Distributed average consensus for wireless networks

Philippe Ciblat

Joint work with P. Bianchi, W. Hachem and F. lutzeler

Institut Mines-Telecom/Telecom ParisTech, Paris, France

Outline

- 1. A few applications
- 2. Main mathematical tools
 - Graph Theory
 - Non-negative (stochastic) matrices
 - Markov Chain
- 3. Standard (single-variate based-) algorithms
 - Synchronous case [DeGroot1974]
 - Asynchronous case [Boyd2006, Aysal2009]
- 4. New (bivariate based-) algorithm
- 5. Numerical illustrations
- 6. Perspectives : distributed optimization

Part 1 : Applications

Example 1 : distributed optimization

$$\min_{x} f(x) \stackrel{\Delta}{=} \sum_{i=1}^{N} f_i(x)$$

with

- N number of nodes
- f_i known only at node i
- No fusion center (*f* known nowhere)
- \Rightarrow distributed processing

Practical functions

In sensor networks, $x = \theta$ may be the temperature (or gas pressure, ...), and f_i the log-likelihood $(y_i - \theta)^2$ where y_i is the measurement at node *i*. Then

$$\hat{\theta}_{\text{opt}} = \theta_{\text{ave}} = \frac{1}{N} \sum_{i=1}^{N} y_i \iff \text{average computation}$$

Example 1 : distributed optimization

$$\min_{x} f(x) \stackrel{\Delta}{=} \sum_{i=1}^{N} f_i(x)$$

with

- N number of nodes
- f_i known only at node i
- No fusion center (*f* known nowhere)
- \Rightarrow distributed processing

Practical functions

In resource allocation, $x = [P_1, \dots, P_N]$ may be the powers, and f_i the Shannon capacity at node *i*

Here, no direct average computation but average computation will be actually needed

Example 1 : distributed optimization (cont'd)

A simple distributed average computation algorithm [DeGroot1974]

At time k, each node replaces its current value with a weighted average of its current value and those of its neighbors.

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k) \text{ with } \mathbf{K}_{i,j} = \begin{cases} \frac{1}{1+\max\{d_i,d_j\}} & \text{if } j \in \mathcal{N}_i \\ 1 - \sum_{j \in \mathcal{N}_i} \mathbf{K}_{i,j} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

where $\mathbf{x}(0) = [x_1(0), \cdots, x_N(0)]^T$ are the initial measurements.

Application to distributed optimization :

Gradient step : $\tilde{x}_i(k+1) = x_i(k) - \gamma_k f'_i(x_i(k))$ for each node *i*.

Gossip step : $\mathbf{x}(k+1) = \mathbf{K}\tilde{\mathbf{x}}(k+1)$ with **K** used for average computation

So, average computation is needed

Example 2 : fully-distributed spectrum sensing

Problem : a secondary user is disturbing the primary receiver **Solution :** secondary users have to cooperate to detect the primary user

Optimal test : Log-Likelihood Ratio (LLR)

When the transmit signal and the noise are Gaussian,

$$T = \frac{1}{N} \sum_{i=1}^{N} t_i \geq \eta, \quad \text{with} \quad t_i = \frac{\text{SNR}_i}{\sigma_i^2 (1 + \text{SNR}_i)} \sum_{k=1}^{N_s} |y_i(k)|^2$$

Here, average computation is needed

Part 2 : Mathematical tools

Graph model

- Let $\mathcal{G} = (V, E)$ be the underlying communication graph between the nodes
 - with V is the set of Vertices/nodes/sensors/agents (N = |V|)
 - with E is the set of Edges (perfect communication links)

The communication graph \mathcal{G} is assumed

- unweighted (each edge has the same weight equal to 1)
- **undirected** (if $i \rightarrow j$ is a link, then $j \rightarrow i$ too)
- **connected** (one can find a path from any *i* to any *j*)

Graph theory

Let $\ensuremath{\mathcal{G}}$ be an undirected but possibly weighted graph.

$$- w_{i,j}$$
 the weight of the link (i,j)
 $\left\{egin{array}{c} w_{i,j} > 0 & ext{if } (i,j) \in E \ w_{i,j} = 0 & ext{otherwise} \end{array}
ight.$

- $\mathcal{N}_i = \{j \in V | (i, j) \in E\}$ the neighborhood of the node i
- $d_i = |\mathcal{N}_i|$ the degree of node *i*
- **D** = diag(d_1, \dots, d_N) is the degree diagonal matrix
- A is the adjacency matrix such that $A_{i,j} = w_{i,j}$
- **L** = **D A** is the Laplacian matrix

Remarks

• Let $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_N$ be the eigenvalues of L. $\lambda_2 \ne 0 \Leftrightarrow \mathcal{G}$ is connected

Let S = Supp(A) s.t. S_{i,j} = 1 if w_{i,j} > 0, and 0 otherwise.
 As S adjacency matrix of the associated unweighted graph, properties on connectivity can be checked with S instead of A.

