to derive in closed-form, and it is a bound lee MSE for all the
estimates based on second-order statistics (even if taesdgtience is not Gaussian)
[78,/79/85].

¢ Modified-MCRB : data are assumed to be known in order to calculate the Fisher
Information Matrix. In order to have a Fisher Information txta (FIM) independent
of data, the data-dependent FIM is averaged over the dataefline, we have

62Iog(p(y!973)”
90(30)7 '

Then the MCRBI[717,80,81] is
MCRB(0) = Fy(0)*

In terms of derivations, the main difference from the TCRBh&t the average over
the data is outside the log (for MCRB) and inside the log fer T'CRB. This quite
small difference leads to tractable MCRB and usually irtdale TCRB. Indeed, the
log will be removed by the exp ip(y) due to the Gaussian additive noise. In MCRB,
log will directly remove the exp although it is not the case T€RB, thus leading to
very hard calculations.

In the sequel, we provide some general results on the lintegdesm the various CRBs.
This relationship is independent of the estimation prolbem

e Atlow SNR, the TCRB is much more tractable by doing a Tayloreseexpansion of
e for smallx [82,84[86].

e At any SNR, the MCRB is a bound but sometimes too optimistit s not tight
enough.

e Atany SNR, we have TCRB MCRB and CCRB> MCRB [76].

e Athigh SNR, if the data sequence belongs to a discrete sétaweeTCRBMCRB —
1. So in our context where data belong to a finite consteliatibis property holds
and thus the MCRB is very useful as soon as the SNR is largegér|8d].

Let us now focus on our specific estimation problem: for tignéstimation (when phase
and CFO are perfectly corrected), there already existsyagaod tutorial [76]. Therefore
we focus on phase and CFO estimation (when timing is knowrtlausizero wlog). Then
we work with the (symbol-rate) sampled output of the matdiitst. Thus our signal model
is

y(n) = 5,2 0TNH®) 4 (),

Let us focus on a "toy" example to highlight some intereskhiagaviors. We first assume
thats, can be decomposed as follows

(R)

S = OrS 9

+iosh
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wheres,(qR) ands,q) are two unit-variance white BPSK sequences independeratobf ether;

0g = (1+u)/2 ando? = (1—u)/2 with u € [0, 1] such that the correlatioRi[|s,|?] = 1 and
E[s?] = u. Notice that ifu = 1, thens, becomes a standard BPSK. Andiif= 0, s, is not a
(second-order) non-circular process anymore. Even thboghphase and CFO have to be
estimated, we only provide the expressions for CRB assmtiatth the CFO estimate.

e TCRB derivations As the nuisance parameter is discrete, we know that at iR S
the TCRB is equivalent to the MCRB; the latter can be caledatery easily by
averaging the FIM given in Eq._(10). Therefore, we have

3Np
TCRB(f) high sSNR= TN
At low SNR [82], a derivation based on the Taylor series esganofx — €* leads
to
3NZ
TCRB( f)llow SNR = WTSzN?’

We observe that the non-circularity power (inducedupyas a great impact at low
SNR where the performance is proportional to SNKR.

e CCRB derivationsas we deal with the (symbol rate) sampled sigria), the CCRB
corresponds to an underdetermined estimation problem:aweN samples to esti-
mateN + 2 parameters, and no additional constraints. As a conseguére CCRB
is not finite. To overcome the problem, we need to work withdliersampled ver-
sion of the received signal. This is out of the scope of ourexgmple. For more
details, please refer to [89,/76].

e GCRB derivationsthe expressions can be found(inl[85] and are reported below

3(1—u?+ 4Ny +4N2)

ATPulT2NS
Once again the non-circularity powar)(has a great impact which verifies that the
non-circularity property is an important tool in blind esttion of frequency and
phase. We can even show that wheg 0 (and especially fon = 1, i.e.,, BPSK), the
square-power estimate MSE is identical to the GCRB. Thesefite square-power
estimator for non-circular white multiplicative noise fetbest second order estima-
tor.

GCRB(f) =

(for N large enough

If u=0, s, is not (second-order) non-circular anymore. The secondrathtistics
reduce to the correlation,(m) = rg(m)e?7™s™ 1 2Ny5(m). If s, is white, we do
not have information about and the GCRB will go to infinity. In contrast, &, is
colored, we can easily build an estimate as folloviig:= (£/fy(m) — Z(rs(m)))/m
wherery(m) is the empirical estimate af,(m) andrs(m) is, known. The frequency
is thus viewed as the phase of the correlation function. TEG&B s given by([79]

1

1 %(ezirrf) 2
NJo (ss(ez'"f)uNo) df

GCRB(f)\circular case— (for N large enough
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whereS(e?™) is the power spectrum af, andS,(e?™™) its derivative function. We
note that the GCRB decreases adNlwhich is the convergence speed associated
with the phase estimation issue. So clearly, to have fasterergence, we need to
use high-order statistics gf when it is second-order circular.

e MCRB derivations we just have to average the FIM and it is the term given in

Eq. (10).

3Np

S

The MCRB does not capture the influence of the non-circytaitits not tight enough
and is too optimistic except at high SNR.

Let us now assume tha} belongs is an iid sequence drawn from a PSK or QAM
constellation. The GCRB, MCRB are not modified at all althotige process is no longer
(second-order) non-circular. In contrast the TCRB (at I0WR$is completely different and
is given [82] by

TCRBHOW SNR M—th order noncirc = O(l/SNRM)

Once again the non-circularity tool is fundamental forrasting the CFO and the phase.
The the TCRB has similar behavior as the MSE of kivth power (if outliers effect is not
taken into account) at low SNR.

In Figs[19-20-211, we plot various CRBs and empirical MSEhefM-th power estimate
versus SNRN andu respectively for the process used in the toy example.

Various CRB and MSE of square—power estimate (u=1, N=100) Various CRB and MSE of square-power estimate (u=0.5, N=100)
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Figure 19: Various CRBs and MSE verdts/Ny for u = 1 (left) and foru = 0.5 (right).

Code-Aided synchronization

When the SNR is low, the NDA estimators may offer poor perfamge with realistic num-
ber of samples. Until now, we have not exploited the usuatsire of the data. Indeed, in
order to obtain the targeted BER in current systems, chamuui#hg is used. There are two
ways of using the channel structure to improve the synchatiain step
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Various CRB and MSE of square-power estimate (E/N =10d8, u=1)
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Figure 20: Various CRBs and MSE verdudor u = 1 (left) and foru= 0.5 (right).

Various CRB and MSE of square-power estimate (EbINU:10dB, N=200)
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Figure 21: Various CRBs and MSE verauéEg /Ny = 10dB and\N = 200).

e DD with hard/soft decision: the hard decision has alreadgnbiatroduced in this
tutorial when hard decision has be done after the channelditegr. Hard decision
can be replaced with soft decision. As soft decision is Wguseded for iterative
decoding, we can implement jointly the decoding of turbo BIAIC and the synchro-

nization which leads to the so-called turbo-synchronattoncept. More details
will be given below.

¢ LLR maximization : the performance of the system will be &eftand so more reli-
able) if the sync parameters are well chosen. Therefore ameéevelop sync estima-
tors based cost function dealing with reliable functio®€]]

Hree, we will focus on DD with soft decision. The use of softiden is really inter-
esting at low SNR when synchronization is very difficult. @iy at low SNR, the chan-
nel coding requires the use of Turbo-codes or LDPC, namélye@tive coding. There-
fore the next synchronization way is usually called "tugymchronization” developed by
Vandendorpe-Luise, and others. A nice tutorial treatmeghien in [28]. Here, we briefly
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provide the main points. For simplicithy of exposition, veetfis only on phase estimation
(assuming the other synchronization parameters are known)

Let ™ be the phase estimator at theh iteration. The EM algorithm has two basic
steps:

E-Step : Q(9.¢") = [ p(51y.¢™) log(p(5l9)dy
M-Step : ™Y =argmaxQ(gp, ")
[

where
e {is thecompleteset of data
e yis theincompleteset of data.

By considering the complete set of data as the receivedIsigiahe transmitted sym-
bols, i.e..y’= [y, sx], one can obtain that

N-1 _
Qp, o) =0 { > én,¢<n>z<n>e2'"<"} (23)
n=0
where .
S50 = Y SPp(sm=5Py0M). (24)
p=0

Thus the M-step leads to the following solution

N-1
R ( z §n’@<n)z(n)>
n=0

We thus remark that the phase estimator is very similar to DD estimator but now
the symbol is neither known, nor decided, but is replacetl thié mean of the a posteriori
distribution.

The previous EM approach can be considered with or withodihcp The performance
will just be different because the a posteriori mean will barenor less accurate compared
to the true transmitted symbol (see [48] for non-coded cas®)order to connect some
previous results, let us consider the non-coded BPSK casd¢h& have that

Son = P(s=1y,0")—p(s:=—1ly, o) (25)
— 1y oM
_ tanh }Iog P(s = 1y, ¢™) (26)
2 p(sh = —1ly, M)
O {z(n)e*2i " }
— tanh (27)
No

Eq. (28) corresponds to the LLR of the symbol, and Eq] (27)esponds to the standard
soft decision on the BPSK symbol. We remark that the EM ambrd@avhich is strongly
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connected to ML) leads "fortunately” to the same equatiotheftrue ML developed for
the non-coded BPSK in EqL_(IL6) even though the iteration doésnean the same thing.
In the EM approach, we iterate inside a data block, where&sin16) we iterate at each
ongoing sample. The non-coded BPSK based example showthéhnatexists a strong link
between EM and LLR. Nevertheless, this link cannot be exddrdirectly to coded system
(whatever the constellation). For more details, we referdader to[28].

