
1

Deep Reinforcement Learning for Resource

Constrained Multiclass Scheduling in Wireless

Networks

Apostolos Avranas, Philippe Ciblat, Senior Member, IEEE,

and Marios Kountouris, Senior Member, IEEE.

Abstract

The problem of resource constrained scheduling in a dynamic and heterogeneous wireless setting

is considered here. In our setup, the available limited bandwidth resources are allocated in order to

serve randomly arriving service demands, which in turn belong to different classes in terms of payload

data requirement, delay tolerance, and importance/priority. In addition to heterogeneous traffic, another

major challenge stems from random service rates due to time-varying wireless communication channels.

Various approaches for scheduling and resource allocation can be used, ranging from simple greedy

heuristics and constrained optimization to combinatorics. Those methods are tailored to specific network

or application configuration and are usually suboptimal. To this purpose, we resort to deep reinforcement

learning (DRL) and propose a distributional Deep Deterministic Policy Gradient (DDPG) algorithm

combined with Deep Sets to tackle the aforementioned problem. Furthermore, we present a novel way

to use a Dueling Network, which leads to further performance improvement. Our proposed algorithm is

tested on both synthetic and real data, showing consistent gains against state-of-the-art conventional

methods from combinatorics, optimization, and scheduling metrics.

Index Terms

Deep reinforcement learning, deep sets, QoS scheduling, dynamic resource allocation.

A. Avranas and M. Kountouris are with the Communication Systems department, EURECOM, F-06904 Sophia-Antipolis,

France. Emails: apostolos.avranas@eurecom.fr, marios.kountouris@eurecom.fr. P. Ciblat is with LTCI, Telecom Paris, Institut

Polytechnique de Paris, F-91120 Palaiseau, France. Email: philippe.ciblat@telecom-paris.fr

March 30, 2022 DRAFT

2

I. INTRODUCTION

Scheduling and resource allocation are two relevant yet challenging problems with a plethora

of practical applications in various fields. For instance, in computing systems, computational

processes have to be efficiently arranged and planned for the server to handle them; in management,

each person is assigned a set of jobs for completion; in logistics, packages have to be carefully

matched to each truck. Since resources, e.g., central processing units (CPUs), workers, trucks,

etc., are limited, they have to be shared efficiently among different tasks and requests so as

to optimize the system performance. Optimal resource allocation, together with the associated

scheduling task, is one of the main challenges and requirements for the design of communication

networks. How efficiently the available resources (e.g., subbands, timeslots, beams, transmit

power, etc.) are managed has a direct impact on the communication system performance.

In this paper, we investigate the problem of scheduling and resource allocation in wireless

networks. A base station (BS) sends data traffic to mobile users, which have different application-

dependent Quality of Service (QoS) requirements. We consider applications that require delivery

of large amounts of data without any strict deadline, as well as time-sensitive or mission-critical

ones involving low payload packets that have to be reliably received within a stringent latency

constraint. The increased heterogeneity in users’ traffic and the diverse service requirements

substantially complicate the provisioning of high fidelity, personalized service with QoS guarantees.

The objective of this work is to design a generic architecture and efficient algorithms, which

take as inputs the specific constraints of the traffic/service class where each user belongs to and

as outputs the set of users to serve, as well as the allocated resources and timeslots, as means to

maximize the number of satisfied users.

The considered problem here is hard to solve due to several major technical challenges. First,

with the exception of very few special cases, there is no simple closed-form expression for the

problem and a fortiori for its analytical solution. Second, optimization algorithms that solve

the problem have to be computationally efficient and implementable in large-scale wireless

networks. Applying optimal methods from combinatorial optimization, such as branch and bound

algorithm [1], results in solutions exhibiting prohibitively high computational complexity and

being hard or impossible to meaningfully scale with the number of active users. Other existing

approaches relying heuristics, approximations, or relaxations, provide suboptimal solutions, which

seem to work satisfactorily in specific scenarios but fail to perform close to optimal in general

March 30, 2022 DRAFT

3

cases and with large number of users. Moreover, the proliferation of new use cases makes the

problem of efficient and scalable scheduling and resource allocation more intricate. This will be

exacerbated with the advent of the emerging mobile systems (Beyond 5G/6G), which will involve

high-dimensional optimization domains, various application scenarios, as well as heterogeneous,

often conflicting, QoS requirements. This motivates the quest for alternative methods.

In this paper, we propose to resort to Deep Reinforcement Learning (DRL) for efficient

and scalable resource allocation. DRL has recently attracted much attention for providing very

promising results in complex problems obeying strict game rules (e.g., Atari, Chess, Go [2]–

[4]) or physical laws (robotics and physics-related tasks [5], [6]). In cloud service provision,

DRL has been used to schedule incoming tasks to servers according to their heterogeneous

CPU and memory requirements [7]. DRL approaches have recently shown interesting gains in

wireless communication systems [8]–[16]. In contrast to most prior work and to harness the

high level of stochasticity, we consider distributional DRL [17]–[19] as a means to obtain richer

representations of the environment thus better solutions. Furthermore, we leverage (i) techniques

such as noisy networks for better explorations [20]; (ii) architectures such as dueling networks

[21] for improved stability of the trained models; and (iii) deep sets [22] for simplifying and

improving neural network models when permutation invariance properties apply. We combine

these three ingredients with a deep deterministic policy gradient method [23] to propose a highly

efficient general architecture and scheduling/resource allocation algorithm. In a setup similar

to ours and Nokia’s challenge [24], deep deterministic policy gradient is used to allocate the

bandwidth to incoming data traffic in [25]. Nevertheless, unlike our work, [25] considers only

full channel state information (CSI), a single traffic class, and only few users (typically less than

15). In [26] Graph Neural Networks, a similar technique to Deep Sets, are used to increase the

number of users but they do not consider traffic of users. Initial attempts to solve the problem of

scheduling traffic for users with heterogeneous performance requirements can be found in [27],

considering though only full CSI and a limited number of users.

In the context of using DRL for revisiting the problem of heterogeneous multiclass scheduling

and dynamic resource allocation in wireless communication networks, our main contributions

can be summarized as follows:

• We develop a neural network with two crucial architectural choices facilitating a stable

training even in the case of high traffic from a very large number of users. First, we leverage

Deep Sets [23] as a means to exploit the permutation equivariance property of the problem

March 30, 2022 DRAFT

4

and drastically reduce the number of necessary parameters. Second, we introduce a user

normalization trick capturing the attribute of the problem that the available bandwidth

resources are limited. We show that without those crucial steps, the performance plummet.

• We further improve the performance using distributional DRL [19] and reward scaling

as implemented in [28]. Finally, we get additional gains by adapting the idea of dueling

networks [21] used in Deep Q-Networks (DQN) to distributional RL by modifying the

output to represent the distribution of the return of the agent’s action.

• We demonstrate that our DRL proposal can easily be implemented with minor changes in

both extremal cases in terms of wireless channel knowledge, namely full CSI and no CSI.

• To compare our DRL solution, we design strong baselines:

– In the full CSI case, the scheduling step is solved in a myopically optimal way by

reformulating it as a knapsack problem. The DRL scheduler outperforms baseline schemes

in the sense that it reaches the same performance while requiring 13% less power and

bandwidth. Furthermore, we devise a baseline operating as an oracle knowing all future

traffic characteristics. The oracle finds the optimal resource allocation policy via Integer

Linear Programming (ILP) and constitutes an upper bound. Our experimental results show

that the proposed DRL scheduler operates close to the upper bound.

– In the no CSI case, the model-based baseline actually requires access to the statistics of the

problem and uses them to cast the scheduling problem as an optimization one. The baseline

scheme employs the Frank-Wolfe (FW) algorithm, which guarantees that the solution is

a local optimum. Our DRL scheme significantly outperforms Frank-Wolfe, supporting

our hypothesis that the more complicated the communication system is with unknown

variables affecting it, the higher gains may be yield using a DRL-based model-free method.

The paper is organized as follows: in Section II, we introduce the system model including the

channel and traffic model. In Section III, we formulate the optimization problem and Section IV

is devoted to the main contribution of the paper, that of the design a new DRL scheduler for

heterogeneous multiclass traffic. In Section V, baseline algorithms, for performance comparison,

are presented. In Section VI, we provide experimental results with both synthetic and real data,

and Section VII concludes the paper.1

1Code is available at https://github.com/avranasa/DRL Scheduling Communications.

March 30, 2022 DRAFT

5

II. SYSTEM MODEL

A. Network and channel model

We consider the downlink of a communication system, in which a BS serves multiple users by

sending data over a wireless random time-varying channel. Users are uniformly distributed within

two concentric rings of radii dmin and dmax > dmin. Therefore, the distance of a user u from

the BS is a random variable with probability density function (PDF) fd(du) = 2du
d2max−d2min

, du ∈

[dmin, dmax]. We assume that mobility is not very high, such that BS-user distances remain

constant during the time interval users remain active.

