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Examples

Part 1 : Applications J
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Example 1 : distributed optimization

Examples

N

min f(x) 23 ()

node/sensor/agent ¢
- i=1

fi@) with
@ N number of nodes
@ f; known only at node i

@ No fusion center (f known
nowhere)

= distributed processing

Practical functions

In sensor networks, x = # may be the temperature (or gas pressure, ...), and
f: the log-likelihood (y; — 8)® where y; is the measurement at node i. Then
N

. 1 )
Oopt = bune = ’2_1: y; < average computation
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Examples

Example 1 : distributed optimization

N

min £(x) 23 ()

i=1

node/sensor/agent 7

with
@ N number of nodes
@ fi known only at node i

@ No fusion center (f known
nowhere)

= distributed processing

Practical functions

In resource allocation, x = [Py, - - - , Py] may be the powers, and f; the
Shannon capacity at node i

Here, no direct average computation
but average computation will be actually needed
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Examples

Example 1 : distributed optimization (cont'd)

A simple distributed average computation algorithm [DeGroot1974]

At time k, each node replaces its current value with a weighted average of its
current value and those of its neighbors.

1+max1{d,-,dj} ifj € M
X(k+1) = Kx(k) with Kij = ¢ 1= > Ky ifi=]
0 otherwise.

where x(0) = [x1(0), - - - , xn(0)]" are the initial measurements.

Application to distributed optimization :
Gradient step : Xj(k + 1) = x;j(k) — v/ (xi(k)) for each node i.
Gossip step : x(k + 1) = Kx(k + 1) with K used for average computation

So, average computation is needed
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Examples
Example 2 : fully-distributed spectrum sensing

+ +
P Tree +
TNl e Problem : a secondary user is
+ T disturbing the primary receiver
K rrmenncne Solution : secondary users have to
. cooperate to detect the primary user

1 & SNR, &
T=2) t= ith t= - (k)2
N fzm with 221 + SNR) ;IM( )|

Here, average computation is needed

Philippe Ciblat Distributed average consensus 5/36



Graph theory Non-ne ve matrices Marko!

Part 2 : Mathematical tools J
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Tools Graph theory Non-negative matrices Markov Chain

Graph model

Let G = (V, E) be the underlying communication graph between the nodes
@ with V is the set of Vertices/nodes/sensors/agents (N = | V)
@ with E is the set of Edges (perfect communication links)

The communication graph G is assumed
@ unweighted (each edge has the same weight equal to 1)
@ undirected (if i — j is a link, then j — i too)
@ connected (one can find a path from any i to any )
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Tools Graph theory Non-negative matrices Markov Chain

Graph theory

Let G be an undirected but possibly weighted graph.

— w;,; the weight of the link (i, )
wi; >0 if(i,j)e E
w;; =0 otherwise
N; = {j € V|(i,j) € E} the neighborhood of the node i
— di = |Vi| the degree of node i
— D =diag(ds, - -, dv) is the degree diagonal matrix

— A is the adjacency matrix such that A;; = w;;
— L =D — Ais the Laplacian matrix

@ Let0 =X\ < A\ <--- < Ay be the eigenvalues of L.
X2 # 0 < G is connected

@ LetS = Supp(A) s.t. S;; = 1if w;; > 0, and 0 otherwise.
As S adjacency matrix of the associated unweighted graph, properties
on connectivity can be checked with S instead of A.
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Tools Graph theory Non-negative matrices Markov Chain

Node activation model

Synchronous context :

@ Attime k, all nodes exchange information and do the same algebraic
manipulations. So 3! K s.t.

x(k+1)=Kx(k) = x(k)=K"x(0)

Asynchronous context :

@ Attime k, only one node (let say ix) exchanges information. This node
and some of its neighbors do algebraic manipulations through a finite set
of matrices K, = {K.,, }. So, 3K = UL, K sit.

k
X(k+1) =Ky, x(k) (= Ky x(k)) = x(k) = <H Ky,3> x(0)
=1

@ iy is ani.i.d process and P(ix = j) = pj
@ w;is ani.i.d process = v is an i.i.d process
@ Collision-free assumption (still valid for collision if CRC at RX)
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Tools Graph theory Non-negative matrices Markov Chain

Non-negative matrices

Non-Negative Matrices (NNM)
Mis a N x N non-negative matrix iff M;; > 0, Vi,j

NNM play a crucial role herafter since
@ A the adjacency matrix of the communication graph is NNM
@ K, the update matrices are NNM as well

Actually any NNM can be viewed as an
adjacency matrix of a weighted and directed graph G(M)

Two types of connectivity

When the graph is directed, we can define
@ weak connectivity : path from j to j OR from j to i, for any i, j
@ strong connectivity : paths from i to j AND from j to /, for any i, j
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Tools Graph theory Non-negative matrices Markov Chain

Irreducible matrices

Let A be a N x N non-negative matrix. A is irreducible iff
— either (1+ AN > 0;
— or G(A) is strongly connected.

