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Abstract—Reliable spectrum cartography of directive sources1

depends on an accurate estimation of the direction of trans-2

mission (DoT) as well as the transmission power. Joint esti-3

mation of power and DoT of a directive source using ML4

estimation techniques is considered in this paper. We further5

analyze the parametric identifiability conditions of the problem,6

develop the estimation algorithm, and derive the Cramer–Rao-7

Bound for the two situations: 1) where the source signal is known8

to the sensors and 2) where the sensors are not aware of the9

source signal but its distribution. Particularly, we devise a spe-10

cific sensor placement/selection setup for the symmetric antenna11

patterned sources which leads to identifiability of the problem.12

Finally, numerical results verifies the efficiency and accuracy of13

the provided estimation algorithms in this paper.14

Index Terms—Cooperative estimation, direction of trans-15

mission (DoT), power estimation, directive source, spectrum16

cartography, cognitive radio.17

I. INTRODUCTION18

DATABASE assisted dynamic resource allocation is19

generally considered as a technique to enable network20

level deployment of cognitive radios [1]–[3]. Such a database21

ideally should include all the required information of the22

incumbent network (e.g., power, location, radiation pattern,23

bandwidth, direction of transmission, etc.) for the cognitive24

system intending to share the same spectrum as incumbent25

users, to be able to adapt its transmission parameters to the26

environment, without hindering operation of incumbent users.27

Most of the databases are obtained by collecting informa-28

tion from the regulatory bodies. However, such information29

are either not complete, or becomes outdated after a short30

time. This calls for a dynamic technique in order to complete31

the information of databases, update the existing information,32

or even produce a database where such information can not33
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be obtained from regulatory bodies. Spectrum cartography or 34

radio environment mapping is proposed as an efficient tech- 35

nique to produce the dynamic database of the incumbent or 36

primary users, [4]–[8]. However, spectrum cartography can 37

have plethora of other applications, e.g., network monitor- 38

ing, malicious user detection, interference monitoring, and 39

etc. The cornerstone of any spectrum cartography technique 40

is a collaboration of sensors to estimate source parameters, 41

e.g., location and power [9]–[15]. Bazerque and Giannakis [9] 42

employ sparse signal processing techniques to localize and 43

estimate the power of multiple incumbent transmitters. In [10], 44

quantized measurements are used to reduce the communica- 45

tions overhead and overcome the hardware complexities. And, 46

location of incumbent users are determined in [11] assum- 47

ing a fading channel model. Most of these works provide 48

efficient tools for spectrum cartography of omni-directional 49

sources which can be a valid assumption for lower parts of the 50

frequency spectrum. However, considering the highly directive 51

nature of wireless communications in higher parts of spectrum 52

(e.g., Ka band, mmWave, etc. [16]), estimation of direction 53

of transmission (DoT) becomes an essential component of 54

spectrum cartography in order to obtain accurate results. For 55

example, terrestrial microwave links in Ka band often used for 56

mobile backhauling are highly directive, and thus for the cog- 57

nitive systems such as fixed satellite services to coexist with 58

the terrestrial links, it is important to know in which directions, 59

the terrestrial links are operating [3], [16]. The same holds 60

when a new terrestrial system intends to reuse the frequency 61

of currently in use microwave links, e.g., for smart backhaul- 62

ing [17]. In such cases, the cognitive system needs to have 63

a good estimate of the amount of power in a specific place 64

in order to operate properly, and determine its transmission 65

parameters such as carrier, power, etc., [3]. Even if the cog- 66

nitive system is aware of all the underlying parameters, e.g., 67

source power, location, etc., but still the knowledge of DoT 68

is essential. Otherwise, the cognitive system is not able to 69

obtain an accurate estimate of the power distribution in the 70

environment, and either may hinder the operation of incum- 71

bent users or adapt transmission parameters which are not 72

efficient. 73

There are few works which touch the problem of DoT 74

estimation for spectrum cartography. An extensive set of mea- 75

surements over different distances and positions is collected 76

in [12] in order to estimate the DoT. Martin and Thomas [13] 77

propose exhaustive search over multiple dimensions and large 78

number of sensors to estimate the DoT. Further, the developed 79
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techniques only consider the case with Gaussian shaped80

antenna radiation patterns. In [18], we developed a joint power81

and DoT estimation for a directive source, considering the82

source signal to be known to the sensors. The developed83

algorithm of [18] can be applied to any antenna radiation84

pattern with a single main lobe. However, in most cases85

the source signal is not known, and further the algorithm86

of [18] incurs a high complexity in terms of synchroniza-87

tion between the sensors and the source, and among the88

sensors.89

Including and in addition to the known signal model in [18],90

here, the joint estimation of power and DoT is also investigated91

by considering the source signal to be unknown but random92

with a known distribution. A number of sensors collect obser-93

vations, and transmit their observations to a fusion center (FC).94

Unlike the setup in [18], the sensors are not synchronized in95

sampling. The FC is responsible to infer the received data and96

globally estimate the power and DoT.97

Specifically, our main contributions in this paper are as98

follows:99

• First we formulate and develop the required maximum100

likelihood (ML) estimation algorithms for the joint power101

and DoT estimation of a single directive source with a102

general single main lobe radiation pattern. On top of103

the known signal model considered in [18], we con-104

sider a scenario where the exact source signals are not105

known, but are i.i.d. randomly distributed modeled by106

a zero-mean Gaussian distribution. It is shown that for107

both known and unknown signal models, both power108

and DoT can be determined by a bounded line-search109

over DoT.110

• In addition to the algorithmic developments, we investi-111

gate the identifiability of the underlying parameter model112

irrespective of a specific signal model. We find a set113

of sufficient conditions for the identifiability. And par-114

ticularly, we devise a specific sensor selection/placement115

setup which makes the model parameter identifiable for116

the symmetric antenna patterned sources.117

• We derive the Cramer-Rao-Bound (CRB) of the under-118

lying algorithms for both known and unknown signal119

models as the performance bounds. Further, we prove120

that the developed algorithms are unbiased and consis-121

tent, and thus converge to the true values of power and122

DoT for large number of samples.123

• Finally, we provide a set of numerical results which ver-124

ifies the efficiency of the developed algorithms, and the125

propositions of the paper.126

The remainder of the paper is organized as follows.127

Following the introduction of the signal model, the underlying128

parameter identifiability conditions of the model are derived129

in Section II. Afterward, we develop the estimation algorithms130

by employing ML estimation techniques for both known and131

unknown signal models, in Sections III and IV. Furthermore,132

to achieve a theoretical benchmark for performance compari-133

son, we derive the Cramer-Rao-Bound (CRB) in these section.134

As shall be shown in Section V, where a set of simulations135

results are depicted, the developed algorithm performs close to136

the CRB. And finally, we draw our conclusions in Section VI.137

Fig. 1. A parabolic antenna with its radiation pattern as an example of a
directive source.

Fig. 2. Schematic plan of the considered model for the source and the
sensors.

II. SYSTEM MODEL AND PROBLEM STATEMENT 138

We consider a source which employs a directive antenna 139

with a known radiation pattern, and a single main lobe (e.g., 140

the parabolic antenna in Fig. 1). The transmission occurs 141

in a deterministic but unknown direction. The direction of 142

transmission (DoT) is denoted by angle φ towards a specific 143

reference line and represents the direction of the main lobe. 144

We denote Ps as the source transmission power, and M > 1 145

as the number of sensors which are located at different angles 146

towards the reference line denoted by θi, i = 1, . . . , M. We 147

assume the sensors employ omni-directional antennas for sig- 148

nal reception. A schematic plan for the considered model of 149

the source and the sensors is depicted in Fig. 2. We assume the 150

observations are then sent sequentially (and orthogonally) to 151

the FC for global data fusion (however, as shall be shown later, 152

this can be simplified significantly by some pre-processing at 153

the sensor level, and transmitting, e.g., the energy of samples 154

instead of each sample individually). We consider a scenario 155

where the FC is aware of the sensors locations as well as the 156

location of the source (and thus the angles θi, i = 1, . . . , M). 157

In this paper, we consider a 2 dimensional (2D) location and 158

radiation pattern model, nevertheless the extension to the 3D 159

model is straightforward. The location information can be 160

obtained either through a database or estimated using localiza- 161

tion techniques, e.g., [22]–[24], a priori. However, the FC is 162

not aware of the transmission power Ps and DoT φ. The goal 163

of the FC is to jointly estimate Ps and φ based on sensors’ 164

observations. Further, we assume that the location of sensors 165

and the source are fixed during the estimation period. 166
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Denoting xi[n], i = 1, . . . , M to be the received signal at167