Node activation model

Synchronous context :

 At time k, all nodes exchange information and do the same algebraic manipulations. So ∃! K s.t.

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k) \Rightarrow \mathbf{x}(k) = \mathbf{K}^{k}\mathbf{x}(0)$$

Asynchronous context :

 At time k, only one node (let say i_k) exchanges information. This node and some of its neighbors do algebraic manipulations through a finite set of matrices K_{i_k} = {**K**<sub>ω_{i_k}}. So, ∃ K = ∪_{i=1}^N K_i s.t.
</sub>

$$\mathbf{x}(k+1) = \mathbf{K}_{\omega_{i_k}} \mathbf{x}(k) \ (= \mathbf{K}_{\nu_k} \mathbf{x}(k)) \quad \Rightarrow \quad \mathbf{x}(k) = \left(\prod_{\ell=1}^k \mathbf{K}_{\nu_\ell}\right) \mathbf{x}(0)$$

- i_k is an i.i.d process and $\mathbb{P}(i_k = j) = p_j$
- w_i is an i.i.d process $\Rightarrow \nu_k$ is an i.i.d process
- Collision-free assumption (still valid for collision if CRC at RX)

Non-negative matrices

Non-Negative Matrices (NNM)

M is a $N \times N$ non-negative matrix iff $\mathbf{M}_{i,j} \ge \mathbf{0}, \quad \forall i, j$

NNM play a crucial role herafter since

- A the adjacency matrix of the communication graph is NNM
- K_{\nu} the update matrices are NNM as well

Actually any NNM can be viewed as an adjacency matrix of a weighted and directed graph $\mathcal{G}(M)$

Two types of connectivity

When the graph is directed, we can define

- weak connectivity : path from *i* to *j* OR from *j* to *i*, for any *i*, *j*
- strong connectivity : paths from i to j AND from j to i, for any i, j

Irreducible matrices

Let **A** be a $N \times N$ non-negative matrix. **A** is **irreducible** iff

- $\ \, \text{either} \ \, ({\bm I} + {\bm A})^{N-1} > 0 \, ;$
- or $\mathcal{G}(\mathbf{A})$ is strongly connected.

Perron-Frobenius theorem for irreducible matrices

Let $\rho(\mathbf{A}) \triangleq \max_i \{|\lambda_i^{\mathbf{A}}|\}$ be the *spectral radius*.

Let **A** be a $N \times N$ irreducible matrix. Then

i) $\rho(\mathbf{A}) > 0$ is a simple eigenvalue of \mathbf{A} ;

ii) there is a positive vector **x** such that $\mathbf{A}\mathbf{x} = \rho(\mathbf{A})\mathbf{x}$.

Remark :

• if A irreducible, Supp(A) irreducible too.

Primitive matrices

Let **A** be a $N \times N$ non-negative matrix. **A** is **primitive** iff

 $- \exists m \ge 1$ s. t. \mathbf{A}^m is a positive matrix.

Primitivity leads to irreducibility and strong connectivity of $\mathcal{G}(A)$

Perron-Frobenius theorem for primitive matrices

Let **A** be a $N \times N$ primitive matrix. In addition to irreducible case,

iii) $\rho(\mathbf{A})$ is the only eigenvalue of maximal modulus.

Remarks :

- If A irreducible but not primitive, A has k > 1 eigenvalues of maximal modulus
- If A irreducible with positive diagonal entries, A primitive
- If A irreducible, adding self-loop to A leads primitivity
- If **A** primitive, Supp(**A**) primitive too.

Stochastic matrices

Row-stochastic matrix

Non-negative matrix with sum of each row equal to $1 \Leftrightarrow A1 = 1$

Column-stochastic matrix

Non-negative matrix with sum of each column equal to $\mathbf{1} \Leftrightarrow \mathbf{1}^{\mathrm{T}} \mathbf{A} = \mathbf{1}^{\mathrm{T}}$

Doubly-stochastic matrix

Row-stochastic and column-stochastic matrix

If $\boldsymbol{\mathsf{A}}$ is either row-stochastic or column-stochastic matrix, then

•
$$\rho(\mathbf{A}) = 1$$

• 1 (left or right)-eigenvector for the largest eigenvalue.

