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1. A few applications

2. Standard (single-variate based-) algorithms

» Synchronous case [DeGroot1974,Tsitsiklis1984]

» Asynchronous case

— doubly-stochastic case [Boyd2006]
— row-stochastic case [Aysal2009]
— column-stochastic case : can take benefit of broadcast nature of wireless channel

3. New (bivariate based-) algorithm [lutzeler2013]
4. Numerical illustrations

5. Perspectives : distributed optimization
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Examples

Part 1 : Applications J
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Examples

Example 1 : distributed monitoring in sensor networks

node/sensor/agent 7
x; @ N nodes/sensors/agents
@ Xx; measurement at node i

@ Applications : practical
measurements of temperature,
gas pressure, ...

Goal

At each node, we want to compute Xue = « Z,’L Xi
but

@ No fusion center
@ Only local communications allowed

distributed average computation is needed
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Examples

Example 2 : fully-distributed spectrum sensing for cognitive radio

*~ o s
" \“\\__\_ + Problem : a secondary user is
. \\\*“ disturbing the primary receiver
« (hidden terminal problem)
I Solution : secondary users have to
+ cooperate to detect the primary user

Goal : Optimal test for Gaussian signals

N N
1 .
T=1% ;x; 2n, with X o kz:; yi(k)[?

distributed average computation is needed
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Examples

Example 3 : distributed quadratic form optimization

node/sensor/agent % Xi =X+ €;

fi(x) with
@ Xx; measurement at node i
@ x common unknown parameter
@ ¢; white Gaussian noise
@ Applications : localization, ...

Goal : Maximum-Likelihood estimator

The best estimator for x is
N
Xop = argmin f(x) 2> f(x) with  fi(x) = (x — x)?
X =1

N
Ropt = Xaye = 1N > x <« distributed average computation is needed

i=1
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Examples
Example 4 : rendez-vous problem

Let x;(0) = x; be the initial position of node i
At time (k 4+ 1), for each node i
xi(k +1) ) +a > (x(k) = xi(k))

JEN;

with
— xj(k) position of node i at time k
— N neighborhood of node i
— « a positive parameter

Applications : flocking analysis, ...

Is there consensus (limx—_ . Xi(k) = ¢) ?
Which condition on « for satisfying ¢ = Xae ?
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Std Algo.

Part 2 : Standard (single-variate based-) algorithms J
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Std Algo. Sync. Async.

Algorithmic model

@ Updates correspond to a positive linear combination of previous values
@ Which nodes wake up at a given time ?
@ Which nodes take part to linear combination ?

Synchronous case :
@ each node wakes up at each time and performs the same combination
@ No randomness

Asynchronous case :
@ a set of nodes wakes up at a given time randomly
@ these selected nodes perform random linear combinations

@ model very general (e.g. deterministic algos with collision or random
environment, ...)

@ Randomness
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Std Algo. Sync. Async.

Sync. case : Rendez-vous algorithm [Tsitsiklis1984]

x(k + 1) = Kx(k)

with
@ x(k) = [x1(K),--- , xn(k)]" where x;(k) value of node i at time k
@ x(0) = [x1,--- , xn]" are the initial measurements.
@ matrix K such that
o if j € N
Ku={ 1—ad ifi=j
0 otherwise.

where d; is the number of neighbors of node i.

Property on K
@ If symmetric links (link i — j exists iff link j — i exists)
o If o < 1/ max;{d;}

Then
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Std Algo. Sync. Async.

Sync. case : Rendez-vous algorithm [Tsitsiklis1984]

x(k + 1) = Kx(k)
with

@ x(k) = [xi(k), -, xn(k)]" where x;(k) value of node i at time k
@ x(0) = [x1,--- , xn]" are the initial measurements.
@ matrix K such that

o if jeN;

Ki,j:{ 1—ad ifi=j
0 otherwise.
where d; is the number of neighbors of node i.

Property on K

@ If symmetric links (link i — j exists iff link j — i exists)
o If a < 1/max;{d;}

Then
@ Non-negative @ Row sum =1
@ Positive diagonal @ Column sum = 1

= Row-stochastic matrix
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Std Algo. Sync. Async.

Sync. case : Rendez-vous algorithm [Tsitsiklis1984]

x(k + 1) = Kx(k)

with
@ x(k) = [x1(k),--- , xn(k)]" where x;(k) value of node i at time k
@ x(0) = [x1,- -+, xn]" are the initial measurements.
@ matrix K such that
a it € Ni
K/,j:{ 1—ad ifi=j
0 otherwise.

where d; is the number of neighbors of node i.

Property on K

@ If symmetric links (link i — j exists iff link j — i exists)
o If a < 1/ max;{d:}

Then
@ Non-negative @ Row sum =1
@ Positive diagonal @ Column sum = 1

= Doubly-stochastic matrix
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Std Algo. Sync. Async.