time n and sensor i, following an additive-white-Gaussian-168

noise (AWGN) channel model, we have169

xi[n] = √
PsG(φ, θi)h(di)si[n] + wi[n], (1)170

where171

• G(φ, θi) is the antenna gain in the direction of sensor i172

known a-priori,173

• di is the distance between the source and the i-th sensor,174

and h(di) is the path-loss,175

• si[n] is the source signal received at sensor i at its n-th176

sampling instance,177

• and wi[n] is the i.i.d. additive-white-Gaussian-noise178

(AWGN) with zero-mean and variance σ 2
w.179

The path-loss is obtained by h(di) = (4πdi/λ)−γ , di �= 0,180

where λ is the source signal wavelength, and γ is the path-181

loss exponent. Note, this channel model does not represent the182

instantaneous channel variations in wireless communications,183

but provides a good approximation of the large-scale atten-184

uation. For the sake of simplicity, we consider real-valued185

signals, si[n], n = 1, . . . , N, i = 1, . . . , M, however as the186

channel gains h(di), i = 1, . . . , M are real, extension of the187

developed techniques in this paper to the case of complex sig-188

nals is straightforward. The signal si[n] is usually unknown,189

therefore, one way of modeling si[n] is to model it as a random190

variable following a zero mean i.i.d. Gaussian distribution with191

variance σ 2
s . In this case, we further consider a case where the192

sensors observation sampling is asynchronous, which explains193

the subscript i, and this way considering enough separa-194

tion between the sensors, the sensors observations become195

independent from each other. However, in case the sensors196

are synchronous in sampling, i.e., receiving the same signals197

from the source, the observations become correlated and this198

needs to be taken into account in designing the algorithms.199

Nevertheless, in some cases, the sensors may have knowledge200

about specific part of the transmitted signal, e.g., the training201

sequence of the communications system. In such a case, s[n]202

is known and thus can be modeled by a deterministic signal.203

Here, sensors need to synchronize with the source, and fur-204

ther si[n] = s[n], i = 1, . . . , M. As in the previous model, for205

known signal model, the sensors observations are independent.206

Considering these two possible models for si[n], in this paper207

we define the problem for a known signal (i.e., deterministic),208

and an unknown signal (i.e., random).209

We formulate the underlying estimation problem based on210

ML techniques, which are widely considered as statistically211

efficient techniques to estimate the deterministic parame-212

ters [29]. However, before going through the detail of the213

estimation problem and its corresponding algorithm, in the214

following theorem, we establish the sufficient conditions for215

the considered model to be parametrically identifiable. In this216

theorem, ∀ denotes “for all”, and ∃ denotes “there is”.217

Theorem 1: The model in (1) is identifiable, if the following218

conditions are satisfied,219

1) ∀φ �= φt : ∃θi : G(φ, θi) �= G(φt, θi).220

2) ∀� �= 1 and φ �= φt : ∃θi : G(φ, θi) �= 1
�

G(φt, θi), where221

� = Ps
Pt

s
.222

With φt and Pt
s denoting the true DoT and Ps, respectively.223

Fig. 3. (a): A symmetric antenna pattern example, (b) and (c): a not
identifiable and an identifiable setup example with φ = π

2 in both, and
θ1 = 0, θ2 = π in (b), and θ1 = 0, θ2 = 2π

3 , θ3 = 4π
3 in (c). The

solid blue line shows the true DoT, and the dashed blue line in (b) depicts the
ambiguity. It is clear that in (b) both φ = π

2 and φ = 3π
2 leads to the same

power and gain product, thus the problem is not identifiable. This ambiguity
is resolved in (c), because of addition of one more sensor.

Proof: The proof is provided in Appendix A. 224

From Theorem 1, we can see that the parameter identifia- 225

bility of (1) depends on the proper selection of the sensors, 226

which in turn depends on the specific G(φ, θi) function of the 227

source. Below, we outline the proper selection/placement of 228

the sensors for the specific case of symmetric antenna pat- 229

terns (e.g., Horn antennas) in order to gain additional insight 230

into the conditions outlined in Theorem 1. 231

In the symmetric antenna patterns, the gain function only 232

depends on |φ − θi| where | · | denotes the absolute value, and 233

thus G(φ, θi) = G(φ − θi) = G(θi − φ) = G(φ − θi + π), 0 ≤ 234

φ ≤ 2π . Note, for this discussion, we consider a symmetric 235

antenna pattern which is a one-to-one monotonically decreas- 236

ing function over |φ − θi| ∈ [0, π ], e.g., Fig. 3a. Since, we 237

are not aware of the specific value of (Pt
s, φ

t), we need to 238

select the sensors such that irrespective of φt, the identifiability 239

conditions in Theorem 1 always hold. 240

For the first condition in Theorem 1, assuming Pt
s to be 241

known, it is easy to show that this condition is satisfied, if 242

at least three of the sensors are located on either side of φt
243

(e.g., Fig. 3c). Note that two sensors located on either side of 244

φt is not sufficient for identifiability as in Fig. 3b. Further, in 245

order to make sure that irrespective of φt, the selected sensors 246

(M ≥ 3) make the problem identifiable, one of the possibilities 247

is to choose/place the sensors at equal angular separation to 248

each other, e.g., θi = (i − 1) 2π
M as in Fig. 3c. 249

To satisfy the second condition in Theorem 1, one 250

approach could be to select the sensors such that 251

∀φt,� �= 1 : ∃θi : ∂G(φt,θi)
∂φt �= 1

�
. Assuming a non-linear 252

gain pattern as in Fig. 3a (which is mostly the case), again, 253
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one approach can be to select/place the sensors such that254

θi = (i − 1) 2π
M (e.g., Fig. 3c). In this case, for all possible255

φt and �, there is always at least one sensor i for which256

∂G(φt,θi)
∂φt �= 1

�
. This is an important result for identifiable esti-257

mation setup of symmetric antenna patterned sources. Hence,258

we highlight a generalized description of this discussion in the259

following proposition.260

Proposition 1: If the source is equipped with a non-linear261

symmetric antenna pattern which is a one-to-one non-linear262

decreasing function over |φ − θi| ∈ [0, ω], the model param-263

eters are identifiable if θi = (i − 1) 2π
M , i = 1, . . . , M, with264

M > 2π
ω

, and ω ≤ π .265

Proof: The proof follows the same discussion as above and266

therefore is omitted.267

In the following sections, we present the likelihood func-268

tion of xi[n] for both signal models, and provide the required269

algorithms in the FC to estimate the power and DoT of the270

source using maximum likelihood (ML) estimation technique271

assuming the model to be identifiable.272

III. ANALYSIS AND PROBLEM FORMULATION:273

KNOWN SIGNAL274

A. ML Estimation Problem Formulation275

Assuming s[n] to be known with E[s2[n]] = 1 (where E[ · ]276

denotes the expectation), xi[n] is an i.i.d. real-valued random277

Gaussian variable with mean value of
√

PsG(φ, θi)h(di)s[n]278

and variance σ 2
w. Therefore, the probability density function279

(pdf) of the received signal at sensor i and time n denoted by280

P(xi[n]) becomes281

P(xi[n]|Ps, φ)282

= 1
√

2πσ 2
w

× exp

{
−(

xi[n] − √
PsG(φ, θi)h(di)s[n]

)2

2σ 2
w

}

.283

(2)284

As mentioned before, we consider a scenario where all285

the sensors send their observations to the FC. Then the286

FC estimate the power and the DoT using maximum like-287

lihood (ML) estimation. Denoting N to be total number of288

samples per sensor, the joint likelihood function denoted by L289

is obtained by290

L(Ps, φ) =
M∏

i=1

N∏

n=1

P(xi[n]|Ps, φ), (3)291

and thus after some simplifications, the log-likelihood (LL)292

function becomes293

LL(Ps, φ) = MN log
1

√
2πσ 2

w

294

− 1

2σ 2
w

[
M∑

i=1

N∑

n=1

(
xi[n] − √

PsG(φ, θi)h(di)s[n]
)2

]

