Distributed average consensus for wireless networks

Philippe Ciblat

Joint work with P. Bianchi, W. Hachem and F. lutzeler

Institut Mines-Telecom/Telecom ParisTech, Paris, France

Outline

- 1. A few applications
- 2. Standard (single-variate based-) algorithms
 - Synchronous case [DeGroot1974,Tsitsiklis1984]
 - Asynchronous case
 - doubly-stochastic case [Boyd2006]
 - row-stochastic case [Aysal2009]
 - column-stochastic case : can take benefit of broadcast nature of wireless channel
- 3. New (bivariate based-) algorithm [lutzeler2013]
- 4. Numerical illustrations
- 5. Perspectives : distributed optimization

Philippe Ciblat Distributed average consensus 2 / 2

Part 1: Applications

Example 1: distributed monitoring in sensor networks

- N nodes/sensors/agents
- x_i measurement at node i
- Applications: practical measurements of temperature, gas pressure, ...

Goal

At each node, we want to compute $x_{ave} = \frac{1}{N} \sum_{i=1}^{N} x_i$

but

- No fusion center
- Only local communications allowed

distributed average computation is needed

Philippe Ciblat Distributed average consensus 3 / 27

Example 2: fully-distributed spectrum sensing for cognitive radio

Problem : a secondary user is disturbing the primary receiver (hidden terminal problem)

Solution: secondary users have to cooperate to detect the primary user

Goal: Optimal test for Gaussian signals

$$T = \frac{1}{N} \sum_{i=1}^{N} x_i \geqslant \eta$$
, with $x_i \propto \sum_{k=1}^{N_s} |y_i(k)|^2$

distributed average computation is needed

Philippe Ciblat Distributed average consensus 4 / 2

Example 3: distributed quadratic form optimization

$$X_i = X + e_i$$

with

- x_i measurement at node i
- x common unknown parameter
- ei white Gaussian noise
- Applications : localization, ...

Goal: Maximum-Likelihood estimator

The best estimator for x is

$$\hat{x}_{\text{opt}} = \underset{x}{\text{arg min }} f(x) \stackrel{\Delta}{=} \sum_{i=1}^{N} f_i(x) \quad \text{with} \quad f_i(x) = (x_i - x)^2$$

$$\hat{x}_{\text{opt}} = x_{\text{ave}} = \frac{1}{N} \sum_{i=1}^{N} x_i \iff \text{distributed average computation is needed}$$

Philippe Ciblat Distributed average consensus 5 / 27

Example 4: rendez-vous problem

- Let $x_i(0) = x_i$ be the initial position of node i
- At time (k + 1), for each node i

$$x_i(k+1) = x_i(k) + \alpha \sum_{j \in \mathcal{N}_i} (x_j(k) - x_i(k))$$

with

- $-x_i(k)$ position of node i at time k
- $-\mathcal{N}_i$ neighborhood of node i
- $-\alpha$ a positive parameter
- Applications : flocking analysis, ...

Goal

- Is there consensus $(\lim_{k\to\infty} x_i(k) = c)$?
- Which condition on α for satisfying $c = x_{ave}$?

Philippe Ciblat Distributed average consensus 6 / 27

Part 2: Standard (single-variate based-) algorithms

Algorithmic model

Principle

- Updates correspond to a positive linear combination of previous values
- Which nodes wake up at a given time?
- Which nodes take part to linear combination?

Synchronous case:

- each node wakes up at each time and performs the same combination
- No randomness

Asynchronous case:

- a set of nodes wakes up at a given time randomly
- these selected nodes perform random linear combinations
- model very general (e.g. deterministic algos with collision or random environment, ...)
- Randomness

Philippe Ciblat Distributed average consensus 7/3

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$$

with

- $\mathbf{x}(k) = [x_1(k), \dots, x_N(k)]^T$ where $x_i(k)$ value of node i at time k
- $\mathbf{x}(0) = [x_1, \dots, x_N]^T$ are the initial measurements.
- matrix K such that

$$\mathbf{K}_{i,j} = \left\{ \begin{array}{ll} \alpha & \text{if } j \in \mathcal{N}_i \\ 1 - \alpha d_i & \text{if } i = j \\ 0 & \text{otherwise.} \end{array} \right.$$

where d_i is the number of neighbors of node i.

Property on K

- If symmetric links (link $i \rightarrow j$ exists iff link $j \rightarrow i$ exists)
- If $\alpha < 1/\max_i \{d_i\}$

Then

- Non-negative
- Positive diagonal

- Row sum = 1
- Column sum —

Philippe Ciblat Distributed average consensus 8 / 27

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$$

with

- $\mathbf{x}(k) = [x_1(k), \dots, x_N(k)]^T$ where $x_i(k)$ value of node i at time k
- $\mathbf{x}(0) = [x_1, \dots, x_N]^T$ are the initial measurements.
- matrix K such that

$$\mathbf{K}_{i,j} = \left\{ \begin{array}{ll} \alpha & \text{if } j \in \mathcal{N}_i \\ 1 - \alpha d_i & \text{if } i = j \\ 0 & \text{otherwise.} \end{array} \right.$$

where d_i is the number of neighbors of node i.