Perron-Frobenius theorem for irreducible matrices

Let p(A) £ max;{|\*|} be the spectral radius.
Let A be a N x N irreducible matrix. Then
i) p(A) > 0is a simple eigenvalue of A;
ii) there is a positive vector x such that Ax = p(A)x.

Remark :
@ if Airreducible, Supp(A) irreducible too.
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Tools Graph theory Non-negative matrices Markov Chain

Primitive matrices

Let A be a N x N non-negative matrix. A is primitive iff
— dm>1s.t. A" is a positive matrix.

Primitivity leads to irreducibility and strong connectivity of G(A)

Perron-Frobenius theorem for primitive matrices

Let Abe a N x N primitive matrix. In addition to irreducible case,
iii) p(A) is the only eigenvalue of maximal modulus.

Remarks :

@ If A irreducible but not primitive, A has k > 1 eigenvalues of maximal
modulus

@ If A irreducible with positive diagonal entries, A primitive
@ If A irreducible, adding self-loop to A leads primitivity
@ If A primitive, Supp(A) primitive too.
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Tools Graph theory Non-negative matrices Markov Chain

Stochastic matrices

Row-stochastic matrix
Non-negative matrix with sum of each row equalto 1 & A1 =1

Column-stochastic matrix

Non-negative matrix with sum of each column equal to 1 < 1TA = 1T

Doubly-stochastic matrix

Row-stochastic and column-stochastic matrix

If A is either row-stochastic or column-stochastic matrix, then
° p(A) =1
@ 1 (left or right)-eigenvector for the largest eigenvalue.

Remark : K in Slide 4 is doubly-stochastic.
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Tools Graph theory Non-negative matrices Markov Chain

Link with Markov Chain

Any N x N row-stochastic matrix is a transition probability matrix
of a discrete-time Markov Chain with N states and conversely.

@ W transition probability matrix at time k.
@ t(k) states distribution at time k (non-negative with 1Tt(k) = 1)

t(k+1)" = t(k)"Wy
Remarks :
@ States distribution analysis leads to right multiplication
PSSt = W,Ws,1---Wsy  (forward direction)
@ Average computation analysis leads to left multiplication (Slide 8)

PSSt — Wy kW1 ---Ws  (backward direction)
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Tools Graph theory Non-negative matrices Markov Chain

Ergodicity of Markov Chain

Row-stochastic matrices {Wx }« weakly ergodic if rows of P}’k tend to be
identical, but may vary. 3 v(k) non-negative vector (1Tv(k) = 1),

Pl K22 v (k)T

Application to our problem : nodes agree but agreement changes.

Row-stochastic matrices {Wx}« strongly ergodic if rows of P}"‘ tend to be
identical. 3 v non-negative vector (1Tv = 1),

k
e VR

Application to our problem : nodes reach a consensus (= v'x(0)).

Remarks :
@ If {Wx}« column-stochastic (not row-), replacing Wy with W,
@ If {Wx}« doubly-stochastic, v = (1/N)1

e If backward considered, same definition with P}* instead of P}*. Here,
weak ergodicity=strong ergodicity [Chatterjee1977]
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Std Algo.

Part 3 : Standard (single-variate based-) algorithms J
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Std Algo.

X(k+1) = K, x(k)

@ x(k) = [xi(k), -, xn(k)]" where x;(k) value of node i at time k
@ {K¢, }« i.i.d. process valued in K = {K;}=1,...m

@ K, non-negative, positive diagonal, and support included in that of I + A
with A communication graph adjacency matrix

Sum conservation : average of the initial values kept at any time

1"x(k + 1) = 1"x(k) < column-stochastic

Consensus conservation : consensus stable (if it exists)

x(k) = ¢1,s0 x(k + 1) = ¢c1 < row-stochastic

Let J be the projection on span(1) : J = (1/N)117
Let J* be the projection on span(1)* :J* =1-J.
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Std Algo. Sync. Async.