,295

(4)296

where log is the natural logarithm. Since MN log 1√
2πσ 2

w
and297

1
2σ 2

w
do not depend on Ps or φ, for estimation purposes, we298

consider a reduced version of LL function in (4) as follows 299

LL(Ps, φ) = −
[

M∑

i=1

N∑

n=1

(xi[n] − √
PsG(φ, θi)h(di)s[n])2

]

. 300

(5) 301

In order to estimate Ps and φ, we consider an ML estimation 302

problem defined as 303

max
Ps,φ

LL(Ps, φ) 304

s.t. Ps ≥ 0, 0 ≤ φ < 2π. (6) 305

where LL(Ps, φ) is obtained from (5). 306

B. Estimation Algorithm for (6) 307

To find a solution algorithm for (6), first we assume that 308

the φ is given and find the optimal Ps, and then we insert 309

the optimal Ps in (6) to devise the required algorithm in order 310

to estimate φ and Ps. As shall be shown later, for a given φ 311

denoted by φg, there is a unique Ps which maximizes (5). For 312

φg, (6) becomes 313

max
Ps

−
[

M∑

i=1

N∑

n=1

(
xi[n] −

√
PsG(φg, θi)h(di)s[n]

)2
]

314

s.t. Ps ≥ 0. (7) 315

Thereby, we obtain the following theorem which provides the 316

closed form solution of (7) denoted by P∗
s (φg). 317

Theorem 2: The optimal solution of (7) is obtained by 318

• If
∑M

i=1 Ri
√

G(φg, θi)h(di) > 0, then 319

P∗
s (φg) =

(∑M
i=1 Ri

√
G(φg, θi)h(di)

S
∑M

i=1 G(φg, θi)h(di)

)2

, (8) 320

where Ri = ∑N
n=1xi[n]s[n], S = ∑N

n=1 s2[n]. 321

• If
∑M

i=1 Ri
√

G(φg, θi)h(di) ≤ 0, then 322

P∗
s (φg) = 0. 323

Proof: The proof is provided in Appendix B. 324

Proposition 2: The source power estimator in Theorem 1 is 325

unbiased and consistent for φg = φt. 326

Proof: The proof is provided in Appendix C. 327

Proposition 2 guarantees that the estimator in Theorem 2 328

converges to the true value of Ps, if φg = φt. 329

We can now rewrite (6) as follows 330

max
φ

LL(P∗
s (φ), φ) 331

s.t. 0 ≤ φ < 2π, (9) 332

where P∗
s (φ) is the optimal Ps coming from Theorem 2. After 333

some simple algebraic simplifications reported in Appendix D, 334

we obtain 335

max
φ

U

(
M∑

i=1

Ri

√
G(φ, θi)h(di)

)

336

×
(∑M

i=1 Ri
√

G(φ, θi)h(di)
)2

∑M
i=1 G(φ, θi)h(di)

, (10) 337
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Algorithm 1 Joint Ps and φ Estimation Algorithm
Input: φ = 0, δφ as the search step size,

1: while φ ≤ 2π do
2: Step 1: Find P∗

s for φ from Theorem 2, and store φ,
P∗

s (φ), and LL(P∗
s , φ).

3: Step 2: φ = φ + δφ.
4: end while
5: Find (φ, P∗

s (φ)) which has the maximum LL(P∗
s , φ) in

storage.
6: if P∗

s = 0 then
7: announce the transmitter is “off”.
8: else
9: Estimate Ps and φ by (φ, P∗

s (φ)).
10: end if

where U(•) is the Heaviside function, i.e., U(x) = 1 if x ≥ 0,338

and U(x) = 0 otherwise. This way, we can find the optimal φ339

denoted by φ∗ by an exhaustive line-search over φ, and con-340

sequently P∗
s from Theorem 2. The joint estimation of Ps and341

φ using (10) is depicted in a more clear way in Algorithm 1.342

Remark 1: We can see from (10) that for the known signal343

scenario, the sensors only need to send Ri to FC which reduces344

the communications overhead significantly.345

Considering the fact that the computational and communica-346

tion load of the FC reduces significantly by transmitting only347

Ris from the sensors, and further the fact that in each point348

of the line search over φ, the corresponding power estimate is349

calculated by a closed form solution, the main computational350

complexity of the algorithm lies in the required resolution of351

the line-search. However, this can also be relieved significantly352

by performing parallel computing techniques.353

Proposition 3: If the ML estimator in (10) is identifiable,354

the estimator in Theorem 2 is unbiased and consistent.355

Proof: The proof is provided in Appendix E.356

Therefore, the estimator in (10) converges to Pt
s and φt.357

C. CRB for Known Signal358

In order to compare the performance of the developed tech-359

nique, here we obtain the Cramer-Rao-Bound (CRB) of the360

estimation technique developed in this paper. The CRB pro-361

vides a lower-bound on the mean-square-error (MSE) of an362

unbiased estimator and thus MSE(Ps, φ)=MSE(Ps)+MSE(φ)≥363

CRB(Ps, φ) = CRB(Ps) + CRB(φ) [29].364

Assuming that LL(Ps, φ) satisfies the regularity conditions,365

after algebraic manipulations presented in Appendix F, we366

obtain the following Theorem which calculates CRB(Ps,φ)367

where G′(φ, θi) = ∂G(φ,θi)
∂φ

.368

Theorem 3: The CRB(Ps, φ) for known signal is given by369

CRB(Ps, φ) = 4Psσ
2
w

N
∑M

i=1 G(φ, θi)h(di)
370

+ 4σ 2
w

NPs
∑M

i=1 h(di)
G′2(φ,θi)
G(φ,θi)

, (11)371

with individual CRB(Ps) and CRB(φ) obtained by 372

CRB(Ps) = 4Psσ
2
w

N
∑M

i=1 G(φ, θi)h(di)
, (12) 373

CRB(φ) = 4σ 2
w

NPs
∑M

i=1 h(di)
G′2(φ,θi)
G(φ,θi)

. (13) 374

Note that the calculation of individual CRBs is merely pro- 375

vided to gain more insights. Otherwise, as the estimation is 376

jointly performed over Ps and φ, the individual CRBs can 377

not be a good benchmark for comparison. From (11), it is 378

clear that increasing the noise power, increases the total CRB, 379

but the effect of Ps on the total CRB is not exactly clear. 380

Increasing Ps increases the CRB(Ps) but reduces the CRB(φ). 381

Additionally, increasing the number of samples reduces the 382

total CRB linearly and thus the expected MSE. Furthermore, 383

we can see that as the number of sensors increases, the CRB 384

decreases but its effect is not linearly scaled as is the case 385

for the number of samples N. Finally, it is clear that as the 386

distance of the sensors to the source increases, CRB increases. 387

IV. ANALYSIS AND PROBLEM FORMULATION: 388

UNKNOWN SIGNAL 389

A. ML Estimation Problem Formulation 390

In this section, ML estimation of Ps and φ is considered for 391

an unknown signal model si[n] which follows a zero-mean 392

normal distribution. Therefore, the probability distribution 393

function of xi[n] is obtained by 394

p(xi[n]|Ps, φ) = 1
√

2π
[
PsG(φ, θi)h(di) + σ 2

w

] 395

× exp

(

−1

2

x2
i [n]

PsG(φ, θi)h(di) + σ 2
w

)

, (14) 396

This way, due to the temporal and spatial independence of 397

sensors observations, the joint likelihood of xi[n]s becomes 398

L(Ps, φ) =
M∏

i=1

N∏

n=1

p(xi[n]|Ps, φ) 399

=
M∏

i=1

N∏

n=1

(
1

√
2π[PsG(φ, θi)h(di) + σ 2

w]
400

× exp

(

−1

2

x2
i [n]

PsG(φ, θi)h(di) + σ 2
w

))

, 401

(15) 402

To make the mathematical derivations easier, we apply the 403

natural logarithm on both sides of (15), and thus after some 404

simplifications, we obtain 405

LL(Ps, φ) =
M∑

i=1

−N

2
log

(
2π

[
PsG(φ, θi)h(di) + σ 2

w

])
406

− 1

2

∑N
n=1 x2

i [n]