Property on K

- If symmetric links (link $i \rightarrow j$ exists iff link $j \rightarrow i$ exists)
- If $\alpha < 1/\max_i \{d_i\}$

Then

- Non-negative
- Positive diagonal

- Row sum = 1
- Column sum —

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$$

with

- $\mathbf{x}(k) = [x_1(k), \dots, x_N(k)]^T$ where $x_i(k)$ value of node i at time k
- $\mathbf{x}(0) = [x_1, \dots, x_N]^T$ are the initial measurements.
- matrix K such that

$$\mathbf{K}_{i,j} = \left\{ \begin{array}{ll} \alpha & \text{if } j \in \mathcal{N}_i \\ 1 - \alpha d_i & \text{if } i = j \\ 0 & \text{otherwise.} \end{array} \right.$$

where d_i is the number of neighbors of node i.

Property on K

- If symmetric links (link $i \rightarrow j$ exists iff link $j \rightarrow i$ exists)
- If $\alpha < 1/\max_i \{d_i\}$

Then

- Non-negative
- Positive diagonal

- Row sum = 1

Distributed average consensus 8 / 27 Philippe Ciblat

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$$

with

- $\mathbf{x}(k) = [x_1(k), \dots, x_N(k)]^T$ where $x_i(k)$ value of node i at time k
- $\mathbf{x}(0) = [x_1, \dots, x_N]^T$ are the initial measurements.
- matrix K such that

$$\mathbf{K}_{i,j} = \left\{ \begin{array}{ll} \alpha & \text{if } j \in \mathcal{N}_i \\ 1 - \alpha d_i & \text{if } i = j \\ 0 & \text{otherwise.} \end{array} \right.$$

where d_i is the number of neighbors of node i.

Property on K

- If symmetric links (link $i \rightarrow j$ exists iff link $j \rightarrow i$ exists)
- If $\alpha < 1/\max_i \{d_i\}$

Then

- Non-negative
- Positive diagonal

- Row sum = 1
- Column sum =

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$$

with

- $\mathbf{x}(k) = [x_1(k), \dots, x_N(k)]^T$ where $x_i(k)$ value of node i at time k
- $\mathbf{x}(0) = [x_1, \dots, x_N]^T$ are the initial measurements.
- matrix K such that

$$\mathbf{K}_{i,j} = \left\{ \begin{array}{ll} \alpha & \text{if } j \in \mathcal{N}_i \\ 1 - \alpha d_i & \text{if } i = j \\ 0 & \text{otherwise.} \end{array} \right.$$

where d_i is the number of neighbors of node i.

Property on K

- If symmetric links (link $i \rightarrow j$ exists iff link $j \rightarrow i$ exists)
- If $\alpha < 1/\max_i \{d_i\}$

Then

- Non-negative
- Positive diagonal

- Row sum = 1
- Column sum = 1

Philippe Ciblat Distributed average consensus 8 / 27

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$$

with

- $\mathbf{x}(k) = [x_1(k), \dots, x_N(k)]^T$ where $x_i(k)$ value of node i at time k
- $\mathbf{x}(0) = [x_1, \dots, x_N]^T$ are the initial measurements.
- matrix K such that

$$\mathbf{K}_{i,j} = \left\{ \begin{array}{ll} \alpha & \text{if } j \in \mathcal{N}_i \\ 1 - \alpha d_i & \text{if } i = j \\ 0 & \text{otherwise.} \end{array} \right.$$

where d_i is the number of neighbors of node i.

Property on K

- If symmetric links (link $i \rightarrow j$ exists iff link $j \rightarrow i$ exists)
- If $\alpha < 1/\max_i \{d_i\}$

Then

- Non-negative
- Positive diagonal

- Row sum = 1
- Column sum = 1
- ⇒ Row-stochastic matrix

Philippe Ciblat Distributed average consensus 8

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$$

with

- $\mathbf{x}(k) = [x_1(k), \dots, x_N(k)]^T$ where $x_i(k)$ value of node i at time k
- $\mathbf{x}(0) = [x_1, \dots, x_N]^T$ are the initial measurements.
- matrix K such that

$$\mathbf{K}_{i,j} = \left\{ \begin{array}{ll} \alpha & \text{if } j \in \mathcal{N}_i \\ 1 - \alpha d_i & \text{if } i = j \\ 0 & \text{otherwise.} \end{array} \right.$$

where d_i is the number of neighbors of node i.

Property on K

- If symmetric links (link $i \rightarrow j$ exists iff link $j \rightarrow i$ exists)
- If $\alpha < 1/\max_i \{d_i\}$

Then

- Non-negative
- Positive diagonal

- Row sum = 1
- Column sum = 1
- ⇒ Column-stochastic matrix

Philippe Ciblat Distributed average consensus 8 /

$$\mathbf{x}(k+1) = \mathbf{K}\mathbf{x}(k)$$

with

- $\mathbf{x}(k) = [x_1(k), \dots, x_N(k)]^T$ where $x_i(k)$ value of node i at time k
- $\mathbf{x}(0) = [x_1, \dots, x_N]^T$ are the initial measurements.
- matrix K such that

$$\mathbf{K}_{i,j} = \left\{ egin{array}{ll} lpha & & ext{if } j \in \mathcal{N}_i \ 1 - lpha d_i & & ext{if } i = j \ 0 & & ext{otherwise}. \end{array}
ight.$$

where d_i is the number of neighbors of node i.

