
Negative Sampling Strategies for Contrastive
Self-Supervised Learning of Graph Representations

Hakim Hafidia,b, Mounir Ghoghoa, Philippe Ciblatb, Ananthram Swamic

aTICLab, College of Engineering and Architecture, Université Internationale de Rabat,
Morocco

bLTCI, Telecom Paris, Institut Polytechnique de Paris, France
cUnited States Army Research Laboratory, Adelphi, Maryland, USA

Abstract

Contrastive learning has become a successful approach for learning powerful text

and image representations in a self-supervised manner. Contrastive frameworks

learn to distinguish between representations coming from augmentations of the

same data point (positive pairs) and those of other (negative) examples. Recent

studies aim at extending methods from contrastive learning to graph data. In

this work, we propose a general framework for learning node representations

in a self supervised manner called Graph Constrastive Learning (GraphCL). It

learns node embeddings by maximizing the similarity between the nodes repre-

sentations of two randomly perturbed versions of the same graph. We use graph

neural networks to produce two representations of the same node and leverage a

contrastive learning loss to maximize agreement between them. We investigate

different standard and new negative sampling strategies as well as a comparison

without negative sampling approach. We demonstrate that our approach signif-

icantly outperforms the state-of-the-art in unsupervised learning on a number

of node classification benchmarks in both transductive and inductive learning

setups.

Key words: Graph Neural Network, Contrastive Learning, Self-Supervised

Learning, Node Classification.

1The main ideas of this paper have been posted in July 2020 on Arxiv with reference
arXiv:2007.08025

Preprint submitted to Journal of LATEX Templates May 9, 2021

Manuscript Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/sigpro/viewRCResults.aspx?pdf=1&docID=39148&rev=1&fileID=933206&msid=187a8b92-2db0-4b2d-bdf9-4799d99347eb
https://www.editorialmanager.com/sigpro/viewRCResults.aspx?pdf=1&docID=39148&rev=1&fileID=933206&msid=187a8b92-2db0-4b2d-bdf9-4799d99347eb

1. Introduction

In many fields, the rapid increase in data volume and the complexity of its

structure/representation make it difficult to exploit it effectively. Graphs offer a

unified framework for aligning well-structured and unstructured data. However,

graphs have long been poorly leveraged because of their complexity, and limited5

approaches relying on content associated with nodes and links. Recently, graph

representation learning has attracted the attention of the scientific community

as a way of analysing graphs and helping to exploit the richness of information

that resides in poor-structured data. Graphs are characterized by a set of nodes,

which represent the entities, and a set of links connecting them, representing10

relationships between the nodes. Nodes may be of different types, and may

further be associated with several features. And links may represent different

relationships and may also be associated with different attributes or semantic

content. One of the major challenges facing graph representation learning is

learning node embeddings which capture both node features and graph structure.15

These representations can then be fed into downstream machine learning models.

Most successful approaches for graph representation have been great efforts

to generalize neural networks to graph data and fall under the umbrella of Graph

Neural Networks (GNNs) or Deep Geometric Learning [1–4]. These approaches

have achieved remarkable results in a number of important tasks such as node20

classification [5–7] and link prediction [8, 9]. However, these methods are very

reliant on human annotation and suffer from the necessity of some form of

supervision. This requires high cost, expert knowledge in the domain and the

use of annotated data, which is not often available. Hence, it is of importance to

develop methods capable of learning representations in an unsupervised manner.25

In order to compensate for the absence of labels or predefined tasks, some

unsupervised methods have adopted the homophily hypothesis, which states

that linked nodes should be nearby in the embedding space [10]. Inspired by

the Skipgram algorithm for embedding words into a latent space, where adja-

cent vectors correspond to co-occurring words in a sentence [11], a majority of30

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

these methods use random walks to generate sentence-like sequences where co-

occurring nodes are close to one another in the embedding space [12, 13] and

can also be adapted to heterogeneous graphs [14–16]. Other methods, such as

autoencoders, also employ the homophily hypothesis by reconstructing either

the adjacency matrix or the neighborhood of a node [8, 17]. Despite their suc-35

cess in learning relatively powerful representations, relying on the homophily

hypothesis may bias these methods towards emphasizing the direct proximity

of nodes over topological information [17]. More recently, [18] proposed Deep

Graph Infomax (DGI) that learns representations by training a discriminator

to distinguish between representations of nodes that belong to the graph from40

nodes that belong to a corrupted graph. Leveraging recent advances in unsu-

pervised visual representations [19], the success of DGI has been attributed to

the maximization of mutual information between global and local parts of the

input. This requires learning global representations of the entire graph which

can be very costly and even intractable when dealing with large graphs.45

To overcome the above-mentioned challenges, we here propose a contrastive

framework for self-supervised learning of nodes’ representations, called GraphCL.