Orthogonal frequency bands are assigned to simultaneously served users, hence there is no

interference among them. Users experience frequency flat fading, i.e., the channel gain of a

user remains constant during a time slot and throughout all available frequency bands assigned

to. Let a user u that has entered the system at time t0. Its channel gain at time t is given by

gu,t =
Cpl|hu,t|2

σ2
N

d
−npl
u , where npl denotes the pathloss exponent, Cpl is a constant accounting for

constant losses, and σ2
N is the noise power spectrum density. The small-scale fading hu,t evolves

over time according to the following Gauss-Markov model

hu,t = ρhu,t−1 +N (1)

where hu,t0 ∼ CN (0, 1) (circular complex normal distribution with zero mean and unit variance),

and N ∼ CN (0, 1− ρ2), t > t0. The parameter ρ = J0(2πfdTslot) ∈ [0, 1] [29] determines the

time correlation of the channel, with J0(·) denoting the zeroth-order Bessel function of the first

kind, fd the maximum Doppler frequency (determined by the user mobility), and Tslot the slot

duration. If ρ = 0 (high mobility), a user experiences an independent realization of the fading

distribution at each time slot (i.i.d. block fading). If ρ = 1 (no mobility), channel attenuation is

constant throughout the user’s lifespan (no small-scale fading fading).

We consider the following two cases for the channel state information (CSI): (i) full-CSI, in

which hu,tc and the users’ locations (and so du) are perfectly known at the BS for time tc, thus

enabling accurate estimation of the exact resources each user requires; (ii) no-CSI, in which the

scheduler is completely channel-agnostic, both in terms of instantaneous fading realization and

long-term channel statistics. In case of unsuccessful and/or erroneous data reception, a simple

retransmission protocol (Type-I Hybrid Automatic Repeat Request (HARQ)) is employed. A

packet is discarded whenever the user fails to correctly decode it (no buffering at the receiver

side) and the BS will attempt to send it again in some subsequent slot.

March 30, 2022 DRAFT

6

Remark 1: For a non-trivial implementation of the Frank-Wolfe (FW) algorithm, which serves

as a baseline for comparison in the the no-CSI case, we need to consider some kind of CSI. For

that, we consider the case of statistical CSI, where the scheduler knows the statistics of the users’

channels and locations. Our proposed DRL algorithm will always operate under full absence of

CSI, since all statistics can effectively be learned through the training phase.

B. Traffic model

We consider a generic yet tractable traffic model, in which users with diverse data and latency

requirements arrive and depart from the system. There is a set of service classes C to which a

user entering the system belongs to with probability pc. Each user in class c ∈ C is characterized

by the tuple (Dc, Lc, αc) as follows:

• Data size Dc: the number of information bits requested by a user belonging to class c.

• Maximum Latency Lc: the maximum number of time slots within which the user has to be

satisfied, i.e., to successfully receive its data packets of size Dc.

• Importance αc: an index allowing the scheduler to prioritize certain service classes, e.g., users

with privileged contracts (e.g., high-value Service-Level Agreement (SLA)) may demand

better service and higher reliability.

We assume that a maximum number of users K can coexist per time slot and that a new user may

arrive only after the departure of a user that exceeded the maximum time allowed to remain in

the system. That way, the scheduling decisions do not influence the arrival process. For example,

if a user arrives at time t0 = 1, belonging to class c ∈ C with Lc = 4, then even if it successfully

receives its requested packet of size Dc at t = 1, a new arrival may randomly be generated only

at time t = t0 + Lc = 5 and afterwards. The rationale behind adopting this model is as follows.

If a new arrival is generated right after a previous user is satisfied (in the example at time t = 2),

then the traffic load is affected by the scheduler performance. The faster the scheduler serves the

users, the more arrivals occurs. In contrast, in our model, the arrival process and its statistics

remain uninfluenced by the scheduling decisions and the available resources. Therefore, at every

time slot, the set of users Ut (|Ut| ≤ K) contains all users waiting to receive their requested data

while remaining within their latency constraint. Finally, to ensure random inter-arrival times, we

assert that the probability pnull = 1−
∑

c∈C pc is positive , i.e., pnull > 0, leaving a probability

that no user appears in a time slot.

March 30, 2022 DRAFT

7

C. Service Rate

The service rate is measured using Shannon rate expression assuming capacity-achieving

codes. The achievable service rate of user u at time t is equal to wu,tRu,t, where Ru,t =

log2(1 + gu,tPu,t) = log2(1 + κu|hu,t|2) (bit/s/Hz), with Pu,t denoting the transmit energy per

symbol (channel use), wu,t the assigned bandwidth (in Hz), and κu =
Cpl
σ2
N

d
−npl
u . Let a user at

distance du from the BS, belonging to class c ∈ C, is served at time tu with resources (wu,t,Pu,t).

The probability of unsuccessful transmission is given by

P fail
u (wu,t,Pu,t; du) = P(wu,tRu,t < Du|du) = P(|hu,t|2 < ζu,td

npl
u) = 1− e−ζu,td

npl
u (2)

where ζu,t=
σ2
N(2Du/wu,t − 1)

CplPu,t

. If du is not known to the scheduler, we have

P fail
u (wu,t,Pu,t) = P(wu,tRu,t < Du) =

∫ dmax

dmin

P fail
u (wu,t,Pu,t; d)fd(d)dd

= 1−
Γ(2

npl
, ζu,td

npl
min)−Γ(2

npl
, ζu,td

npl
max)

nplζ
2/npl
u,t (d2

max − d2
min)/2

(3)

where Γ(s, x) =
∫∞
x
ts−1 e−t dt is the upper incomplete gamma function. For exposition conve-

nience, we overload notation by allowing u in Du, Lu, αu to denote either a class u or a user u

belonging to a class with those characteristics.

III. PROBLEM STATEMENT

We consider the problem of heterogeneous scheduling and resource allocation, which involves

a BS handling a set of randomly arriving service requests belonging to different classes with

heterogeneous requirements. Each class defines the requirements and the expected Quality of

Service (QoS) guarantees for its users. Observing this time-varying set of heterogeneous requests,

the objective of the scheduler at each time slot is two-fold: (i) carefully select which subset of user

requests to satisfy, and (ii) allocate the finite resources amongst the selected user requests. The

performance metric to maximize is the long-term importance-based weighted sum of successfully

satisfied requests. A request is considered to be satisfied whenever the user has received the

requested data within the maximum tolerable latency specified by its service class.

The scheduling problem at hand can be formulated as a Markov Decision Process (MDP)

[30] (S,A, R, P, γ), where S is the state space of the environment and A is the action space,

i.e., the set of all feasible allocations in our case. After action at ∈ A at state st ∈ S, a reward

rt ∼ R(·|st, at) is obtained and the next state follows the probability st+1 ∼ P (·|st, at). The

March 30, 2022 DRAFT

8

discount factor is γ ∈ [0, 1). Under a fixed policy π : S → A determining the action at each time

step, the return is defined as the random variable

Zπ
t =

∞∑
i=0

γirt+i (4)

which represents the discounted sum of rewards when a trajectory of states is taken following π.

Ideally, the aim is to find the optimal policy π? that maximizes the mean reward Eπ[Zπ
t].

At each time step t, a set of users u ∈ Ut is waiting for service, where each user therein

belongs to a class cu ∈ C described by (Dc, Lc, αc). After Lc time steps a new user belonging

to class c might arrive with probability pc. Throughout its “lifespan” t ∈ [t0, t0+Lc−1], wu,t

indicates the amount of given resources. If at any time t, wu,t > Du/Ru,t then user u is satisfied.

Since resources are limited (finite),
∑

u∈Ut wu,t ≤ W, ∀t, no more than W resources in total

can be spent per time slot. Summing up,

State: st = {∀u ∈ Ut : cu,Ru,t, lu,t}

Action: at = {∀u ∈ Ut : wu,t}

Reward: rt =
∑
u∈Ut

αu1{wu,tRu,t > Du}

where lu,t ≤ Lu is the remaining number of time slots within which user u (i.e. u ∈ Ut) expects

to successfully receive its packet and 1{·} denotes the indicator function. Note that knowing the

class cu to which user u belongs, implies knowing the requirements (Du, Lu, αu). An inherent

attribute of this MDP is the permutation equivariance of an optimal policy, meaning that if we

permute the indexing of the users, then permuting likewise the allocation of the resources retains

the performance of the policy. For that, in our DRL approach, we only consider permutation

equivariant policies, and as a consequence we need a permutation invariant function to evaluate

and train the policy.

