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Example 1 : distributed optimization

.

edge (i, j)
fj(x) fi(x)

node/sensor/agent i

.

min
x

f (x)
∆
=

N∑
i=1

fi (x)

with

N number of nodes

fi known only at node i

No fusion center (f known
nowhere)

⇒ distributed processing

Practical functions

In sensor networks, x = θ may be the temperature (or gas pressure, ...), and
fi the log-likelihood (yi − θ)2 where yi is the measurement at node i . Then

θ̂opt = θave =
1
N

N∑
i=1

yi ⇔ average computation
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Example 1 : distributed optimization

.

edge (i, j)
fj(x) fi(x)

node/sensor/agent i

.

min
x

f (x)
∆
=

N∑
i=1

fi (x)

with

N number of nodes

fi known only at node i

No fusion center (f known
nowhere)

⇒ distributed processing

Practical functions

In resource allocation, x = [P1, · · · ,PN ] may be the powers, and fi the
Shannon capacity at node i

Here, no direct average computation
but average computation will be actually needed
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Example 1 : distributed optimization (cont’d)

A simple distributed average computation algorithm [DeGroot1974]

At time k , each node replaces its current value with a weighted average of its
current value and those of its neighbors.

x(k + 1) = Kx(k) with Ki,j =


1

1+max{di ,dj}
if j ∈ Ni

1−
∑

j∈Ni
Ki,j if i = j

0 otherwise.

where x(0) = [x1(0), · · · , xN(0)]T are the initial measurements.

Application to distributed optimization :
Gradient step : x̃i (k + 1) = xi (k)− γk f ′i (xi (k)) for each node i .

Gossip step : x(k + 1) = Kx̃(k + 1) with K used for average computation

So, average computation is needed
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Example 2 : fully-distributed spectrum sensing

Reception disturbance

Primary Receiver

Primary Transmitter

Secondary user

Secondary user

Problem : a secondary user is
disturbing the primary receiver

Solution : secondary users have to
cooperate to detect the primary user

Optimal test : Log-Likelihood Ratio (LLR)

When the transmit signal and the noise are Gaussian,

T =
1
N

N∑
i=1

ti ≷ η, with ti =
SNRi

σ2
i (1 + SNRi )

Ns∑
k=1

|yi (k)|2

Here, average computation is needed

Philippe Ciblat Distributed average consensus 5 / 36



Examples Tools Std Algo. New Algo. Simus Perspectives Graph theory Non-negative matrices Markov Chain

Part 2 : Mathematical tools
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Graph model

Let G = (V ,E) be the underlying communication graph between the nodes

with V is the set of Vertices/nodes/sensors/agents (N = |V |)
with E is the set of Edges (perfect communication links)

The communication graph G is assumed

unweighted (each edge has the same weight equal to 1)

undirected (if i → j is a link, then j → i too)

connected (one can find a path from any i to any j)
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Graph theory

Let G be an undirected but possibly weighted graph.

− wi,j the weight of the link (i, j){
wi,j > 0 if (i, j) ∈ E
wi,j = 0 otherwise

− Ni = {j ∈ V |(i, j) ∈ E} the neighborhood of the node i

− di = |Ni | the degree of node i

− D = diag(d1, · · · , dN) is the degree diagonal matrix

− A is the adjacency matrix such that Ai,j = wi,j

− L = D− A is the Laplacian matrix

Remarks

Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λN be the eigenvalues of L.
λ2 6= 0⇔ G is connected

Let S = Supp(A) s.t. Si,j = 1 if wi,j > 0, and 0 otherwise.
As S adjacency matrix of the associated unweighted graph, properties
on connectivity can be checked with S instead of A.
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Node activation model

Synchronous context :

At time k , all nodes exchange information and do the same algebraic
manipulations. So ∃! K s.t.

x(k + 1) = Kx(k) ⇒ x(k) = Kk x(0)

Asynchronous context :

At time k , only one node (let say ik ) exchanges information. This node
and some of its neighbors do algebraic manipulations through a finite set
of matrices Kik = {Kωik

}. So, ∃ K = ∪N
i=1Ki s.t.