PsG(φ, θi)h(di) + σ 2
w

. (16) 407
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As in the previous case, here we estimate Ps and φ by408

maximizing the function in (16) as follows,409

max
Ps,φ

LL(Ps, φ)410

s.t. Ps ≥ 0, 0 ≤ φ ≤ 2π. (17)411

B. Estimation Algorithm for (17)412

The joint estimation of Ps and φ with the defined objective413

function is difficult. Therefore, first we obtain the ML of Ps414

for a given φ, and then we insert the obtained result in (17)415

in order to obtain the ML of φ.416

For a given φ = φg, the optimal Ps is obtained according417

to the following theorem.418

Theorem 4: For a given φ = φg, the optimal Ps denoted by419

P∗
s is obtained by420

• If
∑M

i=1 G(φg, θi)h(di)(Xi − Nσ 2
w) ≤ 0 then P∗

s = 0.421

• If
∑M

i=1 G(φg, θi)h(di)(Xi − Nσ 2
w) > 0 then P∗

s is the422

unique solution of ∂LL
∂Ps

= 0, with423

∂LL

∂Ps
=

M∑

i=1

− NG(φg, θi)h(di)

2
(
PsG(φg, θi)h(di) + σ 2

w

)424

+ G(φg, θi)h(di)Xi

2
(
PsG(φg, θi)h(di) + σ 2

w

)2
,425

where Xi = ∑N
n=1 x2

i [n].426

Proof: The proof is provided in Appendix G.427

Note that to find the solution of ∂LL
∂Ps

= 0, we can either428

use efficient techniques such as Newton method, or exploit the429

quasi concavity of the LL function, and employ bisection tech-430

niques. In the latter case, we should remember to put P∗
s = 0431

in case the result of bisection technique leads to a negative432

power.433

Proposition 4: The transmission power estimator in434

Theorem 4 is unbiased and consistent for φg = φt.435

Proof: The proof is provided in Appendix H.436

Proposition 4 guarantees that the estimator in Theorem 4437

converges to Pt
s.438

As in the case of known signal, here we insert P∗
s in (16),439

and thus the optimal φ and consequently optimal Ps can be440

estimated by solving the following line-search problem,441

max
φ

M∑

i=1

(
− N

2
log

(
2π

[
P∗

s (φ)G(φ, θi)h(di) + σ 2
w

])
442

− 1

2

∑N
n=1 x2

i [n]

P∗
s (φ)G(φ, θi)h(di) + σ 2

w

)
443

s.t. 0 ≤ φ ≤ 2π, (18)444

where P∗
s (φ) is obtained from Theorem 4. Since the LL func-445

tion often does not have a unique global maxima in φ, standard446

optimization algorithms such as gradient descent can lead to447

a local maxima which may be far away from the true φ. The448

joint estimation of Ps and φ using (18) is depicted in a more449

clear way in Algorithm 2.450

Proposition 5: If the estimator in (17) is identifiable, then451

the estimator in (18) is asymptotically unbiased and consistent.452

Proof: The proof is provided in Appendix I.453

Algorithm 2 Joint Ps and φ Estimation Algorithm
Input: φ = 0, δφ as the search step size,

1: while φ ≤ 2π do
2: Step 1: Find P∗

s for φ from Theorem 4, and store φ,
P∗

s (φ), and LL(P∗
s , φ).

3: Step 2: φ = φ + δφ.
4: end while
5: Find (φ, P∗

s (φ)) which has the maximum LL(P∗
s , φ) in

storage.
6: if P∗

s = 0 then
7: announce the transmitter is “off”.
8: else
9: Estimate Ps and φ by (φ, P∗

s (φ)).
10: end if

Therefore, estimator in (18) converges to φt and conse- 454

quently Pt
s. 455

Remark 2: Looking at the unknown signal estimator, we 456

can see that in this estimator, the sensors only need to com- 457

municate the accumulated energy of the received samples to 458

the FC. 459

Considering the fact that the computational and communica- 460

tion load of the FC reduces significantly by transmitting only 461

the accumulated energy of samples from the sensors, the main 462

computational complexity of the algorithm lies in the required 463

resolution of the line-search as well as finding the root of 464

∂LL
∂Ps

. However, the computational complexity induced by the 465

line search can be relieved significantly by performing parallel 466

computing techniques. As for the root-finding, we can resort 467

to fast techniques such as Newton method with quadratic con- 468

vergence rate, and of low complexity. Therefore, although the 469

complexity of algorithm in case of unknown signals may be 470

higher than the one of known signals, but yet affordable. 471

C. CRB for Unknown Signal 472

As in Section III-C, after some algebraic calculations, we 473

obtain Theorem 5, which derives the CRB(Ps, φ) for the 474

unknown signal scenario. 475

Theorem 5. We obtain CRB(Ps, φ) for the unknown signal 476

as follows, 477

CRB(Ps, φ) = 2

N(A − B)

[
M∑

i=1

(
Psh(di)G′(φ, θi)

PsG(φ, θi)h(di) + σ 2
w

)2

478

+
M∑

i=1

(
G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ 2
w

)2
]

, 479

(19) 480

with G′(φ, θi) = ∂G(φ,θi)
∂φ

, and 481

A =
M∑

i=1

(
Psh(di)G′(φ, θi)

PsG(φ, θi)h(di) + σ 2
w

)2

482

×
M∑

i=1

(
G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ 2
w

)2

, 483
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and484

B =
(

M∑

i=1

Psh2(di)G(φ, θi)G′(φ, θi)
(
PsG(φ, θi)h(di) + σ 2

w

)2

)2

.485

Further, the individual CRB for Ps and φ are given by486

CRB(Ps) = 2

N(A − B)

[
M∑

i=1

(
Psh(di)G′(φ, θi)

PsG(φ, θi)h(di) + σ 2
w

)2
]

,487

(20)488

and489

CRB(φ) = 2

N(A − B)

[
M∑

i=1

(
G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ 2
w

)2
]

.490

(21)491

Proof: The proof is provided in Appendix J.492

We can see that as the number of sensors N increases, the493

nominator of CRB(Ps, φ) increases with N and denominator494

with N2, and thus we can deduce that CRB decreases as N495

increases. Opposite effect can be observed for σ 2
w, i.e., CRB496

increases with σ 2
w. However, the effect of the number of497

sensors M, Ps and di on CRB is not straightforward.498

V. SIMULATION RESULTS499

In this section, our goal is to evaluate the performance of500

the known signal and unknown signal algorithms using some501

simulations results. We particularly focus on a source with a502

symmetric antenna pattern (with a shape similar to Fig. 3a)503

defined as504

G(φ, θi) =
{

100 exp(−|φ − θi|) if 0 ≤ |φ − θi| ≤ 180◦;
0 else.

505

(22)506

This definition of antenna gain pattern matches well with most507

of the practical symmetric antenna patterns, e.g., Horn or508

parabolic antennas. Further, according to Proposition 1, we509

place the sensors such that θi = (i − 1) 2π
M to make the setup510

identifiable, and without loss of generality, unless it is clearly511

mentioned, we assume the sensors are equally distanced from512

the source, and thus ∀i : di = d. In all the simulations, we513

assume DoT to be φ = 60◦, Ps = 0 dBW, transmit frequency514

denoted by f to be 18 GHz, γ = 2 (equivalent to a line-of-515

sight channel), and σ 2
w = −136 dBW which approximately516

represents the noise power of a 5 MHz bandwidth and noise517

temperature of T = 360 K receiver. Note that in practice,518

depending on the environment, the value of γ is often higher519

than 2 which is equivalent to free space path-loss. Further, the520

considered value of bandwidth and noise temperature in this521

paper does not necessarily represent a particular implementa-522

tion, as the specific value of these parameters may change from523

one sensor technology to another, and depends on the require-524

ment of the operators, environment and antenna technologies.525

Therefore, the simulations based on the chosen parameters526

here are provided as an academic exercise in order to illustrate527

the efficiency of the proposed algorithms as well as validity of528

Fig. 4. NMSE of Ps and φ versus number of samples for known and unknown
signal algorithms, with Ps = 0 dBW, σ 2

w = −136 dBW, f = 18 GHz, γ = 2,
M = 3, θi = (i − 1) 360

3 for i = 1, 2, 3, and d = 1000 m.