In this work, we focus on bandwidth allocation, assuming a fixed amount of energy spent per

channel use and no power adaptation, i.e., Pu,t = P,∀u, t. Specifically, for total bandwidth W , the

scheduler aims at finding the (wu1,t, wu2,t, ...) ∈ R
|Ut|
≥0 with u1, u2, ... ∈ Ut and

∑
u∈Ut wu,t ≤ W,∀t,

so as to maximize the accumulated reward for every satisfied user over a finite time horizon.

The expected reward is described by the following objective “gain-function”

G =
∑
t

∑
u∈Ut

αu1{wu,tRu,t > Du}. (5)

March 30, 2022 DRAFT

9

We stress out that a user u remains on the set Ut for a time interval less or equal to the maximum

acceptable latency Lu. If not satisfied within that interval, then it does not contribute positively

to the objective G.

Note that Ru,t satisfies the Markov property since hu,t follows a Markov model. Under full

CSI, the agent (here the BS) fully observes the state st, while in the no-CSI case, hu,t is unknown

resulting in a Partially Observable MDP (POMDP) [31]. One way to transform a POMDP into

a MDP is by substituting the states with the “belief” of the states [32]. Another way is to use

the complete history {o0, a0, o1, a1, · · · , at−1, ot−1}, with ot ⊂ st being the agent’s observation.

Notice that only the most recent part is relevant as users that have already left the system do not

affect the way the channels of the current users evolve or the generation of future users or in

general the current and future system dynamics. Therefore, we can safely consider the scheduling

and allocation history of only the current users. Specifically, if wu,t = (wu,t0 , wu,t0+1, ..., wu,t) is

the scheduling history of user u then the input of the agent is {∀u ∈ Ut : Du, Lu, au, κu, lu,t,wu,t}.

IV. PROPOSED DEEP REINFORCEMENT LEARNING ARCHITECTURE

In this section, we propose a novel DRL architecture as a means to solve the aforementioned

multiclass scheduling and resource allocation problem. Despite the highly challenging dynamics

and stochasticity (wireless channel and heterogeneous traffic), we show that DRL can provide

performance gains although it is impossible to accurately predict the number of users, their

service demands, and their channel/link characteristics even after few steps.

A. Policy Network

Our objective is to build a scheduler that can handle a large number of users K, even in the

order of hundreds. Moreover, we require that our method works in both full CSI and no CSI

cases with minor - if any - modifications. A widely used approach is Deep Q-learning Network

(DQN). However, it is not feasible to employ DQN in our case since it needs a Neural Network

(NN) architecture with a number of outputs equal to the number of possible actions and the

action space is extremely large (in statistical CSI it is even infinitely large). For that, we resort to

a Deep Deterministic Policy Gradient method [23], which trains a policy πθ : S → A modeled

as a NN with parameters θ.

March 30, 2022 DRAFT

10

If at time t on state st the action at is taken followed by the policy π, then the return using

(4) is given by

Zπ(st, at) = rt + γZπ
t+1,with rt ∼ R(·|st, at). (6)

Note that if even at t the action at comes from policy π, then Zπ(st, at = π(st)) = Zπ
t . Let the

expected return be

Qπ(st, at) = E[Zπ(st, at)]. (7)

Then, the objective of the agent is to maximize

J(θ) = Est0∼pt0 [Qπθ(st0 , πθ(st0))], (8)

with pt0 being the probability of the initial state st0 at time t0. The gradient can be written [33]

∇θJ(θ) = Est0∼pt0 ,s∼ρ
πθ
st0

[∇θπθ(s)∇aQ
πθ(s, a)|a=πθ(s)], (9)

with ρπθst0 being the discounted state (improper) distribution defined as ρπθst0 (s) =
∑∞

i=0 γ
i
P(st+i =

s|st0 , πθ). In practice ρπθst0 is approximated by the (proper) distribution %πθst0 (s) :=
∑∞

i=0P(st+i =

s|st0 , πθ). To compute the gradient, the function Qπθ(s, a) is needed, which is approximated by

another NN Qψ(s, a), named value network, described in the next subsection.

We now explain the architecture of the model πθ.

1) Deep Sets: As discussed in Section III, we aim for a policy that falls in the realm of

permutation equivariant functions (i.e., permuting the users should only result in permuting

likewise the resource allocation). In [22], necessary and sufficient conditions are shown for

permutation equivariance in neural networks; their proposed structure called Deep Sets is adopted

here. At first, the characteristics (or features as commonly termed in the machine learning

literature) Fi ∈ RNu , i ∈ {1, · · ·K} of each user are processed individually by the same function

φuser : RNu → R
Hu modeled as a two layer fully connected neural network. Then, the outputs

of φuser that corresponds to the new characteristics per user are aggregated with the permutation

equivariant fσ : RK×H → R
K×H′ of H (resp. H ′) input (resp. output) characteristics:

fσ(x) = σ

(
xΛ +

1

K
11ᵀxΓ

)
, Λ,Γ ∈ RH×H′ (10)

where 1 = [1, · · · , 1] ∈ RK and σ(·) is an element-wise nonlinear function. We stack two of

those, one frelu : RK×Hu → R
K×H′u with σ(·) being the relu(x) = max(0, x) and a second

flinear : RK×H′u → R
K×1 without any nonlinearity σ(·). In addition to preserving the desirable

permutation equivariance property, this structure also brings a significant parameter reduction.

March 30, 2022 DRAFT

11

The number of parameters of Deep Sets contained in Λ,Γ do not depend on the number of users

K. Therefore, any increase in K does not necessitate additional parameters, which could lead to

a much bigger network, prone to overfitting.

2) Output: The activation function for the last layer of the policy network is a smooth

approximation of relu(x), namely softplus(x) = log(1 + ex) restricting the output y ∈ RK to be

positive. After that, depending on the existence of CSI, there are two ways of performing the

allocation. For full CSI, the bandwidth required per user is accurately known. Therefore, we only

need a binary decision per user (to serve or not), which will ruin though the differentiability of

the policy, a mandatory property for DDPG to work. For that, we interpret the output y as a

continuous relaxation of the binary problem. Specifically, y is the assignment to each user of a

“value” per resources which after being multiplied by the number of resources the user requires,

a user ranking is obtained. Then, the scheduler satisfies as many of the most “valuable” (highest

rank) users as possible subject to available resources. Therefore, in full CSI, y semantically

denotes how advantageous the policy believes is to allocate resource to each user. On the contrary,

in the no CSI case, the action is not binary but continuous since the scheduler has to decide on

the portion of the available resources each user takes. To ensure that y has the valid form of

portions (i.e., positive and adding up to one) we just divide by the sum, y → y
||y||1 (with || · ||1

being the `1 norm)2. This discrepancy in the output process is the only minor difference in the

considered model between full CSI and no CSI.

3) User normalization: Before the final nonlinearity of softplus(x) = log(1 + ex), as seen

in Figure 5, there is the crucial “user normalization” step x → x−E[x]
||x||2 ,x ∈ RK (with || · ||2

denoting the `2 norm). Consider first the full CSI case. Without that step, the value network

would perceive that the higher the “value” per resource assigned to a user, the more probable is

for that user to get resources (and thus to be satisfied and receive reward). Unfortunately, this

leads to a pointless interminable increase of every user’s “value”. What matters here is not the

actual “value” of a user but how large this is relative to the rest of the users. To bring the notion

of limited total resources, the “user normalization” subtracts from the value of each user the

2Instead of dividing by the `1 norm, we also considered the softmax(y), which seemed a good choice as it also provides

positive outputs adding up to one. Nevertheless, this approach led to poor performance because no matter how much the number

of users is increased, the policy insists on evaluating as advantageous to serve only a very small number of users. This makes

sense since the softmax function is a smooth approximation of argmax, hence focusing on finding the one most advantageous

user to be served.

March 30, 2022 DRAFT

12

0 2 4 6

Millions of Samples

0.2

0.4

0.6

0.8

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

Distr.&Duel.&Reward Sc.
Linear instead of DeepSets
Without Normalization

Figure 1: We conducted five experiments (with different seeds) for no CSI using the traffic model

of Table Ia, a maximum number of users K = 75, ρ = 0, and resources (total bandwidth) W = 5

MHz. We depict here the average probability a user to be satisfied over those five experiments to

carry an ablation study on the importance of the deep sets and user normalization step.

mean of all the users value. Hence, whenever the algorithm pushes the value of a single user to

increase, the values of the rest decrease. In the no CSI case, there is an additional benefit. Since

in the following step there is the operation y → y
||y||1 so as the output to signify portions (of the

total bandwidth), performing previously the normalization step (dividing by ||x||2) helps keeping

the denominator ||y||1 stable.