Remark : K in Slide 4 is doubly-stochastic.

Link with Markov Chain

Any $N \times N$ row-stochastic matrix is a transition probability matrix of a discrete-time Markov Chain with N states and conversely.

- W_k transition probability matrix at time k.
- $\mathbf{t}(k)$ states distribution at time k (non-negative with $\mathbf{1}^{\mathrm{T}}\mathbf{t}(k) = 1$)

$$\mathbf{t}(k+1)^{\mathrm{T}}=\mathbf{t}(k)^{\mathrm{T}}\mathbf{W}_{k}$$

Remarks :

• States distribution analysis leads to right multiplication

$$\mathbf{P}_{t}^{s,s+k} = \mathbf{W}_{s}\mathbf{W}_{s+1}\cdots\mathbf{W}_{s+k} \quad \text{(forward direction)}$$

• Average computation analysis leads to left multiplication (Slide 8)

$$\mathbf{P}_{b}^{s,s+k} = \mathbf{W}_{s+k}\mathbf{W}_{s+k-1}\cdots\mathbf{W}_{s}$$
 (backward direction)

Ergodicity of Markov Chain

Row-stochastic matrices $\{\mathbf{W}_k\}_k$ weakly ergodic if rows of $\mathbf{P}_f^{1,k}$ tend to be identical, <u>but</u> may vary. $\exists \mathbf{v}(k)$ non-negative vector $(\mathbf{1}^T \mathbf{v}(k) = 1)$,

$$\mathsf{P}^{1,k}_{f} \stackrel{k o \infty}{\sim} \mathsf{1v}(k)^{\mathrm{T}}$$

Application to our problem : nodes agree but agreement changes.

Row-stochastic matrices $\{\mathbf{W}_k\}_k$ strongly ergodic if rows of $\mathbf{P}_f^{1,k}$ tend to be identical. $\exists \mathbf{v}$ non-negative vector $(\mathbf{1}^T \mathbf{v} = 1)$,

$$\mathbf{P}_{f}^{1,k} \stackrel{k \to \infty}{\longrightarrow} \mathbf{1v}^{\mathrm{T}}$$

Application to our problem : nodes reach a consensus (= $\mathbf{v}^T \mathbf{x}(0)$).

Remarks :

- If $\{\mathbf{W}_k\}_k$ column-stochastic (not row-), replacing \mathbf{W}_k with $\mathbf{W}_k^{\mathrm{T}}$
- If $\{\mathbf{W}_k\}_k$ doubly-stochastic, $\mathbf{v} = (1/N)\mathbf{1}$
- If backward considered, same definition with P^{1,k}_b instead of P^{1,k}_f. Here, weak ergodicity=strong ergodicity [Chatterjee1977]

Part 3 : Standard (single-variate based-) algorithms

$$\mathbf{x}(k+1) = \mathbf{K}_{\xi_{k+1}}\mathbf{x}(k)$$

- $\mathbf{x}(k) = [x_1(k), \cdots, x_N(k)]^T$ where $x_i(k)$ value of node *i* at time *k*
- $\{\mathbf{K}_{\xi_k}\}_k$ i.i.d. process valued in $\mathcal{K} = \{\mathbf{K}_j\}_{j=1,...,M}$
- K_{ξk} non-negative, positive diagonal, and support included in that of I + A with A communication graph adjacency matrix

Sum conservation : average of the initial values kept at any time

 $\mathbf{1}^{\mathrm{T}}\mathbf{x}(k+1) = \mathbf{1}^{\mathrm{T}}\mathbf{x}(k) \Leftrightarrow$ column-stochastic

Consensus conservation : consensus stable (if it exists)

 $\mathbf{x}(k) = c\mathbf{1}$, so $\mathbf{x}(k+1) = c\mathbf{1} \Leftrightarrow$ row-stochastic

Let J be the projection on span(1) : $\mathbf{J} = (1/N)\mathbf{1}\mathbf{1}^{\mathrm{T}}$ Let \mathbf{J}^{\perp} be the projection on span(1)^{\perp} : $\mathbf{J}^{\perp} = \mathbf{I} - \mathbf{J}$.