Property on K

- If symmetric links (link $i \rightarrow j$ exists iff link $j \rightarrow i$ exists)
- If $\alpha < 1/\max_i \{d_i\}$

Then

Non-negative

• Row sum = 1

Positive diagonal

Column sum = 1

⇒ Doubly-stochastic matrix

Philippe Ciblat Distributed average consensus 8 /

Sync. case: Metropolis-Hastings algorithm [DeGroot1974]

First algorithm developed for distributed average consensus

$$\mathbf{K}_{i,j} = \left\{ \begin{array}{ll} \frac{1}{1 + \max\{d_i, d_j\}} & \text{if } j \in \mathcal{N}_i \\ 1 - \sum_{j \in \mathcal{N}_i} \mathbf{K}_{i,j} & \text{if } i = j \\ 0 & \text{otherwise.} \end{array} \right.$$

- Non-negative : positive combination
- Positive diagonal : each node keeps its own information
- Row sum = 1 : barycenter of received current values

Consensus conservation
$$\Leftrightarrow \mathbf{x}(k) = c\mathbf{1}$$
, so $\mathbf{x}(k+1) = c\mathbf{1}$

Column sum = 1: ???

Average conservation
$$\Leftrightarrow \mathbf{1}^{\mathrm{T}}\mathbf{x}(k+1) = \mathbf{1}^{\mathrm{T}}\mathbf{x}(k)$$

Philippe Ciblat Distributed average consensus 9 / 27

Convergence result

$$\mathbf{x}(k) = \mathbf{K}^k \mathbf{x}(0)$$
 with **K** doubly-stochastic

One tool: primitive matrix

- **M** primitive matrix iff non-negative and $\exists m \ge 1$ s. t. \mathbf{M}^m positive matrix
- This property holds if nodes' communication graph is connected

Any $N \times N$ row-stochastic matrix is a transition probability matrix of a discrete-time Markov Chain with N states and conversely.

If K primitive and column-stochastic, then

$$\lim_{k \to \infty} \mathbf{K}^k = \frac{1}{N} \mathbf{1} \mathbf{1}^{\mathrm{T}} \stackrel{\triangle}{=} \mathbf{J} \quad \text{(projector on span(1))}$$

and

$$\mathbf{x}(k) \rightarrow \mathbf{x}_{\text{ave}} \mathbf{1}$$
 when $k \rightarrow \infty$

Philippe Ciblat Distributed average consensus 10 / 27

$\mathbf{x}(k) = \mathbf{J}\mathbf{x}(k) + \mathbf{J}^{\perp}\mathbf{x}(k) \stackrel{\mathsf{K} \ col.-sto.}{=} \mathbf{x}_{ave}\mathbf{1} + \mathbf{J}^{\perp}\mathbf{x}(k)$

Convergence of $\mathbf{x}(k) \sim \text{convergence of } \|\mathbf{J}^{\perp}\mathbf{x}(k)\|^2$

In addition,

$$\|\mathbf{J}^{\perp}\mathbf{x}(k+1)\|^{2} \overset{\mathbf{K} \ row.-sto.}{\leq} \rho\left(\mathbf{K}\mathbf{K}^{\mathrm{T}} - \mathbf{J}\right) \|\mathbf{J}^{\perp}\mathbf{x}(k)\|^{2}.$$

$$\mathbf{Is} \ \rho\left(\mathbf{K}\mathbf{K}^{\mathrm{T}} - \mathbf{J}\right) < 1 ?$$

Philippe Ciblat Distributed average consensus

Convergence speed result

$$\mathbf{x}(k) = \mathbf{J}\mathbf{x}(k) + \mathbf{J}^{\perp}\mathbf{x}(k) \stackrel{\mathsf{K} \ col.-sto.}{=} x_{\text{ave}} \mathbf{1} + \mathbf{J}^{\perp}\mathbf{x}(k)$$

Convergence of $\mathbf{x}(k) \sim \text{convergence of } \|\mathbf{J}^{\perp}\mathbf{x}(k)\|^2$

In addition,

$$\|\mathbf{J}^{\perp}\mathbf{x}(k+1)\|^2 \overset{\mathsf{K} \ row.-sto.}{\leq} \rho\left(\mathbf{K}\mathbf{K}^{\mathrm{T}}-\mathbf{J}\right)\|\mathbf{J}^{\perp}\mathbf{x}(k)\|^2.$$

Is ρ (KK^T – J) < 1 ? YES (since K primitive and KK^T as well)

Philippe Ciblat Distributed average consensus 11 /

Convergence speed result

$$\mathbf{x}(k) = \mathbf{J}\mathbf{x}(k) + \mathbf{J}^{\perp}\mathbf{x}(k) \stackrel{\mathbf{K} \ col.-sto.}{=} \mathbf{x}_{ave}\mathbf{1} + \mathbf{J}^{\perp}\mathbf{x}(k)$$

Convergence of $\mathbf{x}(k) \sim \text{convergence of } \|\mathbf{J}^{\perp}\mathbf{x}(k)\|^2$

In addition,

$$\|\mathbf{J}^{\perp}\mathbf{x}(k+1)\|^{2} \overset{\mathsf{K} \ row.-sto.}{\leq} \rho\left(\mathbf{K}\mathbf{K}^{\mathrm{T}}-\mathbf{J}\right)\|\mathbf{J}^{\perp}\mathbf{x}(k)\|^{2}.$$

Is ρ (KK^T – J) < 1 ? YES (since K primitive and KK^T as well)

Perron-Frobenius theorem

Let **M** be a primitive matrix and $\rho(\mathbf{M}) = \max_i |\lambda_i(\mathbf{M})|$ its *spectral radius*. Then

i) $\rho(\mathbf{M})$ is the unique maximum eigenvalue and is simple.