In terms of complexity, we need to compute EQ.1(24). For (ddd&PSK, the BCIR
algorithm can be used. For other constellation, usually@pmations are done [91, 92].
Notice that we need the soft decision directed approachairityv SNR when the constel-
lation size is in practice small enough which reduces theprdational load for obtaining

Eq. (24).

Conclusion

In Table[1, we summarize the links between the various egtimghat we have discussed
and the assumptions under which they work. We also indichtttver each of the problems
(1,1',2,2') has a solution.

| Problem | Algorithms |
1 (DA phase and CFO estimation with null timing) ©

1’ (DA Timing estimation with null phase and CFO) ()

2 (NDA Phase and CFO estimation insensitive to timing)(20[21.22)

2’ (NDA Timing estimation insensitive to phase and CHQ(L9) if M = {0}

Table 1: Some algorithms associated with each problennsémie

3. Synchronization for non-flat fading channels

When the channel is frequency-selective, the orthogomagjuiency-division multiplexing
(OFDM) modulation scheme is the standard of choice. OFDMeas widely employed in
various commercial applications that include wirelesslatea networks (IEEE 802.11a/g/n
and HIPERLAN/2), wireless metropolitan area networks (WINI&/iMax, IEEE 802.16),
terrestrial digital audio broadcasting (DAB) and ternestligital video broadcasting (DVB)
systems in Europe, Multimedia Mobile Access Communic&iMMAC) in Japan. The
popularity of OFDM stems from its ability to transform a widknd frequency-selective
channel to a set of parallel flat-fading narrowband chanmnefsch substantially simpli-
fies the channel equalisation problem. Because of the tisggséncy granularity that it
offers, OFDM appears to be a natural solution when the aailapectrum is not con-
tiguous, for overlay systems, and to cope with issues suatmaswband jamming. In
the multiuser context, this granularity also accommodeaeisble quality-of-service (QoS)
requirements and bursty data. A noticeable example of thikiuser application is the
combination of OFDM with frequency-division multiple asse(FDMA) protocol, i.e.,
orthogonal frequency-division multiple access (OFDMA}i@h has become part of the
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Figure 22: The operational principle of an OFDM system

IEEE 802.16 standards for WMAN. Since subcarriers are alémt to distinct users in a
non-overlapping manner, one attractive feature of OFDM#sigapability to mitigate the
effects of multiple-access interference (MAI). Anothepagling feature of OFDMA is dy-
namic subcarrier assignment which enables it to optimdlbcate system resources such
as transmission power and spectrum.

Despite the above-mentioned appealing features, the symghtion task turns out to
be a critical issue for OFDM based systems. The synchroaizgiroblems of OFDM
based systems include timing and frequency synchronizaliming and frequency offsets
come from two sources. One source is the local oscillatguieacy mismatch between the
transmitter and the receiver, and the other is the Dopplerasidue to the relative motion
between the transmitter and the receiver. Both timing aagufency synchronization errors
introduce extra interference to OFDM systems and resulemopmance degradation. In
addition, timing synchronization may affect the performarmf channel estimation [93].
Therefore, effective synchronization is a key to improve pgerformance of an OFDM
based system.

3.1. Signal model and preliminaries

The operational principle of an OFDM system is that the awdd bandwidth is divided
into a large number of subchannels, over each of which thelegis channel can be consid-
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ered non-dispersive or flat fading. The original data straamateR is split intoN parallel
data streams, each at r&@éN. The symbol durationTs, for these parallel data streams is
therefore increased by a factor Nf i.e., T = NTg as shown in Figure 22.a. Conceptually,
each of the data streams modulates a carrier with a différeiency and the resulting sig-
nals are transmitted simultaneously. The carriers for sablchannels are made orthogonal
to one another, allowing them to be spaced very close togetite no overhead. This is
shown in Figuré 22.b for four carriers. Correspondinglg tbceiver consists & parallel
receiver paths. Due to the increased symbol duration, tieesymbol interference (I1SI)
over each channel is reduced [tonax/(NTs)] symbols. Thus, an advantage of OFDM is
that, for frequency-selective fading channels, the OFDMIsyls are less affected by chan-
nel fades than are single-carrier transmitted symbolss iBhilue to the increased symbol
duration in an OFDM system. While many symbols during a ckafade might be lost
in a single-carrier system, the symbols of an OFDM systemstiirbe correctly detected
since only a fraction of each symbol might be affected by #def On the other hand, if
the channel is time selective, i.e., the channel impulsgorese varies significantly within
the OFDM symbol period, then the channel matrix is no longaplitz and conventional
OFDM would fail.

Since multicarrier modulation is based on a block transioisscheme, measures have
to be taken to avoid or compensate for interblock interfeeefiBl), which contributes to
the overall ISI. OFDM systems can be categorised by the waytiandle IBI. In the most
popular systems, a guard time is inserted between congecdEDM symbols in the form
of a cyclic prefix (CP); i.e., the tail of the OFDM symbol is fixed as shown in Figufe 22.c.
The length of the CP is chosen to be larger than the expeclay sleread; after proper time
synchronization, the receiver discards the CP and thudthis eliminated. Time guarding
by zero padding the OFDM symbols has also been proposédi@3p4The issue here is
one of turning the transmitter on and off and increased veceomplexity vs. the increased
signal-to-noise ratio (SNR) and decreased symbol errer(BER). Comparisons between
cyclic-prefixing and zero-padding OFDM systems may be foumf®6]. In this chapter,
we focus on CP based OFDM systems only.

The choice of the OFDM parameters is a trade-off betweerwsyioften conflicting
requirements. The length of the CP is dictated by the delagaspof the channel. Intro-
duction of the CP entails a reduction in rate (or wasted badtth)y as well as an SNR loss;
to minimise these inefficiencies, the number of subcarridrshould be large. However,
a large number of subcarriers induces high implementatonpdexity, increased sensitiv-
ity to frequency offset and phase noise (since the subcamiet closer to each other Bis
increases), and increased peak-to-average power rafi®R@). N is dictated by concerns
regarding practical FFT sizes as well as the coherence tinteeacchannel. We will not
address the issue of practical choice of OFDM parameters her refer the reader tb [97]
and references therein. In this chapter, we address thkissue of timing and frequency
offsets estimation.

Subcarrier allocation strategies

Conventionally, all subcarriers are allocated to one $jgegser in single user OFDM sys-
tems. For multiuser OFDM or OFDMA systems, subcarrier @fimn strategies are needed.
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Figure 23: lllustration of subcarrier allocation schemes

Let N andK, denote the total number of subcarriers and maximum numbagctivie users,
respectively. The current number of usétsis limited toK,, i.e., M < K,. Letl; andJ;
indicate the number and indices of subcarriers allocatatidd-th user, respectively; we
have that

M
_lei <N (28)
JiNJ; z_o, i # ] (29)

As shown in Figuré 23, generally, there are three subcaaliecation schemes. For illus-
tration purposes, we s&t = 32, M = 3, K, = 4 andl; = 8 in Figure[28. Thesubband
carrier allocation schemgCAS) is shown in Figure 23(a). A group gfadjacent subcar-
riers is assigned to thieth user in the subband CAS so that the signal of each user can
be separated easily at the base station (BS) through a filtée. HHowever, subband CAS
prevents the possibility of optimally exploiting the chahuliversity. A deep fade might
hit a substantial number of subcarriers of a given user ¥ tire close together [98]. To
reserve some multipath diversitgterleaved CAShown in Figuré 23(b) can be adopted for
an uplink OFDMA system. The assigned subcarriers ofitfiieuser are equi-spaced with
a distanceK,, in interleaved CAS. More dynamic resource allocation arxiility can be
achieved by employingeneralised CASvhere no strict association between subcarriers
and users is required, as illustrated in Fidgure 23(c). Heneeneralised CAS will increase
the synchronization complexity significantly as shownrate

OFDM transmission

The discrete-time block diagram of a standard downlink OFDivnsmission system is
depicted in Figuré 24. According to the CAS employkdjata symbols for each user and
N —sM, I; zeros are assembled into one OFDM symbol as

X(k):{ X (k), ifked (30)

0, otherwise
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Figure 24: Discrete-time complex baseband representatidownlink OFDMA transmis-
sion

After the inverse DFT modulation, each OFDM block is precedg a CP whose duration
is usually longer than the delay spread of the propagatianml, so that IBI can be elimi-
nated at the receiver without affecting the orthogonalitshe subcarriers. The time-domain
samples after CP insertion can be expressed as

o ] X(N+n), —Ng<n<-1
x(n)_{ kI Feliiel (31)

wherex(n) = ﬁ Shg X (K)el2MN - The (N, = N + Ng) samples of each block are then
pulse shaped, upconverted to the carrier frequency, anshigted sequentially through the
channel.

In this chapter, we model the frequency-selective chansi@ #nite impulse response
(FIR) filter with channel impulse response (CIR}= [h(0),--- ,h(L — 1)]T, whereL is the
channel order and is determined by the maximum channel dgieead and data sampling
rate. In practice, the system is usually designed such.tkalNg < N. We assume that the
CIR is time invariant oveNt > 1 consecutive symbol blocks, but could vary from one set
of Nt blocks to the next.