We take inspiration from the success of contrastive losses in learning meaning-

ful representations of images [20, 21] and develop a model that learns node

embeddings by maximizing the similarity between the representations of two50

randomly perturbed versions (views) of the intrinsic features and link structure

of the same node’s local subgraph. The perturbation consists of randomly drop-

ping from its L-hop subgraph, a subset of edges and nodes’ intrinsic features.

Other researchers have also used the contrastive loss to learn nodes or graph

representations using different augmentation (perturbation) strategies. In [22],55

the authors used the diffusion matrix as a second view of the graph. In [23], the

authors used four different strategies consisting of dropping nodes, perturbing

edges, masking attributes or sampling subgraphs.

Contrastive learning is a special case of Siamese networks, which are weight-

sharing neural networks applied to two or multiple inputs. Recent approaches60

use augmentations of the same data point as inputs and maximize the similarity

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

between the learned representations of the two inputs. Maximizing the similar-

ity between each pair of augmented data points in the dataset can lead to a

trivial solution. Since we want representations of all pairs of augmented views

to be equal, a possible solution is to map all nodes to a single point (represen-65

tation). This is what we call a collapsing of representations to a single data

point (i.e. if all representations are the same, then so are those of each pair

of augmented views). Contrastive learning is one way of preventing this unde-

sirable solution. It does so by contrasting between positive (similar) examples

and negative (dissimilar) examples. The objective of the training phase is to70

map positive examples to nearby locations in the destination (representation)

space while pushing away negative examples often by using noise-contrastive

estimation [24]. One key component of contrastive learning frameworks is the

choice of negative examples. The most common strategy is to uniformly sample

from the training dataset using examples either from the current batch or from a75

memory bank. It has been shown that these approaches require large batches or

memory banks to perform well for visual representation [20, 21]. To improve the

performance and efficiency of contrastive frameworks, recent studies have pro-

posed novel sampling strategies. Most strategies are based on the assumption

that hard negative examples (i.e. examples that are hard to distinguish from a80

positive pair) are beneficial in learning more powerful representations. In [25],

authors use hard negative mixing to synthesize new examples from the available

hard negatives. In [26], the authors sample negatives from a ring around each

positive (i.e. they sample negatives that are neither too close nor too far from

the positive example).85

More recent Siamese network architectures preventing representation collaps-

ing still rely on the use of pairs of positive examples only. In [27], the authors

experimentally show that the learned representations of their proposed frame-

work do not collapse when using a momentum network even when not using

negative examples. In [28], the authors avoid the collapsing phenomenon by90

simply using a stop-gradient strategy when directly maximizing the similarity

between two augmented views. The stop-gradient strategy consists of consid-

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

ering the representation of one of the augmented views as a constant when

updating the network parameters.

While these methods have shown surprisingly good results when applied95

to image datasets, it is not clear whether they are easily generalizable to non-

Euclidean data such as graphs. In this work, we introduce novel sampling

strategies of negative examples based on the graph structure and show that

our approach improves the performance of the learned representations on down-

stream classification tasks and outperforms existing methods. In addition, we100

conduct extensive experiments to study the different components of our Siamese

network-based approach for learning nodes’ representations which enable us to

answer the following questions:

• Is a larger set of negative examples always useful in learning good repre-

sentations?105

• Does sampling hard negative examples improve the quality of the repre-

sentation?

• Can we train a Siamese neural network to learn nodes’ representations

without using negative examples?

2. Background110

2.1. Problem formulation.

Let G = (V, E) be an undirected graph where V is a set of nodes and E ⊆ V×V

is a set of edges. Each node u ∈ V is represented by a feature vector xu ∈ RP .

An adjacency matrix A ∈ RN×N represents the topological structure of the

graph where N = |V| is the number of nodes in the graph. Without loss of115

generality we assume the graphs to be unweighted i.e Au,v = 1 if (u, v) ∈ E

and Au,v = 0 otherwise. We are also provided with a matrix X ∈ RN×P that

summarizes the intrinsic feature vectors of all nodes.