Doubly-stochastic matrices - sync. case

 $\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$ with **K** doubly-stochastic

- K row-stochastic, so transition probability matrix of homogeneous Markov Chain (weak=strong, forward=backward)
- If **K** primitive, Markov Chain ergodic : $\lim_{m\to\infty} \mathbf{K}^m = \mathbf{1}\mathbf{v}^T$
- K column-stochastic, so $\mathbf{v} = (1/N)\mathbf{1}$.

Then

$$\mathbf{x}(k) \rightarrow x_{\text{ave}} \mathbf{1} \quad \left(\text{with } x_{\text{ave}} = \frac{1}{N} \sum_{i=1}^{N} x_i(0) \right)$$

Primitivity?

K primitive if

- communication graph connected
- support of K identical to that of communication graph (+self-loop)

Example : Metropolis algorithm (Slide 4)

Examples Tools Std Algo. New Algo. Simus Perspectives Sync. Async.

Doubly-stochastic matrices - sync. case (cont'd)

What is the convergence speed?

• If **K** primitive, **KK**^T primitive. As doubly-stochastic,

$$\rho(\mathbf{K}\mathbf{K}^{\mathrm{T}}-\mathbf{J})<1$$

Why ρ(KK^T – J) plays a great role :

$$\mathbf{x}(k) = \mathbf{J}\mathbf{x}(k) + \mathbf{J}^{\perp}\mathbf{x}(k) \stackrel{\mathsf{K} \text{ col.-sto.}}{=} x_{\mathrm{ave}}\mathbf{1} + \mathbf{J}^{\perp}\mathbf{x}(k)$$

Convergence of $\mathbf{x}(k) \sim \text{convergence of } \|\mathbf{J}^{\perp}\mathbf{x}(k)\|_2^2$

In addition

$$\|\mathbf{J}^{\perp}\mathbf{x}(k+1)\|_{2}^{2} \overset{\mathsf{K} \text{ row.-sto.}}{\leq}
ho\left(\mathbf{K}\mathbf{K}^{\mathrm{T}}-\mathbf{J}
ight)\|\mathbf{J}^{\perp}\mathbf{x}(k)\|_{2}^{2}$$

Link between projections into span(1)^{\perp} at time *k* and (*k* + 1)

Main result

Under mild assumptions, doubly-stochastic update matrices lead to linear convergence with slope $\alpha = \rho(\mathbf{K}\mathbf{K}^{\mathrm{T}} - \mathbf{J}) < 1$

Sync. Async.

Doubly-stochastic matrices - async. case

$$\mathbf{x}(k) = \mathbf{P}^{1,k} \mathbf{x}(0)$$
 with $\mathbf{P}^{1,k} \triangleq \mathbf{K}_{\xi_k} \mathbf{K}_{\xi_{k-1}} \dots \mathbf{K}_{\xi_1}$.

with $\{\mathbf{K}_{\xi_k}\}_k$ assumed i.i.d..

- As K_i row-stochastic, P^{1,k} backward concatenation of transition probability matrix of a heterogeneous Markov Chain
- Using similar arguments as previous slide, (strong/weak) ergodicity is needed and ensured by primitivity of $\mathbb{E}[\mathbf{K}]$.
- $\mathbb{E}[\mathbf{K}]$ primitive if communication graph connected and support of $\mathbb{E}[\mathbf{K}]$ identical to that of communication graph (+self-loop)

Main result

Under mild assumptions, doubly-stochastic update matrices lead to linear convergence with slope $\beta = \rho(\mathbb{E}[\mathbf{K}\mathbf{K}^{\mathrm{T}}] - \mathbf{J}) < 1$

Examples Tools Std Algo. New Algo. Simus Perspectives

nc. Async.

Example : Random Pairwise Gossip [Boyd2006]

At time k, let i be the active node

- *i* chooses a neighbor *j* uniformly in *N_i*
- i and j exchange their values
- ► *i* and *j* update : $x_i(k + 1) = x_j(k + 1) = \frac{x_i(k) + x_j(k)}{2}$.

Example : Random Pairwise Gossip [Boyd2006]

At time *k*, let *i* be the active node

- *i* chooses a neighbor *j* uniformly in N_i
- i and j exchange their values

► *i* and *j* update : $x_i(k + 1) = x_j(k + 1) = \frac{x_i(k) + x_j(k)}{2}$.

Example : Random Pairwise Gossip [Boyd2006]

At time *k*, let *i* be the active node

- *i* chooses a neighbor *j* uniformly in N_i
- i and j exchange their values
- ► *i* and *j* update : $x_i(k + 1) = x_j(k + 1) = \frac{x_i(k) + x_j(k)}{2}$.