x(k + 1) = Kωik
x(k) (= Kνk x(k)) ⇒ x(k) =

(
k∏
`=1

Kν`

)
x(0)

ik is an i.i.d process and P(ik = j) = pj

wi is an i.i.d process⇒ νk is an i.i.d process

Collision-free assumption (still valid for collision if CRC at RX)
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Non-negative matrices

Non-Negative Matrices (NNM)

M is a N × N non-negative matrix iff Mi,j ≥ 0, ∀i, j

NNM play a crucial role herafter since

A the adjacency matrix of the communication graph is NNM

Kν the update matrices are NNM as well

Actually any NNM can be viewed as an
adjacency matrix of a weighted and directed graph G(M)

Two types of connectivity

When the graph is directed, we can define

weak connectivity : path from i to j OR from j to i , for any i, j

strong connectivity : paths from i to j AND from j to i , for any i, j
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Irreducible matrices

Let A be a N × N non-negative matrix. A is irreducible iff

− either (I + A)N−1 > 0 ;

− or G(A) is strongly connected.

Perron-Frobenius theorem for irreducible matrices

Let ρ(A) , maxi{|λA
i |} be the spectral radius.

Let A be a N × N irreducible matrix. Then

i) ρ(A) > 0 is a simple eigenvalue of A ;

ii) there is a positive vector x such that Ax = ρ(A)x.

Remark :
if A irreducible, Supp(A) irreducible too.
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Primitive matrices

Let A be a N × N non-negative matrix. A is primitive iff

− ∃ m ≥ 1 s. t. Am is a positive matrix.

Primitivity leads to irreducibility and strong connectivity of G(A)

Perron-Frobenius theorem for primitive matrices

Let A be a N × N primitive matrix. In addition to irreducible case,

iii) ρ(A) is the only eigenvalue of maximal modulus.

Remarks :
If A irreducible but not primitive, A has k > 1 eigenvalues of maximal
modulus

If A irreducible with positive diagonal entries, A primitive

If A irreducible, adding self-loop to A leads primitivity

If A primitive, Supp(A) primitive too.
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Stochastic matrices

Row-stochastic matrix

Non-negative matrix with sum of each row equal to 1⇔ A1 = 1

Column-stochastic matrix

Non-negative matrix with sum of each column equal to 1⇔ 1TA = 1T

Doubly-stochastic matrix

Row-stochastic and column-stochastic matrix

If A is either row-stochastic or column-stochastic matrix, then

ρ(A) = 1

1 (left or right)-eigenvector for the largest eigenvalue.

Remark : K in Slide 4 is doubly-stochastic.

Philippe Ciblat Distributed average consensus 12 / 36



Examples Tools Std Algo. New Algo. Simus Perspectives Graph theory Non-negative matrices Markov Chain

Link with Markov Chain

Any N × N row-stochastic matrix is a transition probability matrix
of a discrete-time Markov Chain with N states and conversely.

Wk transition probability matrix at time k .

t(k) states distribution at time k (non-negative with 1Tt(k) = 1)

t(k + 1)T = t(k)TWk

Remarks :
States distribution analysis leads to right multiplication

Ps,s+k
f = WsWs+1 · · ·Ws+k (forward direction)

Average computation analysis leads to left multiplication (Slide 8)

Ps,s+k
b = Ws+k Ws+k−1 · · ·Ws (backward direction)
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Ergodicity of Markov Chain

Row-stochastic matrices {Wk}k weakly ergodic if rows of P1,k
f tend to be

identical, but may vary. ∃ v(k) non-negative vector (1Tv(k) = 1),

P1,k
f

k→∞∼ 1v(k)T

Application to our problem : nodes agree but agreement changes.

Row-stochastic matrices {Wk}k strongly ergodic if rows of P1,k
f tend to be

identical. ∃ v non-negative vector (1Tv = 1),

P1,k
f

k→∞−→ 1vT

Application to our problem : nodes reach a consensus (= vTx(0)).