claims in this paper. Before going through the detailed simula- 529

tions results, please note that in all the figures, ‘ks’ denotes the 530

known signal algorithm, and ‘us’ denotes the unknown one. 531

Fig. 4 depicts the normalized mean square error (NMSE) of 532

the estimated parameters Ps and φ with the number of sam- 533

ples N, for the known and unknown signal algorithms. In this 534

figure, three sensors are considered for cooperative estima- 535

tion setup, which are located at the distance of d = 1000 m 536

to the source. The simulation result is averaged over 1000 537

runs and δφ = 0.1. It is clear that as N increases, NMSE 538

for both parameters and both algorithms reduces. This verifies 539

the claims in Propositions 2 to 5. Further, in order to eval- 540

uate the performance of the algorithm with respect to those 541

that only estimate Ps assuming accurate φ to be known (as in, 542

e.g., [13]), the lines titled Ps(φg = 60◦) are depicted which 543

shows the NMSE of Ps when φ is known for both known 544

and unknown signal algorithms. In both cases, we can see 545

that the NMSE in this case is extremely close to the one with 546

estimated φ. 547

In order to evaluate the sensitivity of the algorithms with 548

respect to the line search step size, δφ, in Figures 5 and 6, 549

we depict the NMSE of Ps and φ versus δφ for both known 550

and unknown signal algorithms, respectively. In these figures, 551

we evaluate the performance for two different values of φ, 552

i.e., φ = 60◦, 60.5◦. The other parameters are the same as 553

previous scenario, with the difference of N = 1000. An inter- 554

esting trend in both figures is that for φ = 60.5◦ where a 555

minimum resolution of level 0.1 is required, increasing δφ 556

generally leads to an increase in NMSE. This is particularly 557

evident for NMSE of φ. However, for φ = 60◦, a minimum 558

resolution of δφ = 1 is required. Here, we can see while 559

NMSE for δφ = 0.1 is yet acceptable, however for a range 560

of δφ from 1 to 6 as well as 10, the NMSE particularly for 561

φ is very low (in our case for 1000 realizations, no error was 562

observed). This trend can be because of the fact that here 563

a resolution of 1 is enough and further, the gain pattern in 564

the next step becomes largely different from the previous step 565
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Fig. 5. NMSE of Ps and φ versus δφ for known signal algorithm, with
Ps = 0 dBW, σ 2

w = −136 dBW, f = 18 GHz, γ = 2, M = 3, θi = (i − 1) 360
3

for i = 1, 2, 3, N = 1000, and d = 1000 m.

Fig. 6. NMSE of Ps and φ versus δφ for unknown signal algorithm, with
Ps = 0 dBW, σ 2

w = −136 dBW, f = 18 GHz, γ = 2, M = 3, θi = (i − 1) 360
3

for i = 1, 2, 3, N = 1000, and d = 1000 m.

(something which does not usually happen for lower resolu-566

tions unless the pattern becomes very sharp), and thus a better567

NMSE in this case can be achieved. Nevertheless, in practice,568

we are mostly not aware of the minimum required step size,569

therefore it is more reasonable to choose a lower resolution as570

long as the computations are affordable. Note that in the rest571

of numerical results unless it is clearly mentioned we assume572

δφ = 0.1.573

In Fig. 7, the CRB performance of the known and unknown574

signal algorithms is evaluated versus the number of samples575

for the same scenario as in Fig. 4, and for two values of δφ =576

0.1, 1. Here, we particularly depict the normalized total CRB577

(NCRB) and compared with the total NMSE as defined in578

Section III-C. We can see that the unknown signal estimator579

performs very close to CRB for both values of δφ. For the580

known estimator, once again we can observe the importance581

of δφ in estimation accuracy. While for δφ = 1, the estimator582

Fig. 7. NMSE and NCRB of known and unknown signal algorithms versus
the number of samples, with Ps = 0 dBW, σ 2

w = −136 dBW, f = 18 GHz,
γ = 2, M = 3, θi = (i − 1) 360

3 for i = 1, 2, 3, and d = 1000 m.

Fig. 8. NMSE of Ps and φ versus the distance to the source for the
known signal algorithm and different number of sensors, with Ps = 0 dBW,
σ 2

w = −136 dBW, f = 18 GHz, γ = 2, M = 3, 4, θi = (i − 1) 360
M for

i = 1, . . . , M, and N=1000.

achieves the CRB after few samples, however for δφ = 0.1, 583

due to a higher value of estimation error in φ, the performance 584

is further away from the CRB. 585

After confirming the convergence of the algorithms with the 586

number of samples in Figures 4 and 7, in Fig. 8, we intend 587

to evaluate the effect of the distance to the source d, and 588

the number of sensors M on the estimation accuracy of the 589

known signal algorithm. In this figure, we consider a configu- 590

ration of 3 and 4 sensors, with the number of samples fixed at 591

N = 1000. We can see that as d increases, the estima- 592

tion accuracy decreases, and the opposite effect is seen 593

when M increases, which verifies the discussion provided in 594

Section III-C. 595

In Fig. 9, the evaluation of Fig. 8 is performed for the 596

unknown signal algorithm. In this case, the number of sen- 597

sors is fixed at 3, 6 and 9, and the results are averaged over 598
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Fig. 9. NMSE of Ps and φ versus the distance to the source for the unknown
signal algorithm and different number of sensors, with Ps = 0 dBW, σ 2

w =
−136 dBW, f = 18 GHz, γ = 2, M = 3, 6, 9, θi = (i − 1) 360

M for i =
1, . . . , M, and N=1000.

1000 runs. It is clear that increasing d, leads to a lower esti-599

mation accuracy for φ, and increasing the number of sensors600

improves the estimation accuracy of φ. However, in case of Ps,601

we have not observed a major change. Nevertheless, we have602

not observed the effect of number of sensors on improving603

estimation accuracy for all numbers of M > 3 in our simula-604

tions. We can say if the setup with 3 sensors is spanned by the605

setup of higher number of sensors (e.g., 6 or 9 as in Fig. 9), the606

estimation accuracy may improve, however if the new setup607

does not include the one of 3 sensors, it may even lead to a608

lower estimation accuracy for Ps based on our observations.609

This indeed verifies the discussion in Section IV-C, where we610

could not draw a definite conclusion about the effect of number611

of sensors on the estimation accuracy of the unknown signal612

algorithm.613

Note that so far, we assumed that the sensors are placed614

at equal distance to the source. In order to evaluate the615

performance of the system when the sensors are located at a616

random distance to the source, in Fig. 10, NMSE of Ps and φ617

versus the number of samples is depicted for the same param-618

eters as in Fig. 4, except for d, which is chosen randomly619

from the set {100, 1000} m. As we can see the algorithms still620

provide a good estimation accuracy.621

After verification of the provided algorithms for the assumed622

radiation pattern in (22), in Fig. 11, we provide NMSE versus623

number of samples for the case of a more realistic antenna pat-624

tern obtained from ITU-R S.465-6 [30]. The other parameters625

are the same as Fig. 4. Note that in this case the antenna pattern626

is only a one to one function over [0◦, 48◦], and thus according627

to Proposition 1, at least 8 sensors are required to make sure628

the problem is identifiable. Indeed, during the simulations, we629

confirmed this fact by reducing the number of sensors to 7,630

and it was observed that the algorithms can not converge in631

this case. From the figure, we can see that the proposed algo-632

rithms provide a good estimation accuracy, and further as the633

Fig. 10. NMSE of Ps and φ versus number of samples for known and
unknown signal algorithms for random dis, with Ps = 0 dBW, σ 2

w =
−136 dBW, f = 18 GHz, γ = 2, M = 3, θi = (i − 1) 360

3 for i = 1, 2, 3.