If M is either row-stochastic or column-stochastic matrix, then

- ii) $\rho(M) = 1$.
- iii) $1/\sqrt{N}$ (right or left)-eigenvector for the eigenvalue 1.

Philippe Ciblat Distributed average consensus 11

Convergence speed result

$$\mathbf{x}(k) = \mathbf{J}\mathbf{x}(k) + \mathbf{J}^{\perp}\mathbf{x}(k) \stackrel{\mathsf{K} \ col.-sto.}{=} x_{\text{ave}}\mathbf{1} + \mathbf{J}^{\perp}\mathbf{x}(k)$$

Convergence of $\mathbf{x}(k) \sim \text{convergence of } \|\mathbf{J}^{\perp}\mathbf{x}(k)\|^2$

In addition,

$$\|\mathbf{J}^{\perp}\mathbf{x}(k+1)\|^{2} \overset{\mathsf{K} \ row.-sto.}{\leq} \rho \left(\mathbf{K}\mathbf{K}^{\mathsf{T}} - \mathbf{J}\right) \|\mathbf{J}^{\perp}\mathbf{x}(k)\|^{2}.$$

Is ρ (KK^T – J) < 1 ? YES (since K primitive and KK^T as well)

Perron-Frobenius theorem

Let **M** be a primitive matrix and $\rho(\mathbf{M}) = \max_i |\lambda_i(\mathbf{M})|$ its *spectral radius*. Then

- i) $\rho(\mathbf{M})$ is the unique maximum eigenvalue and is simple.
- If M is either row-stochastic or column-stochastic matrix, then
 - ii) $\rho(M) = 1$.
 - iii) $1/\sqrt{N}$ (right or left)-eigenvector for the eigenvalue 1.

Main result

$$MSE(k) < \alpha^k \|\mathbf{J}^{\perp}\mathbf{x}(0)\|^2$$
 with $\alpha = \rho(\mathbf{K}\mathbf{K}^T - \mathbf{J}) < 1$

Philippe Ciblat Distributed average consensus 11 / 2

$$\mathbf{x}(k+1) = \mathbf{K}_{\xi_{k+1}}\mathbf{x}(k)$$

- $\{\mathbf{K}_{\xi_k}\}_k$ i.i.d. process valued in $\mathcal{K} = \{\mathbf{K}_i\}_{i=1,...,M}$
- $\mathbf{K}_{\mathcal{E}_k}$ non-negative, positive diagonal

Example: Random Pairwise Gossip [Boyd2006]

At time k, let i be the active node

- ightharpoonup i chooses a neighbor j uniformly in \mathcal{N}_i
- ▶ i and j exchange their values
- ▶ *i* and *j* update : $x_i(k + 1) = x_j(k + 1) = \frac{x_j(k) + x_j(k)}{2}$.

Philippe Ciblat Distributed average consensus 12 / 27

$$\mathbf{x}(k+1) = \mathbf{K}_{\xi_{k+1}}\mathbf{x}(k)$$

- $\{\mathbf{K}_{\xi_k}\}_k$ i.i.d. process valued in $\mathcal{K} = \{\mathbf{K}_j\}_{j=1,...,M}$
- \mathbf{K}_{ξ_k} non-negative, positive diagonal

Example: Random Pairwise Gossip [Boyd2006]

At time k, let i be the active node

- i chooses a neighbor j uniformly in N_i
- i and j exchange their values
- ▶ *i* and *j* update : $x_i(k+1) = x_j(k+1) = \frac{x_i(k)+x_j(k)}{2}$.

Philippe Ciblat Distributed average consensus 12 / 27

$$\mathbf{x}(k+1) = \mathbf{K}_{\xi_{k+1}}\mathbf{x}(k)$$

- $\{\mathbf{K}_{\xi_k}\}_k$ i.i.d. process valued in $\mathcal{K} = \{\mathbf{K}_i\}_{i=1,...,M}$
- \mathbf{K}_{ξ_k} non-negative, positive diagonal

Example: Random Pairwise Gossip [Boyd2006]

At time k, let i be the active node

- i chooses a neighbor j uniformly in N_i
- i and j exchange their values
- ▶ *i* and *j* update : $x_i(k+1) = x_j(k+1) = \frac{x_i(k)+x_j(k)}{2}$.