Remarks :
If {Wk}k column-stochastic (not row-), replacing Wk with WT

k

If {Wk}k doubly-stochastic, v = (1/N)1
If backward considered, same definition with P1,k

b instead of P1,k
f . Here,

weak ergodicity=strong ergodicity [Chatterjee1977]
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Part 3 : Standard (single-variate based-) algorithms
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Model

x(k + 1) = Kξk+1 x(k)

x(k) = [x1(k), · · · , xN(k)]T where xi (k) value of node i at time k

{Kξk }k i.i.d. process valued in K = {Kj}j=1,...,M

Kξk non-negative, positive diagonal, and support included in that of I + A
with A communication graph adjacency matrix

Sum conservation : average of the initial values kept at any time

1Tx(k + 1) = 1Tx(k) ⇔ column-stochastic

Consensus conservation : consensus stable (if it exists)

x(k) = c1, so x(k + 1) = c1 ⇔ row-stochastic

Let J be the projection on span(1) : J = (1/N)11T

Let J⊥ be the projection on span(1)⊥ : J⊥ = I− J.
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Doubly-stochastic matrices - sync. case

x(k + 1) = Kx(k) with K doubly-stochastic

K row-stochastic, so transition probability matrix of homogeneous
Markov Chain (weak=strong, forward=backward)

If K primitive, Markov Chain ergodic : limm→∞ Km = 1vT

K column-stochastic, so v = (1/N)1.

Then

x(k)→ xave1

(
with xave =

1
N

N∑
i=1

xi (0)

)

Primitivity ?

K primitive if

communication graph connected

support of K identical to that of communication graph (+self-loop)

Example : Metropolis algorithm (Slide 4)

Philippe Ciblat Distributed average consensus 16 / 36



Examples Tools Std Algo. New Algo. Simus Perspectives Sync. Async.

Doubly-stochastic matrices - sync. case (cont’d)

What is the convergence speed ?

If K primitive, KKT primitive. As doubly-stochastic,

ρ(KKT − J) < 1

Why ρ(KKT − J) plays a great role :

x(k) = Jx(k) + J⊥x(k)
K col.−sto.

= xave1 + J⊥x(k)

Convergence of x(k) ∼ convergence of ‖J⊥x(k)‖2
2

In addition

‖J⊥x(k + 1)‖2
2

K row.−sto.
≤ ρ

(
KKT − J

)
‖J⊥x(k)‖2

2.

Link between projections into span(1)⊥ at time k and (k + 1)

Main result

Under mild assumptions, doubly-stochastic update matrices lead to linear
convergence with slope α = ρ(KKT − J) < 1
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Doubly-stochastic matrices - async. case

x(k) = P1,k x(0) with P1,k , Kξk Kξk−1 . . .Kξ1 .

with {Kξk }k assumed i.i.d..

As Ki row-stochastic, P1,k backward concatenation of transition
probability matrix of a heterogeneous Markov Chain

Using similar arguments as previous slide, (strong/weak) ergodicity is
needed and ensured by primitivity of E[K].

E[K] primitive if communication graph connected and support of E[K]
identical to that of communication graph (+self-loop)

Main result

Under mild assumptions, doubly-stochastic update matrices lead to linear
convergence with slope β = ρ(E[KKT]− J) < 1

Philippe Ciblat Distributed average consensus 18 / 36



Examples Tools Std Algo. New Algo. Simus Perspectives Sync. Async.

Example : Random Pairwise Gossip [Boyd2006]

At time k , let i be the active node

I i chooses a neighbor j
uniformly in Ni

I i and j exchange their values

I i and j update : xi (k + 1) =

xj (k + 1) =
xi (k)+xj (k)

2 .

All results given in previous slide hold
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Example : Random Pairwise Gossip [Boyd2006]

K{i,j} =



1
. . .

1/2 1/2

1
. . .

1/2 1/2

1
. . .


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Non-doubly stochastic matrices

Doubly-stochastic update matrices require FEEDBACK

Feedback (especially if routing) needs slow-varying network

Feedback prevents to take benefit of broadcast nature of wireless
channel

Two cases : Row-stochastic or Column-stochastic

Row-stochastic case

Design : easy by doing weighted mean at RX

Problem : no sum conservation ; information is lost (Slide 16) ! ! !
Result : strong ergodicity of Markov Chain (Slide 14)
I If E[K] primitive, x(k)

a.s.→ (vTx(0))1
I In addition, if E[K] doubly-stochastic, E[vTx(0)] = xave
I Unbiased but not consistent [Tahbaz2008]

Conclusion : avoid to do that ! ! !
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Example : Broadcast Gossip [Aysal2009]

At time k , let i be the active node

I i broadcasts its value to all its
neighbors

I Each neighbor j ∈ Ni

updates :
xj (k + 1) =

xi (k)+xj (k)

2 .