In Figure 1 we show the significance of choosing the right architecture. It is clearly observed

that if either all Deeps Sets (in both policy and value network) are substituted by the most

common choice of linear blocks or the user normalization step is removed, the performance

degrade substantially.

4) Exploration: Since the action at has to satisfy specific properties, such as positiveness

and summing up to one for the no CSI case, the common approach of adding noise on the

actions becomes rather cumbersome. An easy way out is through noisy networks [20], which

introduce noise to the weights of a layer, resulting to change decisions for the policy network.

The original approach considers the variance of the added noise to be learnable. Here, we instead

keep it constant since this provides better results. With probability Pexplore we add noise to the

parameters of φusers, resulting to alter output features per user and therefore the policy outputs a

different allocation. Specifically, if θφusers are the parameters of φusers, then they are distorted as

March 30, 2022 DRAFT

13

θφusers(1+σexploreε) with ε being normally distributed with zero mean and unit standard deviation

and σexplore being a constant.

B. Value Network

As mentioned previously, Qπθ(s, a) is used for computing the gradient of the objective function

described in (8). Since this is intractable to compute, a neural network, named value network, is

used to approximate it. We compare three ways of employing the value network.

1) DDPG: At first, the common approach of DDPG is considered, which uses the Bellman

operator

T πQ(s, a) = Er∼R(s,a),s′∼P (s,a)[r + γQ(s′, π(s))] (11)

to minimize the temporal difference error, i.e., the difference between before and after applying

the Bellman operator. This leads to the minimization of the loss

L2(ψ) = Est0∼pt0 ,s∼ρ
πθ
st0

[(Qψ(s, a)− T πθ′Qψ′(s, a))2] (12)

where (πθ′ , Qψ′) corresponds to two separate networks called target policy and target value neural

networks, respectively, used for stabilizing the learning. At each iteration, they are gradually

updated as the weighted sum between the current policy/value networks and the current target

policy/value network, i.e., θ′ ← (1−mtarget)θ
′ +mtargetθ and ψ′ ← (1−mtarget)ψ

′ +mtargetψ.

2) Distributional DDPG: Another way is to approximate the distribution instead of only

approximating the expected value of the return, as in [34]. The following analogy is helpful here

to motivate its interest. Instead of having a scheduler and its users, consider a teacher and its

students. Even though the objective of the teacher is to increase the average “knowledge” of its

students, using the distribution of the capacity/knowledge of the students allows for instance to

decide whether to distribute his/her attention uniformly among students or to focus mostly on a

fraction of them needing further support.

Algorithmically, it is impossible to represent the full space of probability distribution with a

finite number of parameters, so the value neural network Zπθψ : S × A → R
NQ is designed to

approximate the actual Zπθ with a discrete representation. Among many variations [18], [35],

we choose the representation to be a uniform (discrete) probability distribution supported at

{(Zπθψ)i, i ∈ {1, · · · , NQ}} where (Zπθψ)i is the i-th element of the output. More rigorously, the

distribution that the value neural network represents is 1
NQ

∑NQ
i=1 δ(Zπθψ)i

, where δx is a Dirac

March 30, 2022 DRAFT

14

delta function at x [19]. Minimizing the 1-Wasserstein distance between this (approximated)

distribution and the actual one of Zπθ can be achieved by minimizing the quantile regression loss

L1(ψ) =

NQ∑
i=1

E
st0∼pt0 ,s∼ρ

πθ
st0

,z∼T πθ′Z
πθ′
ψ′ (s,a)

[fi(z − (Zπθψ)i))] (13)

where fi(x)=x(2i−1
2NQ
−1{x<0}), T πZπ(s, a)

D
=R(s, a)+γZπ(s′, π(s)), s′∼P (s, a) is the distribu-

tional Bellman operator and Zπθ′ψ′ is the target policy network (defined as before).

Notice that even though we approximate the distribution of Zπθ(s, a), what is actually needed

for improving the policy is only its expected value, approximated as Qπθ(s, a) ≈ 1
NQ

∑NQ
i=1(Z

πθ
ψ)i.

Therefore it is natural to wonder if it indeed helps using Zπθψ instead of directly approximating

the needed expected value (confirming the intuition in the teacher-student analogy). In Figure

2 we provide numerical support for distributional DDPG. Comparing Figures 2b and 2c, we

show the benefits of using distributional DDPG. The distributional DDPG approach detects faster

the existence of two different service classes with heterogeneous requirements, thus gradually

improving the satisfaction rate for both of them. On the other hand, trying only to learn the

expected value leads to a training where the performance for one class is improved at the expense

of the other. Nonetheless, when aggregating the rewards coming from both classes, we observe

in Figure 2a faster convergence of DDPG than the distributional DDPG even though - when

converged - the latter exhibits slightly better performance. Introducing a trick (explained later in

the “dueling” paragraph), the distributional DDPG approach can be enhanced and outperforms

DDPG.

3) Distributional DDPG & Dueling: To facilitate the approximation of the distribution

Zπθ(st, at), we propose to split it into two parts: one that estimates the mean Zπθ,Mean
ψ and one

that estimates the shape of the distribution Zπθ,Shapeψ . For that, we use a dueling architecture [21]

(shown in Figure 5). The output becomes (Zπθψ)i=Zπθ,Mean
ψ +(Zπθ,Shapeψ)i− 1

NQ

∑NQ
i=1(Z

πθ,Shape
ψ)i,

∀i ∈ {1, · · · , Nq}; this effectively pushes Zπθ,Mean
ψ to approximate Qπθ used for training the

policy. To ensure the decomposition of the distribution into shape and mean, we add a loss term

Lshape = (1
NQ

∑
i(Z

πθ,Shape
ψ)i)

2, centering Zπθ,Shapeψ around zero. The total loss function is

L1+duel(ψ) = L1(ψ) + Lshape(ψ). (14)

To better understand the role and the performance of using the dueling architecture to

approximate the (return) distribution, we have implemented a simple experiment, whose results

are shown in Figure 3. We set a random variable Z with known cumulative distribution function

March 30, 2022 DRAFT

15

0 2 4 6

Millions of Samples

0.5

0.6

0.7

0.8

0.9

1
S

a
ti
s
fa

c
ti
o
n
 P

ro
b
a
b
ili

ty

Distr.&Duel.&Reward Scaling

Distributional DDPG &Dueling

DDPG

Distributional DDPG

(a)

0 2 4 6

Millions of Samples

0.2

0.4

0.6

0.8

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

DDPG

Class 1

Class 2

(b)

0 2 4 6

Millions of Samples

0.2

0.4

0.6

0.8

1

S
a
ti
s
fa

c
ti
o
n
 P

ro
b
a
b
ili

ty

Distributional DDPG

Class 1

Class 2

(c)

Figure 2: Comparison between distributional and standard (non-distributional) DDPG RL. We

conducted five experiments with different seeds as in Figure 1 with the same traffic model. In the

first figure, we depict the average over those five experiments; in the other figures, we consider

one specific experiment in an attempt to show the inherent ability of distributional DDPG in

dealing with heterogeneous traffic.

(cdf) CDFreal from which we draw samples. The objective is to test the distributional and

the combination of distributional plus dueling approach on how fast using samples from Z

they correctly estimate the CDFreal. For the first approach (termed Distributional) we use NQ

parameters ϕ ∈ RNQ and aim to approximate the quantiles of CDFreal through minimizing the

quantile regression loss (as in (13)): L1(ϕ)=
∑NQ

i=1Ez∼Z [fi(z−(ϕ)i)].

On the other hand, we use the dueling architecture (termed Distributional & Dueling) with

parameters ϕshape ∈ RNQ and ϕmean ∈ R. We want with ϕduel := [ϕshape, ϕmean] to approximate

the quantiles of CDFreal by minimizing the loss L1+duel(ϕduel) as defined in (14). In Figure 3,

each column corresponds to a different cdf CDFreal:

• the first column corresponds to a normal distribution N (0, 1),

• the second one to a Gamma distribution Γ(1, 1), and

• the last one to an equiprobable mixture of two normal distributions N (0, 1) and N (4, 1).

Each row corresponds to a different number of samples used to estimate CDFreal. We depict the

estimated cdf when using or not the dueling trick and compared them to the true one. We use

NQ = 50 and the optimization algorithm is Adam with learning rate 0.01. We can see that using

dueling leads to faster estimation of the true cdf in all cases.

March 30, 2022 DRAFT

16

−3 −2 −1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0
150 samples

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
150 samples

−2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
150 samples

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
400 samples

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0
400 samples

−2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
400 samples

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
1000 samples

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0
1000 samples

−2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
1000 samples

Distributional Distributional & Dueling CDFreal

Figure 3: Estimation of a cumulative distribution function with and without the dueling trick.