Sync. case : Metropolis-Hastings algorithm [DeGroot1974]

First algorithm developed for distributed average consensus

1 . .
Trmax(d dT ifj € N;
Kij=93 1= en Ky ifi=]
0 otherwise.

@ Non-negative : positive combination
@ Positive diagonal : each node keeps its own information
@ Row sum = 1 : barycenter of received current values

Consensus conservation < x(k) = cl1,so x(k+ 1) = c1 J

@ Columnsum=1:??"?

Average conservation < 1'x(k + 1) = 1"x(k) J
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Std Algo.

Convergence result

x(k) = Kx(0) with K doubly-stochastic

One tool : primitive matrix

@ M primitive matrix iff non-negative and 3 m > 1 s. t. M” positive matrix
@ This property holds if nodes’ communication graph is connected

Any N x N row-stochastic matrix is a transition probability matrix
of a discrete-time Markov Chain with N states and conversely.

If K primitive and column-stochastic, then

lim KK = 1N11T £J (projector on span(1))

k— o0

and
X(k) = Xael Wwhen k — oo
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Std Algo.

Convergence speed result

X(k) = Ix(k) +dx(k) " = xe + I x(K)

Convergence of x(k) ~ convergence of ||[J-x(k)|?
In addition,

ow . — st

K row. 0.
Ex(k+ D)2 < p (KKT = J) [[94x (k).
Is p (KKT —J) <12
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Std Algo.

Convergence speed result

X(k) = Ix(k) + " x(k) " = xe + I x(K)

Convergence of x(k) ~ convergence of ||J-x(k)
In addition,

I?

K row.—sto.
Xk D[P ST p (KKT = 9) [ x(K)| .
Is p (KK" — J) < 1? YES (since K primitive and KK" as well)

Perron-Frobenius theorem

Let M be a primitive matrix and p(M) = max; |A\;(M)| its spectral radius. Then
i) p(M) is the unique maximum eigenvalue and is simple.

If M is either row-stochastic or column-stochastic matrix, then
i) p(M)=1.
iii) 1/+/N (right or left)-eigenvector for the eigenvalue 1.
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Std Algo. Sync. Async.

Convergence speed result

x(k) = Jx(K) + dx(k) = X1 + I x(k)

Convergence of x(k) ~ convergence of ||[J-x(k)||
In addition,

2

K row.—sto.
I x(k+ 1IE 7S p (KKT = 3) [34x(k) .
Is p (KK" — J) < 1? YES (since K primitive and KK" as well)

Perron-Frobenius theorem

Let M be a primitive matrix and p(M) = max; |\;(M)| its spectral radius. Then
i) p(M) is the uniqgue maximum eigenvalue and is simple.
If M is either row-stochastic or column-stochastic matrix, then
i) p(M)=1.
iii) 1/+/N (right or left)-eigenvector for the eigenvalue 1.

4

Main result

MSE(k) < o||Jx(0)|[* with o = p(KK" — J) < 1
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Std Algo.

Asynchronous case

X(k + 1) = K€k+1x(k)
@ {K¢, }« i.i.d. process valued in K = {K;}=1,...m
@ K., non-negative, positive diagonal

Example : Random Pairwise Gossip [Boyd2006]

At time k, let i be the active node

» i chooses a neighbor j
uniformly in NV;

» i and j exchange their values

» iandjupdate : xj(k +1) =

X/(k + 1) _ Xi(k);rxj(k).
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Std Algo.

Asynchronous case

X(k +1) = Kg, (k)
@ {K¢, }« i.i.d. process valued in K = {K;}-1
@ K, non-negative, positive diagonal

.....

Example : Random Pairwise Gossip [Boyd2006]
At time k, let i be the active node

g » i chooses a neighbor j

1/2 1/2 uniformly in N;
Kiijp = 1. » iand j exchange their values
1/2 1/2 » iandjupdate : xj(k+ 1) =
1. xi(k 4 1) = 2002500

Doubly-stochastic update matrices
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Std Algo. Sync. Async.

Example : Random Pairwise Gossip [Boyd2006]

As doubly-stochastic matrices, simple adaptation of synchronous case

X(k) %% Xue1 when k — oo

MSE (k) < 8¥||d*x(0)][* with 8 = p(E[KK"] — J) < 1

Two main drawbacks :
o feedback needed

» lack of robustness
» requires slow-varying network (especially if routing)
» prevents to take benefit of broadcast nature of wireless channel

@ broadcast nature of wireless channel not used

Main open question : how broadcasting information without feedback ?
Answer : lutzeler-Ciblat-Hachem in ICASSP’2012
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Std Algo. Sync. Async.