Take into account broadcast nature of wireless channel

No column-stochastic update matrices

Do not converge to the true value (only in expectation)
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Example : Broadcast Gossip [Aysal2009]
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Column-stochastic case

It seems worse ! ! !

As column-sto., no transition probability matrices, but work on

(Kξk · · ·Kξ1 )T = KT
ξ1 · · ·K

T
ξk instead on Kξk · · ·Kξ1

Row-stochastic “update matrices “ in FORWARD direction
In forward direction, one can only ensure weak ergodicity.
∃ v(k) non-negative vectors (with 1Tv(k) = 1) s.t.

(Kξk · · ·Kξ1 )T ∼ 1v(k)T ⇔ Kξk · · ·Kξ1 ∼ v(k)1T.

Three fundamental differences :
− no consensus anymore as x(k) ∼ (Nxave)v(k), so xi (k) ∝ vi (k)

− average is available somewhere since xi (k) ∝ xave but hidden
− v(k) multiplies 1 by the left (not by the right as in row-sto.)

I sum conservation : information is available

I How recovering it ? How removing vi (k) ?⇒ side information
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Part 4 : New (bivariate based-) algorithm
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Algorithm principle

An other variable providing vi (k) has to be computed in parallel

Let w(k) be this additional variable. We have easily

w(k) ∼ Nv(k), if w(0) = 1 and w(k + 1) = Kξk+1︸ ︷︷ ︸
same as for first variable

w(k)

Sum-Weight algorithms [Kempe2003, Benezit2010, Iutzeler2013a]

Let s(0) = x(0) (sum) and w(0) = 1 (weight). At time k , we have

s(k + 1) = Kξk+1 s(k)
w(k + 1) = Kξk+1 w(k)

x(k + 1) = s(k + 1)�w(k + 1)⇔ xi (k + 1) = si (k+1)
wi (k+1)

Remarks :
− [Kempe2003] convergence speed for one special algorithm

− [Benezit2010] convergence proof, no convergence speed
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Main contributions

Our results [Iutzeler2013a]

Convergence speed for any Sum-Weight algorithm

Sum-Weight algorithm using broadcast nature of wireless channel

Assumption : we remind Kξ column-stochastic.

As update matrices are not row-stochastic, recursion on J⊥x(k) does
not work anymore

Actually,
x(k) = xave1 + P1,k J⊥x(0)�w(k)

Convergence ⇔ ‖P1,k J⊥x(0)�w(k)‖2
2 → 0
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Steps for proof

‖x(k)− xave1‖2
2 ≤ Ψ1(k)Ψ2(k)

with

Ψ1(k) =
‖x(0)‖2

2

[min
i

wi (k)]2

Ψ2(k) =
∥∥∥P1,k J⊥

∥∥∥2

Frobenius

Two main steps :
proving that w(k) not often close to 0 through asymptotic analysis of
Ψ1(k)

proving that P1,k J⊥x(0) vanishes for any x(0) through asymptotic
analysis of Ψ2(k)

Approach inspired by [Kempe2003] but many differences
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Results on Ψ1(k)

Theorem

Let L be a well chosen positive constant. There exists a increasing sequence
(→∞) τn s.t.

Ψ1(τn) ≤ ‖x(0)‖2
2

(mK)2L

where

mK is the smallest non-null terms of matrices in K,

∆n = τn − τn−1 is positive i.i.d. geometrically distributed random
variables.

Remarks :
(τn)n>0 are all finite and converge to infinity almost surely.

So there is a constant C <∞ s. t. the event {Ψ1(k) ≤ C} occurs
infinitely often almost surely.
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Results on Ψ2(k)

First naive approach [Kempe2003] :

E[Ψ2(k)] = Trace
(

(I− J)E
[
P1,k (P1,k )T

]
(I− J)

)
Then

E[Ψ2(k)] ≤ ρ(M)Ψ2(k − 1), with M = J⊥E
[
KTK

]
J⊥.