Doubly-stochastic matrices - sync. case

X(k + 1) = Kx(k) with K doubly-stochastic

@ K row-stochastic, so transition probability matrix of homogeneous
Markov Chain (weak=strong, forward=backward)

o If K primitive, Markov Chain ergodic : limp_ oo K™ = 1v’

@ K column-stochastic, so v = (1/N)1.

Then
1 N
x(k) — Xave1 (Wlth Xave = N ; X1(0)>

K primitive if

@ communication graph connected
@ support of K identical to that of communication graph (+self-loop)

Example : Metropolis algorithm (Slide 4)
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Std Algo. Sync. Async.

Doubly-stochastic matrices - sync. case (cont'd)

What is the convergence speed ?
@ If K primitive, KK" primitive. As doubly-stochastic,
p(KK" — J) < 1
@ Why p(KK"™ — J) plays a great role :
X(k) = IxX(K) + Jx(k) € = xpe1 + JEX(K)

Convergence of x(k) ~ convergence of ||J*x(k)||3
@ In addition
row.—sto

K .
[ x(k+ 1B < p (KKT =) [[9x(K)[I3.

Link between projections into span(1)" at time k and (k + 1)

Under mild assumptions, doubly-stochastic update matrices lead to linear
convergence with slope o = p(KK™ —J) < 1
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Std Algo. Sync. Async.

Doubly-stochastic matrices - async. case

x(k) = P x(0) with P"* 2 KK, ,...K¢

with {K¢, }« assumed i.i.d..

1

@ As K; row-stochastic, P""* backward concatenation of transition
probability matrix of a heterogeneous Markov Chain

@ Using similar arguments as previous slide, (strong/weak) ergodicity is
needed and ensured by primitivity of E[K].

@ E[K] primitive if communication graph connected and support of E[K]
identical to that of communication graph (+self-loop)

Under mild assumptions, doubly-stochastic update matrices lead to linear
convergence with slope 8 = p(E[KK"] - J) < 1
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Std Algo. Sync. Async.

Example : Random Pairwise Gossip [Boyd2006]

At time k, let i be the active node

» i chooses a neighbor j
uniformly in NV;

» i and j exchange their values

» iandjupdate: xj(k+1) =

x(k + 1) = 20000

All results given in previous slide hold )
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Std Algo. Sync. Async.

Example : Random Pairwise Gossip [Boyd2006]

- -1 Attime k, let i be the active node

1. » i chooses a neighbor j
1/2 1/2 uniformly in A
Kip = 1. » iand j exchange their values
1/2 1/2 » iandjupdate : xj(k +1) =
) xi(k + 1) = 200
All results given in previous slide hold )
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Std Algo.

Non-doubly stochastic matrices

Doubly-stochastic update matrices require FEEDBACK
@ Feedback (especially if routing) needs slow-varying network

@ Feedback prevents to take benefit of broadcast nature of wireless
channel

Two cases : Row-stochastic or Column-stochastic

Row-stochastic case

@ Design : easy by doing weighted mean at RX

@ Problem : no sum conservation ; information is lost (Slide 16) !!!
@ Result : strong ergodicity of Markov Chain (Slide 14)

» IfE[K] primitive, x(k) Z5* (vTx(0))1

» In addition, if E[K] doubly-stochastic, E[vTx(0)] = Xave

» Unbiased but not consistent [Tahbaz2008]

@ Conclusion : avoid to do that!!!
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Std Algo. Sync. Async.

Example : Broadcast Gossip [Aysal2009]

At time k, let i be the active node
» | broadcasts its value to all its

neighbors

» Each neighbor j € N;
updates :
Xl(k + 1) — Xi(k);xj(k) .

@ Take into account broadcast nature of wireless channel
@ No column-stochastic update matrices
@ Do not converge to the true value (only in expectation)
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Std Algo. Sync. Async.

Example : Broadcast Gossip [Aysal2009]

At time k, let i be the active node

1/2 1/2
/ / » | broadcasts its value to all its
1. neighbors
K= 1 » Each neighbor j € N;
1/2 1/2 updates :

1. xi(k + 1) = 0,

@ Take into account broadcast nature of wireless channel
@ No column-stochastic update matrices
@ Do not converge to the true value (only in expectation)
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Std Algo.

Column-stochastic case

It seems worse!!!