Examples Tools Std Algo. New Algo. Simus Perspectives

nc. Async.

Example : Random Pairwise Gossip [Boyd2006]

$$\mathbf{K}_{\{i,j\}} = \begin{bmatrix} 1. & & & \\ & 1/2 & 1/2 & \\ & & 1. & \\ & & 1/2 & 1/2 & \\ & & & 1. & \\ & & & 1. & \end{bmatrix}$$

At time k, let i be the active node

- *i* chooses a neighbor *j* uniformly in N_i
- ▶ *i* and *j* exchange their values

• *i* and *j* update :
$$x_i(k + 1) = x_j(k + 1) = \frac{x_i(k) + x_j(k)}{2}$$
.

Sync. Async.

Non-doubly stochastic matrices

Doubly-stochastic update matrices require FEEDBACK

- Feedback (especially if routing) needs slow-varying network
- Feedback prevents to take benefit of broadcast nature of wireless channel

Two cases : Row-stochastic or Column-stochastic

Row-stochastic case

- Design : easy by doing weighted mean at RX
- Problem : no sum conservation ; information is lost (Slide 16) !!!
- Result : strong ergodicity of Markov Chain (Slide 14)
 - ▶ If $\mathbb{E}[\mathbf{K}]$ primitive, $\mathbf{x}(k) \stackrel{a.s.}{\rightarrow} (\mathbf{v}^{\mathrm{T}}\mathbf{x}(0))\mathbf{1}$
 - In addition, if $\mathbb{E}[\mathbf{K}]$ doubly-stochastic, $\mathbb{E}[\mathbf{v}^{\mathrm{T}}\mathbf{x}(0)] = x_{\mathrm{ave}}$
 - Unbiased <u>but</u> not consistent [Tahbaz2008]
- Conclusion : avoid to do that !!!

c. Async.

Example : Broadcast Gossip [Aysal2009]

- *i* broadcasts its value to all its neighbors
- ► Each neighbor $j \in N_i$ updates : $x_j(k+1) = \frac{x_i(k)+x_j(k)}{2}$.

- Take into account broadcast nature of wireless channel
- No column-stochastic update matrices
- Do not converge to the true value (only in expectation)

c. Async.

Example : Broadcast Gossip [Aysal2009]

- i broadcasts its value to all its neighbors
- ► Each neighbor j ∈ N_i updates :

$$x_j(k+1) = \frac{x_i(k) + x_j(k)}{2}.$$

- Take into account broadcast nature of wireless channel
- No column-stochastic update matrices
- Do not converge to the true value (only in expectation)

c. Async.

Example : Broadcast Gossip [Aysal2009]

- i broadcasts its value to all its neighbors
- ► Each neighbor j ∈ N_i updates :
 x·(k)+x·(k)

$$x_j(k+1)=\frac{x_i(k)+x_j(k)}{2}.$$

- Take into account broadcast nature of wireless channel
- No column-stochastic update matrices
- Do not converge to the true value (only in expectation)

Sync. Async.

Example : Broadcast Gossip [Aysal2009]

- *i* broadcasts its value to all its neighbors
- ► Each neighbor j ∈ N_i updates :

$$x_j(k+1)=\frac{x_i(k)+x_j(k)}{2}.$$

- Take into account broadcast nature of wireless channel
- No column-stochastic update matrices
- Do not converge to the true value (only in expectation)

It seems worse !!!

• As column-sto., no transition probability matrices, but work on

$$(\mathbf{K}_{\xi_k}\cdots\mathbf{K}_{\xi_1})^{\mathrm{T}} = \mathbf{K}_{\xi_1}^{\mathrm{T}}\cdots\mathbf{K}_{\xi_k}^{\mathrm{T}}$$
 instead on $\mathbf{K}_{\xi_k}\cdots\mathbf{K}_{\xi_1}$

Row-stochastic "update matrices " in FORWARD direction

• In forward direction, one can only ensure weak ergodicity. $\exists \mathbf{v}(k) \text{ non-negative vectors (with } \mathbf{1}^{T}\mathbf{v}(k) = 1) \text{ s.t.}$

$$(\mathbf{K}_{\xi_k}\cdots\mathbf{K}_{\xi_1})^{\mathrm{T}}\sim \mathbf{1v}(k)^{\mathrm{T}} \Leftrightarrow \mathbf{K}_{\xi_k}\cdots\mathbf{K}_{\xi_1}\sim \mathbf{v}(k)\mathbf{1}^{\mathrm{T}}.$$