Unfortunately, ρ(M) > 1 for some algorithms and communication graphs
(especially ours -cf. Slide 29-), while the algorithm converges.

Previous equation not tight enough

Second promising approach [Iutzeler2013a] :

Ψ2(k) = ‖Θ(k)‖Frobenius, with Θ(k) = P1,k J⊥ ⊗ P1,k J⊥

E[Θ(k)] ≤ ρ(R)Θ(k − 1), with R = E [K⊗ K]
(
J⊥ ⊗ J⊥

)
.
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Results on Ψ2(k) (cont’d)

Theorem

Under mild assumptions, one can prove that

ρ(R) < 1

and, that
E[Ψ2(k)] = O

(
e−δk

)
with δ = − log (ρ (R)) > 0

.

τn+1τn

‖x(τn+1)− xave1‖22 < Ce−wτn+1‖x(τn)− xave1‖22 < Ce−wτn

max |xi(k)− xave|2 is non-increasing
.
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Example : Broadcast sum-Weight (BW) Gossip

At time k , let i be the activate node
[Iutzeler2013a]

I Node i updates :{
si (k + 1) = si (k)

di +1

wi (k + 1) = wi (k)
di +1

I i broadcasts
(

si (k)
di +1 ; wi (k)

di +1

)
to

all its neighbors

I Each neighbor j ∈ Ni

updates :{
sj (k + 1) = sj (k) + si (k)

di +1

wj (k + 1) = wj (k) + wi (k)
di +1

Take into account broadcast nature of wireless channel

No row-stochastic matrices but converges to the true value
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di +1

I i broadcasts
(

si (k)
di +1 ; wi (k)

di +1

)
to

all its neighbors

I Each neighbor j ∈ Ni

updates :{
sj (k + 1) = sj (k) + si (k)

di +1

wj (k + 1) = wj (k) + wi (k)
di +1

Take into account broadcast nature of wireless channel

No row-stochastic matrices but converges to the true value
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Example : Broadcast sum-Weight (BW) Gossip
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Back to [Boyd2006]

Remark

If matrices in K are doubly-stochastic, then

wi (k) = 1 ⇔ Ψ1(k) = 1

and
si (k) = xi (k), ∀i, k

Our analysis still holds for standard single-variate algorithms

In [Boyd2006], linear convergence with ρ(E[KKT]− J)

In [Iutzeler2013a], linear convergence with ρ(E[K⊗ K](J⊥ ⊗ J⊥)
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Part 5 : Numerical illustrations
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Tightness of the analysis

Random Geometric Graphs with radius of order
√

log(N)/N

Unless otherwise staded, N = 100
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Bound in [Boyd2004] 

Proposed bound w

Empirical slope

Slope for Random Gossip vs. N

The proposed bound is very tight
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Comparison with existing methods
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Random pairwise gossip

BW gossip

Franceschelli BroadCast

BroadCast gossip

MSE for various averaging algorithms

Proposed algorithm outperforms existing ones
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A funny example

RANDOM GOSSIP BROADCAST GOSSIP BW GOSSIP

Min Max Mean
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Part 6 : Perspectives
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Sum-Weight based distributed optimization

Go back to Slide 4 : combining Sum-Weight to gradient algorithm

1. x̃(k + 1) = x(k)− γk∇f (x(k))

2. x(k + 1) = Kx̃(k + 1)
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Sum-Weight based distributed optimization

Go back to Slide 4 : combining Sum-Weight to gradient algorithm

1.
s̃(k + 1) = s(k)− γk w(k)

� ∇f (s(k)�w(k))
with � the Hadamard product

2. {
s(k + 1) = Ks̃(k + 1)
w(k + 1) = Kw(k)
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BW gossip

Nesterov−like

Pairwise gossip

MSE vs time (synchronous case)

Extension to asynchronous case to be done (instability issue)
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ADMM based distributed optimization

Instead improving gossip step, let us improve gradient step
⇒ ADMM (Alternating Direction Method of Multipliers

[Schizas2008] for synchronous case
[Iutzeler2013b] for asynchronous case
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Distributed ADMM

Distributed ADMM w/ Round Robin

Asynchronous ADMM

Gradient Descent Algorithm w/ Random Gossip

MSE vs time (asynchronous case)

Convergence speed to be evaluated ?
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