Philippe Ciblat Distributed average consensus 12 / 27

$$\mathbf{x}(k+1) = \mathbf{K}_{\xi_{k+1}}\mathbf{x}(k)$$

- $\{\mathbf{K}_{\xi_k}\}_k$ i.i.d. process valued in $\mathcal{K} = \{\mathbf{K}_i\}_{i=1,...,M}$
- \mathbf{K}_{ξ_k} non-negative, positive diagonal

Example: Random Pairwise Gossip [Boyd2006]

$$\mathbf{K}_{\{i,j\}} = \begin{bmatrix} 1 & 1/2 & 1/2 \\ & 1/2 & & 1/2 \\ & & 1/2 & & 1/2 \\ & & & 1/2 & & 1/2 \\ & & & & 1/2 & & \\ & & & & 1/2 &$$

At time k, let i be the active node

Doubly-stochastic update matrices

Philippe Ciblat 12 / 27 Distributed average consensus

Example: Random Pairwise Gossip [Boyd2006]

Main results

As doubly-stochastic matrices, simple adaptation of synchronous case

$$\mathbf{x}(k) \overset{a.s.}{\to} x_{\mathrm{ave}} \mathbf{1}$$
 when $k \to \infty$

$$\mathsf{MSE}(k) \leq \beta^k \|\mathbf{J}^{\perp}\mathbf{x}(0)\|^2 \text{ with } \beta = \rho(\mathbb{E}[\mathbf{K}\mathbf{K}^{\mathrm{T}}] - \mathbf{J}) < 1$$

Two main drawbacks:

- feedback needed
 - lack of robustness
 - requires slow-varying network (especially if routing)
 - prevents to take benefit of broadcast nature of wireless channel
- broadcast nature of wireless channel not used

Main open question: how broadcasting information without feedback?

Answer: Jutzeler-Ciblat-Hachem in ICASSP'2012

Philippe Ciblat 13 / 27 Distributed average consensus

First algorithm taken into account broadcast nature of wireless channel

At time k, let i be the active node

- i broadcasts its value to all its neighbors
- ► Each neighbor $j \in \mathcal{N}_i$ updates : $x_j(k+1) = \frac{x_i(k) + x_j(k)}{2}$.

Philippe Ciblat Distributed average consensus 14 / 2

First algorithm taken into account broadcast nature of wireless channel

At time k, let i be the active node

- i broadcasts its value to all its neighbors
- Each neighbor $j \in \mathcal{N}_i$ updates: $x_j(k+1) = \frac{x_i(k) + x_j(k)}{2}.$

Philippe Ciblat Distributed average consensus

First algorithm taken into account broadcast nature of wireless channel

At time k, let i be the active node

- i broadcasts its value to all its neighbors
- ► Each neighbor $j \in \mathcal{N}_i$ updates : $x_j(k+1) = \frac{x_j(k) + x_j(k)}{2}$.

Philippe Ciblat Distributed average consensus 14/:

First algorithm taken into account broadcast nature of wireless channel

$$\mathbf{K}_{i} = \begin{bmatrix} 1/2 & 1/2 \\ & 1 & \\ & & 1 \\ & & 1/2 & 1/2 \\ & & & 1 \end{bmatrix}$$

$$i \text{ broadcasts its value to neighbors}$$

$$Each neighbor $j \in \mathcal{N}_{i}$

$$updates :$$

$$x_{j}(k+1) = \frac{x_{i}(k) + x_{j}(k)}{2}.$$$$

At time k, let i be the active node

- i broadcasts its value to all its

Row-stochastic update matrices

Philippe Ciblat 14 / 27 Distributed average consensus

- Problem: no column-stochastic matrices
 ⇒ no average conservation; information is lost (Slide 9)!!!
- Result : ∃ v non-negative vector (1^Tv = 1),

$$\textbf{K}_{\xi_k}\cdots\textbf{K}_{\xi_2}\textbf{K}_{\xi_1}\overset{k\to\infty}{\longrightarrow}\textbf{1}\textbf{v}^T$$

and

$$\mathbf{x}(k) \stackrel{a.s.}{\rightarrow} (\mathbf{v}^{\mathrm{T}}\mathbf{x}(0))\mathbf{1}$$

- Nodes reach consensus, but not the good one
- ▶ If \mathbf{K}_i column-stochastic as well, $\mathbf{v} = (1/N)\mathbf{1}$, the average is reached

Conclusion

Avoid to do that!!!

Philippe Ciblat Distributed average consensus 15 / 27

How using broadcast channel and converging as well?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

- node 4 broadcasts information to its neighbors 2 and 3.
- no feedback.
- Row-stochasticity is possible ... but not double-stochasticity
- Column-stochasticity is possible (k₂ + k₃ + k₄ = 1) ... but not double-stochasticity

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & k_{2,2} & 0 & k_{2,4} \\ 0 & 0 & k_{3,3} & k_{3,4} \\ 0 & 0 & 0 & k_{4,4} \end{array}\right]$$

Philippe Ciblat Distributed average consensus 16 / 27

How using broadcast channel and converging as well?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

- node 4 broadcasts information to its neighbors 2 and 3.
- no feedback.
- Row-stochasticity is possible ... but not double-stochasticity
- Column-stochasticity is possible (k₂ + k₃ + k₄ = 1) ... but not double-stochasticity

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & k_{2,2} & 0 & k_{2,4} \\ 0 & 0 & k_{3,3} & k_{3,4} \\ 0 & \textbf{0} & \textbf{0} & k_{4,4} \end{array}\right]$$

Philippe Ciblat Distributed average consensus 16 / 27

How using broadcast channel and converging as well?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

- node 4 broadcasts information to its neighbors 2 and 3.
- no feedback.
- Row-stochasticity is possible ... but not double-stochasticity
- Column-stochasticity is possible (k₂ + k₃ + k₄ = 1) ... but not double-stochasticity

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 1 - k_2 \\ 0 & k_2 & 0 & 1 - k_2 \\ 0 & 0 & k_3 & 1 - k_3 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

Philippe Ciblat Distributed average consensus 16 / 27

How using broadcast channel and converging as well?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

- node 4 broadcasts information to its neighbors 2 and 3.
- no feedback.
- Row-stochasticity is possible ... but not double-stochasticity
- Column-stochasticity is possible (k₂ + k₃ + k₄ = 1) ... but not double-stochasticity

How using broadcast channel and converging as well?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

- node 4 broadcasts information to its neighbors 2 and 3.
- no feedback
- Row-stochasticity is possible ... but not double-stochasticity
- Column-stochasticity is possible (k₂ + k₃ + k₄ = 1) ... but not double-stochasticity

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & k_2 \\ 0 & 0 & 1 & k_3 \\ 0 & 0 & 0 & k_4 \end{bmatrix}$$

... but require FEEDBACK

How using broadcast channel and converging as well?