Our objective is to learn an effective representation of nodes without human

annotation. This will be done through the learning of a graph neural network120

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

encoder f that maps both node original feature and the graph structure to

a higher level representation i.e. f(X,A) = H(L) ∈ RN×P ′ , where P ′ is the

embedding size. The u−th row of H(L) corresponds to the embedding h
(L)
u of

node u. In the remainder of the paper, hu refers to the output of the GNN’s

last layer, i.e. hu = h
(L)
u .125

2.2. Graph Neural Networks (GNNs).

GNNs are a class of graph embedding architectures which use the graph

structure in addition to node and edge features to generate a representation

vector (i.e., embedding) for each node. Recent GNNs learn node representations

by aggregating the features of neighboring nodes and edges. The output of the

l-th layer of these GNNs is generally expressed as

h(l)
u = COMBINE(l)(h(l−1)

u , AGGREGATE(l)({(h(l−1)
u , h(l−1)

v) : v ∈ N (u)})),

(1)

where h
(l)
u is the feature vector of node u at the l-th layer initialized by h

(0)
u = xu

and N (u) is the set of first-order neighbors of node u. According to Eq. (1),

h
(L)
u corresponds to the output of the last layer of the GNN, which involves the

nodes of node u’s L-hop subgraph. Different GNNs use different formulations130

of the COMBINE and AGGREGATE functions; the ones used in this work are

described in subsection 4.1.3.

2.3. Contrastive learning

In this work, we consider the dictionary look up formulation of contrastive

learning, which means that considering a query hq, a corresponding positive pair

h+
q and a set of negative examples Q−

q , a contrastive loss is a function which

has a low value when hq is similar to h+
q and dissimilar to all elements of Q−

q .

A successful and widely used form of contrastive loss is defined as:

Lhq,h
+
q ,Q−

q
= − log

exp(h⊤
q h

+
q /τ)

exp(h⊤
q h

+
q /τ) +

∑
hn∈Q−

q
exp(h⊤

q hn/τ)
, (2)

where τ is a temperature hyperparameter and hq, h+
q and all hn in Q−

q are

L2 normalized feature vectors. The final loss is summed accross all queries q

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

belonging to the dataset D and can be expressed as follows when scaled by the

temperature τ [29]:

L = − 1

τ |D|
∑
q∈D

h⊤
q h

+
q +

1

|D|
log

∑
q∈D

exp(h⊤
q h

+
q /τ) +

∑
hn∈Q−

q

exp(h⊤
q hn/τ)

 ,

(3)

where |D| is the number of elements in D.

In Contrastive learning framework„ different negative sampling strategies135

(i.e., the way to build Q−
q) may be employed to avoid collapsing of the contrastive

loss optimization problem into a unique representation of all samples.

2.4. Simple Siamese neural networks for nodes representation

In [28], the authors argue that their approach can prevent collapsing when

maximizing the similarities between the representations of two views of the same

image without the use of negative examples. Their approach works by sampling

two views of x1 and x2 of the same image x which they process using an encoder

f and a multi-layer perceptron (MLP) prediction head g. Letting p1 = g(f(x1)),

p2 = g(f(x2)), h1 = f(x1) and h2 = f(x2) denote respectively the outputs of

the MLP prediction and the encoder, the objective is to minimize the symmetric

negative cosine similarity loss which is defined as:

L =
1

2
S(p1, stopgrad(h2)) +

1

2
S(p2, stopgrad(h1)), (4)

where S(p1, h2) = − p1

∥p1∥ .
h2

∥h2∥ and the stopgrad operation consists of treating

h2, respectively h1, as constant when updating the models’ parameters.140

3. Methodology of the proposed approach

3.1. GraphCL

GraphCL’s objective is to learn node representations by maximizing the

similarity between two embeddings of the same node. The two embeddings are

obtained from applying a GNN encoder to two perturbed versions of the graph.145

This framework has three main components: a stochastic perturbation, a GNN

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

based encoder and a contrastive loss function. We first introduce each of these

components, and then give a high-level overview of the proposed method.

• Stochastic perturbation. We apply two stochastic perturbations to the

graph which allow us to obtain two representations of the same node which150

we consider as positive examples. In this work, we consider simultaneous

transformations of both node features and the connectivity of the graph.

The graph structure is transformed by randomly dropping edges using

samples from a Bernoulli distribution. For the node’s original features, we

apply a similar strategy by simply applying dropout to the input features;155

• Graph neural network encoder. We apply a GNN based encoder

that learns representations of all nodes in the graph. Our framework

supports several choices of GNN architectures. Details about the choices

of architectures are given in section 4.1.3.