Example : Broadcast Gossip [Aysal2009]

First algorithm taken into account broadcast nature of wireless channel

At time k, let i be the active node
» | broadcasts its value to all its

neighbors

» Each neighbor j €
updates :
(k1) = HEF
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Std Algo. Sync. Async.

Example : Broadcast Gossip [Aysal2009]

First algorithm taken into account broadcast nature of wireless channel

At time k, let i be the active node

12
10 » / broadcasts its value to all its
20 neighbors
» Each neighbor j € N;
updates :
: xj(k+ 1) = 2070,
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Std Algo. Sync. Async.

Example : Broadcast Gossip [Aysal2009]

First algorithm taken into account broadcast nature of wireless channel

At time k, let i be the active node

15 » i broadcasts its value to all its
neighbors

20

. » Each neighbor j € N;
updates :

12 x(k+1) = ﬂ
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Std Algo. Sync. Async.

Example : Broadcast Gossip [Aysal2009]

First algorithm taken into account broadcast nature of wireless channel

At time k, let i be the active node

1/2 1/2 » |/ broadcasts its value to all its
g neighbors
Ki= L » Each neighbor j € \;
1/2 172 updates : X ! I
1. xi(k + 1) = 2050

Row-stochastic update matrices
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Std Algo Sync. Async.

Exemple : Broadcast Gossip [Aysal2009]

@ Problem : no column-stochastic matrices
= no average conservation ; information is lost (Slide 9) ! !'!

@ Result : 3 v non-negative vector (1Tv = 1),

k—oo T

Kék"’KﬁzK& — 1v
and

x(k) &3 (vx(0))1

» Nodes reach consensus, but not the good one
» If K; column-stochastic as well, v = (1/N)1, the average is reached

Avoid to do that ! !'!
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Std Algo. Sync. Async.

How using broadcast channel and converging as well ?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

@ node 4 broadcasts information to its
neighbors 2 and 3.

0 K3 kaa
0 0 Kiq

| — |
OO~

e 8 i ]
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Std Algo. Sync. Async.

How using broadcast channel and converging as well ?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

@ node 4 broadcasts information to its
neighbors 2 and 3.

@ no feedback.

1
@ Row-stochasticity is possible ... but not 0 lgg 8 1 —0 ko
double-stochasticity 8 : ’63 1 J ks
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Std Algo. Sync. Async.

How using broadcast channel and converging as well ?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

@ node 4 broadcasts information to its
neighbors 2 and 3.

@ no feedback.

0
@ Row-stochasticity is possible ... but not [ é g § //gZ ]
double-stochasticity 00 O ki

@ Column-stochasticity is possible
(k2 + ks + ks = 1) ... but not
double-stochasticity
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Std Algo. Sync. Async.

How using broadcast channel and converging as well ?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

@ node 4 broadcasts information to its

neighbors 2 and 3.

@ no feedback. 6 ? 8 0

° Row-stochasticit_y_is possible ... but not [ 0 0 1 //% ]
double-stochasticity 0 0 0 kK

@ Column-stochasticity is possible
(k2 + K3 + ka = 1) ... but not
double-stochasticity

... but require FEEDBACK
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Std Algo. Sync. Async.

How using broadcast channel and converging as well ?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback
@ node 4 broadcasts information to its
neighbors 2 and 3.
@ no feedback.
@ Row-stochasticity is possible ... but not [
double-stochasticity

@ Column-stochasticity is possible
(k2 + K3+ kg = 1) ... but not
double-stochasticity

[~leol o]
o—-00

O
| IS

[elelels

... but require FEEDBACK

Two cases :
» Row-stochastic : bad (Slide 15)
» Column-stochastic : good ?
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Std Algo Sync

Column-stochastic updates matrices

@ It seems worse!!!

@ Result : 3 v(k) non-negative vectors (with 17v(k) = 1) s.t.

Key - Ke,Key ~ V(k)1T

and

X(K) ~ (NXave)V(k)

» Nno consensus anymore since x;(k) o v;(k)
» average is available somewhere since x;(k) o Xav. but hidden (Slide 9)

» information is available since average conservation but hidden
» How recovering it ? How removing v;(k) ? = side information
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New Algo.

Part 3 : New (bivariate based-) algorithm J
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New Algo.
Algorithm principle

An other variable providing vi(k) has to be computed in parallel

Let w(k) be this additional variable. We have easily
w(k) ~ Nv(k), if w(0)=1andw(k+1)= Key, w(k)
N~

same as for first variable

Sum-Weight algorithms [Kempe2003, Benezit2010, lutzeler2013]

Let s(0) = x(0) (sum) and w(0) = 1 (weight). At time k, we have

s(k+1) = Kg. (k)

W(k + 1) = fk+1w(k)

x(k+1) = stk+1)owk+1)e xk+1)= 20D
Remarks :

— [Kempe2003] convergence speed for one special algorithm
— [Benezit2010] convergence proof, no convergence speed
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New Algo.
Main contributions

Our results [lutzeler2013]
@ Convergence speed for any Sum-Weight algorithm
@ Sum-Weight algorithm using broadcast nature of wireless channel

X(K) = Xave + ((Ksk Ky )JLX(O)) ow(k) (K;col.-sto.)
So
[X(K) = Xae1[3 < Wi (K)Wa(K)
with

00 ot ) = kK

Two main steps :
@ w(k) not often close to 0 through analysis of W1 (k)
o (K¢, - - - K¢, )d*x(0) vanishes for any x(0) through analysis of W»(k)
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New Algo.