Doubly-stochastic update matrices are good candidates ... (Slide 13)

Let us try to build update matrices with broadcast and without feedback

- node 4 broadcasts information to its neighbors 2 and 3.
- no feedback.
- Row-stochasticity is possible ... but not double-stochasticity
- Column-stochasticity is possible (k₂ + k₃ + k₄ = 1) ... but not double-stochasticity

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & k_2 \\ 0 & 0 & 1 & k_3 \\ 0 & \mathbf{0} & \mathbf{0} & k_4 \end{array}\right]$$

... but require FEEDBACK

Two cases:

Row-stochastic : bad (Slide 15)

▶ Column-stochastic : good ?

Column-stochastic updates matrices

- It seems worse!!!
- **Result** : \exists $\mathbf{v}(k)$ non-negative vectors (with $\mathbf{1}^T\mathbf{v}(k) = 1$) s.t.

$$\mathbf{K}_{\xi_k} \cdots \mathbf{K}_{\xi_2} \mathbf{K}_{\xi_1} \sim \mathbf{v}(k) \mathbf{1}^{\mathrm{T}}$$

and

$$\mathbf{x}(k) \sim (Nx_{\text{ave}})\mathbf{v}(k)$$

- **no consensus anymore** since $x_i(k) \propto v_i(k)$
- ▶ average is available somewhere since $x_i(k) \propto x_{ave}$ but hidden (Slide 9)

Conclusion

- ▶ information is available since average conservation but hidden
- ▶ How recovering it? How removing $v_i(k)$? \Rightarrow side information

Column-stochastic updates matrices

- It seems worse!!!
- **Result** : \exists $\mathbf{v}(k)$ non-negative vectors (with $\mathbf{1}^T\mathbf{v}(k) = 1$) s.t.

$$\boldsymbol{\mathsf{K}}_{\xi_k} \cdots \boldsymbol{\mathsf{K}}_{\xi_2} \boldsymbol{\mathsf{K}}_{\xi_1} \sim \boldsymbol{\mathsf{v}}(k) \boldsymbol{\mathsf{1}}^{\mathrm{T}}$$

and

$$\mathbf{x}(k) \sim (Nx_{\text{ave}})\mathbf{v}(k)$$

- **no consensus anymore** since $x_i(k) \propto v_i(k)$
- ▶ average is available somewhere since $x_i(k) \propto x_{ave}$ but hidden (Slide 9)

Conclusion

- ▶ information is available since average conservation but hidden
- ▶ How recovering it? How removing $v_i(k)$? \Rightarrow side information

Column-stochastic updates matrices

- It seems worse!!!
- **Result** : \exists $\mathbf{v}(k)$ non-negative vectors (with $\mathbf{1}^T\mathbf{v}(k) = 1$) s.t.

$$\boldsymbol{\mathsf{K}}_{\xi_k}\cdots\boldsymbol{\mathsf{K}}_{\xi_2}\boldsymbol{\mathsf{K}}_{\xi_1}\sim\boldsymbol{\mathsf{v}}(k)\boldsymbol{\mathsf{1}}^{\mathrm{T}}$$

and

$$\mathbf{x}(k) \sim (Nx_{\text{ave}})\mathbf{v}(k)$$

- **no consensus anymore** since $x_i(k) \propto v_i(k)$
- ▶ average is available somewhere since $x_i(k) \propto x_{ave}$ but hidden (Slide 9)

Conclusion

- ▶ information is available since average conservation but hidden
- ▶ How recovering it? How removing $v_i(k)$? \Rightarrow side information

Part 3: New (bivariate based-) algorithm

Algorithm principle

An other variable providing $v_i(k)$ has to be computed in parallel

Let $\mathbf{w}(k)$ be this additional variable. We have easily

$$\mathbf{w}(k) \sim N\mathbf{v}(k)$$
, if $\mathbf{w}(0) = \mathbf{1}$ and $\mathbf{w}(k+1) = \underbrace{\mathbf{K}_{\xi_{k+1}}}_{\text{same as for first variable}} \mathbf{w}(k)$

Sum-Weight algorithms [Kempe2003, Benezit2010, lutzeler2013]

Let $\mathbf{s}(0) = \mathbf{x}(0)$ (sum) and $\mathbf{w}(0) = \mathbf{1}$ (weight). At time k, we have

$$\begin{array}{lcl} \mathbf{s}(k+1) & = & \mathbf{K}_{\xi_{k+1}} \mathbf{s}(k) \\ \mathbf{w}(k+1) & = & \mathbf{K}_{\xi_{k+1}} \mathbf{w}(k) \\ \mathbf{x}(k+1) & = & \mathbf{s}(k+1) \oslash \mathbf{w}(k+1) \Leftrightarrow x_i(k+1) = \frac{s_i(k+1)}{w_i(k+1)} \end{array}$$