• Contrastive loss function. We define a pretext prediction task that160

aims at identifying the corresponding positive example h+
q of a representa-

tion hq given a set of generated examples, with hq and h+
q being a positive

pair of examples (i.e. obtained from the GNN representations of two trans-

formations of the graph). As for the negative examples generation, details

are provided in subsection 3.2.165

3.2. Negative sampling strategies

Negative sampling has been shown to be a key ingredient for the success

of contrastive learning frameworks. Different strategies have been proposed to

build negatives examples for visual presentations [20, 21, 25, 26]. First, we inves-

tigate whether the conclusions that have been drawn from the most successful170

approaches of visual representations are still valid when applied to graphs. We

hereafter introduce three negative sampling strategies: the two first are standard

while the third one is new and well adapted to graph.

• Random sampling. This approach consists of considering the samples of

the current (randomly generated) mini-batch as negatives. The problem175

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

with this approach is the number of negative examples is limited by the

size of the mini-batch which is limited by the memory of the GPU. An

alternative would be to randomly sample negatives from a memory bank

that contains either representations of the whole training set or a queue

with representations of the last few batches.180

• Feature-based sampling. In [26], the authors propose to pick two per-

centiles ωk and ωl ∈ [0, 100] and considering hnc
as a negative example for

a representation of a query hq if and only if h⊤
q hnc

is within the ωk-th to

the ωl-th percentile of all hn ∈ Q−
q .This enables to build easily hard nega-

tive examples (i.e., negatives that are hard to distinguish from the current185

sample) which are beneficial in learning powerful representations as men-

tioned in [30, 31]. To adapt this method to the graph setting, instead

of considering the similarities in the representation space, which requires

using the encoder to learn the representations of all nodes in the graph, we

simply consider the similarities of the nodes’ original features. For each190

node u, we consider as negatives all nodes v whose original features are

neither too close nor too far from those of node u (i.e. x⊤
u xv/∥xu∥∥xv∥ is

within the ωk-th to the ωl-th percentile of all nodes of the graph).

• Graph-based sampling. Using original feature similarities as a negative

sampling strategy requires computing similarities between each pair of195

nodes in the graph then sorting them and fine tuning the model to select

the best values for the percentiles ωk and ωl. To avoid this, we propose to

make use of the graph structure information to select negatives. Instead

of considering distances between the nodes’ original features, we use the

distance between the nodes on the graph. For each node u, we simply200

sample negatives from its l-th order neighbors.

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

xu

x̃u,1

x̃u,2

f(·)

f(·)

hu,1

hu,2

M
axim

ize
sim

ilarity

Edges

Removed Edges

Figure 1: A high-level overview of our method for a subgraph around node u. hu,1 and hu,2

form a positive pair with a query hq = hu,1 and its corresponding key h+
q = hu,2.

3.3. Overview of GraphCL

The training algorithm of GraphCL is summarized in the following steps:

1. Draw two stochastic perturbations t1 and t2 as defined in section 3.1 and

illustrated in Figure 1. Apply them to nodes’ original features and the205

graph structure:

• (X̃1, Ã1) ∼ t1(X,A)

• (X̃2, Ã2) ∼ t2(X,A)

2. Apply the encoder to both views of the graph:

• HL
1 = f(X̃1, Ã1)210

• HL
2 = f(X̃2, Ã2)

3. Select negative examples as suggested in subsection 3.2.

4. Update parameters of the encoder f using the loss function defined in

Eq. (3).

3.4. Extension to inductive setup215

Unlike the transductive setup where we have access to the whole graph and

features of all nodes of the graph during training time. In the inductive setup,

the objective is to generate representations of nodes that were not used when

training the model. These previously unseen nodes can be new nodes in an

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

evolving graph such as a social network, we refer to this by the single graph220

inductive setup. These nodes can also come from previously unseen graphs

which helps generalization across graphs with the same form of features, we

refer to this by the multiple graph inductive setup.

GraphCL can be easily extended to both setups. The extension to the multi-

ple graph setup is straightforward, as it consists of training the encoder on each225

of the available graphs for the training and using the learnt encoder to produce

representations of nodes of the new graphs. For inductive learning on large

graphs, we train the encoder by sampling minibatches of nodes. The training

algorithm of GraphCL for the inductive setup is summarized in the following

steps for each sampled minibatch B:230

1. For each node u in the minibatch we define (Xu, Au) as the subgraph

containing all nodes and edges that are at most L-hops from u in the

graph and their corresponding features;

2. Draw two stochastic perturbations t1 and t2 as defined in section 3.1 and

apply them to u’s L-hop neighborhood subgraph:235

• (X̃u,1, Ãu,1) ∼ t1(Xu, Au)