At the receiver, the signal is downconverted to basebandsampled at the rate i,
samples per extended OFDM symbol. We will index these redesamples by—Ng,--- ,N —
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1]. Discarding the samples with indicas= —Ng, - -- , —1 is known as discarding the cyclic
prefix. In a perfectly synchronised system, the receivedatigan be written as

r(n) = Il_gh(l)i(n—l)+u(n) (32)

forn=0,--- ,N—1; hereu(n) is complex-valued additive white Gaussian noise (AWGN)
with varianceo?. Recall that with the insertion of CP, collected samgle®) }\—4 can be
expressed as

r==Hx+uv (33)

whereJis an(N x N) circulant matrix whose first column jg(0),h(1),--- ,h(L—1),0,---,0].
The circulant .matri>0{ can be written a§{ = F7HF, whereF is the DFT matrix with
[Flmn = ﬁe—lz’m"”/N andH = diag{H(0), H(1), --- ,H(N — 1)} with

H(K) = Lilh(l)e’jznk'/'\' . (34)
1=0

Hence, after performing DFT, the outdRican be expressed as
R=HX+Y (35)

whereX = [X(0),--- ,X(N—1)]T andY = [Y(0),---,Y(N — 1)]T is again AWGN with co-
variance matrixg?l. SinceH is a diagonal matrix, equation (35) indicates that the effec
of the frequency-selective channel on the OFDM signal ispletely captured by scalar
multiplications of the data symbols by the frequency respsrof the channel at the subcar-
rier frequencies. Further, demodulation at the receivesdwt colour the additive noise.
If none of the channel zeros coincide with an activated suieca maximum likelihood
detection of the symbols is straightforward. Zero-forcargl minimum mean square error
(MMSE) equalisers can also be applied on a per-carrier basis

As we mentioned previously, the signal modell(35) is onlyd/&dr an ideal timing and
frequency synchronised system. However, in practicaksyst Doppler shifts and instable
oscillators result in a carrier frequency offset (CH@petween the received carrier and the
local sinusoids used for signal demodulation. In additiorknown transmission timing and
propagation delay cause the DFT window to be placed in a wpasgion at the receiver.
This results in a timing error, denoted iy which must properly be compensated to avoid
severe performance degradation. Since fractional (ndsethto sampling period) timing
offsets can be absorbed into the channel, it is a commonigeaotmodel the timing offsets
as a multiple of the sampling period. Letting (a real number) and denote the CFO
normalised to the subcarrier spacing and the integer pahnieaiming offset normalised to
the sample period, respectively, i.ea= N foTs and 1 = [ty/Ts], in the presence of timing
and frequency offsets, then equatibnl(32) becomes

r(n) = e2mn/N Lih(l))?(n—l —1)+0(n) (36)
1=

For single timing and frequency offset, the timing and frerey offsets can be esti-
mated and corrected as shown in Figuré 24. However, it is ghtoask to estimate and
compensate multiple timing and frequency offsets. Nextyiliereview the effects of tim-
ing and frequency offsets on the performance of OFDM systems
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Figure 25: lllustration of the effect of multipath dispension CP

Effects of timing errors on system performance

Due to the multipath dispersion, the tail of each receivedlbkxtends over the fir&t— 1
samples of the successive OFDM block as shown in Figure 25in&yrting a CP which
consists of more thah — 1 samples, the interference from the previous OFDM block can
be readily removed by properly determining the startinghpof the OFDM symbol. How-
ever, the inaccuracy of timing offset estimation will caysaformance degradation. To
qguantify the effect of timing errors on system performange,assume perfect frequency
synchronization here, i.ew = 0.

Since the length of CP is (assumed to be) always larger thram#ximum channel
delay spread, and using the time-shift property of the feouransform, we find that the
timing errorAt = T — 1 within interval [—-Ng+L — 1, 0] only causes a linear phase rotation
across the subcarriers as

R(k) = elZ*T/NH (k)X (k) 4 Y(K) (37)

The effect of this timing error can be readily compensatedhgychannel equaliser. On
the other hand, if the timing error is outside interfaNgy +L — 1, 0], samples from ad-

jacent OFDM blocks not only cause IBI, but also result in &logorthogonality among

subcarriers which generates inter-carrier interferei€h.(A comprehensive mathematical
analysis of the effects of timing errors is discussed in @3] [99]. For the second timing
error case, the received signal after DFT can be written as

R(K) = T2 (2N H (10X () + (k) + YIK) (38)
where
_ aj2nkd/N _ aj2mk/N
ato={ g T A (39)
AT, if AT>0
- { max{L —1— (Ng+AT1),0}, if AT<O0 (40)

andy(k) is the combination of IBI and ICI which is defined as[[99]. Beling the same
lines as derived irl [99], the signal-to-interference (SHRhe presence of timing errors can
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Figure 26: SIR versus timing errért

be expressed as

2
SIR= (N—d)”_ (41)
d(2N —d) —275"B(d)
wherecrzzLilo2 and
h = 2, %0
d-1 L-1
tha)v AT >0
BA)=1 4 Thgrarim 1 (42)

S Y Oy D10

m=0 1=0

Figure 26 shows the SIR versus timing erarfor N = 64. Both the exponential power
delay profile, i.e., g\h(l)\z}:‘;ol =Cexp(—0.2l) whereC is a scalar factor that ensures that
the total energy of the channel taps is normalised to unitg, thae uniform power delay
profile, i.e., E{|h(|)|2}:‘;o1 = 1/L profile, have been tested. The length of the CP and CIR
are setto 16 and 8, respectively, iNg,= 16 andL = 8. As discussed previously, the timing
error within interval[—Ng + L — 1, 0], which is[—9, 0] for our simulation setup, will not
cause ICI and IBI. The timing error outside the interj/ab, O] results in a significant SIR
loss, especially for positive timing errors. To keep the 8Hgradation within a tolerable
level, accurate timing offset estimation is necessary.
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Effects of carrier frequency offsets on system performance

As we mentioned in a previous section, CFO is caused by Dophlés and mismatched
oscillators. In general, the CFO can be several times thehsuimel spacing. Thus, the
CFO is usually divided into an integer part and a fractiorait foy normalising to the
subcarrier spacing. Assuming perfect timing synchroronaand using the frequency-shift
property of the Fourier transform, the received signal urasheinteger valued CF@ can
be expressed as

R(K) =H((K— @) modn)X((K—®) modn) + Y(K) (43)

It can be seen from the above equation that the integer v&&€icauses a circular shift of
the transmitted symbols, but does not cause ICI; i.e., ttiegonality of the subcarriers is
maintained. The fractional part, however, causes ICI. Adsg that CFOw is a fractional
value, the received signal can be written as

R(k) = sz H (X (n) f(@+n—Kk)+ Y(k) (44)

Nn=

where in(rm)
__sIn(rn jm(N—1)/N
= N sin(rm/N) J (43)

Equation [(44) can be re-written as

R(k) = H (k)X (k) f (w) + y(k) + Y(K) (46)

N-1

wherey(k) = S H(n)X(n)f(w+ n—Kk) is the zero-mean ICI term with powa&(a)).
n=0+£k

After some manipulations as shown in [100], we have

op(w) = G (1— | f(w)?)

Thus, the SIR can be expressed as

|f(w)[?
1-[f(w)?
The SIR versus CF@ for N = 64 is shown in Figure 27. Notice that the SIR decreases
rapidly as the CFO increased. Again, to keep the SIR dedoed&t a tolerable level,

effective CFO estimation and compensation methods aréregljiMore precise techniques
for computing the SNR loss due to CFO can be found in[[101].

SIR= (47)

3.2. Downlink OFDMA

As shown in Figuré 28, the BS broadcasts training sequentles/éd by data blocks to the
potential users and each user operates independently inlid@WDFDMA transmission.
Thus, the synchronization problem in downlink OFDMA is damito that of single-user
OFDM systems. Generally, synchronization can be dividéol ancoarse acquisition phase
and a fine tracking phase. In this section, we provide a buiefey of existing synchroniza-
tion techniques in the downlink OFDMA scenario.
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Figure 29: Training symbols of S&C algorithm

Coarse synchronization methods

The coarse synchronization task typically has two substask., finding the start of an
OFDM frame over an approximate range of sample values agdiadj the local oscillator
of the receiver to the received carrier frequency. Coam@g acquisition is usually the
first task performed in the synchronization procedure. hcfice, the CFO is assumed to
be completely unknown at this stage. Hence, the orthoggnafithe subcarriers may not
be retained to provide a useful post-FFT signal. Consefyyatarse timing acquisition
is obtained in the time domain. In coarse frequency syndbation, the usual approach
is to decompose the CFO into a fractional part plus an intpgetr Pre-FFT or post-FFT
methods may be adopted to estimate the CFO.

Depending on the system requirements, coarse timing agddrey acquisition can
be carried out by exploiting either the repeated cyclic prigfD2,103] 104] or specially
designed training sequences (preambles)|[105,106, 18F., Exploiting the correlation
of the CP, the CP based algorithms can work blindly withoet dkierhead of an explicit
training sequence. However, as standardised in many cotrahsystems, reliable coarse
acquisition methods for frequency-selective channeldased on a training sequence with
a repetitive structure. The motivation behind this ideahist the repetitive property is
preserved after propagation through a multipath chanxek for a phase rotation due
to the CFO. In this chapter, we consider training-sequerased synchronization in the
following.