4) Scaling rewards: A closer look on the range of the possible rewards reveals that they have

a very large range of possible values, starting from 0 (no user satisfied) to K (maximum number

of users satisfied assuming all classes have equal importance αc = 1). Therefore both its mean

and variance may take big values. This is accentuated for the returns since it is the (discounted)

sum of many of those rewards. Therefore, approximating the returns which take a large range of

values is demanding. Standard technique to facilitate the approximation is “scaling” the rewards.

The rewards are normalized in a way that the returns take values on a more easy to approximate

range. Given a path that a fixed agent have taken, one can compute the returns per time slot

across that path. Scaling the rewards pushes the mean of those returns to zero and the variance

to one.

Specifically, the implementation of scaling the rewards involves first estimating the discounted

March 30, 2022 DRAFT

17

sum of rewards zt ← γzt−1 + rt, then the running statistic of its mean zmeant ← mscalez
mean
t−1 +

(1−mscale)zt and of its mean of squares zsquarest ← mscalez
squares
t−1 + (1−mscale)z

2
t . Finally the

scaled reward equals to
rt − zmeant√

zsquarest − (zmeant)2
. The DRL algorithm is fed with those rewards

whose discounted sum over time is the return that the policy network is trained to predict. We

fix mscale = 10−4. In Figure 2a it is shown that reward normalization clearly provides additional

boost in the performance.

Distributional

Distributional & Reward Scaling

0

Distributional & Reward Scaling & Dueling

Figure 4: Effect of adding the dueling architecture in the Value Network and/or reward scaling

to distributional DDPG RL.

In Figure 4, we visualize what the value network tries to approximate. In the first row,

by considering only distributional DDPG, from state s and action a the distribution of the

returns Zπθψ (s, a) is approximated. From a different state s′ and action a′, there will be other

possible random paths that the agent with policy πθ may take and the value network will

try to approximate the distribution Zπθψ (s′, a′). The black dots depict the average of the two

distributions, which are in fact the values that the value network of a simple DDPG would

like to approximate and the policy network to maximize. In the second row, the use of reward

scaling shifts the distributions around zero and also shrink them. In the last row, the dueling

trick is added so the value network has two outputs. One branch of the dueling architecture

approximates the value Zπθ,Mean
ψ (s, a) = E[Zπθψ (s, a)], while the other the centered distribution

Zπθ,Shapeψ (s, a) = Zπθψ (s, a)−Zπθ,Mean
ψ (s, a).

5) Deep Sets: A final remark concerns the architecture, which, as discussed before, should be

designed so as to preserve the permutation invariance. If we associate every user’s characteristics

with the resources given by the agent, i.e., the action corresponding to it, then permuting the

March 30, 2022 DRAFT

18

users and accordingly the respective resource allocation should not influence the assessment of

the success of the agent. To build such an architecture, we adopt the same architecture as in our

Policy Network, capitalizing on ideas from DeepSets [22].

The different steps of our algorithm are shown in Figure 5.

Env
iro

nm
en

t

Characteristics
per user

relu relu

Processed
characteristics

per user

Policy Network

relu relu

Processed
Characteristics &
actions per user

Value Network
Characteristics &
actions per user

CSI?

No

Yes

Deep Sets User Normalization
&

Softplus

Deep Sets Dueling &
Distributional

Output
formation

Action

Crucial architecture choices

Reward
Scaling

Figure 5: The proposed RL network architecture

V. BASELINE ALGORITHMS

In this section, we present baseline scheduling algorithms, which are built upon conventional

optimization techniques but are adapted to our specific problem. These algorithms are used for

performance comparison in order to show the gains of our proposed DRL architecture.

A. Full CSI case

At time tc (tc ≥ t0), for user u0, which arrived at time t0, both channel hu0,tc and location

du0 are known. User u0 is not satisfied at time t if and only if the allocated bandwidth wu0,t is

smaller than the threshold wthu0,t =
Du0

Ru0,t

. We first consider algorithms working with immediate

horizon (T = 1), where only the current time tc is considered ignoring the effects on future slots.

In that case, it is possible that the scheduler prefers serving two users that just arrived in the

March 30, 2022 DRAFT

19

system rather than a user with bad channel requiring more resources but being on the verge of its

latency constraint expiration. The optimization problem can be easily rewritten as follows. The

variables to optimize are {xu,tc}u. The variable xu,tc is equal to 1 if user u is served at time tc

or 0 otherwise. The cost in terms of bandwidth used is wthu,tcxu,tc , since full CSI is assumed and

the scheduler allocates exactly the minimum bandwidth required to successfully send the data to

user u. Then, the contribution in the reward function is αuxu,tc . As a result, the optimization

problem can be written as

max
xu,tc

∑
u∈Utc

αuxu,tc

s.t.
∑

u∈Utc
wthu,tcxu,tc ≤ W

xu,tc ∈ {0, 1}, ∀u ∈ Utc .

This problem bils down to the knapsack problems, which aim to maximize the total value by

choosing a proper subset from a set of objects. Every object has its value but also its weight,

thus preventing one from picking all objects since the total weight of the chosen subset should

not exceed the knapsack capacity level. It is a well known NP-complete problem with numerous

efficient algorithms solving it. In this work, we use Google’s OR-TOOLS library for solving it.

A second baseline we compare with is the so-called exponential rule [36], which corresponds

to a generalization of proportional fair scheduler taking into account the queue state and the

latency constraint of each user. At each time slot t, users are ordered according to their index

values and we start serving the ones with the highest rank until resources are finished. Let vu,t

be the number of the time slots user u remains unsatisfied and lu,t be the number of time slots

the user is eager to wait (therefore Lu = vu,t + lu,t). Denote Ru,t =
1

vu,t + 1

t∑
τ=t−vu,t

Ru,τ the

estimated mean past rate. This value is known by the server at time t by keeping track of the

history of channel gains. Then the index Ju for user u is given by

Ju = γu,tRu,te

au,tvu,t − atvt
1 +
√
atvt

with atvt = 1
|Ut|
∑

u au,tvu,t, γu,t = au,t/Ru,t and au,t = − log(δu)/lu,t with δu being the delay

violation probability.

Lastly, we focus on algorithms that explicitly take into account the effects of an action on

the future of finite horizon (T > 1). For sake of simplicity, we assume that for the time interval

t ∈ [tc, tc + T − 1] for all the current users and also for the ones that will appear within that

March 30, 2022 DRAFT

20

interval, the channel realizations during this time interval are known beforehand (i.e., when the

algorithm is executed at time tc). Therefore, this baseline becomes an oracle since it knows the

future channel realizations of users and can choose the best moment to serve them. Evidently,

this method provides an upper bound on the performance. Specifically, if UT
tc denotes the set of

all current users plus the ones that will arrive in the time interval [tc, tc + T − 1], then for every

user u ∈ UT
tc this baseline knows wthu,t which corresponds to the required bandwidth in order to

satisfy u at time t ∈ [tc, tc + T − 1]. The optimization problem is then cast as

max
xu,t

∑
u∈UTtc

αu
∑tc+T−1

t=tc
xu,t

s.t.
∑

Ut
wthu,txu,t ≤ W, ∀t ∈ [tc, tc+T−1]∑tc+T−1
t=tc

xu,t ≤ 1, ∀u ∈ UT
tc

xu,t ∈ {0, 1}, ∀t ∈ [tc, tc+T−1] and ∀u ∈ UT
tc .

This problem is an ILP and we use IBM CPLEX Optimization software, which employs the

Branch and Cut algorithm [1], to solve it. Notice that the above problem cannot be mapped into

a knapsack one (as for T = 1), or even a multiple knapsack problem because the weight of each

user is time-varying due to channel variability and non-constant user set.

B. Statistical CSI case

Under statistical CSI, the BS knows the statistics of the system (channel, location, and traffic).

In this section, we build a baseline to compare with the proposed DRL scheduler in the no-CSI

case as mentioned in Remark 1.