• (X̃u,2, Ãu,2) ∼ t2(Xu, Au)

3. Apply the encoder to the two representations of node u:

• hu,1 = f(X̃u,1, Ãu,1)

• hu,2 = f(X̃u,2, Ãu,2)240

4. Update parameters of the encoder.

4. Experiments

We evaluate the effectiveness of GraphCL representations on both tranduc-

tive and inductive learning setups. The transductive learning setup consists

of embedding nodes from a fixed graph (i.e. all node features and the entire245

graph structure are known during training time). On the other hand, the induc-

tive learning setup consists of generating representation of unseen nodes or new

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

graphs. Following common practice, we opt for a linear evaluation of the learned

node representations. Specifically, we use these representations to train a logistic

regression model to solve multiclass node classification tasks on five well-know250

benchmark datasets, three for the transductive learning setup and two for the

inductive setup. We summarize the datasets and the baselines respectively in

sections 4.1.1 and 4.1.2, provide model configuration and implementation details

in section 4.1.3, and discuss the results in section 4.2.

4.1. Experimental setup255

4.1.1. Datasets

For the transductive setting, we utilize Cora, Citeseer and Pubmed [32],

three citation networks where nodes are bag of words representations of docu-

ments and edges correspond to (undirected) citations. Each node belongs to one

class. We also use ogbn-arxiv, which is another citation network, where nodes260

are computer science papers represented by a 128-dimensional feature vector

obtained by averaging the embeddings of words in its title and abstract. Each

node belongs to one of forty subject areas of arXiv CS papers [33].

On the other hand, a protein-protein interaction dataset (PPI) is used for

the inductive setting on multiple graphs [34]. It consists of multiple graphs265

corresponding to different human tissues where node features are the positional

gene sets, motif gene sets and immunological signatures. Each node has several

labels among 121 labels from the gene ontology. For the inductive setting on

large graphs, we use a Reddit dataset [5]. It represents a large social network

where nodes correspond to Reddit posts (i.e. represented by their GloVe embed-270

ding [35]) and edges connecting two posts mean that the same user commented

on them. Labels are the posts’ subreddit and the objective is to predict the

community structure of the social network.

Statistics of the datasets including data splits are given in table 1. For ogbn-

arxiv dataset, we follow recommendations from the Open Graph Benchmark275

initiative and adopt a data split that is based on the publication dates of the

papers [36]. More precisely, we train on papers published until 2017, validate

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 140/500/1,000

Citeseer Transductive 3,327 4,732 3,707 6 120/500/1,000

Pubmed Transductive 19,717 44,338 500 3 60/500/1,000

ogbn-arxiv Transductive 169,343 1,166,243 128 40 Time

Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334

PPI Inductive
56,944

818,716 50
121 44,906/6,154/5,524

(24 graphs) (multilabel) (20/2/2 graphs)

Table 1: Description of datasets

on those published in 2018, and test on those published since 2019.

4.1.2. Baselines

For the transductive learning tasks, we use four unsupervised methods for280

comparison: Label Propagation (LP) [37], DeepWalk [12], Embedding Propa-

gation (EP-B) [38], and Deep Graph Infomax (DGI) [18]. We also report the

results of training logistic regression on the intrinsic input features only, and

also on the concatenation of DeepWalk embeddings and the nodes’ intrinsic

features. Aside from unsupervised methods, we also compare our approach to285

strong supervised baselines, Graph Convolution Networks (GCN) [2].

For the inductive learning tasks, in addition to DeepWalk and DGI, we

compare GraphCL with the unsupervised GraphSAGE methods [5]. We also

provide results of two supervised approaches, FastGCN [39] and Gated Attention

Networks (GaAN) [40].290

4.1.3. Model configurations

Eq. (1) provides a general formulation of graph neural networks. Several ar-

chitectures have been proposed for the choice of AGGREGATE and COMBINE.

In all our experiments the basic update rule is the mean pooling variant from

[5].

h(l)
u ←

(
W (l−1)

)⊤
·MEAN({h(l−1)

u } ∪ {h(l−1)
v ,∀v ∈ N (u)}), (5)

where the MEAN operator is the element-wise mean of all vectors in ({h(l−1)
u }∪

{h(l−1)
v ,∀v ∈ N (u)}), and W (0) ∈ RP×P ′ and W (l−1) ∈ RP ′×P ′ , for l > 1, are

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

learnable linear transformations.