Second-order statistics based methods

There are basically two methods for training-sequencedasarse synchronization,
i.e., first-order statistics based and second-order wtatisased methods. The latter class
was first proposed by Moose in [109] and further studied byn8dhand Cox (S&C) in
[105], where two identical slots with length &f/2 were used in the first training symbol
as shown in Figure 29. The CFO normalised to the subcarrasisg is decomposed into
two parts as

w=V+2¢ (48)

wherev € (—1,1] ande is an integer. To generate the repetitive-structure of teetfaining
symbol, we can simply transmit a pseudonoise (PN) sequantteeven subcarriers, while
zeros are used on the odd subcarriers. For the second graymnbol, a PN sequence PN1
is transmitted on the odd subcarriers which may be emplayetiannel estimation; and a
differentially-modulated PN sequence PN2 deployed ontke subcarriers is used for the
integer CFO estimation. Lt (n)}\" denote the received signals, we have

r(n) =z(n)+u(n) (49)
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where
_ L1
2(n) = &N § h(x(n—7—1) (50)
=
1 NEH — jarkn/N
x(n) = N kZO X(2k)e (51)

wherert, an integer, is the normalised nonfractional part of thértinoffset,w is the CFO
normalised to the subcarrier spacingn) and X (k) are respectively the transmitted time
domain and frequency domain training sequenh@s,is thelth tap of the CIR and (n) is

an AWGN with variances?. It can be easily verified that the first and second halveseof th
received signal can be expressed as

r(n) =z(n)+u(n), Tgngr+g—l (52)
r(n+g):ej”"z(n)+u(n+g), Tgngr+§—l (53)

Exploiting the correlation between first and second haltles, S&C timing estimator can
be expressed as

T = argmax\(7) (54)
f
where
T+N/2-1 2
> r(r(n+ %)
. n=t
N(T) = - 2
T+N/2-1 N
( > Ir(n+ ?)’2>
n=t
Moreover, assuming perfect timing synchronization, tharege of fractional part CF@
can be obtained as
1 T+N/2-1 N
vVv=_a * — 55
v== rg{ > r<n>r<n+2>} (55)

In practice, the timing offset in eq. [55) can be replaced by its estimated valugven
in eq. [54). If the normalised CFO can be guaranteed to bethessl, the second train-
ing symbol would not be needed. Otherwise, the second miisymbol and a post-FFT
method can be adopted to estimate the integer part of the ERQ,we describe next.

After compensating the fractional offset by multiplyingetkwo training symbols by
e 12VN the FFT output of two training symbols, denotedRagk) and Ry(k), can be
expressed as

Ry (k) = Z1(K) +Wa(k) (56)
Ro(K) = Z2(K) +Wa(k) (57)
fork=0,--- ,N—1and

Z1(K) = H((K— 2&)moan)X1((K— 28)moav) (58)
Zo(K) = ePH ((k— 28)moanv)X2((K— 28)moav) (59)
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where @ = 4mte(N + Ng)/N. Let d(k) = ijgg represent the differentially-modulated PN

sequence on the even subcarriers of the second trainingosywd have
Zo(k) = e/2d((k— 2&)moan ) Z1(K) (60)
for evenk. Thus, the estimator of the integer part of the CE(;an be expressed as

£ = argmaXP(€) (61)

£

where
2

2 Ri(k)d" (k= 28)moav)Re(K)

W(E) = i 62)
2<ZI%WW>

k even

and integek varies over the range of possible frequency offsets. Timerfréquency offset
estimate would bé = U + 2¢.

The S&C timing estimatof(34) is expected to capture a peadwhe correlation win-
dow is perfectly aligned with the received training seq@endnfortunately, as shown in
Figure[30, the timing metric of the S&C estimator exhibitsptateau” which reduces the
acquisition accuracy significantly. To obtain a steepeirtinmetric trajectory, many train-
ing patterns were proposed in [106, 107]. [In[107], a trajnad the form [B,B,—B,B]
in time domain was proposed by Shi and Serpedin (S&S). Aimanthe receivedN sam-
plesr(T)---r(f+N—1)]" into four parts aqri(T) = [r(IN/4+T)---r((i+1)N/4+ T —
)]7 i3:0, the S&S timing estimator can be expressed as

T = arg max\(7) (63)
where X R
~ iz |AI(T
ND = 25 IR
and
Po(T) = 1§ (T)ra(T) — ri (F)ra(F) — 5 (T)ra()
Py(T) =1} (T)ra(f) —rg (F)ra(T)
P(T) =rg (F)ra()

Since the training symbol is divided into four parts, we fihdttthe CFO causes a phase
shift of mw/2 in each part for a flat fading channel. Thus, the CFO estimaft&&S
algorithm for practical systems can be expressed as

o= 2arg{R(F)) (64

Compared to the S&C CFO estimatér (55), we can see that thésaoon range of[(64)
increased to—2,2).
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Figure 30: Timing metrics for S&C and S&S estimatoté,= 128, Ny = 16, L = 16,
SNR=20dB

Both timing metrics of the S&C and S&S timing estimatofgT), are illustrated in
Figure[30, wherd\t = T — 1. The results are obtained under the exponential power delay
profile channel introduced previously and the SNR is defiredZdg2. We can see that
the "plateau” present in the S&C estimator is significandlgiuced in the S&S estimator.
As pointed out in[[106], a steeper timing metric trajectoay de obtained by increasing the
number of repetitive slots.

Although the correlation method adopted in S&C and S&S estms has low com-
putational complexity, those estimators will exhibit a fl@ffect since they are still based
on second-order statistics of the received signal. As shiovfflQd], much more accurate
timing and frequency estimation can be achieved by usinditsieorder statistics, at the
expense of a slight increase in implementation complexity.

First-order statistics based methods

Using the signal model (49), the mean of the received signgivien by

_ L1
E{r(n} =N § h()x(n—1—1),;n=1—Ng,---, T+N+L—-1 (65)
=

Letrz = [r(T),---,r(T +N— 1)]" and E{rz} £ u = (w)Xh, wherel (w) = diag{1, ---,
el2m(N-1)/N1 X is a circulant matrix whose first columnxs
The variance of the received signal is

o2, n=0,---,T+N-1

> 02, n>7t+N-1 (66)

var{r(n)} = {
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Figure 31: Real part of one realisation of the received $igaavell as the corresponding
instantaneous mean and variance

Thus, the variance of the received signal is minimum durirgrioise-only period, which
precedes reception of the frame, and during the receptitimedfaining block. During data
reception, it is equal t@? + ||h||?, where we assume that data symbols have unit power,
without loss of generality. Figute B1 illustrates theseentation. Ifu were known,t could

be estimated by minimising the Euclidean distance betweemd i over T. Since this is

not the case and in order to avoid the noise-only period,][pt@posed two estimators
which are obtained by minimising the following modified vierss of the nonlinear least-
squares (NLLS) criterion:

. L2
Ci(%,6,) = M (67)
(]|
and .
Co(T,00,h) = Irz — ]| > — |Irz))? (68)

overf, &andh, wherefi is obtained as i after replacindr andcw by h andé®, respectively.

Both the normalisation factor i (67) and the second ternheRHS of [6B) guarantee
the uniqueness of the solution, i.e., avoid the noise-oiy, (1 = 0) solution. Indeed, in
the noise-only period, the minima of{E; } and E{C,}, which are obtained with =0, are
(approximately) one and zero, respectively. During dat@péon, the minima of EC; }
and E{C,} are again obtained with= 0 and are also approximately equal to one and zero,
respectively. During the reception of the training seqeetice minima of the EC; } and
E{C,} are (approximately) A(1+ SNR) and —||h||?, respectively, where SNR is defined
as SNR= ||r¢||?/(Ng?). These minima are smaller than those obtained in the naise-o
and data transmission periods. Hence, when the procesgeal siontains the received
preamble, the minima of ££,} and E{C;} are achieved ifand only f =t andi = .
Figure[31 illustrates some of these results.

Since the statistical expectation ©f andC, are unknown, only estimates of the un-
known parameters can be obtained by minimistlagandC, themselves. The obtained es-
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timators were referred to as modified nonlinear least sgussttmators (MNLLS) in [110],
since they combine the NLLS estimation method and detecfidre above optimisation
problems can be simplified by noting th&t andC, are quadratic ith. Thus, closed-form
expressions foh; andh, can be obtained as

hi =X @)rs ,i=1,2. (69)
Substituting the above estimates foin C; andC,, the equivalent criterion is to maximise
Cl(f,®) = gi(Hrir(@nNxr™(@rs, i = 1,2 (70)

whereg; (T) = ||rz|| =2 andgz(T) = 1, andx = X (X" X)~1XH, which is a fixed matrix and
can thus be precomputed and stored at the receiver.

The above optimisation problems are two-dimensional. &lgh they are discrete in
one dimension, they are still computationally challendingolve. To reduce the compu-
tational complexity, timing acquisition usir@f’ is performed by ignoring the CFO-related
terms. It was shown that a coarse but closed-form estimatheo€FO for each timing
offset candidate is good enough to (nearly) obtaimnd 7,. To obtain the CFO estimate,
the repetitive structure of the training block and the seeorder statistic-based method
in [L05] were adopted to estimate the fractional partpfi.e., v. The estimate of the
integer part ofw, £ and timing offsetf; are given by

{1i,&} = argmaxg (F)rfr (8 + U)Nx M (8 + V)r: (71)
7E

where candidate values for
tildeepsilonare in(—Q+1,Q— 1), andV is given by [105]

1 F+N/2-1
\7:7—Targ{ Z r*(n)r(n+N/2)} (72)

Although the optimisation problenh (I71) is two-dimensiqrials discrete and the possible
values ofe dictated byQ may be small in practice. It is worth pointing out that theimpt
sation problems can be reduced to one-dimensional prolifahrespreamble is made @
repetitive slots, since in this case, a closed-form eséméto can be obtained (see [111]
and [112]). However, the performance of timing acquisitiothis case becomes similar to
that of existing methods, unleds>> 2Q(L + 1).

Oncer ande are estimated, estimates@fare obtained ad) = U + &, whereVv is given
by (72) withT = 7. A more accurate estimate can be obtained by maxim@&fitg, o) over
@ after initialising with@. Since this is results in the optimisation of a continuoak+ed
variable,w, it may not be appropriate in practice, especially for thevlonk. Moreover,
simulations have show that the performance improvemerstisignificant.

Finally, as a product of the above synchronization methstiinates of the channel can
be obtained from(89) after replacingandw by the above estimates.