Let us first focus on the case of a single user u0 arriving at time t0. The current time is

tc ∈ [t0, t0 + Lu0 − 1]. We denote by wu0,t = (wu0,t0 , wu0,t0+1, ..., wu0,t) the assigned bandwidth

from time t0 (beginning of transmission for user u0). Additionally, let Au0,t be a binary random

variable, where if Au0,t = 1, then u0 is still unsatisfied at the end of time slot t (after receiving

wu0,t resources) and Au0,t = 0 otherwise. Given that at the beginning of time t, user u0 still

remains unsatisfied and that we know wu0,t is scheduled at time t, we define Φ(wu0,t; du0) to be

the probability that wu0,t is not sufficient to satisfy the user’s request for known location du0 and

unknown channel realization hu0,t, i.e.,

Φ(wu0,t; du0) =

 P(Au0,t = 1|wu0,t−1, du0 , Au0,t−1=1), t > t0

P(Au0,t = 1|du0), t = tc = t0.
(15)

March 30, 2022 DRAFT

21

The average contribution of user u0 to the gain (5) on the time interval [tc, t] is given by the

following equation, derived by applying the chain rule on conditional probability:

g[tc,t]u0
:= g(wu0,tc , ..., wu0,t; du0) =

0, if tc > t0 and Au0,tc−1 = 0

αu0
(
1−

t∏
j=tc

Φ(wu0,j; du0)
)
, else.

(16)

We consider now the average contribution on the gain (5) for subsequent users after user u0.

The next user (if any) appears at time t1 = t0 + Lu0 , the second next at time t2 = t1 + Lu1 ,

and so on. In other words, we consider the users, denoted u1, u2, . . ., which appear at time

t1 = t0 +Lu0 , t2 = t1 +Lu1 , . . ., respectively. Users belong to classes c1, c2, . . ., with probabilities

pc1 , pc2 , . . ., respectively. Since the locations of those future users are unknown, we need to

average (15) and (16) over their possible locations in order to obtain their contribution on the

gain function (5). So for i ≥ 1 if wui,t = (wui,ti , wui,ti+1, ..., wui,t), we have

g[ti,t]ui
=g(wui,ti , ..., wui,t) = αui

(
1−

t∏
i=tc

Φ(wui,i)
)

(17)

where the contribution looking at time t with t < ti + Lui starts at time ti for user ui and where

Φ(wui,t) =

 P(Aui,t = 1|wui,t−1, Aui,t−1=1), t > ti

P(Aui,t = 1), t = ti.
(18)

Closed-form expressions for Eqs. (15) and (18) are provided in Appendix A.

For notational convenience, to include the case where no new user is generated in a time slot,

we introduce the “null” class of users, which contains users serving as dummies. They appear

with probability pnull, are active for one slot (Lnull = 1) and have zero contribution g
[ti,ti+1]
u = 0

with ti+1=ti+Lnull. Hence, the average value of the gain function for the sequence of users

u0, u1, ... (so when there is one user at most per time slot, i.e., K = 1) starting at the current

time tc is

G(wu0,tc , ..., wu0,t1−1, wu1,t1 , ...) = g
[tc,t1−1]
u0 (.; du0)

+
∑

c1∈C∪null

(
pc1 · g[t1,t2−1]u1

+
∑

c2∈C∪null

(
pc2 · g[t2,t3−1]u2

+
∑

c3∈C∪null

(...)
))

. (19)

From (19), we observe a tree structure3 that when a user vanishes, there is a summation over

all possible classes the new user may belong to. Therefore, a number of branches equal to the

3This can be exploited for computing it recursively.

March 30, 2022 DRAFT

22

number of possible classes (equal to |C|) are created whenever a new future user is taken into

account. To harness this scalability issue, we prune the tree by considering only T future time

slots and work with finite horizon [tc, tc + T − 1].

The general case with multiple users served simultaneously (K > 1) can easily be considered

by just computing K “parallel trees”. With a slight abuse of notation, we consider that the first

subscript of the variables w refers now to the index of the tree (and implicitly to a specific user).

As a consequence, the variables for the scheduled bandwidth resources over an horizon of length

T can be put into the following matrix form

Wtc =

w1,tc w1,tc+1 · · · w1,tc+T−1

w2,tc w2,tc+1 · · · w2,tc+T−1
...

...

wK,tc wK,tc+1 · · · wK,tc+T−1

and the average gain for these resources takes the following form:

G(Wtc) =
K∑
k=1

G(wk,tc , wk,tc+1, · · · , wk,tc+T−1). (20)

Finally, we arrive at our optimization problem at current time tc:

max
Wtc∈R

K×T
≥0

G(Wtc) (21)

s.t.
K∑
k=1

wk,t ≤ W, ∀t ∈ {tc, . . . , tc+T−1}. (22)

It can easily be shown that the objective function G(·) is non-concave with multiple local

optima. The constraints given by (22) describe a compact and convex domain set, which allows

applying the Frank-Wolfe algorithm (FW) [37] that guarantees reaching to a local optimum. The

convergence of the FW method is sublinear; however, computing the objective function (20)

and its partial derivatives grows exponentially with T , thus leading to slow and cumbersome

method in practice. Therefore, in each time slot tc, we use FW to get a local optimum solution

W?
tc from which we retrieve the first column [w?1,tc , · · · , w

?
K,tc

]ᵀ corresponding to the bandwidth

allocation that will be applied at the current time step tc.

VI. EXPERIMENTAL RESULTS

A. Synthetic Data

We consider the distance-dependent pathloss model 120.9 + 37.6 log10 d (in dB) [38], which

corresponds to a constant loss component Cpl = 10−12.09 and pathloss exponent npl = 3.76. The

March 30, 2022 DRAFT

23

noise spectral density is σ2
N = −149dBm/Hz. We consider that the distance between the base

station and users ranges from 0.05 km to 1 km. The power per unit bandwidth is kept equal to

1µW/Hz.

For the proposed DRL scheduler, we update the target policy and value networks with

momentum mtarget = 0.005. We use replay buffer of capacity 5000 samples. The batch size is

set to 64 and the learning rate is set to 0.001. The discount factor is γ = 0.95. We use NQ = 50

quantiles to describe the distribution. The φuser consists of two fully connected layers each

with 10 neurons. We have Pexplore = 0.2 and σexplore = 0.3. The number of input and output

dimensions in both frelu and flinear is 10 (i.e., H = H ′ = 10). We remark that the number of

parameters is kept relatively low (around 1800), mainly due to the use of Deep Set. Increasing

this further unavoidably results in overfitting due to the high stochasticity of the environment.

Moreover, keeping the number of parameters low makes our solution fast and cost-effective (both

in terms of energy and hardware).

We consider two scenarios for the traffic as described in Table I.

Table I: Classes description for two scenarios

(a) Users of equal importance

Data per user (Kbytes) Latency (in time slots) Imp. Prob.

Class 1 8 2 1 0.3

Class 2 64 10 1 0.2

(b) Prioritized and normal users

Data per user (Kbytes) Latency (in time slots) Imp. Prob.

Class 1 8 2 1 0.15

Class 1+ 8 2 2 0.05

Class 2 64 10 1 0.3

Class 2+ 64 10 2 0.05

The first scenario consists of two classes, one with users requesting a small amount of data

but within a stringent latency constraint (of just two time slots) and one delay-tolerant class

requesting a large amount of data. All classes have the same importance as seen from the Imp.

column. In the second scenario, classes do not have the same importance. Note that the Prob.

column describes the probability pc with which a user of that class appears in the system at a

March 30, 2022 DRAFT

24

given time slot (they do not sum up to one signifying that it is possible that no user appears

during some time slots).

In Figure 6, we plot the satisfaction ratio per class priority (i.e., all users having the same

priority take part to the computation of the same ratio and so depicted in the same curve) versus

the channel correlation (ρ in left column) and versus the total bandwidth (W in right column)

for both scenarios and different CSI knowledge. Figures 6a,6c,6e are plotted for W = 2 MHz,

W = 5 MHz and W = 2 MHz, respectively, whereas Figures 6b, 6d, 6f are all for ρ = 0. Figures

6a, 6b, 6e, and 6f are done with K = 100 users. Figures 6c and 6d are done with K = 60 users.

Recall that the FW algorithm reaches to a suboptimal point and different initializations lead to

different local optima. For that, at each time slot, we repeat the FW algorithm Ninit times with a

different initialization at each time and we select the best suboptimal point. This method could

lead to considerable performance improvement for Ninit increasing; however, due to computational

complexity, we stop at Ninit = 20. Moreover, as the number of users K increases, so does the

number of local optima and that of solutions with poor performance making it tougher for the FW

to find a good optimal point without significantly increasing Ninit. This is the main reason why

our DRL Scheduler substantially outperforms Frank-Wolfe algorithm even at moderate values of

users (K = 60). Note that our DRL Scheduler continues exhibiting very good performance even

if K is further increased.

The proposed DRL scheduler significantly outperforms the knapsack algorithm. For instance,

at a level of 95% of satisfaction probability, we may save about 13% of bandwidth, which is

followed by a 13% power saving as the power per Hz is kept constant (see Figure 6b). We also

observe that our scheduler is quite close to the optimal policy, since ILP which uses an oracle

constitutes an upper bound on the performance. In Figures 6e and 6e, there is a priority class

of users, which always enjoys a higher satisfaction probability. Interestingly, the proposed DRL

scheduler serves slightly worse the priority class than what the knapsack does. Nevertheless,

since the priority counts for the 0.1
0.55
≈ 18% of the users and the rest 82% is much better served

using our Scheduler, the latter exhibits overall better performance than the knapsack.