All GNN aggregation operations are computed in parallel resulting in a ma-

trix representation as follows:

H(l) = ÂH(l−1)W (l−1) (6)

where H(l) = [h
(l)
1 , h

(l)
2 , . . . , h

(l)
N]⊤ is the matrix of nodes’ hidden feature vectors295

at the l−th layer and Â = Ď−1Ǎ is the normalized version of the adjacency

matrix with added self-loop Ǎ = A + IN with Ď being its diagonal degree

matrix, i.e. Ďii =
∑

j Ǎij . We also consider the symmetrically normalized

version of the adjacency matrix where Â = Ď− 1
2 ǍĎ

1
2 . We refer to encoders

using this variant by GCN when needed.300

Transductive learning. For Citeseer and Pubmed, we use a one layer GNN as

defined in Eq. (6), the encoder is then simply expressed as:

f(X,A) = ÂXW (0) (7)

For Cora, our encoder is a two-layer GNN:

f(X,A) = Âσ(ÂXW (0))W (1) (8)

where σ is an exponential linear unit [41], and f(X,A) is the concatenation of

all nodes’ embeddings. In each layer, we compute P ′ = 512 features resulting

in a node embedding size of 512. For the larger ogbn-arxiv dataset, we use

a three-layer GNN, and train the model by randomly sampling 1024 negative

examples for each node.305

Inductive learning. For both inductive learning setups on large graphs and on

multiple graphs , we use a three-layer mean-pooling encoder with residual units

as follows:

H(1) = σ(ÂXW
(0)
1 +XW

(0)
2) (9)

H(2) = σ(ÂH(1)W
(1)
1 +H(1)W

(1)
2) (10)

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

f(X,A) = ÂH(2)W
(2)
1 +H(2)W

(2)
2 (11)

We set the hidden layers and the embedding size to P ′ = 512 and apply RELU

as an activation function.

For the multiple-graph setting, we sample one graph at a time from the

training set to train the contrastive loss function. For the single graph inductive

setup, the scale of the dataset makes it impossible to fit into GPU memory. We310

therefore adopt the sub-sampling strategy of [5]. We first select a minibatch of

nodes and construct for each of them their L-hop neighborhood subgraph by

sampling a fixed size neighborhood. We sample 10 nodes in each of the three

levels resulting in 1 + 10 + 100 + 1000 = 1111 neighboring nodes .

We use Pytorch [42] and the Pytorch Geometric [43] libraries to implement315

all our experiments. We initialize all models using Glorot initialization [44] and

trained them to minimize the contrastive loss provided in Eq. (3) using the Adam

optimizer [45] with an initial learning rate of 0.001. We tune the weight decay

in {0.001, 0.01, 0.05, 0.1, 0.15}. We further tune the temperature τ in the loss

function in {0.1, 0.5, 0.8, 1.0} and the number of epochs in {20, 50, 100, 150, 200}.320

To define the stochastic perturbation, we tune the probability of dropping

an edge in [0.05, 0.75] and the probability of dropping node features in [0.2, 0.8].

GraphCL is found to be robust to different choices of the perturbation parame-

ters. However, we found that applying high perturbations to node features (i.e.

randomly dropping 50% to 70% of input features) and small perturbations of325

the graph structure (i.e. randomly dropping 10% to 20% of edges) results in

stronger representations.

4.2. Results

We present the results of evaluating node representations using downstream

multiclass node classification tasks in Table 2. We report average results over330

50 runs of training followed by a logistic regression. Specifically, we use the

mean classification accuracy on the test nodes for transductive tasks and the

micro-averaged F1 score on the (unseen) test nodes for the inductive setting.

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Transductive

Method Cora Citeseer Pubmed ogbn-arxiv

Raw features 47.9± 0.4% 49.3± 0.2% 69.1± 0.3% 55.50± 0.23%

DeepWalk [12] 67.2% 43.2% 65.3% 70.07± 0.13%

DeepWalk + features 70.7± 0.6% 51.4± 0.5% 74.3± 0.9% _

EP-B [38] 78.1± 1.5% 71.0± 1.4% 79.6± 2.1% 68± 0.00%

DGI [18] 82.3± 0.6% 71.8± 0.7% 76.8± 0.6% 70.18± 0.12%

GraphCL 83.6± 0.5% 72.5± 0.7% 79.8± 0.5% 70.18± 0.17%

GraphCL* 84.6± 0.4% 73.1± 0.6% 80.1± 0.5% 71.38± 0.13%

GCN(supervised)[2] 81.5% 70.3% 79.0% 71.74± 0.002%

Inductive

Method Reddit PPI

Unsupervised Raw features 0.585 0.422

GraphSage-GCN [5] 0.908 0.465

GraphSage-mean [5] 0.897 0.486

GraphSage-LSTM [5] 0.907 0.482

GraphSage-pool [5] 0.892 0.502

DGI [18] 0.940± 0.001 0.638± 0.002

GraphCL 0.951± 0.01 0.659± 0.006

GraphCL* 0.960± 0.01 0.841± 0.004

Supervised FastGCN [39] 0.937 −

GaAN [40] 0.958± 0.001 0.969± 0.002

Table 2: Classification accuracy on transductive tasks and micro-averaged F1 score on induc-