To further reduce the complexity of the computation of thetdanctionsC/’, the pro-
jection matrixINy can be replaced b§/l/N)XXH obtained by approximatinX™ X by NI,
sinceN/2 > L +1, and using the law of large numbers. Using tl@§, is obtained as
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the squared.,-norm of a vector an€ is its normalised version, and the corresponding
estimates of; andg; are given by

{fi,&} = argmax N~1g(%)|X"rH (0 +8)rg)? (73)
1,£¢(-Q/2,Q/2)

Note that the computation &'y requires only changing the sign of some of the elements
of the vectory and additions. Also, note that the computation of the sifigliversion of

CJ is simpler than that of/ since in the former|rz||2 needs to be computed. However,
the normalisation €7 is desirable for reducing the complexity of the search piaoe for
real-time implementation.

Fine synchronization methods

In certain applications, due to unstable oscillators ohhitpbility environment, the coarse
estimates may be inadequate for the entire frame. Thuspdirand frequency tracking
are required to compensate the short-term variations peatiby oscillator drifts and/or
time-varying Doppler shifts.

Fine timing synchronization can be achieved through catii either in the time do-
main [113,114] or in the frequency domalin [115,116/117]1A8iming tracking scheme
based on time-domain PN-sequence correlation and a wdithte correlation scheme ex-
ploiting the redundancy in both the cyclic prefix and avdégtilot symbols were shown to
provide better performance than repetitive-structured®MFsymbols in [113] and [114],
respectively. Frequency-domain based schemes modehtirgterror as part of the CIR
vector. This is motivated by the fact that the estimated GliRsscyclicly with respect to
the FFT-window. Since the frequency-domain based schearesesolve channel multi-
paths effectively, they generally provide better perfanoceathan the time-domain schemes
in multipath fading channels. There are several approatthegdate the coarse timing es-
timate in frequency-domain based tracking algorithms. @we¢hod is to locate the peak
position of the estimated Clﬁ[llﬁ]. Many modified peak-finding versions were studied
in [106], to take into account both the effects of noise, ab agethe fact the first peak may
not be the largest peak in the CIR. Another method which misgsthe energy window of
the channel estimation has been investigated_ in/[115, E8jloiting the timing informa-
tion embedded in pilot-aided channel estimation, timing lva estimated without a specific
training sequence, as was shown'in [119] and [120].

Similar to fine timing synchronization, frequency trackicgn be performed either in
the time domain([121, 102] or in the frequency domain [123]12n [121,102], the cor-
relation between the CP and the lagtsamples of each block is exploited to estimate the
residual frequency offset. The residual CFO was trackealgusie temporal correlation in
the data-aided post-FFT stage and the frequency domaimehastimate was adopted to
deduce the weights for a weighted-least-squares CFO dstiing122] and [123], respec-
tively. Several blind CFO estimation methods, elqg., [125/126, 127, 128, 129,130,131,
132/133,134], also can be employed during the trackingstdmut increasing synchro-
nization overhead.
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Simulation results for downlink OFDMA systems

We consider an downlink OFDMA system with a total Nf= 128 subcarriers. In the
simulation, we assume that the CIR lengttLis- 16, and a cyclic prefix of lengthly =
16. The channel tapls(I) are uncorrelated zero-mean Gaussian random variables with

exponential power delay profile{&h(l)|2}:‘;0l = Cexp(—0.2l), whereC is a scalar factor
that ensures that the total energy of the channel taps isaligd to unity. Correspondingly,
the SNR of received signal is equal &f/0g?2, wherea? is the power allocated to each
subcarrier. Since only the fractional part of the CFO candbienated by the S&S algorithm
in [107], we generateo randomly from the interval-0.5, 0.5] and generate a new random
channel for each Monte Carlo run. Moreover, as the integdargighe CFO is zero, the
second training symbol shown in Figurel 29 is unnecessaryansetQ = 1 for the first-
order statistics based methods.

The results of timing and frequency estimates are calalilaseng 20000 Monte Carlo
runs. The figures show that the first-order statistics bassttiods significantly outperform
the second-order statistics based methods in terms ofdgiamd CFO estimation. For tim-
ing estimation, MNLLS1 outperforms MNLLS2. The simplified\MLS algorithms yield
the same timing estimation performance. In Fiqure 33, thbatuility of exact timing refers
to the probability that the associated algorithm identifiagithout error. For comparison,
Figure[34, we also show the Cramér-Rao bound (CRB) for the whgre timing is perfect.
Using the method ir [135], the CRB is found to be

2
20}
N720?2

var{@w} > CRB(®) = (74)
Notice that the performance of first-order statistics basethods is close to CRB. The sim-
plified MNLLS methods have the same CFO estimation perfoomanerits as the MNLLS
methods. From the simulation results, we can see that the &@@d&ithm achieves more
accurate timing estimation performance than the S&C algoriat the price of a decrease
in the CFO estimation performance. As we discussed prelyiotie gains of first-order
statistics based methods come along with the increasingleaity. For real-time imple-
mentation, it is important to set a threshold on the syndhetion criterion so that com-
plexit can be reduced by pruning the set of timing candidaietails of implementation
issues of first-order statistics based methods can be fou[dd 0].

4. Multiuser synchronization

4.1. Uplink signal model and synchronization policy

We consider an uplink OFDMA system wheveactive users simultaneously communicate
with the BS as shown in Figuie 35. The users’ data streamssamriled into OFDM
symbols according to the CAS employed.

Letr(n) denote the signal received at the BS; we have that

M

r(n) = le(i)(n) +u(n) (75)
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Figure 36: Timing and frequency offsets estimation for aufthCAS uplink OFDMA

wherez; (n) is the signal transmitted from thith user and can be expressed as

Zj)(n) = /2N ILE:hi(I)m(n—l ~ 1) (76)
and
4(m) = = 3 X(ger ko )
keJ;

It can be seen from ed._(I75) that the received signal at B®isdmbination of the sig-
nal from all active users. Thus, the uplink synchronizai®a multi-parameter estimation
procedure. To guarantee that the residual synchronizatimms of the uplink transmission
are much smaller than that of a completely asynchronousmsydiefore uplink transmis-
sion, an initial synchronization is performed during dowklprocedure. The timing offsets
among users in the uplink are mainly due to different propagalistances between users
and BS. The frequency offsets between users and BS are chyshé Doppler spread
and/or the instability of local oscillators. Generallyteafthe synchronization performed
via downlink transmission, the CFO can be guaranteed to besimall range. In this chap-
ter, we assume the frequency offset is smaller than halfuheasrier spacing.

To combat the residual synchronization errors simply anectly, a method based on
downlink control channel is suggested in [1136, 98], whergedynchronization parameters
are estimated at the BS and adjustment is performed at thmesigebased on the infor-
mation derived from feedback channel. A similar idea is &eldpn IEEE 802.16€ [137]
standard to accomplish the synchronization task. By usitegfierence cancellation or mul-
tiuser detection algorithms, e.g., [138, 1139,/1140] 141] mfdrences therein, the effects or
multiple frequency offsets also can be mitigated at the BSeaprice of increased receiver
complexity. In this chapter, we focus only on the estimatiénthe timing and frequency
offsets at the BS. Dependent on the CAS employed, the symidateon task in uplink
OFDMA can be categorised into three cases as explained next.
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4.2. Synchronisation with subband CAS

The ML estimation of timing and frequency offsets for subh&@AS uplink OFDMA was
first studied in[[135], where the users’ signals are sepadrayea bank of band-pass filters
at BS as shown in Figuie B6. After signal separation, thentinaind frequency offsets can
be estimated independently for each active user, whicimgasito the downlink OFDMA
case. Since perfect signal separation is impractical, ttegefdith subband signai;(n)
can be written as

riy(n) = z;5)(n) + ®;)(n) + vy (n) (78)
where thed;,(n) and v (n) denote the inter-carrier interference due to imperfecasep
ration and noise corresponding itth subband signal. Possible ways of reducing the in-
terference tern®; (n) include the adoption of higher order band-pass filters aeiasing
the number of guard carriers used between adjacent freguimmas. The timing and fre-
guency offsets estimators in_[136] exploit the redundarfcg®; the estimates for thi¢h
user can be expressed as:

T = argmax{\i(%i) — piCi(T)} (79)
& = 5-arg{A (1)) (80)
where
fi—1
ANi(T)= 3 i (n+N) (81)
N=Ti—Ngy
-
G()=3 3 (oMl NP) 2)

andp; = 02/(a2 + g2). The estimates in(79) and (80) are one-shot estimatoreisehse
that the estimates are based on the observation of a sinddGiymbol. More accurate
estimates can be obtained by averaging the cost function@geccessive OFDM blocks
as

hatr, = arg~max{ Qzl(/\i (Ti +d(N+Ng)) — piCi(Ti +aq(N+ Ng)))} (83)
Tj g=0
.1 et
W= ﬁarg{qZOAi(Ti+q(N+Ng))} (84)

An alternative blind scheme to obtain estimates of timind &equency offsets for
subband CAS can be found in [142]. As pointed outin [143],dhleband CAS offers the
possibility of separating signals from different usersotigh a simple filter bank even in
a completely asynchronous scenario with arbitrarily laigeng errors. Synchronisation
algorithms for the downlink OFDMA can be easily extended ublsand-based OFDMA
systems. On the other hand, grouping subcarriers togethkesrsystems vulnerable to
frequency-selective fading. The adoption of an interlda@AS can provide users with
some form of frequency diversity at the expense of slightlsréasing the complexity of
synchronization.
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4.3. Synchronisation with interleaved CAS

Interleaved subcarrier allocation minimises the distartmetween subcarriers assigned to
different users; hence, in the presence of frequency sgndtation errors, signals from
different users will overlap in the time domain and integferith each other in the frequency
domain due to loss of orthogonality [144]. Thus, it is a aladling task to separate the
multiple user signals compared to the subband CAS. Howadegnced signal-processing
algorithms, e.g., subspace decomposition based methadfyecemployed to reduce the
synchronization complexity of interleaved systems.