B. Real Data

To assess the applicability of our algorithm in a realistic setup, we perform experiments on real

data using publicly available traces based on real measurements over Long Term Evolution (LTE)

4G networks in a Belgium city [39], [40]. Six different types of transportation (foot, bicycle, bus,

March 30, 2022 DRAFT

25

i.i.d. 0.2 0.4 0.6 0.8 constant

Channel Dynamics

0.85

0.9

0.95

1
S

a
ti
s
fa

c
ti
o
n
 P

ro
b
a
b
ili

ty
full-CSI

(a)

1 1.5 2 2.5

Bandwidth Resources (MHz)

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

full-CSI

(b)

i.i.d. 0.2 0.4 0.6 0.8 constant

Channel Dynamics

0.75

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

statistical/no-CSI

(c)

3.5 4 4.5 5 5.5

Bandwidth Resources (MHz)

0.75

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

statistical/no-CSI

(d)

i.i.d 0.2 0.4 0.6 0.8 constant

Channel Dynamics

0.7

0.75

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

full-CSI, with priority class

(e)

1 1.5 2 2.5 3

Bandwidth Resources (MHz)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

full-CSI, with priority class

(f)

Figure 6: Satisfaction rate of the proposed DRL scheduler and the baseline algorithms versus ρ

(left column) and W (right column). The first and last rows correspond to the case of Table Ia

and the row in the middle to Table Ib. Figures 6a, 6b, 6e and 6f refer to the full CSI case while

the other to the statistical CSI/no CSI case.

March 30, 2022 DRAFT

26

tram, train, car) are used. The throughput and the GPS location of a mobile device continuously

demanding data are recorded every second. Since the timescale of 1s is much larger than the

small-scale fading timescale represented here by the random variable h, the measurement that

is provided corresponds to Mi = Eh[W log2(1 + κ|h|2)] for every i-th second. The value of κ,

which mainly depends on the user location, is assumed constant within 1s. As the measurements

bandwidth W is not reported in the dataset, we assume it to be 15MHz, resulting in a mean

signal-to-noise ratio (SNR) ≈ 6dB in an LTE compliant system. This allows us to retrieve κ from

measurement Mi. To compute the channel time variation h, the user speed is required in (1) so

as to obtain ρ. This is estimated using the trajectory of GPS coordinates given from the traces. A

user entering the system belongs to a class according to Table II, with its type of transportation

chosen randomly; we then sample Mi and her location from the traces accordingly. Knowing in

the previous and afterwards time slots the locations, we can compute the average speed and so

the ρ. Finally, so far we assumed that the bandwidth can be split as small as desired (continuum);

however, in practice, the bandwidth is split into Nbl resource blocks and each user is assigned

an integer multiple of those. In Table III, we increase Nbl with the size of the resource block

constant to 200kHz, again confirming the performance gains from using a DRL based approach.

For the Exponential rule, the value of δu is set to δu = δ = 10−2 [36]. Nevertheless, since this

value does not provide the best results for every Nbl (resource blocks), we tune this parameter

for each Nbl in order to provide the highest possible performance.

Table II: Equal Classes description (Data rate per user in Kbps, Latency in msec)

Data (Kbits) Latency (msec) Imp. Prob.

Class 1 1 5 1 0.2

Class 2 5 25 1 0.3

Table III: Sum Data Rate (in Mbps) / Probability of Satisfaction

Nbl (W) 6 (3MHz) 15 (5MHz) 25 (10MHz) 50 (15MHz) 75 (20MHz)

Knapsack 6.4 / 48.6% 10.2 / 64.3% 15.2 / 84.3% 17.0 / 91.2% 17.6 / 93.4%

Exp. Rule 5.9 / 44.0% 8.8 / 57.3% 14.0 / 80.4% 17.2 / 92.7% 18.1 / 95.8%

Proposed DRL Scheduler 6.7 / 51.6% 10.6 / 67.6% 15.5 / 86.9% 17.2 / 93.0% 18.3 / 96.2%

ILP (Upper Bound) 9.0 / 62.9% 14.6 / 81.8% 18.6 / 98.5% 18.9 / 98.7% 19.0 / 98.9%

March 30, 2022 DRAFT

27

In Table III, we see that the proposed DRL algorithm outperforms baseline algorithms with

full CSI and using real data, both in terms of data rate and satisfaction probability. The gap

from the upper bound is rather significant, but this is expected as the upper bound is optimistic

assuming that the channel is known in advance.

VII. CONCLUSION

The problem of scheduling and resource allocation of a time-varying set of users with

heterogeneous traffic and QoS requirements was studied here. We leveraged deep reinforcement

learning and proposed a deep deterministic policy gradient algorithm, which builds upon

distributional reinforcement learning and deep sets. Our experiments on both synthetic and

real data showed that the proposed scheduler can achieve significant performance gains as

compared to state-of-the-art conventional combinatorial optimization methods in both full and no

CSI scenarios.

APPENDIX A

CLOSED-FORM EXPRESSIONS FOR (15) AND (18)

a) i.i.d. fading (ρ = 0): This is the simplest case since there are no time dependencies on

the fading, hence using (2) and (3), (15) and (18) become

Φ(wu0,t; du0) = P fail
u0

(wu0,t, P ; du0) and Φ(wui,t) = P fail
ui

(wui,t, P), i ≥ 1.

We recall that users ui for i ≥ 1 arrive after user u0, therefore their locations are unknown and

we need to average over them4.

b) Static channel (ρ = 1): The channel remains the same for each retransmission. For user

u0, the channel is time invariant (gu0 = gu0,t ∀t ∈ [t0, t0 + Lu0 − 1]) but unknown. Only the user

location is known. At time t > t0, we have

Φ(wu0,t; du0) = P(wu0,t log(1+gu0P) < Du0|wu0,t′ log(1+gu0P) < Du0∀t′ ∈ [t0, t−1], du0)

=
P(wu0,t′′ log(1 + gu0P) < Du0 ∀t′′ ∈ [t0, t] | du0)
P(wu0,t′ log(1 + gu0P) < Du0 ∀t′ ∈ [t0, t−1] | du0)

.

4It might not be easy to find the derivative of (3), which is required for first-order approximation in the Franck-Wolfe algorithm.

This is done as follows

dP failu

dw
=

∫ dmax

dmin

dP(|h|2 < ζu,td
npl)

dζu,t
fd(d)dd

dζu,t
dw

=
Γ(

2+npl

npl
, ζu,td

npl

min)−Γ(
2+npl

npl
, ζu,td

npl
max)

nplζ
(2+npl)/npl
u,t (d2

max − d2
min)/2

dζu,t
dw

.

March 30, 2022 DRAFT

28

Therefore, we obtain

Φ(wu0,t; du0) =

P fail
u0

(max{wu0,t}, P ; du0)

P fail
u0 (max{wu0,t−1}, P ; du0)

, if t > t0

P fail
u0

(wu0,t, P ; du0), if t = t0.

(23)

For subsequent (future) users (ui with i ≥ 1), the expressions remain the same with the only

difference that the locations of those users are also not known. Hence, in (23), we just need to

omit du similarly to the i.i.d. case.

c) General Markovian channel (ρ ∈ (0, 1)): This is the most complicated case due to the

correlation between channel realizations. At time t, the distribution of hu,t given the past (which

is not known in practice) is Rician distributed. Specifically, if user u is active at t − 1 and t,

we have P(|hu,t|=x
∣∣∣|hu,t−1|) = Rice(x; vR = ρ|hu0,t−1|, σ2

R = 1−ρ2
2

), where vR and σ2
R is the

distance and the spread parameters respectively of the Rice distribution. Let us focus on user u0

at time t = t0 + 1. According to [41, eq.(37)], we have

Φ(wu0,t0+1; du0) =

∫ xu0,0

0

∫ xu0,1

0

P(|hu0,t0+1|=x |y)P(|hu0,t0|=y)dxdy

= 1−
e−x

2
1Q1(

xu0,0
σR

,
ρxu0,1
σR

)−e−x
2
u0,0Q1(

ρxu0,0
σR

,
xu0,1
σR

)

2(1− e−x
2
u0,0)

(24)

with xui,j =
√
ζui,ti+jd

−
npl
2 , i ∈ {0, 1} and QM be the Marcum Q-function.