Fig. 11. NMSE of Ps and φ versus the number of samples for known
and unknown signal algorithms, an antenna pattern based on ITU-R S.465-6,
with Ps = 0 dBW, σ 2

w = −136 dBW, f = 18 GHz, γ = 2, M = 8, 10,
θi = (i − 1) 360

M for i = 1, . . . , M, and d = 1000.

number of sensors increases, the estimation accuracy clearly 634

improves in this case. 635

VI. CONCLUSION 636

Joint estimation of transmission power and DoT for a 637

directive source was considered in this paper. We formulated 638

the underlying ML estimation problems considering a known 639

and an unknown model. The identifiability conditions for the 640

model parameters were derived, and particularly we showed 641

that for the symmetric antenna patterned sources, the sufficient 642

conditions include a lower-bound on the number of sensors, 643

and sensors to be placed with equal angular distances. This 644

was followed by providing the algorithmic solution of the 645

estimation problems which rendered to be unbiased and con- 646

sistent. Further, we drove the CRB for both the known signal 647
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and unknown signal algorithms. In addition, it was shown648

that in case of known signal scenario, the sensors only need649

to transmit the cross correlation of the observation samples650

with the original signal, and in case of unknown signal sce-651

nario, the sensors only need to communicate the energy of652

the received samples. This leads to a significant reduction of653

communication and computation overhead.654

To evaluate the performance of the developed algorithms,655

we performed several simulations results. It was shown that the656

algorithms deliver a good estimation accuracy for Ps and φ,657

and further their performance is close to CRB. As verified by658

simulations results, proper placement of the sensors according659

to the identifiability analysis provided in the paper is a critical660

parameter to consider. Another parameter which is important661

in obtaining accurate results is the path-loss exponent. While662

in the simulations results, we assumed this to be equal to 2663

as in the case of free space path-loss, in reality depending on664

the environment this value is usually higher. Therefore, proper665

tuning of path-loss exponent is another parameter to take into666

account while calibrating the system.667

In this paper, we assumed the gain pattern to be exactly668

known, however in practice this knowledge might not be669

always available or simply the antenna is not well calibrated.670

Development of the algorithms for unknown gain patterns is an671

idea of future work. Other examples of ideas for future work672

include better path-loss modeling, particularly using advanced673

wave-field estimation techniques, polarization estimation, and674

estimation of sources in point-to-multi-point scenarios.675

APPENDIX A676

PROOF OF THEOREM 1677

Parameter identifiability means that model parameters can678

be uniquely determined from a set of noise and error free679

observations [27], [28]. Hence, in our case, we need to680

show that the set of equations ∀i : si[n]
√

PsG(φ, θi)h(di) =681

si[n]
√

Pt
sG(φt, θi)h(di) results in Ps = Pt

s and φ = φt, with682

Pt
s and φt denoting the true Ps and φ. Therefore, the problem683

boils down to finding the conditions under which no other684

Ps �= Pt
s or φ �= φt can result in PsG(φ, θi) = Pt

sG(φt, θi) ∀i.685

First, we start with the case where φ = φt but Ps �= Pt
s.686

In this case, it is clear that there is no Ps �= Pt
s for which687

PsG(φ, θi) = Pt
sG(φt, θi), ∀i. Therefore, if φ = φt, the688

problem is always identifiable.689

Now, we consider the case where Ps = Pt
s, but φ �= φt. This690

way, the problem is identifiable if ∀i, φ �= φt : G(φ �= φt, θi) �=691

G(φt, θi). This condition does not hold for a general antenna692

pattern, all the time, e.g., symmetric antenna patterns as in693

Fig. 3a. In this case, the problem is identifiable if the com-694

mon solution of the set G(φ, θi) = G(φt, θi), i = 1, . . . , M, is695

unique. It is clear that all the equations have at least a common696

solution which is φ = φt, and further, the uniqueness can be697

satisfied if ∀φ �= φt : ∃θi : G(φ, θi) �= G(φt, θi).698

Finally, we look into the case where Ps �= Pt
s, and φ �= φt.699

Assuming Ps = �Pt
s, the problem in this case is unidentifiable700

if ∃φ �= φt : G(φ �= φt, θi) = 1
�

G(φt, θi), ∀i. Therefore, the701

problem becomes identifiable if ∀� �= 1, φ �= φt : ∃θi : G(φ �=702

φt, θi) �= 1
�

G(φt, θi). And this concludes our proof.703

APPENDIX B 704

PROOF OF THEOREM 2 705

In order to find the maximum of Ps → LL(Ps, φg), we 706

would like to analyze the shape of the function. To do that, 707

we will calculate its derivative function. For any Ps �= 0, we 708

easily get 709

∂LL(Ps, φg)

∂Ps
= 1√

Ps

M∑

i=1

Ri

√
G(φg, θi)h(di) 710

− S
M∑

i=1

G(φg, θi)h(di). 711

• If
∑M

i=1 Ri
√

G(φg, θi)h(di) > 0, then the derivative func- 712

tion is positive as Ps → 0. And thus the function 713

LL(•, φg) increases with Ps until the point P∗
s such that 714

1
√

P∗
s

M∑

i=1

Ri

√
G(φg, θi)h(di) = S

M∑

i=1

G(φg, θi)h(di). 715

Beyond the point P∗
s , the derivative function becomes 716

negative and the function LL(•, φg) decreases. Therefore 717

the optimal point is P∗
s and so we get Eq. (8). 718

• If
∑M

i=1 Ri
√

G(φg, θi)h(di) ≤ 0, then the derivative func- 719

tion is always negative and so the function LL(•, φg) is 720

monotonic decreasing in Ps. Therefore the optimal point 721

is zero. 722

APPENDIX C 723

PROOF OF PROPOSITION 2 724

We prove the proposition for the case Pt
s > 0, the case 725

with Pt
s = 0 (i.e., the case where the transmitter is actu- 726

ally “off”) can be proved in a similar way (indeed in this 727

case for any φg including φt, the estimated Ps tends to 0 728

asymptotically). Denoting the true Ps to be estimated as Pt
s, 729

to prove the consistency of the estimator in Theorem 2, 730

we need to prove that limN→∞ P∗
s from (8) is equal to Pt

s. 731

Considering the fact that limN→∞
∑M

i=1 Ri
√

G(φt, θi)h(di) = 732

limN→∞ S
√

Pt
s
∑M

i=1
√

G(φt, θi)h(di) > 0, we have (23), as 733

shown at the top of the next page, where we used the fact that 734

Ri = S
√

Pt
sG(φt, θi)h(di) + ∑N

n=1 s[n]wi[n]
√

G(φt, θi)h(di), 735

and limN→∞
∑N

n=1 s[n]wi[n] = 0. 736

Further, to prove that this estimator is unbiased, we need to 737

show that E
(
P∗

s

) = Pt
s. Therefore we have (24), as shown at 738

the top of the next page, where 739

E

[(∑M
i=1

∑N
n=1 s[n]wi[n]

√
G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)2]
740

and 741

E

[(
2
√

Pt
s
∑M

i=1
∑N

n=1 s[n]wi[n]
√

G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)]
, 742

are found to be zero by replacing the expectation with the 743

samplez average as n → ∞. And this concludes our proof. 744
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lim
N→∞ P∗

s = lim
N→∞

(∑M
i=1 Ri

√
G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)2

= lim
N→∞

(
S
√

Pt
s
∑M

i=1 G
(
φt, θi

)
h(di) + ∑M

i=1
∑N

n=1 s[n]wi[n]
√

G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)2

= Pt
s + lim

N→∞

(∑M
i=1

∑N
n=1 s[n]wi[n]

√
G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)2

+ lim
N→∞

2
√

Pt
s
∑M

i=1
∑N

n=1 s[n]wi[n]
√

G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)
,

= Pt
s + 0 + 0,

= Pt
s, (23)

E
(
P∗

s

) = E

⎡

⎣
(∑M

i=1 Ri
√

G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)2
⎤

⎦,

= E

⎡

⎣Pt
s +

(∑M
i=1

∑N
n=1 s[n]wi[n]

√
G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)2

+
(

2
√

Pt
s
∑M

i=1
∑N

n=1 s[n]wi[n]
√

G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)⎤

⎦

= Pt
s + E

⎡

⎣
(∑M

i=1
∑N

n=1 s[n]wi[n]
√

G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)2
⎤

⎦ + E

[(
2
√

Pt
s
∑M

i=1
∑N

n=1 s[n]wi[n]
√

G(φt, θi)h(di)

S
∑M

i=1 G(φt, θi)h(di)

)]

,

= Pt
s + 0 + 0,

= Pt
s, (24)

E
(
max
Ps,φ

LL(Ps, φ)
) = E

[
N∑

n=1

max
Ps,φ

[

−
M∑

i=1

N∑

n=1

(xi[n] − √
PsG(φ, θi)h(di)s[n])2

]]

,

= E

[
N∑

n=1

min
Ps,φ

[
M∑

i=1

N∑

n=1

(xi[n] − √
PsG(φ, θi)h(di)s[n])2

]]