Subspace-based CFO estimation algorithms are studied4j &hd later in[[145, 146]
for the uplink OFDMA systems; the ke is to exploit the perosiructure of the interleaved
transmission. Generalised subspace-based CFO estinadgmhave been studied hy [125,
130/128,,112] for single user OFDM systems. et {n; + pKy}5—; denote the indices
set of the subcarriers allocateditb user, wherey; is an integer in the intervdD, K, — 1]
andn; # nj if i # j, Ky is the maximum number of users aRd= N/K,. We assume that
the total number of subcarrietd is an integer multiple oK, in this chapter. The signal
from ith user, given in equatiof_(I76), can be re-written as

P-1
2 (n) = a2 ATMIVN S Hi (4 pK) X (i + pKy) @12 R)/P (85)
p=0

forn=0,--- ,N—1anda = e 12m1/N |t can be found readily that

Zi) (n+ pP) = el*8z; (n) (86)
forn=0,--- ,P—1,u=0,--- ,K,—1and6 = 2r(aw + n;)/Ky. From eq.[(7b), we get

M .
r(in4+ puP) =Y e*z, (n)+u(n+ uP
(0 P) = 3 2, (1) + u(n+ P -
Nn=0,-,P-1 u=0,--,Ky—1
We arrange thér(n)})-J samples into &, x P matrix
r(0) oo r(P=1)
r(P e r(2P-1
R= (.) : ( . ) (88)
r(Kp—1)P) --- r(N-1) KyxP
Letting R, denote thepth column of matrixR, we have that
Rp =Gz, +Up, p=0,--- ,P-1 (89)

wherezy, = [z1)(p) Z2)(p) -+ Z(M)(p)]T andG is a (K, x M) matrix given by
1 1 1
ej 61 ej 62 e ej B

ej(Ku—l)el ej(Ku—l)ez ej(Ku—l)eM
KyxM
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Once we express the received samples as inleq. (87), CFQasstincan be carried
out using a signal subspace decomposition approach. Thendiom of the null subspace
is dictated by the number of null subcarriers, which is edqoalK, — M)P. The main
idea behind the low-complexity CFO estimation algorithmslied in [144/, 145, 146] is to
estimate thé’s, which are distinct from each other|th | < 0.5. Indeed, thé's in eq. [8T)
cause phase shifts to identiddsample long segments. Hence, the subspace approach can
in a way be seen as an extension of the repetitive-slot CH@a#bn approach (see e.g.,
[111], [10€]) to the case of multiple CFO estimation. Emhaythe estimation of signal
parameters via rotational invariance technique (ESPRgDrghm, the multiple CFOs can
be estimated using the following steps:

Step 1) Arrange the received sigr{aln)}1=4 into matrixR.
Step 2) The covariance matfx = E {R R} } of R, is estimated by

1
Q = ~RR"
P

Step 3) Compute singular value decomposition (SVD§20f

R H
Q = [Us Uy [ %S zoz] [ BjH } (90)

whereUs is aKy x M matrix composed oM eigenvectors corresponding to thke
largest eigenvalue¥; > A, > --- > Ay andU; is aK, x (K, — M) matrix composed
of Ky — M eigenvectors corresponding to the rest eigenvalygs > --- > Ag,.

Step 4) LetUg denote the firstK, — 1) rows of Us andUs, denote the lastK, — 1) rows
of Us. The8'’s are estimated as

8 =2(B) (91)

where/(-) denotes the angle of the complex number &fd",* are the eigen-
values of L
== (UjUq) "USUg

Step 5) After estimating th@'’s, the estimate of CF@y can be computed as

A

Ku6i
21T

0?4: _ni>i:l7"'7M (92)

Another subspace-based method, the spectral multiplalsitpssification (MUSIC) algo-
rithm can also be applied to estimate the multiple CFOs blaoapg Step 4 above by
Step 4) Find thév largest peaks of following metric:

1
EHUNEE

A(8) = (93)

wherea(8) = [1,el0, ... el(K—D8)T
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Figure 37: CP for quasi-synchronous uplink OFDMA uplink

As compared in[[146], the ESPRIT based estimation algoriutperforms the Spec-
tral MUSIC based estimation algorithm at low SNR region. btawer, ESPRIT algorithm
avoids the search operation required by Spectral MUSICs Time ESPRIT based estima-
tion algorithm is preferred in practice. As shownlin [146 estimation error of CFOs can
be reduced by using more than one OFDM block.

To apply the subspace-based CFO estimation algorithm, we toafind the starting
point of the receive signal first. As argued in [144], the CKDreation algorithm is ap-
plicable to a quasi-synchronous system. The starting peidétermined by the downlink
procedure and the effect of timing offsets due to propagati&lay can be removed by intro-
ducing a long CP. As shown in Figure|37, the CP is composed@pamtsNg = Ncy+ Nai,
whereNg is the portion of the CP for accommodating channel delayagjsewhile the ad-
ditional Ng; samples are intended for accommodating different timifgets among users.
To completely remove the inter-block interference, a nemgscondition is thalN, > L
andNg > Am—1, whereL is the maximum channel delay spread &g 1 is the maximum
timing offset among users. In this case, the extra overhigad\y;, will be increased by an
increasingAv_1. To reduce the overhead, accurate knowledge of the timiisgtodf each
user is necessary to align all user signals at BS. As showhdii][and [143], a possible
way to estimate the multiple timing offsets is to estimatettming offsets together with the
channel responses. Similar to fine timing estimation in dmkrOFDMA, the maximum
energy criterion for timing offset estimation can be expeskas

f+l-1
x{ > \hf(l)!z} (94)

Tj =argma
fi I=T;

wherefi(1) is thelth entry off{ andh] = [0; h; O_,, r_L]T is the extended channel vector
with lengthLey. We can setex = Ng for simplicity.

Alternative timing estimation algorithms can be found id8] and [149]. However, the
introduced iterative approaches make the algorithms muaie momplicated compared to
the maximum energy criterion discussed above.

4.4. Synchronisation with generalised CAS

As mentioned before, since there is no rigid constraint betwsubcarriers and users in
generalised CAS, this subcarrier allocation scheme is rflexéle than the subband or
interleaved CAS. The BS can assign the best subcarrierdwahnéccurrently available to a
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user according to the users’ channel condition. Thus, thergéised CAS can improve the
systems performance significantly. On the other hand, lackmstraint among subcarriers
makes the synchronization task even more challenging trerof interleaved CAS.

The joint ML estimation of timing and frequency offsets faetgeneralised CAS was
first studied by Morelli in[[98] and a suboptimal solution wasposed based on repetitively
transmitted training symbols. However, it assumes that onke new user enters the net-
work at each time, which may be too strict in practical adlans. Alternative ML-based
synchronization schemes for the generalised CAS are 8escim [147] and[[150], where
iterative alternating projection and space-alternatiagegalised expectation-maximisation
(SAGE) algorithms are employed to reduce the complexity bfddtimation, respectively.
Similar to the subspace-based algorithm for interleave® Gle iterative-based algorithms
studied in[[147] and [150] are only applicable to a quasiebyanous system.

Under the quasi-synchronous assumption as shown in Higliat@r removing the CP,
the IBI free received signal expressed[inl(75) can be reemin matrix form as

M

r=5 M(w)Ah +uv (95)
2, (AN
or equivalently
M
r= le'((q)Di(ri)hi +u (96)
=
where
r=[r(0),---,r(N=1)]7 (97)
M) = diag{1,e/Z@/N ... el2ma(N-1)/N} (98)
[Ai]mn = [Xi](mfn) modN,OSM<SN—-1n=0<n<Ng—1 (99)
[Di(Ti)]mn = [Xi](m—n—ri) modN;O<M<N—-1n=0<n<L-1 (100)
hi = [M(0),- ,h(L—1)]" (101)
hi = [0f 1 W' Ofy, L g)xa]” (102)

where[Aj],, denotes thgém, n)th entry of matrixA; and[x|m represents thetth entry of
vectorx;. Rewrite [95) as
r=B(w)h +u (103)

whereB(w) = [ (w)A1 T (wp)Az -+ T(wyv)Am] andh’ = [(W)T --- (hy,)T]T. The log-
likelihood function for the frequency offsets and extended equivalent chaniécan be
expressed as

A(@,R) = —NIn(na&)—%Hr—B(cb)ﬁ’Hz (104)
v

whered andh’ are trial values ofo andh’ respectively. Thus, the joint ML estimates @f
andh’ can be obtained as

& = argmax{||Mg(&)r||*} (105)

R = (B"(@)B(@)) 'B" (@) (106)
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wherelg(&) = B(&) (B" (@)B(&)) B (&). The maximisation if[(105) requires a grid-
search over the multidimensional domain spanne@yhich is too cumbersome in prac-
tice [147]. A simple way to reduce the complexity is to useitbmtive alternating projec-
tion method studied ir [147].