Remarks:

- [Kempe2003] convergence speed for one special algorithm
- [Benezit2010] convergence proof, no convergence speed

Main contributions

Our results [lutzeler2013]

- Convergence speed for any Sum-Weight algorithm
- Sum-Weight algorithm using broadcast nature of wireless channel

$$\mathbf{x}(k) = x_{\text{ave}} \mathbf{1} + \left((\mathbf{K}_{\xi_k} \cdots \mathbf{K}_{\xi_1}) \mathbf{J}^{\perp} \mathbf{x}(0) \right) \oslash \mathbf{w}(k) \quad (\mathbf{K}_i \text{ col.-sto.})$$

So

$$\|\mathbf{x}(k) - x_{\text{ave}}\mathbf{1}\|_{2}^{2} \leq \Psi_{1}(k)\Psi_{2}(k)$$

with

$$\Psi_1(k) = \frac{\|\mathbf{x}(0)\|_2^2}{[\min w_i(k)]^2} \quad \text{and } \Psi_2(k) = \left\| (\mathbf{K}_{\xi_k} \cdots \mathbf{K}_{\xi_1}) \mathbf{J}^{\perp} \right\|_{\mathrm{F.}}^2$$

Two main steps:

- $\mathbf{w}(k)$ not often close to 0 through analysis of $\Psi_1(k)$
- $(\mathbf{K}_{\xi_k} \cdots \mathbf{K}_{\xi_1}) \mathbf{J}^{\perp} \mathbf{x}(0)$ vanishes for any $\mathbf{x}(0)$ through analysis of $\Psi_2(k)$

Main contributions (cont'd)

Theorem on $\Psi_1(k)$

There is a constant $C < \infty$ and a increasing sequence $(\to \infty) \tau_n$ s.t.

$$\Psi_1(\tau_n) \leq C$$

where

- $\Delta_n = \tau_n \tau_{n-1}$ is positive i.i.d. geometrically distributed r.v.
- So the event $\{\Psi_1(k) \leq C\}$ occurs infinitely often almost surely.

Theorem on $\Psi_2(k)$

$$\mathbb{E}[\Psi_2(k)] \leq \mathcal{O}\left(\gamma^k\right) \quad \text{with} \quad \gamma = \rho\left(\mathbb{E}\left[\mathbf{K} \otimes \mathbf{K}\right] \ \left(\mathbf{J}^{\perp} \otimes \mathbf{J}^{\perp}\right)\right) < 1$$

$$\|\mathbf{x}(au_n) - x_{ ext{ave}}\mathbf{1}\|^2 < C\gamma^{ au_n}$$
 $\|\mathbf{x}(au_{n+1}) - x_{ ext{ave}}\mathbf{1}\|^2 < C\gamma^{ au_{n+1}}$

$$\max |x_i(k) - x_{\text{ave}}|^2$$
 is non-increasing

At time *k*, let *i* be the activate node [lutzeler2013]

- Node i updates: $\begin{cases}
 s_i(k+1) = \frac{s_i(k)}{d_i+1} \\
 w_i(k+1) = \frac{w_i(k)}{d_i+1}
 \end{cases}$
- ▶ *i* broadcasts $\left(\frac{s_i(k)}{d_i+1}; \frac{w_i(k)}{d_i+1}\right)$ to all its neighbors
- ► Each neighbor $j \in \mathcal{N}_i$ updates : $\begin{cases} s_j(k+1) = s_j(k) + \frac{s_i(k)}{d_j+1} \\ w_j(k+1) = w_j(k) + \frac{w_j(k)}{d_j+1} \end{cases}$
- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

At time k, let i be the activate node [lutzeler2013]

- Node i updates: $\begin{cases}
 s_i(k+1) = \frac{s_i(k)}{d_i+1} \\
 w_i(k+1) = \frac{w_i(k)}{d_i+1}
 \end{cases}$
- ▶ *i* broadcasts $\left(\frac{s_i(k)}{d_{i+1}}; \frac{w_i(k)}{d_{i+1}}\right)$ to all its neighbors
- ► Each neighbor $j \in \mathcal{N}_i$ updates : $\begin{cases} s_j(k+1) = s_j(k) + \frac{s_i(k)}{d_j+1} \\ w_j(k+1) = w_j(k) + \frac{w_j(k)}{d_j+1} \end{cases}$
- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

At time *k*, let *i* be the activate node [lutzeler2013]

- Node i updates: $\begin{cases}
 s_i(k+1) = \frac{s_i(k)}{d_i+1} \\
 w_i(k+1) = \frac{w_i(k)}{d_i+1}
 \end{cases}$
- ▶ *i* broadcasts $\left(\frac{s_i(k)}{d_i+1}; \frac{w_i(k)}{d_i+1}\right)$ to all its neighbors
- ► Each neighbor $j \in \mathcal{N}_i$ updates : $\begin{cases} s_j(k+1) = s_j(k) + \frac{s_i(k)}{d_j+1} \\ w_j(k+1) = w_j(k) + \frac{w_j(k)}{d_j+1} \end{cases}$
- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

At time *k*, let *i* be the activate node [lutzeler2013]