, (25)

APPENDIX D745

PROOF OF EQUATION (10)746

If
∑M

i=1 Ri
√

G(φ, θi)h(di) ≥ 0, we put (8) into (5),747

and obtain that we have to maximize − ∑M
i=1 Xi +748

1
S

(
∑M

i=1 Ri
√

G(φ,θi)h(di))
2

∑M
i=1 G(φ,θi)h(di)

with Xi = ∑N
n=1 x2

i (n).749

If
∑M

i=1 Ri
√

G(φ, θi)h(di) < 0, P∗
s (φg) = 0, and so we triv-750

ially have to maximize − ∑M
i=1 Xi which is actually constant.751

In this case any φ is optimal, which is not problematic in752

terms of spectrum cartography as P∗
s = 0 means the source is753

not transmitting at this moment, therefore the direction is not754

important.755

Consequently, we can merge both cases in a single equation756

as follows − ∑M
i=1 Xi + δ 1

S
(
∑M

i=1 Ri
√

G(φ,θi)h(di))
2

∑M
i=1 G(φ,θi)h(di)

with δ equal757

to 1 for the first case and 0 for the second case.758

Moreover as − ∑M
i=1 Xi and S are independent of φ, these759

terms can be removed and we then obtain the result provided760

in (10).761

APPENDIX E762

PROOF OF PROPOSITION 3763

To prove that (10) is unbiased and consistent, it is easier to764

provide the same for (6). To prove consistency, it is clear that765

lim
N→∞ −

[ M∑

i=1

N∑

n=1

(xi[n] − √
PsG(φ, θi)h(di)s[n])2

]
766

= lim
N→∞ −

[
M∑

i=1

N∑

n=1

(√
Pt

sG(φt, θi)h(di)s[n] + wi[n] 767

− √
PsG(φ, θi)h(di)s[n]

)2
]

768

is maximized when PsG(φ, θi) = Pt
sG(φt, θi). Since the 769

problem is assumed to be identifiable, Ps = Pt
s and φ = φt. 770

To prove (6) is unbiased, we need to show that 771

E
(
max
Ps,φ

LL(Ps, φ)
) = (Pt

s, φ
t). Therefore we have (25), as 772

shown at the top of this page, where 773

min
Ps,φ

[
M∑

i=1

N∑

n=1

(
xi[n] − √

PsG(φ, θi)h(di)s[n]
)2

]

774

=
M∑

i=1

N∑

n=1

min
Ps,φ

[((√
Pt

sG(φt, θi)h(di) − √
PsG(φ, θi)h(di)

)
775

× s[n] + wi[n]
)2

]
776

is similar to minimizing variance of a non-central chi-squared 777

distributed random variable. The variance of a chi-squared ran- 778

dom variable is minimized when the non-centrality parameter 779

becomes zero. Therefore, we obtain PsG(φ, θi) = Pt
sG(φt, θi), 780

and again as the problem is assumed to be identifiable 781

Ps = Pt
s and φ = φt. Replacing this in (25), we obtain 782
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E[max
Ps,φ

LL(Ps, φ)] = E[(Pt
s, φ

t)] = (Pt
s, φ

t). And this con-783

cludes our proof.784

APPENDIX F785

PROOF OF THEOREM 3786

We recall that the CRB for parameters [Ps, φ] is the trace of787

the inverse of the Fisher Information Matrix F ([29]) defined as788

F = E

⎡

⎢⎢
⎣

∂LL

∂Ps

∂LL

∂Ps

∂LL

∂Ps

∂LL

∂φ
∂LL

∂φ

∂LL

∂Ps

∂LL

∂φ

∂LL

∂φ

⎤

⎥⎥
⎦, (26)789

where LL(Ps, φ) is given by (4). After some calculations we790

can derive each term of the F matrix by791

E

(
∂LL

∂Ps

∂LL

∂Ps

)
= N

∑M
i=1 G(φ, θi)h(di)

4Psσ 2
w

,792

E

(
∂LL

∂φ

∂LL

∂φ

)
= NPs

∑M
i=1 h(di)

G′2(φ,θi)
G(φ,θi)

4σ 2
w

,793

with794

G′(φ, θi) = ∂G(φ, θi)

∂φ
, and795

E

(
∂LL

∂Ps

∂LL

∂φ

)
= E

(
∂LL

∂φ

∂LL

∂Ps

)
= 0.796

This way, the inverse of F denoted by F−1 becomes797

F−1 =
⎡

⎢
⎣

4Psσ
2
w

N
∑M

i=1 G(φ,θi)h(di)
0

0 4σ 2
w

NPs
∑M

i=1 h(di)
G′2(φ,θi)
G(φ,θi)

⎤

⎥
⎦, (27)798

and thus we obtain799

CRB(Ps, φ) = trace
(

F−1
)

= 4Psσ
2
w

N
∑M

i=1 G(φ, θi)h(di)
800

+ 4σ 2
w

NPs
∑M

i=1 h(di)
G′2(φ,θi)
G(φ,θi)

, (28)801

and802

CRB(Ps) = 4Psσ
2
w

N
∑M

i=1 G(φ, θi)h(di)
,803

CRB(φ) = 4σ 2
w

NPs
∑M

i=1 h(di)
G′2(φ,θi)
G(φ,θi)

,804

which concludes our proof.805

APPENDIX G806

PROOF OF THEOREM 4807

In order to prove Theorem 4, first we calculate ∂LL(Ps,φg)

∂Ps
,808

and we obtain809

∂LL(Ps, φg)

∂Ps
=

M∑

i=1

− NG(φ, θi)h(di)

2
(
PsG(φ, θi)h(di) + σ 2

w

)810

+ G(φ, θi)h(di)Xi

2
(
PsG(φ, θi)h(di) + σ 2

w

)2
. (29)811

It is clear the negative term in (29), i.e., − NG(φ,θi)h(di)

2
(

PsG(φ,θi)h(di)+σ 2
w

) 812

is increasing in Ps, while the positive term, 813

i.e., G(φ,θi)h(di)Xi

2
(

PsG(φ,θi)h(di)+σ 2
w

)2 is decreasing in Ps. Further, it 814

is clear that the speed of the negative term growth is slower 815

that the speed of the positive term reduction. This shows that 816

the negative term of (29) can cut the positive term only once. 817

For Ps = 0, ∂LL(Ps,φg)

∂Ps
has two possibilities as follows. 818

• If ∂LL(Ps,φg)

∂Ps

∣∣∣∣
Ps=0

≤ 0 and thus
∑M

i=1 G(φg, θi)h(di)(Xi − 819

Nσ 2
w) ≤ 0, with increasing Ps, the positive term reduces 820

while the negative term increases, and hence ∂LL(Ps,φg)

∂Ps
821

remains not positive. Therefore the optimal Ps in this 822

case is P∗
s = 0. 823

• If ∂LL(Ps,φg)

∂Ps

∣∣∣∣
Ps=0

> 0 and thus
∑M

i=1 G(φg, θi)h(di)(Xi − 824

Nσ 2
w) > 0, then the positive and negative terms will cut 825

each other at P∗
s > 0, and after that ∂LL(Ps,φg)

∂Ps
becomes 826

negative. Therefore, the optimal Ps in this case the root of 827

∂LL

∂Ps
=

M∑

i=1

− NG(φ, θi)h(di)

2
(
PsG(φ, θi)h(di) + σ 2

w

) 828

+ G(φ, θi)h(di)Xi

2
(
PsG(φ, θi)h(di) + σ 2

w

)2
. 829

This concludes the proof, and further we can deduce that 830

LL(Ps, φg) is a quasi-concave function in Ps. 831

APPENDIX H 832

PROOF OF PROPOSITION 4 833

As in Appendix C, first we prove Proposition 4 for Pt
s > 0, 834

the proof for Pt
s = 0 is then straightforward. It is easy to show 835

that limN→∞
∑M

i=1 G(φg, θi)h(di)(Xi −Nσw) > 0 for Pt
s > 0. 836

Then, in order to prove the consistency of the estimator in 837

Proposition 4, we need to show that the root of 838

M∑

i=1

− NG(φg, θi)h(di)