Let Q(k) denote the estimate o at thekth iteration and define thigl — 1 dimensional

vectorcbi(k) as

~ (k ~ (k+1 ~A(k+1) A~ (K ~ (kK
I I A IR L I WIS (I L (107)

At the ith step of the(k+ 1)th iteration, the estimate afj is updated by the alternating
projection frequency estimator (APFE) as

~(k+1)

A" = arg max{HI'IB((Iq,&)i(k))er} (108)
&

Exploiting the structure oB((Iq,(I)i('()), the estimator (108) can be further simplified as

A (k+1)

>

&

= argmax{ N (@, &*)r|12} (109)
@

@.6") (110

(@A (111)
A (K A (K A (K~ Ak ) L A (K

Ne(@¥) = c(@¥) (c@)c@¥)) c@) @12

DA T@)AM| - (119)

Computingl‘IcB(ch,cbi(k)) only requires the inversion ofldy x Ng matrix, which is signifi-

cantly less complex than computilﬁgg(dq,&)i(k)). From [109), we see that th\-D search

required by the ML estimatol (105) is split into a series @ fraximisation problems, and

is this much more effective than the original maximisationljpem. After obtaining the
frequency estimate®, the ML estimates of timing offsets can be derived from E) ¢&

T =argmax|[My (&, T)r(|} (114)

where
My(,7) = W(@,7) (Y (&, HW(@.7) W (&,1) (115)
W(é,T) = [[(C)D1(T1) -~ T(ém)Dm(Tm)] (116)

Similar to the problem ir {105), the maximisation problenflii4) can be efficiently solved
by resorting to iterative alternating projection methdtie; resulting estimator is referred to
as alternating projection timing estimator (APTE)(in [1L43Ince the timing and frequency
estimators introduced above are iterative, initial estémafw and T, referred to agv®
and© respectively, are required. A simple way to initialise tistiraates of CFOs is to
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use the expected value af, i.e Q(O) = 0. Alternatively, @9 can be taken as the output
of the frequency estimator proposed(in [L51]. The initidineates?® can be obtained by
first estimatingh] according to eq.[{106) and then exploiting the specific stinecof ﬁf.
The index of the first significant elementﬁﬁfis taken asfi(o).

Another alternative approach to avoid the multidimendigearch in ML based estima-
tor is employing the SAGE algorithm as in [149] and [150]. &irthe estimates of timing
offsets can be obtained via_(94), we assume that the timifsgtsfare estimated first for
SAGE algorithm. From eq[(96), thén cycle of thekth iteration of the SAGE algorithm
can be performed as follows.

1. Expectation step: Compute

i—1 M
yo=r-5 -y Y (117)
=1 j=1+1

2. Maximisation step: The likelihood function for the unknofrequency offsety and
channelh; can be expressed as

. 1 ~ ANE
A(@, ) = ~Nin(rtog) - 5 %' — I (é@)Di () (118)
Thus, the joint ML estimates af andh; can be written as
@ = argmax{ |IMw(@)y |17} (119)
@«
~ (K A Ay — A .
A = (O (8)Di(H)) DR () @)y (120)

whereMy = I'(@)D; () (DF (#)Di(%)) DF ()M (@). After obtaining the esti-
matesQ(k) andh;, fi(k) which is utilised in the Expectation step of the next cycle or
iteration can be updated as

N ~ ~vp(k
=T (@)pi(E)R°

(121)

Again, the initial estimates of CFOs for the SAGE algoritham de obtained via itera-
tive alternating projection methods. Moreover, we can sam feq. [12]1) that initial chan-
nel estimates are required for the SAGE algorithm while relhsequirement is needed for
the iterative alternating projection methods. Inaccudditannel estimates will deteriorate
the SAGE performance significantly. With the aim of obtaini tradeoff between per-
formance and complexity, several non-ML based multiple € EStimators were proposed
in [152] and [153].

4.5. Simulation results for uplink OFDMA systems

The synchronization of uplink OFDMA systems depends ontibearrier allocation schemes.
Here, we compare the synchronization performance of seedmesed and ML based meth-
ods, based on interleaved CAS. The total number of subcsiigeset to 512 with a CP of
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Figure 38: Mean square error of CFO estimates for uplink ORDMthout timing offsets

length 32, i.e.N = 512 andNgy = 32. The maximum and active numbers of users are set
to 4 and 3, respectively, i.eK, = 4 andM = 3. The channel with the exponential power
delay profile, introduced previously, is considered. Theimam channel delay spredd
is equal to 16 and the channels for different users are assumeorrelated. We set the
CFOs of the three users t0.1, —0.2 and 03, respectively.

Figure[38 shows the CFO estimation performance withoutngniffsets. From eq.
(95), the CRB of ML based CFO estimation algorithm is givefili#7] as

. . N2g?
var{@} > CRBA = 2 | (0 {w"ngw})| (122)
whereW = [Wq, .-, Wy], ¥ = Wl (w)Aih with W = diag{0,1,--- ,N—1}; Ng =1 —

Mg (w). The CRB of subspace decomposition based CFO estimationitaly is given in
eq. (??). From Figurd_3B, we can find that ML based algorithms, i.€2FE and SAGE,
have identical performances and provide nearly 3-dB games BSPRIT algorithm. This
can be ascribed to the fact that subspace decompositiod k#4398 estimation is actually

a non-data aided method. Both ML and subspace decomposiisad CFO estimation
algorithms can achieve their ‘corresponding CRBs'.

Under the quasi-synchronous assumption, we assume théitgharriving signal is
known perfectly by the BS and the timing offsets of other tvgens signals are normally
distributed in an interval0, 16]. Figure[39 shows the timing estimation performance of
ESPRIT and SAGE based estimators, and the ML estimiatoit (L&4)APTE. As we can
see from the figure, the ML estimator outperforms the maxinchannel energy based es-
timators significantly at the price of increased computeticcomplexity. Since APFE and
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Figure 39: Standard deviation of timing estimates for Up@FDMA

ESPRIT based CFO estimators can work without timing offe&driation, we estimate
CFO prior to timing offset estimation. On the other hand,nigoffsets information is cru-
cial to the SAGE based CFO estimator. Thus we perform timifgebestimation before
SAGE based CFO estimation. From Figuré 39, we see that ESBREAM timing estimator
outperforms SAGE. This can be ascribed to the fact that egmgidhe CFO estimates ob-
tained in the ESPRIT based CFO estimator improves timirignatibn. Figurd_4D shows
the CFO estimation performance with timing offsets estiomat We see that the perfor-
mance of SAGE based CFO estimator is affected significanptignhé inaccuracy of timing
estimation. On the other hand, both ESPRIT and APFE estmhai@ robust to timing
inaccuracies.

5. Network synchronization

In this section, we discuss the challenges in the network symchronization problem and
the performance metrics of interest. We provide a brief vwegr of current devices and
their limitations, and describe common clock models. Wanttescribe a taxonomy of
network time sync protocols and provide some examples.

As stated in the Introduction to this chpater, network syantzation is a well-studied
topic with an extensive history, especially for wired netks) e.g., see Lindsey et dl.l[1],
Bregni [2], and references therein. Typically, these waksumed high quality devices,
availability of fine control of the network, extensive contigty with little or no mutual
interference, as well as often assuming known (or repeataid measurable) propagation
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Figure 40: Mean square error of CFO estimates for uplink ORDAMith timing offsets

and processing delays|[3]. Surveys of WSN sync protocols oeafpund in the papers by
Sivrikaya and Yenel |4], Johannesseh [5], Sundararamadn([6],d3], and [/].

The network synchronization problem is to ensure that allesdn the network operate
on a common clock, i.e., have a common time reference.

Challengesin synchornization in WSN stem from several sources, broeslhated to
the transmitter, the propagation channel, and the receiver

1. Channel conditions (such as fading, shadowing, inteniex) lead to time-varying
connectivity even for static nodes: scatterers move in asg,cmobility adds its own
challenges.

2. The devices are cheap and clocks drift, often erraticdillg to fluctuations in ambient
temperature, and with age. The time difference between toeks may be fixed (a
fixed offset) or may vary with time (due to clock oscillatoeduency drifts).

3. Queuing and processing delays are variable (thus revgiedifficult to use standard
protocols such as NTP). There is variability in the time kets ofr a packet to go
from the application layer to the MAC layer, variable delayithin the MAC layer
(the major source of error), in packet generation and tréssam at the PHY layer.
There are similar variations at the receiver, includingcuaacy in detecting packet
arrival.

4. Varibilities in propgation time due to non-line of sighsues, and non-reciprocity of
the channel. Typically, the propagation time is neglight@enpared with the queue-
ing and processing delays.
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5. Communication rates are variable in a large network; ibdenis involved infre-
quently in regular communications, then ‘*heartbeat’ sigmaay be essential to keep
the node in quasi-sync with the rest of the network, and tlumected to the net-
work.

6. Protocols must be scalable to a large number of nodes, astideal with heterogen-
ity of nodes.

7. These devices are often battery powered so that enerdiiteaesource, and energy
consumption directly affects node lifetime.

8. Given energy constraints, WSN nodes must exploit extarssets which may have
more relaxed energy constraints; e.g., basestations, DAVi®us broadcast beacons.

Metrics: How should one evaluate the performance of a network syrtoqut? When
GPS is available, a reasonable metric could be the bias ceapa the ‘true’ time. But
access to GPS can be difficult, particularly indoors, undeopy, and in other challenging
conditions. Often, it suffices that the nodes converge onesoammon time reference
(regardless of whether it is ‘true’). Some commonly usedritetre:

e Synchronization accuracyVorst case (or average case) pair wise error between any
one-hop neighbors

e Energy efficiency The number of packet transmissions and receptions necaesar
achieve sync, and the rate and frequency of messages tlthtmbe exchanged to
maintain sync.

e Synchronization convergence tintehe time taken for all nodes (or a given percent-
age of nodes) to be in sync with one-hop neighbors.

e Fault tolerance The robustness of sync schemes under (intermittentyéadt(criti-
cal) nodeds and/or links; robustness to (slow) time vamietin clock parameters and
clock jitter.

e Scalability with network sizeDoes the sync-error increase with size? Does conver-
gence time increase (only) with the diameter of the netwo@?other aspects of
topology such as degree distribution?

e Imapact of stochastic channel conditiondow well does the protocol perform in
the presence of stochastic channel conditions (congestiaility, duty cycling,
queueing delays, propgation delays, processing times)?

e Engineering desingls the protocol simple vs. complex

From the above questions, it is clear that a given protodel®f set of alternatives in this
rich tradespace.
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5.1. Clock Models

Let Tx(t) denote the local time at node wheret denotes the ‘true’ time; often, we will
drop the node indek. Formally,clock driftis defined as

p(t):dz—it)—l.