For future users (ui, i ≥ 1), we have at time t = ti + 1 (we remind that user ui starts its

transmission at time ti):

Φ(wu,ti+1) =

∫ dmax

dmin

Φ(wui,ti+1; dui)fd(d)dd (25)

where Φ(wui,ti+1; dui) is given by (24) by replacing u0 with ui. Equation (25) is intractable even

considering only the first two adjacent retransmissions. This is exacerbated when one considers

additional transmissions. Therefore, the baseline algorithm is only designed for ρ = 0 or ρ = 1,

even if it is also tested in the general case ρ ∈ (0, 1). Specifically, for any ρ, we apply the

baseline algorithm designed for either ρ = 0 or ρ = 1 and keep the best result.

REFERENCES

[1] J. E. Mitchell, “Branch-and-cut algorithms for combinatorial optimization problems,” Handbook of applied optimization,

vol. 1, pp. 65–77, 2002.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,

G. Ostrovski et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,

2015.

March 30, 2022 DRAFT

29

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al.,

“Mastering chess and shogi by self-play with a general reinforcement learning algorithm,” preprint, arXiv:1712.01815, 2017.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, vol.

529, no. 7587, pp. 484–489, 2016.

[5] J. Kober, J. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The International Journal of Robotics

Research, vol. 32, pp. 1238–1274, 2013.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with

deep reinforcement learning,” preprint, arXiv: 1509.02971, 2015.

[7] M. Cheng, J. Li, and S. Nazarian, “Drl-cloud: Deep reinforcement learning-based resource provisioning and task scheduling

for cloud service providers,” in 23rd Asia and S. Pacific Design Automation Conference (ASP-DAC), 2018, pp. 129–134.

[8] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone, and S. Katti, “Cellular network traffic scheduling

with deep reinforcement learning.” in AAAI Conf. on Artificial Intelligence, 2018, pp. 766–774.

[9] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for distributed dynamic spectrum access,” IEEE

Trans. on Wireless Communications, vol. 18, no. 1, pp. 310–323, 2018.

[10] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks,”

IEEE Journal on Sel. Areas in Commun. (JSAC), vol. 37, no. 10, pp. 2239–2250, 2019.

[11] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-user cellular networks: Deep reinforcement learning

approaches,” IEEE Trans. on Wireless Communications, vol. 19, no. 10, pp. 6255–6267, 2020.

[12] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep reinforcement learning for user association and

resource allocation in heterogeneous cellular networks,” IEEE Trans. on Wireless Communications, vol. 18, no. 11, pp.

5141–5152, 2019.

[13] J. V. Saraiva, J. Braga, Iran M., V. F. Monteiro, F. R. M. Lima, T. F. Maciel, J. Freitas, Walter C., and F. R. P. Cavalcanti,

“Deep Reinforcement Learning for QoS-Constrained Resource Allocation in Multiservice Networks,” arXiv, Mar. 2020.

[14] F. S. Mohammadi and A. Kwasinski, “Deep reinforcement learning approach to qoe-driven resource allocation for spectrum

underlay in cognitive radio networks,” in IEEE Inter. Conf. on Commun. (ICC) Workshops, Kansas City, MO, USA, May

2018.

[15] H. Yang, J. Zhao, K.-Y. Lam, S. Garg, Q. Wu, and Z. Xiong, “Deep reinforcement learning based resource allocation

for heterogeneous networks,” in 17th International Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob), 2021, pp. 253–258.

[16] W. Lee and R. Schober, “Deep learning-based resource allocation for device-to-device communication,” CoRR, vol.

abs/2011.12757, 2020.

[17] S. C. Jaquette, “Markov decision processes with a new optimality criterion: Discrete time,” The Annals of Statistics, vol. 1,

no. 3, pp. 496–505, 1973.

[18] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile networks for distributional reinforcement learning,”

preprint, arXiv:1806.06923, 2018.

[19] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional reinforcement learning with quantile regression,”

in Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, USA, 2 2018.

[20] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband, A. Graves, V. Mnih, R. Munos, D. Hassabis et al.,

“Noisy networks for exploration,” in International Conference on Learning Representations, 2018.

[21] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas, “Dueling network architectures for deep

reinforcement learning,” in International Conference on Machine Learning, ICML, New York, USA, 6 2016.

March 30, 2022 DRAFT

30

[22] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,” in Advances

in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 3391–3401. [Online]. Available:

http://papers.nips.cc/paper/6931-deep-sets.pdf

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep

reinforcement learning,” in International Conference on Learning Representations, ICLR, San Juan, Puerto Rico, 5 2016.

[24] A. Valcarce, “Wireless suite,” https://github.com/nokia/wireless-suite, 2020.

[25] Z. Gu, C. She, W. Hardjawana, S. Lumb, D. McKechnie, T. Essery, and B. Vucetic, “Knowledge-assisted deep reinforcement

learning in 5G scheduler design: From theoretical framework to implementation,” IEEE Journal on Sel. Areas in Commun.

(JSAC), vol. 39, no. 7, pp. 2014–2028, 2021.

[26] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Graph neural networks for scalable radio resource management: Architecture

design and theoretical analysis,” IEEE Journal on Sel. Areas in Commun. (JSAC), vol. 39, no. 1, pp. 101–115, 2020.

[27] J. Li and X. Zhang, “Deep reinforcement learning-based joint scheduling of eMBB and URLLC in 5G networks,” IEEE

Wirel. Comm. Letters, vol. 9, no. 9, pp. 1543–1546, 2020.

[28] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry, “Implementation matters in deep

RL: A case study on PPO and TRPO,” in International conference on learning representations, 2019.

[29] C. C. Tan and N. C. Beaulieu, “On first-order Markov modeling for the Rayleigh fading channel,” IEEE Trans. on

Communications, vol. 48, no. 12, pp. 2032–2040, 2000.

[30] R. Bellman, “A Markovian decision process,” Journal of mathematics and mechanics, pp. 679–684, 1957.

[31] K. J. Åström, “Optimal control of Markov processes with incomplete state information,” Journal of Mathematical Analysis

and Applications, vol. 10, pp. 174–205, 1965. [Online]. Available: https://lup.lub.lu.se/search/ws/files/5323668/8867085.pdf

[32] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observable stochastic domains,”

Artificial intelligence, vol. 101, no. 1-2, pp. 99–134, 1998.

[33] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic policy gradient algorithms,”

Proceedings of the 31st International Conference on Machine Learning, PMLR, vol. 32, no. 1, pp. 387–395, 6 2014.

[34] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, A. Muldal, N. Heess, and T. Lillicrap, “Distributed

distributional deterministic policy gradients,” in Intern. Conf. on Learning Repres. (ICLR), Vancouver, Canada, 2018.

[35] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on reinforcement learning,” in International

Conference on Machine Learning, ICML, Syndey, Australia, 8 2017.

[36] S. Shakkottai and A. L. Stolyar, “Scheduling algorithms for a mixture of real-time and non-real-time data in HDR,” in

Teletraffic Science and Engineering. Elsevier, 2001, vol. 4, pp. 793–804.

[37] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp.

95–110, 1956. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109

[38] (2018, 6) Technical Report: 3GPP TR 36.913 v15.0.0: Requirements for further advancements for E-UTRA (LTE-Advanced).

[Online]. Available: https://www.3gpp.org/ftp/Specs/archive/36 series/36.913/

[39] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen, and F. De Turck, “HTTP/2-Based

Adaptive Streaming of HEVC Video Over 4G/LTE Networks,” IEEE Comm. Letters, vol. 20, no. 11, pp. 2177–2180, 2016.

[40] H. Mao, “Pensieve,” https://github.com/hongzimao/pensieve, 2017.

[41] A. H. Nuttall, “Some integrals involving the Q-function,” IEEE Trans. on Inform. Theory, vol. 21, no. 1, pp. 95–96, 4 1975.

March 30, 2022 DRAFT

http://papers.nips.cc/paper/6931-deep-sets.pdf
https://github.com/nokia/wireless-suite
https://lup.lub.lu.se/search/ws/files/5323668/8867085.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://www.3gpp.org/ftp/Specs/archive/36_series/36.913/
https://github.com/hongzimao/pensieve

	Introduction
	System Model
	Network and channel model
	Traffic model
	Service Rate

	Problem Statement
	Proposed Deep Reinforcement Learning Architecture
	Policy Network
	Deep Sets
	Output
	User normalization
	Exploration

	Value Network
	DDPG
	Distributional DDPG
	Distributional DDPG & Dueling
	Scaling rewards
	Deep Sets

	Baseline algorithms
	Full CSI case
	Statistical CSI case

	Experimental Results
	Synthetic Data
	Real Data

	Conclusion
	Appendix A: Closed-form expressions for (15) and (18)
	References