2
(
PsG(φg, θi)h(di) + σ 2

w

) + G(φg, θi)h(di)Xi

2
(
PsG(φg, θi)h(di) + σ 2

w

)2
839

as N → ∞ is equal to Pt
s. Therefore, we have (30), as shown 840

at the top of the next page, We can see that by Ps = Pt
s, the 841

above equality is valid, and as this equation has a unique root, 842

therefore, Ps = Pt
s. 843

In the same way as in the case of consistency, it is 844

easy to show that E(
∑M

i=1 G(φg, θi)h(di)(Xi − Nσw)) > 0 845

for Pt
s. Hence, to prove that on top of consistency, the 846

estimator is also unbiased, we need to show that the root 847

of E(
∑M

i=1 − NG(φg,θi)h(di)

2(PsG(φg,θi)h(di)+σ 2
w)

+ G(φg,θi)h(di)Xi

2(PsG(φg,θi)h(di)+σ 2
w)2 ) is Pt

s. 848

Considering the fact that E(Xi) = N(Pt
sG(φg, θi)h(di) + σ 2

w), 849

we need to find the root of the following equation (31), as 850

shown at the top of the next page, which is clearly Ps = Pt
s, 851

and this concludes our proof. 852

APPENDIX I 853

PROOF OF PROPOSITION 5 854

To prove consistency, first we try to simplify 855

limN→∞ LL(Ps, φ). This way, we obtain (32), as shown 856
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lim
N→∞

M∑

i=1

NG(φg, θi)h(di)

2
(
PsG(φg, θi)h(di) + σ 2

w

) = lim
N→∞

G(φg, θi)h(di)Xi

2
(
PsG(φg, θi)h(di) + σ 2

w

)2

= lim
N→∞

G(φg, θi)h(di)
(

Pt
sG(φg, θi)h(di)

∑N
n=1 s2[n] + ∑N

n=1 w2[n] + ∑N
n=1

√
Pt

sG(φg, θi)h(di)φ
tw[n]

)

2
(
PsG(φg, θi)h(di) + σ 2

w

)2

= lim
N→∞

NG(φg, θi)h(di)
(
Pt

sG(φg, θi)h(di) + σ 2
w

)

2
(
PsG(φg, θi)h(di) + σ 2

w

)2
+ lim

N→∞
G(φg, θi)h(di)

( ∑N
n=1

√
Pt

sG(φg, θi)h(di)φ
tw[n]

)

2
(
PsG(φg, θi)h(di) + σ 2

w

)2

= lim
N→∞

NG(φg, θi)h(di)
(
Pt

sG(φg, θi)h(di) + σ 2
w

)

2
(
PsG(φg, θi)h(di) + σ 2

w

)2
. (30)

E

(
M∑

i=1

− NG(φg, θi)h(di)

2
(
PsG(φg, θi)h(di) + σ 2

w

) + NG(φg, θi)h(di)
(
Pt

sG(φg, θi)h(di) + σ 2
w

)

2
(
PsG(φg, θi)h(di) + σ 2

w

)2

)

, (31)

lim
N→∞ LL(Ps, φ) = lim

N→∞

M∑

i=1

−N

2
log

(
2π

[
PsG(φ, θi)h(di) + σ 2

w

])
− 1

2

∑N
n=1 x2

i [n]

PsG(φ, θi)h(di) + σ 2
w

= lim
N→∞

M∑

i=1

−N

2
log

(
2π

[
PsG(φ, θi)h(di) + σ 2

w

])
− 1

2

N(Pt
sG

(
φt, θi

)
)h(di) + σ 2

w

PsG(φ, θi)h(di) + σ 2
w

, (32)

E
(
LL(Ps, φ)

) = E

(
M∑

i=1

−N

2
log

(
2π

[
PsG(φ, θi)h(di) + σ 2

w

])
− 1

2

∑N
n=1 x2

i [n]

PsG(φ, θi)h(di) + σ 2
w

)

= E

(
M∑

i=1

−N

2
log

(
2π

[
PsG(φ, θi)h(di) + σ 2

w

])
− N

2

Pt
sG

(
φt, θi

)
h(di) + σ 2

w

PsG(φ, θi)h(di) + σ 2
w

)

. (34)

at the top of this page, where we used the fact that857

limN→∞ 1
N

∑N
n=1 x2

i [n] = Pt
sG(φt, θi)h(di) + σ 2

w. Our goal is858

to maximize (32). Defining Ai = PsG(φ, θi)h(di) + σ 2
w and859

At
i = Pt

sG(φt, θi)h(di) + σ 2
w, the underlying problem becomes860

max
Ai

i=1,...,M

M∑

i=1

(
−N

2

(
2πAi

)
− N

2

At
i

Ai

)
. (33)861

It is easy to show that the solution of this equation is ∀i : Ai =862

At
i, which in turn means ∀i : PsG(φ, θi) = Pt

sG(φt, θi). Since863

the problem is assumed to be identifiable, we obtain Ps = Pt
s864

and φ = φt.865

As in the case of consistency, to prove that the estima-866

tor is unbiased, first we obtain E
(
LL(Ps, φ)

)
as follows,867

(34), as shown at the top of this page, Again with chang-868

ing the variables to Ai = PsG(φ, θi)h(di) + σ 2
w and At

i =869

Pt
sG(φt, θi)h(di) + σ 2

w, we can easily show that ∀i : Ai = At
i870

maximizes E(LL(Ai)), which in the same way as consistency,871

we can deduce Ps = Pt
s and φ = φt. And this concludes our872

proof.873

APPENDIX J874

PROOF OF THEOREM 5875

As in the case of Theorem 3, here again we need to calcu-876

late the Fisher Information Matrix, F. After some calculations,877

each elements of F can be obtained as follows, 878

E

(
∂LL

∂Ps

∂LL

∂Ps

)
= N

2

M∑

i=1

(
G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ 2
w

)2

, (35) 879

E

(
∂LL

∂φ

∂LL

∂φ

)
= N

2

M∑

i=1

(
Psh(di)G′(φ, θi)

PsG(φ, θi)h(di) + σ 2
w

)2

, 880

E

(
∂LL

∂Ps

∂LL

∂φ

)
= E

(
∂LL

∂φ

∂LL

∂Ps

)
(36) 881

= N

2

(
M∑

i=1

Psh2(di)G(φ, θi)G′(φ, θi)
(
PsG(φ, θi)h(di) + σ 2

w

)2

)

. (37) 882

Calculating F−1, we obtain (38), as shown at the top of the 883

next page, with 884

A = N

2

M∑

i=1

(
Psh(di)G′(φ, θi)

PsG(φ, θi)h(di) + σ 2
w

)2

885

× N

2

M∑

i=1

(
G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ 2
w

)2

, 886

and 887

B = N2

4

( M∑

i=1

Psh2(di)G(φ, θi)G′(φ, θi)
(
PsG(φ, θi)h(di) + σ 2

w

)2

)2

. 888
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F−1 = 1

A − B

⎡

⎢⎢⎢⎢
⎣

N

2

M∑

i=1

(
Psh(di)G′(φ, θi)

PsG(φ, θi)h(di) + σ 2
w

)2

−N

2

M∑

i=1

Psh2(di)G(φ, θi)G′(φ, θi)
(
PsG(φ, θi)h(di) + σ 2

w

)2

−N

2

M∑

i=1

Psh2(di)G(φ, θi)G′(φ, θi)
(
PsG(φ, θi)h(di) + σ 2

w

)2

N

2

M∑

i=1

(
G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ 2
w

)2

⎤

⎥⎥⎥⎥
⎦

, (38)

By deriving the trace of F−1, we can easily obtain CRB(Ps, φ)889

for the unknown signal by890

CRB(Ps, φ) = 1

A − B

[
N

2

M∑

i=1

(
Psh(di)G′(φ, θi)

PsG(φ, θi)h(di) + σ 2
w

)2

891

+ N

2

M∑

i=1

(
G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ 2
w

)2]
,892

(39)893

The individual CRB for Ps and φ are then given by894

CRB(Ps) = 1

A − B

[
N

2

M∑

i=1

(
Psh(di)G′(φ, θi)

PsG(φ, θi)h(di) + σ 2
w

)]
,895

and896

CRB(φ) = 1

A − B

[
N

2

M∑

i=1

(
G(φ, θi)h(di)

PsG(φ, θi)h(di) + σ 2
w

)2]
,897

which concludes our proof.898
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