tive tasks

We report the results of EP-B provided in [38] and [46], and also the results

provided in [18]. To insure a fair comparison with the other methods, we report335

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the results of the standard implementation of GraphCL which was described in

the previous section. In particular we use a standard embedding size P ′ = 512.

We refer to the results by GraphCL in table 2. We also report GraphCL*

which refers to the results that were achieved using the best parameters including

the best negative sampling strategy, choice of encoders and embedding size. For340

example, we notice a 1% gain on the classification accuracy of Cora when using

a GCN encoder and sampling negative from the second order neighbors of the

current example. Moreover, we notice a surprising 0.2 gain on the F1 score on

PPI when increasing the embedding size to P ′ = 2048.

We see that the proposed GraphCL outperforms the previous state-of-the-art345

by achieving the best classification accuracy over the three transductive tasks

and the best F1 score on inductive tasks. We note that, except for PPI dataset,

GraphCL achieves competitive performance with strong supervised baselines

without using label information. We assume that by maximizing agreement

between representations that share the same information but have independent350

noise, GraphCL is able to learn representations that benefit from the richness

of information in the graph which compensate for the information provided by

the labels.

4.3. Ablation study

We report on a study to understand the effects of different parameters. All355

experiments have been conducted using Cora dataset.

4.3.1. Effect of the number of negatives

Figure 2a shows the effect of the number of negatives on the accuracy of

the downstream classification task. We find that training a contrastive loss

with a small number of negatives leads to poor representations. However, our360

experiments show that at a certain threshold increasing the number of negatives

does not improve the quality of the representations. Beyond that threshold the

variations of the classification accuracy seem to be due to the randomness of

the training procedure only. Since using a large number of negatives slows down

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) (b)

Figure 2: Classification accuracy on Cora dataset. (a) Effect of the number of negative

examples. (b) Effect of the similarity between the current example and its corresponding

negative samples.

the training and requires more computing power, our findings suggest that one365

has to properly choose the number of negatives to optimize for both the quality

of the representations and the training efficiency.

4.3.2. Effect of feature similarity based negative sampling strategies

We next analyse the effect of hard negative samples on the quality of the

learned representations. We first implement the feature similarity based neg-370

ative sampling strategy described in section 3.2. We select negatives from a

ring around the current example. This is done by varying the values of the per-

centiles ωl and ωk. Figure 2b show the accuracy of a linear classifier trained on

the learned representation while varying the distance of the ring from the current

example. We select negatives from a ring of diameter 10% (i.e. ωl−ωk = 10%).375

The results confirm our intuition that hard negatives improve the quality of the

representations. We notice that selecting only negatives that are too far from

the current example leads to poor representations. In fact, if all negatives are

easy to distinguish from the current example, there is no reason for the encoder

to learn higher level features that can help to distinguish between the corre-380

sponding positive example and all the negatives. On the other hand, selecting

negatives from nodes that are very similar to the current example worsens the

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

l-th order neighbors Accuracy

1 31.4 ± 1.2 %

2 84.6 ± 0.4%

3 80.8 ± 0.6 %

Table 3: Classification accuracy on Cora dataset.

Effect of the number of hops between the current

example and its corresponding negative samples.

Encoder Accuracy

MLP 66.1 %

Mean Pooling 83.6 %

GCN 84.2 %

Table 4: Classification accuracy on

Cora dataset. Effect of the choice of

the encoder

quality of the representations. This can be explained by the fact that negatives

that are close to the current example are likely to belong to the same class and

should rather be considered as positive examples. Training an encoder to push385

these examples away from the current example unsurprisingly leads to lower

quality representations.

4.3.3. Effect of graph based negative sampling strategies

Graphs provide additional information about the examples. We aim at tak-

ing advantage of the graph structure to sample negative examples. Table 3390

shows the average accuracy of 50 runs of training to learn nodes’ embeddings

on top of which we apply a linear classifier. We sample negatives from the l-th

order neighbors of the current example. Similarly to the results of the feature

similarity based negative sampling strategy, we find that negatives that are at

the right distance from the current example improve the quality of the learned395

representations. More specifically, we achieve the best performance when sam-

pling negatives from the second order neighbors.