Three fundamental differences :

- no consensus anymore as $\mathbf{x}(k) \sim (Nx_{ave})\mathbf{v}(k)$, so $x_i(k) \propto v_i(k)$
- average is available somewhere since $x_i(k) \propto x_{ave}$ but hidden
- $\mathbf{v}(k)$ multiplies 1 by the left (not by the right as in row-sto.)
- sum conservation : information is available
- ► How recovering it ? How removing v_i(k) ? ⇒ side information

Part 4 : New (bivariate based-) algorithm

Algorithm principle

An other variable providing $v_i(k)$ has to be computed in parallel

Let $\mathbf{w}(k)$ be this additional variable. We have easily

$$w(k) \sim Nv(k)$$
, if $w(0) = 1$ and $w(k+1) = 1$

$$\underbrace{\mathbf{K}_{\xi_{k+1}}}_{\mathbf{W}}$$
 w(k

same as for first variable

Sum-Weight algorithms [Kempe2003, Benezit2010, lutzeler2013a]

Let $\mathbf{s}(0) = \mathbf{x}(0)$ (sum) and $\mathbf{w}(0) = \mathbf{1}$ (weight). At time k, we have

$$\begin{array}{rcl} \mathbf{s}(k+1) &=& \mathbf{K}_{\xi_{k+1}}\mathbf{s}(k) \\ \mathbf{w}(k+1) &=& \mathbf{K}_{\xi_{k+1}}\mathbf{w}(k) \\ \mathbf{x}(k+1) &=& \mathbf{s}(k+1) \oslash \mathbf{w}(k+1) \Leftrightarrow x_i(k+1) = \frac{s_i(k+1)}{\mathbf{w}(k+1)} \end{array}$$

Remarks :

- [Kempe2003] convergence speed for one special algorithm
- [Benezit2010] convergence proof, no convergence speed

Main contributions

Our results [lutzeler2013a]

- Convergence speed for any Sum-Weight algorithm
- Sum-Weight algorithm using broadcast nature of wireless channel

Assumption : we remind K_{ξ} column-stochastic.

- As update matrices are not row-stochastic, recursion on J[⊥]x(k) does not work anymore
- Actually,

$$\begin{split} \mathbf{x}(k) &= x_{\text{ave}} \mathbf{1} + \mathbf{P}^{1,k} \mathbf{J}^{\perp} \mathbf{x}(0) \oslash \mathbf{w}(k) \\ \text{Convergence} \Leftrightarrow \|\mathbf{P}^{1,k} \mathbf{J}^{\perp} \mathbf{x}(0) \oslash \mathbf{w}(k)\|_2^2 \to 0 \end{split}$$

Steps for proof

$$\|\mathbf{x}(k) - x_{\text{ave}}\mathbf{1}\|_2^2 \leq \Psi_1(k)\Psi_2(k)$$

with

$$\Psi_1(k) = \frac{\|\mathbf{x}(0)\|_2^2}{[\min_i w_i(k)]^2}$$

$$\Psi_2(k) = \|\mathbf{P}^{1,k}\mathbf{J}^{\perp}\|_{\text{Frobenius}}^2$$

Two main steps :

- proving that w(k) not often close to 0 through asymptotic analysis of Ψ₁(k)
- proving that P^{1,k}J[⊥]x(0) vanishes for any x(0) through asymptotic analysis of Ψ₂(k)
- Approach inspired by [Kempe2003] but many differences

Results on $\Psi_1(k)$

Theorem

Let *L* be a well chosen positive constant. There exists a increasing sequence $(\rightarrow \infty) \tau_n$ s.t.

$$\Psi_1(au_n) \leq rac{\|\mathbf{x}(0)\|_2^2}{(m_{\mathcal{K}})^{2L}}$$

where

- $m_{\mathcal{K}}$ is the smallest non-null terms of matrices in \mathcal{K} ,
- $\Delta_n = \tau_n \tau_{n-1}$ is positive i.i.d. geometrically distributed random variables.

Remarks :

- $(\tau_n)_{n>0}$ are all finite and converge to infinity almost surely.
- So there is a constant C < ∞ s. t. the event {Ψ₁(k) ≤ C} occurs infinitely often almost surely.