@ As column-sto., no transition probability matrices, but work on

(Ke, - Ke,)' =Kg, -+ Kg, instead on K, - - - K¢

1

Row-stochastic “update matrices “ in FORWARD direction
@ In forward direction, one can only ensure weak ergodicity.
3 v(k) non-negative vectors (with 1"v(k) = 1) s.t.

(Ke -+ Ke)' ~ (k)" & Ke - Ke, ~ (k)17

1

Three fundamental differences :
— no consensus anymore as X(k) ~ (NXu.)V(k), so x;(k) x vi(k)

v

sum conservation : information is available
How recovering it ? How removing v;(k) ? = side information

v
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New Algo.

Part 4 : New (bivariate based-) algorithm J
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New Algo.
Algorithm principle

An other variable providing vi(k) has to be computed in parallel

Let w(k) be this additional variable. We have easily
w(k) ~ Nv(k), if w(0)=1andw(k+1)= Ke, w(k)
N~

same as for first variable

Sum-Weight algorithms [Kempe2003, Benezit2010, lutzeler2013a]

Let s(0) = x(0) (sum) and w(0) = 1 (weight). At time k, we have

s(k+1) = Kg., s(k)

W(k + 1) = K€k+1w(k) .

x(k+1) = stk+1)ow(k+1)e xk+1) = 258D
Remarks :

— [Kempe2003] convergence speed for one special algorithm
— [Benezit2010] convergence proof, no convergence speed
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New Algo.
Main contributions

Our results [lutzeler2013a]

@ Convergence speed for any Sum-Weight algorithm
@ Sum-Weight algorithm using broadcast nature of wireless channel

Assumption : we remind K, column-stochastic.

@ As update matrices are not row-stochastic, recursion on J*x(k) does
not work anymore

@ Actually,
X(K) = Xuel + P Jx(0) @ w(k)

Convergence < |[P"*J*x(0) @ w(k)||3 — 0
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New Algo.
Steps for proof

[[X(Kk) — Xae1[13 < W1 (k)W2(K)

with
_ x5
ViR = fin w(k)E
1.k gL |2
‘U2(k) = HP 7 J Frobenius

Two main steps :
@ proving that w(k) not often close to 0 through asymptotic analysis of
Wi(k)
@ proving that P'*J+x(0) vanishes for any x(0) through asymptotic
analysis of W(k)
@ Approach inspired by [Kempe2003] but many differences
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New Algo.

Results on W4 (k)

Theorem
Let L be a well chosen positive constant. There exists a increasing sequence
(4) OO) Tn s.t.

1x(0)|13
(mxc )L

Wy (Tn) <

where
@ my is the smallest non-null terms of matrices in K,
@ A, =1y — Th—1 IS positive i.i.d. geometrically distributed random
variables. )

Remarks :
@ (7n)n>o are all finite and converge to infinity almost surely.

@ So thereis a constant C < o s. 1. the event {V{(k) < C} occurs
infinitely often almost surely.
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New Algo.

Results on W, (k)

First naive approach [Kempe2003] :
E[W,(k)] = Trace ((l ~J)E [P“‘(P“‘)T} (- J))
Then

E[W2(k)] < p(M)W2(k — 1), with M = J*E [K'K] J*. J

Unfortunately, p(M) > 1 for some algorithms and communication graphs
(especially ours -cf. Slide 29-), while the algorithm converges.

Previous equation not tight enough

Second promising approach [lutzeler2013a] :

Wa(k) = ||O(K)||Erobenivs, With @(k) = P*J+ @ PTkJ+

E[@(K)] < p(R)O(k — 1), with R=E[K® K] (J* @J*). )
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New Algo.

Results on W, (k) (cont'd)

Theorem

Under mild assumptions, one can prove that
p(R) <1

and, that
E[W, (k)] = O (ef“)
with § = —log (p (R)) > 0

v
Tn Tn+1
| |
| I I D
| |
|‘X(:7—zr) - (lf'zx\'k‘]-"% < Ce™m HX(T,,vl) — LL’mng < (e W
max |7;(k) — @aye|? is non-increasing
Philippe Ciblat Distributed average consensus
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New Algo.