A reasonable assumption is that the drifts are bounded henclacks do not run backwars,
which translate to

P(t)] < Pmax P(t) > —1.

A Taylor expansion of the local clock timi(t) wrt the global clock yields
T(t) = o+ Bt + yt> + - (123)

whereina is theoffsetand 8 the skew. The quadratic term, denotedybhys typically used
only to test for departures from the linear model. Skew harnleodeled as an AR process
in [154]

Accuracy Lifetime
(PPM) Power | in hours
AA battery
GPS 108~ 10°11 180 mW | 16.7 hours\
Chip-Scale
Atomic Clock | 10711 30 mW | 100 hours
MCXO 3x10% [ 75mW| 40 hours
TCXO 6x10°° 6 mW 21 days
Watch clock | 200x10°® | 1 uW | 342 years

Table 2: Compariosn of clock characteristics

5.2. Net Sync Protocols

With the above background, we can broadly classify net syontopols into four broad
categories:

1. Broadcast protocols: Based on the notion of broadcassilply over a hierarchical
tree topology

2. Distributed synchronization: builds consensus on clmlameters in a peer-to-peer
setting.

3. Unilateral sync to an external (broadcast) referencekclo

Other classifications are possible depending upon the wmiipe.g., client (sensor node)
initiated vs. server (gateway) initiated.
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Many WSN synchronization protocols have been proposedulBopnes include the
Reference Broadcast Systems (RBS) [155], a time-stamgftnamation approach based
on bounded offsets [156], the Tiny/Mini-Sync (TMS) protbfdh7]], Timing-sync Protocol
for Sensor Networks (TPSN) [158], Lightweight Tree-basgdchronization (LTS)[[159],
and the networked Control Time Protocol (CTP) [160]. Prdlistlc approaches were con-
sidered in[[161], and refined and extended_in [162]. Boundieuwmarious assumptions are
derived in[163],[[164] and [165].

Among the above protocols, several primary themes emenge.n@tural and common
notion is the use of time-stamps: time-stamp a packet wighttdinsmitter’'s clock, time-
stamp the reception time, use these stamps to estimateuhd top time (RTT), which
is then used to synchronize the two clocks. RTT is often ighlriable, and often has a
heavy-tailed distribution, which naturally calls for theeuof robust estimation techniques.
Reliability increases as the number of such exchangesasess but with a concomitant
increase in delay and energy, and sometimes (more tham)linemplexity. A second
recurring theme is that the estimation of relaitve cloclsetfand skew can be case as a
linear estimation problem. and complexity.

Unilateral synchronization

Assume that an external source broadcasts time-stampeshgessat ‘true’ timeg (i),
which are received by a nodeRti) on its local clock. Then from the clock model consid-
ered earlier in[(123, we have

Ri)=a+BT(i)+e(i),i=1,..,1 (124)

wheren is the number of observations. Hegé) represents the modeling errors. Llet
bel x 1 vector of onest = [T(1),...,T(1)]', r =[R(2),...,R(1)]", Z = [1,t]. Then linear
regression yields

a

B

which is the best linear estimate if ti&i) are zero-mean. Note that in this unilateral
scheme, one cannot account separately for the propagatiag, @r a non-zero-meagt
both are absorbed into the offset. Thus clocks that are ativrely different distances from
the broadcast source will not be in sync with each other.

=2z 'z

Pairwise synchronization

As in the classical Network Time Protocol (NTP) [166], cladkset can be estimated by ex-
changing time-stamped messages and computing the roprihg (RTT). If the queuing
delays are exponentially distributed with the same meaaydéen the MLE of the offset is
given by the minimum of the observed delays [167]; if the mdalays vary from node to
node, then the bootstrap-bias correction method ofl[168]beaused. Further details may
be found in[[169].

In these pair-wise protocols, a node ‘B’ synchronizes witiode ‘A’ which is treated
as the reference node. Letand 8 denote the relative offset and skew of node B wrt node
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A. Nodes exchange multiple time-stamped messages as follblodes A sends a time-
stamped message to node be at its local fimg wherek is the round number. Node B
receives it at its local tim&g k. At Tz, it sends a time-stamped message which includes
Re; this is received by nodé at Rak. K such rounds of message exchange take place.
Let 0 denote the fixed portion of the delay agk, €ga,, the variable portion; delay here
includes propagation delay, processing delay and quewdstay. The time-stamps are
related via:

Rex = (Tak+0+é&nsk)B+a (125)
Texk = (Rax—0—épak)B+a (126)

Assuming that the delays are independent and exponerdiatiybuted, it is shown in [167,
169] that the MLE ofa is given by

S N )
G =3 mkln(RB.k —Tak) — mkm(RA.k —Tgk)

Leti = argmirn(Rak — Tak) and j = argming .. (Rak — Tak), which are the first two order
statistics ofRa x — Tak. Then the proposed estimator of the skew in [169] is

Rei+Tgi—Rgj—Tg,
Rai+Tai—Raj—Taj

B =

Onceaq, B have been estimated, it is easy to estimate the propagatlay ds well. These
algorithms have been shown to be robust to other delay models

In the RBS protocol [155], a beacon node transmits a referpacket (as above), but
the K receiving nodes exchange time-of-receipt to estimatestsffand skews. Consider
(I23), now indexed by the receiving node’s id:

Ri(n) = ai+BT(n)+&(n), (127)

DefiningAjj .= ai — Bjjaj and§j := Bﬁj as the relative offset and skew, one can eliminate
T(n) to obtain
Ri(n) = BijRj(n) +4ij +&j (n)

Notesi and j can estimate the relative skew and offset via linear regness

The tree-based sync protocol in [158] is similar to the alagerithms in the estimation
part. Here a root node broadcasts a beacon. Its set of 1-lgipboes (i.e., those who hear
the root directly) are called level 1 nodes. Level 1 nodesyiin, relay the beacon to level-2
nodes, and so on. Nodes at levslynchronize to a parent node at level 1. The relative
skew is assumed to be unity, so the focus is on estimatingteff€onsider a pair of parent-
child nodes; one can write the packet reception times as

Rex = Tak+ O+ 0+ €apk
Rak = Tegk—a+ 0+ €pak
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After K messages, one can estimate

. 1 X

d = — 5 (Rex—Rak+Tek—Tak)
2K &

A 1 K

0 = K > (Rex+Rax—Tex—Tak)

=
Il

1

Under the assumption that the noise termsgth@re zero-mean and indepdent, one obtains
the following equation for the variance of the estimatosrs:
2 2
- 2 OhL+0.
var(B) = var(é) = % .

The TPSN protocol is easy to implement. However, it assumésskew. Tine-Sync and
Mini-Sync are variations that can cope with skéw [157].

Another variation was proposed (n [3]. The basic idea is ifthadde A transmits a pair

of time-stamped messagpsunits apart on its own clock, then node B should be able to
estimate the relative skew.

5.3. Distributed Clock Sync

The notion of distributed consensus, i.e., distributect@grent on a parameter (vector) via
repeated exchange of messages has recently become p@palageveral protocols have
been proposed. Here, the idea is that there is no single b and hence no single
point of failure. These protocols seek to achieve globakeaosus via local exchange of
information. They rely upon the broadcast nature of the lesrslink.

Bio-Inspired Approaches The seminal work of Mirollo and Strogatz [170] introduced
the basic idea that a population of “integrate-and-fire”ilzgors will start firing simulta-
neously after a finite time starting from all almost any adicondition. Empirical evidence
for this is the well-cited firefly sync [9] and circadian syld®]. The work nwas extended
to multi-hop and time-varying topologies in [171] who made wf results from Algebraic
Graph theory. These results have been recently refinedeated and extended by [172].
The Mirollo-Strogatz model has been exploited inlin [173]rietwork time sync. Another
consensus-based approach is the so-called diffusiordlzageroach of [174].

Consensus-type approachesWe consider next one example of a consensus-based ap-
proach [175]. This scheme assumes the presence of a redenexe (i.e., a root node
whose clock is assumed to be correct, and which does not esidatiock). Mutliple
consistent reference nodes may be present as well. Forigitp@lssume that all nodes
have unit skew, and nodéhas offseta; wrt the reference node. Using one of the pairwise
schemes described earlier, nodes can obtain an estimdite @&lative offset

Yij=ai—aj+&

whereg; j is measurement noise which we model as zero-mean and wiHntzanj. A
nodei would have such an estimate for eack Nj, the set of neighbors that it can hear.
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At every iteration, a node receives the current estimatés olighbors which are used to
update its own estimate. Nods estimate of its offsety; in thek-th iteration is given by

-1
N 1 1 .
ai(k) = — — (aj(k—=1) +y;
I() (JGZN ‘ﬁ') JEZN o’ Gtk on)
The convergence if this algoritihm was studied[in [175].

Convergence depends upon the topology, the coupling anch¢fasurement statistisc.
We can associate a gragh= (V,E) with this problem; her&/ is the set of nodes, and
E the set of edges representing one-hop links. The energydmmnce time) spent for
achieving consensus is proprotional toAi(L) wherelL is the graph Laplacian anth(.)
is the second-largest eigenvalue. The algebraic networkemiivity (the so-called Fiedler
value),A»(L) can be increased by increasing the transmit power, i.e.ing#hke graph more
connected. However, this also increases the total energuoaption, since the total power
consumed by the nettwork is proportionalge/A2(L(pr)), whereL(pr) is the Laplacian
of the graph corresponding to transmit povget. A question then is: does a global trade-
off exist between local transmit power, convergence rateratwork topology? Analysis
in [176] indicates that when the path loss is high, the optitm@ology tends to be sparse,
with few connections.

6. Conclusions
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