Main contributions (cont'd)

Theorem on W+ (k)

There is a constant C < oo and a increasing sequence (— o) 7, S.t.

\U1(Tn) S C

where
@ A, = 75 — Tp—1 is positive i.i.d. geometrically distributed r.v.
@ So the event {W(k) < C} occurs infinitely often almost surely.

Theorem on W;(k)

E[W2(k)] <O (+*) with 7=p(EKeK] (3" @d*)) <1

Tn Tn+1

lIx(7) — -r‘\\'(!le < Cym lIx(711) — -Tuw1H2 < Oy

max |7;(k) — Taye|? is non-increasing

Philippe Ciblat Distributed average consensus 20/27



New Algo.

Example : Broadcast sum-Weight (BW) Gossip

At time k, let i be the activate node
[lutzeler2013]

» Node i updates :

k
si(k+1) = d,(+1)
wi(k +1) = 44
» i broadcasts (d(ﬁ) ‘Zl{'i’?) to

all its neighbors
» Each neighbor j € N;

updates :
si(k+1) = (k) + 3%
w(k -+ 1) = wi(k) + 59

@ Take into account broadcast nature of wireless channel
@ No row-stochastic matrices but converges to the true value
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Example : Broadcast sum-Weight (BW) Gossip

At time k, let i be the activate node
[lutzeler2013]

» Node i updates :

e { sk +1) = 49

(]5,125) Wl(k+1) W/(k)

(5,0.25) » | broadcasts

all its nelghbors
» Each neighbor j € N;

/N
Q|»
%
o3
HE
N—
=
o

(9,1.25) updates :
si(k+1) = (k) + 3
w(k -+ 1) = wi(k) + 59

@ Take into account broadcast nature of wireless channel
@ No row-stochastic matrices but converges to the true value J
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New Algo.

Example : Broadcast sum-Weight (BW) Gossip

At time k, let i be the activate node
[lutzeler2013]

> Nodeiupdates
{ S’(k+ 1) - d+1

i(k)
1 e Wik +1) = 449
Ki = 1 » i broadcasts (j‘(ﬁ ‘Z’(ﬂ)) to
di+1 all its neighbors
q. » Each neighbor j € N;
updates :
i(K)
si(k +1) = s;(k) + Z(ﬁ
i(k
Wik + 1) = wi(k) + 40
@ Take into account broadcast nature of wireless channel
@ No row-stochastic matrices but converges to the true value J
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New Algo.
Back to [Boyd2006]

If update matrices are doubly-stochastic, then

wik)=1 < W(k)=1

and
si(k) = xi(k), Vi, k

Our analysis still holds for standard single-variate algorithms
@ In [Boyd2006], exponential convergence with p(E[KK™] — J)
@ In [lutzeler2013], exponential convergence with p(E[K ® K](J* ® J*))
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Part 4 : Numerical illustrations J
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Simus
Tightness of the analysis

@ Random Geometric Graphs with radius of order /log(N)/N
@ Unless otherwise staded, N = 100

MSE for BW Gossip vs. time Slope for Random Gossip vs. N

The proposed bound is very tight )
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Simus
Comparison with existing methods

10
R o®
L T T =~
= , Random pairwise gossip e

107 —0—BW gossip

—o— BroadCast gossip
0 260 4(‘)0 G(‘)O ‘0 10‘00 12‘00
Global time
MSE for various averaging algorithms
Proposed algorithm outperforms existing ones )
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Simus
A funny example

RANDOM GOSSIP BROADCAST GOSSIP BW Gossip

Min MaxMean
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Part 5 : Perspectives J
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Perspectives
Distributed optimization

N

Rope = argminf(x) £ > £(x)

i=1
with
@ f; convex and known only at node /
@ f unknown anywhere
@ ... so only local exchanges allowed

Most standard way to fix this problem : distributed gradient algorithm.
Gradient step : Xj(k + 1) = x;(k) — [/ (xi(k)) for each node i.
Gossip step : x(k + 1) = Kx(k + 1) with K used for average computation
» Distributed average computation is needed

@ Sum-Weight based distributed optimization : [Nedich2013] for sync. case

@ Applications : machine learning, big data, cloud computing, ad hoc
networks, ...
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