Results on $\Psi_2(k)$

First naive approach [Kempe2003] :

$$\mathbb{E}[\Psi_{2}(k)] = \operatorname{Trace}\left((\mathbf{I} - \mathbf{J})\mathbb{E}\left[\mathbf{P}^{1,k}(\mathbf{P}^{1,k})^{\mathrm{T}}\right](\mathbf{I} - \mathbf{J})\right)$$

Then

$$\mathbb{E}[\Psi_2(k)] \le \rho(\mathbf{M})\Psi_2(k-1), \text{ with } \mathbf{M} = \mathbf{J}^{\perp}\mathbb{E}\left[\mathbf{K}^{\mathrm{T}}\mathbf{K}\right]\mathbf{J}^{\perp}.$$

Unfortunately, $\rho(\mathbf{M}) > 1$ for some algorithms and communication graphs (especially ours -cf. Slide 29-), while the algorithm converges.

Previous equation not tight enough

Second promising approach [lutzeler2013a] :

$$\Psi_2(k) = \|\Theta(k)\|_{\text{Frobenius}}, \text{ with } \Theta(k) = \mathbf{P}^{1,k} \mathbf{J}^{\perp} \otimes \mathbf{P}^{1,k} \mathbf{J}^{\perp}$$

 $\mathbb{E}[\Theta(k)] \le \rho(\mathbf{R})\Theta(k-1), \text{ with } \mathbf{R} = \mathbb{E}\left[\mathbf{K} \otimes \mathbf{K}\right] \ \left(\mathbf{J}^{\perp} \otimes \mathbf{J}^{\perp}\right).$

Results on $\Psi_2(k)$ (cont'd)

Theorem

Under mild assumptions, one can prove that

 $\rho(\mathbf{R}) < 1$

and, that

$$\mathbb{E}[\Psi_2(k)] = \mathcal{O}\left(\boldsymbol{e}^{-\delta k}\right)$$

with $\delta = -\log\left(\rho\left(\mathbf{R}\right)\right) > 0$

At time *k*, let *i* be the activate node [lutzeler2013a]

Node *i* updates :

$$\begin{cases}
s_i(k+1) = \frac{s_i(k)}{d_i+1} \\
w_i(k+1) = \frac{w_i(k)}{d_i+1}
\end{cases}$$

► *i* broadcasts (s_i(k)/d_i+1; w_i(k)/d_i+1) to all its neighbors

► Each neighbor j ∈ N_i updates :

$$\begin{cases} s_j(k+1) = s_j(k) + \frac{s_i(k)}{d_i+1} \\ w_j(k+1) = w_j(k) + \frac{w_i(k)}{d_i+1} \end{cases}$$

- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

At time *k*, let *i* be the activate node [lutzeler2013a]

Node *i* updates :

$$\begin{cases}
s_i(k+1) = \frac{s_i(k)}{d_i+1} \\
w_i(k+1) = \frac{w_i(k)}{d_i+1}
\end{cases}$$

► *i* broadcasts (s_i(k)/d_i+1; w_i(k)/d_i+1) to all its neighbors

► Each neighbor j ∈ N_i updates :

$$\begin{cases} s_j(k+1) = s_j(k) + \frac{s_i(k)}{d_i+1} \\ w_j(k+1) = w_j(k) + \frac{w_i(k)}{d_i+1} \end{cases}$$

- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

At time *k*, let *i* be the activate node [lutzeler2013a]

Node *i* updates :

$$\begin{cases}
s_i(k+1) = \frac{s_i(k)}{d_i+1} \\
w_i(k+1) = \frac{w_i(k)}{d_i+1}
\end{cases}$$

- ► *i* broadcasts (s_i(k)/d_i+1; w_i(k)/d_i+1) to all its neighbors
- ► Each neighbor j ∈ N_i updates :

$$\begin{cases} s_j(k+1) = s_j(k) + \frac{s_i(k)}{d_i+1} \\ w_j(k+1) = w_j(k) + \frac{w_i(k)}{d_i+1} \end{cases}$$

- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

At time *k*, let *i* be the activate node [lutzeler2013a]

Node *i* updates :

$$\begin{cases}
s_i(k+1) = \frac{s_i(k)}{d_i+1} \\
w_i(k+1) = \frac{w_i(k)}{d_i+1}
\end{cases}$$

- ► *i* broadcasts (s_i(k)/d_i+1; w_i(k)/d_i+1) to all its neighbors
- ► Each neighbor j ∈ N_i updates :

$$\begin{cases} s_j(k+1) = s_j(k) + \frac{s_i(k)}{d_i+1} \\ w_j(k+1) = w_j(k) + \frac{w_i(k)}{d_i+1} \end{cases}$$

- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

$$\mathbf{K}_{i} = \begin{bmatrix} 1 & \frac{1}{d_{i}+1} & \\ & 1 & \\ & \frac{1}{d_{i}+1} & \\ & & 1 & \\ & & \frac{1}{d_{i}+1} & \\ & & & 1 & \end{bmatrix}$$

At time *k*, let *i* be the activate node [lutzeler2013a]

- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

Back to [Boyd2006]

Remark

If matrices in \mathcal{K} are doubly-stochastic, then

$$w_i(k) = 1 \quad \Leftrightarrow \quad \Psi_1(k) = 1$$

and

$$s_i(k) = x_i(k), \quad \forall i, k$$

Our analysis still holds for standard single-variate algorithms

- In [Boyd2006], linear convergence with $\rho(\mathbb{E}[\mathbf{K}\mathbf{K}^{\mathrm{T}}] \mathbf{J})$
- In [lutzeler2013a], linear convergence with $\rho(\mathbb{E}[\mathbf{K} \otimes \mathbf{K}](\mathbf{J}^{\perp} \otimes \mathbf{J}^{\perp}))$

Part 5 : Numerical illustrations

Tightness of the analysis

- Random Geometric Graphs with radius of order $\sqrt{\log(N)/N}$
- Unless otherwise staded, N = 100

The proposed bound is very tight

Comparison with existing methods

MSE for various averaging algorithms

Proposed algorithm outperforms existing ones

A funny example

Part 6 : Perspectives

Sum-Weight based distributed optimization

Go back to Slide 4 : combining Sum-Weight to gradient algorithm

1.
$$\tilde{\mathbf{x}}(k+1) = \mathbf{x}(k) - \gamma_k \nabla f(\mathbf{x}(k))$$

$$\mathbf{2.} \ \mathbf{x}(k+1) = \mathbf{K}\tilde{\mathbf{x}}(k+1)$$

Sum-Weight based distributed optimization

Go back to Slide 4 : combining Sum-Weight to gradient algorithm

1.

$$\tilde{\mathbf{s}}(k+1) = \mathbf{s}(k) - \gamma_k \mathbf{w}(k)$$

$$\odot \nabla f(\mathbf{s}(k) \oslash \mathbf{w}(k))$$
with \odot the Hadamard product
2.

$$\begin{cases} \mathbf{s}(k+1) = \mathbf{K}\tilde{\mathbf{s}}(k+1) \\ \mathbf{w}(k+1) = \mathbf{K}\mathbf{w}(k) \end{cases}$$

MSE vs time (synchronous case)

Extension to asynchronous case to be done (instability issue)

Examples Tools Std Algo. New Algo. Simus Perspectives

ADMM based distributed optimization

Instead improving gossip step, let us improve gradient step

⇒ ADMM (Alternating Direction Method of Multipliers [Schizas2008] for synchronous case [lutzeler2013b] for asynchronous case

MSE vs time (asynchronous case)

Convergence speed to be evaluated?

References

[DeGroot1974] M. DeGroot, "Reaching a consensus," Jnl of ASA, 1974.

[Chatterjee1977] S. Chatterjee et al., "Towards consensus : some convergence theorems on repeating averaging," Jnl of Applied Proba, 1977.

[Kempe2003] D. Kempe et al., "Gossip-based computation of aggregate infomration," IEEE FOCS, 2003.

[Boyd2006] S. Boyd et al., "Randomized Gossip Algorithms," IEEE TIT, 2006.

[Schizas2008] I. Schizas et al., "Consensus in ad hoc WSN with noisy links : distributed estimation of deterministic signals," IEEE TSP, 2008.

[Tahbaz2008] A. Tahbza-Salehi et al., "A necessary and sufficient condition for consensus over random networks," IEEE TAC, 2008.

[Aysal2009] T.C. Aysal et al., "Broadcast Gossip Algorithms for Consensus," IEEE TSP, 2009.

[Benezit2010] F. Bénézit et al., "Weighted Gossip : distributed averaging using non-doubly-stochastic matrices ," IEEE ISIT, 2010.

[lutzeler2013a] F. lutzeler et al., "Analysis of Sum-Weight-like algorithms for averaging in WSN," IEEE TSP, 2013.

[lutzeler2013b] F. lutzeler et al., "Asynchronous Distributed Optimization using a Randomized ADMM," IEEE CDC, 2013.