- Node i updates: $\begin{cases}
 s_i(k+1) = \frac{s_i(k)}{d_i+1} \\
 w_i(k+1) = \frac{w_i(k)}{d_i+1}
 \end{cases}$
- ▶ *i* broadcasts $\left(\frac{s_i(k)}{d_i+1}; \frac{w_i(k)}{d_i+1}\right)$ to all its neighbors
- ► Each neighbor $j \in \mathcal{N}_i$ updates : $\begin{cases} s_j(k+1) = s_j(k) + \frac{s_i(k)}{d_j+1} \\ w_j(k+1) = w_j(k) + \frac{w_j(k)}{d_j+1} \end{cases}$
- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

$$\mathbf{K}_{i} = \begin{bmatrix} 1 & \frac{1}{d_{i}+1} \\ & 1 & \frac{1}{d_{i}+1} \\ & & 1 \end{bmatrix}$$

$$\begin{cases} s_{i}(k+1) = \frac{1}{d_{i}+1} \\ w_{i}(k+1) = \frac{w_{i}(k)}{d_{i}+1} \end{cases}$$

$$\downarrow i \text{ broadcasts } \left(\frac{s_{i}(k)}{d_{i}+1}; \frac{w_{i}(k)}{d_{i}+1} \right) \text{ to all its neighbors}$$

$$\downarrow \text{ Each neighbor } j \in \mathcal{N}_{i}$$

$$\downarrow \text{ updates :}$$

At time k, let i be the activate node [lutzeler2013]

- ▶ Node i updates : $\begin{cases} s_i(k+1) = \frac{s_i(k)}{d_i+1} \\ w_i(k+1) = \frac{w_i(k)}{d_i+1} \end{cases}$
- updates: $\begin{cases} s_j(k+1) = s_j(k) + \frac{s_j(k)}{d_j+1} \\ w_j(k+1) = w_j(k) + \frac{w_j(k)}{d_j+1} \end{cases}$
- Take into account broadcast nature of wireless channel
- No row-stochastic matrices but converges to the true value

Philippe Ciblat 21 / 27 Distributed average consensus

Back to [Boyd2006]

Remark

If update matrices are doubly-stochastic, then

$$W_i(k) = 1 \Leftrightarrow \Psi_1(k) = 1$$

and

$$s_i(k) = x_i(k), \forall i, k$$

Our analysis still holds for standard single-variate algorithms

- In [Boyd2006], exponential convergence with $\rho(\mathbb{E}[\mathbf{K}\mathbf{K}^{\mathrm{T}}] \mathbf{J})$
- In [lutzeler2013], exponential convergence with $\rho(\mathbb{E}[\mathbf{K} \otimes \mathbf{K}](\mathbf{J}^{\perp} \otimes \mathbf{J}^{\perp}))$

Part 4: Numerical illustrations

Tightness of the analysis

- Random Geometric Graphs with radius of order $\sqrt{\log(N)/N}$
- Unless otherwise staded, N = 100

MSE for BW Gossip vs. time

Slope for Random Gossip vs. N

The proposed bound is very tight

Comparison with existing methods

MSE for various averaging algorithms

Proposed algorithm outperforms existing ones

A funny example

RANDOM GOSSIP

BROADCAST GOSSIP

BW Gossip

Part 5: Perspectives

Distributed optimization

$$\hat{x}_{\text{opt}} = \underset{x}{\text{arg min }} f(x) \stackrel{\Delta}{=} \sum_{i=1}^{N} f_i(x)$$

with

- f_i convex and known only at node i
- f unknown anywhere
- ... so only local exchanges allowed

Most standard way to fix this problem: distributed gradient algorithm.

Gradient step: $\tilde{x}_i(k+1) = x_i(k) - \gamma_k f'_i(x_i(k))$ for each node i.

Gossip step: $\mathbf{x}(k+1) = \mathbf{K}\tilde{\mathbf{x}}(k+1)$ with **K** used for average computation

- ▶ Distributed average computation is needed
- Sum-Weight based distributed optimization: [Nedich2013] for sync. case
- Applications: machine learning, big data, cloud computing, ad hoc networks, ...

References

[DeGroot1974] M. DeGroot, "Reaching a consensus," Jnl of ASA, 1974.

[Chatterjee1977] S. Chatterjee et al., "Towards consensus: some convergence theorems on repeating averaging," Jnl of Applied Proba, 1977.

[Kempe2003] D. Kempe et al., "Gossip-based computation of aggregate information," IEEE FOCS, 2003.

[Boyd2006] S. Boyd et al., "Randomized Gossip Algorithms," IEEE TIT, 2006.

[Tahbaz2008] A. Tahbza-Salehi et al., "A necessary and sufficient condition for consensus over random networks," IEEE TAC, 2008.

[Aysal2009] T.C. Aysal et al., "Broadcast Gossip Algorithms for Consensus," IEEE TSP, 2009.

[Benezit2010] F. Bénézit et al., "Weighted Gossip: distributed averaging using non-doubly-stochastic matrices," IEEE ISIT, 2010.

[lutzeler2013] F. lutzeler et al., "Analysis of Sum-Weight-like algorithms for averaging in WSN," IEEE TSP, 2013.

[Nedich2013] A. Nedich et al., "Distributed optimization over time-varying directed graphs," IEEE CDC, 2013.