Example : Broadcast sum-Weight (BW) Gossip

-4;0.5

At time k, let i/ be the activate node
[lutzeler2013a]

» Node i updates

{ sitk +1) = d+1
wi(k+1) = Z;j(ff

» ibroadcasts ($14; 54 ) to
all its neighbors

» Each neighbor j € N
updates :

sk +1) = s(k) + 44

{ wi(k +1) = wi(k) + 9

@ Take into account broadcast nature of wireless channel
@ No row-stochastic matrices but converges to the true value J
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New Algo.

Example : Broadcast sum-Weight (BW) Gossip

At time k, let i be the activate node
[lutzeler2013a]

» Node / updates :
{ sitk+1) = Z’I(L)

wik +1) = 4%

i si(k) . wi(k)
» i broadcasts (df“, i ) to

all its neighbors
» Each neighbor j € \;

updates :
si(k+1) = si(k) + 32
wi(k +1) = wi(k) + 59

@ Take into account broadcast nature of wireless channel
@ No row-stochastic matrices but converges to the true value J
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New Algo.

Example : Broadcast sum-Weight (BW) Gossip

At time k, let i be the activate node
[lutzeler2013a]

» Node / updates :
{ sitk+1) = Z’I(L)

wik +1) = 4%

i si(k) . wi(k)
» i broadcasts (df“, i ) to

all its neighbors
» Each neighbor j € \;

updates :
si(k+1) = si(k) + 32
wilk + 1) = w(k) + 40

@ Take into account broadcast nature of wireless channel
@ No row-stochastic matrices but converges to the true value J
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New Algo.

Example : Broadcast sum-Weight (BW) Gossip

At time k, let i be the activate node
[lutzeler2013a]

» Node i updates :

1 1 s'(k+1)_d+1(
: a+ wi(k +1) = ‘Z‘(ﬂ
Ki = 1 ; » ibroadcasts (j‘(ﬁ ‘Z’(ﬂ)) to
di+1 all its neighbors
1. » Each neighbor j € N
updates :
i(K)
si(k +1) = s;(k) + Z(ﬁ
i(k
Wik + 1) = wi(k) + 40
@ Take into account broadcast nature of wireless channel
@ No row-stochastic matrices but converges to the true value J
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New Algo.
Back to [Boyd2006]

If matrices in K are doubly-stochastic, then

wik)=1 o W(k)=1

and
si(k) = xi(k), Vi, Kk

Our analysis still holds for standard single-variate algorithms
@ In [Boyd2006], linear convergence with p(E[KK"] — J)
@ In [lutzeler2013al, linear convergence with p(E[K @ K](J* ® J*)
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Part 5 : Numerical illustrations J
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Simus
Tightness of the analysis

@ Random Geometric Graphs with radius of order /log(N)/N
@ Unless otherwise staded, N = 100

MSE for BW Gossip vs. time Slope for Random Gossip vs. N

The proposed bound is very tight )
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Simus
Comparison with existing methods

10
R o®
L T T =~
= , Random pairwise gossip e

107 —0—BW gossip

i BroadCast gossip
0 260 4(‘)0 G(‘)O ‘0 10‘00 12‘00
Global time
MSE for various averaging algorithms
Proposed algorithm outperforms existing ones )
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Simus
A funny example

RANDOM GOSSIP BROADCAST GOSSIP BW Gossip

Min Max Mean
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Part 6 : Perspectives J
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Perspectives

Sum-Weight based distributed optimization

Go back to Slide 4 : combining Sum-Weight to gradient algorithm
1. X(k + 1) = x(k) — % VF(x(k))
2. x(k+1)=Kx(k+1)
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Perspectives

Sum-Weight based distributed optimization

Go back to Slide 4 : combining Sum-Weight to gradient algorithm

S(k+1) = s(k)—yww(k)
® Vi(s(k) ow(k))
with ® the Hadamard product

2.
s(k+1) = K§k+1)
wk+1) = Kw(k)
MSE vs time (synchronous case)
Extension to asynchronous case to be done (instability issue) J
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Perspectives
ADMM based distributed optimization

Instead improving gossip step, let us improve gradient step
= ADMM (Alternating Direction Method of Multipliers

[Schizas2008] for synchronous case
[lutzeler2013b] for asynchronous case

—— Distributed ADMM

10 A - - - Distributed ADMM w/ Round Robin
—A— Asynchronous ADMM
—o— Gradient Descent Algorithm w/ Random Gossip|

Mean Squared Error from

IS i
0 500 10

i i
00 1500 2000 2500
Number of Primal Updates

MSE vs time (asynchronous case)

Convergence speed to be evaluated ? J
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Perspectives
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