4.3.4. Training without negative samples

In the previous section, we have discussed the effect of negative sampling

strategies on the quality of the learned representations by using them to lin-400

early classify nodes on a multi-class classification downstream task. Here, we

would like to see whether it is possible to learn meaningful representations by

maximizing the similarities between the representations obtained from two views

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) (b)

Figure 3: A comparison of Siamese NN trained with vs without stop-gradient and batch

normalization. (a) Training loss across epochs. (b) Accuracy of a linear classifier trained on

top of the representation on Cora dataset

of the same graph without the use of any negative examples. To do so, we train

a Siamese neural network to minimize the negative cosine similarity loss in405

Eq. (4). We implement the stop-gradient strategy described in section 2.4 and

apply batch normalization on the hidden layer of the prediction MLP head (see

section 2.4). Both stop-gradient and batch normalization have been reported

to prevent the collapsing to a single representation when applied to Siamese

neural networks for visual representations [27, 28]. Figures 3a and 3b respec-410

tively show the loss and accuracy of training a Siamese neural network without

neither batch normalization nor stop-gradient referred to as Siam, with stop-

gradient but without batch normalization referred to as Siam+SG, and with

both stop-gradient and batch normalization referred to as Siam+SG+BN.

We observe that when training without stop-gradient and batch normaliza-415

tion, the loss function quickly converges to the minimum possible value −1. To

verify that the cause is the collapsing to the single representation solution, we

compute the standard deviation of all the representations which we found to be

equal to zero for all features. We also notice that although adding stop-gradient

and batch normalization prevent the collapsing to a single representation, the420

learned representations are still of low quality and perform much worse than

the representations learned using negative samples.

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5. Discussion

5.1. Connection to mutual information

The contrastive loss in Eq. (3) has been proposed as a lower bound estimator

of the mutual information. A formal proof given by [47] shows that:

I(hq, h
+
q) ≥ log(N)− L, (12)

where N is the number of negative samples Q−
q and I(hq, h

+
q) is the mutual

information between hq and h+
q :

I(hq, h
+
q) = E

(hq,h
+
q)∼p

hq,h
+
q
(·)

log

[
p(hq, h

+
q)

p(hq)p(h
+
q)

]
(13)

where p(hq, h
+
q) is the joint distribution of hq and h+

q , and p(hq) and p(h+
q) are425

the corresponding marginals.

Therefore, given any N , minimizing the loss function L also maximizes the

lower bound on the mutual information I(hq, h
+
q). We note however that it has

been shown that the bound in Eq. (12) can be not tight . Our experiments

suggest that contrastive methods’ success highly depends on other parameter430

designs, and so cannot be solely attributed to the properties of the mutual

information. This confirms the remark done in[48] where the bound in Eq. (12)

was seen not to be tight. More precisely, results in Table 4 emphasize the

impact of the choice of the encoder on the performance of the contrastive loss.

The ablation study that we conducted also highlights the effect of the negative435

sampling strategy and the importance of hard negative examples for learning

powerful representations.

5.2. Understanding contrastive learning through alignment and uniformity on

the hypersphere

To better understand the behavior of GraphCL, we analyze it through the440

perspective of uniformity and alignment that has been introduced in [49]. The

main idea behind the contrastive loss is to attracting positive pairs together in

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 4: Representations of Cora dataset nodes on R2 using encoders trained with a con-

trastive loss (Left plots), a negative cosine similarity loss (middle plots) and a supervised

cross entropy loss (right plots). Histograms of the cosine similarity between positive pairs

(Top). Feature distributions in R2 using Gaussian kernel density estimation (Bottom).

the representation space while pushing away the corresponding negative exam-

ples from the current sample. Eq. (3) actually encourages the learned represen-

tations to obey the following properties:445

• Alignment: Representations of augmented views should be consistent

and invariant to noise.

• Uniformity: The learned representations should match a prior distribu-

tion of high entropy (the uniform distribution over the hypersphere) to

preserve as much information of the data as possible.450

We visualize the learned representations of Cora dataset nodes in R2 (i.e P ′ = 2)

to compare the behavior of the following methods:

• GraphCL: An encoder trained with the standard implementation of GraphCL

as described above.

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Siam+SG+BN: A siamese neural network encoder trained with the neg-455

ative cosine similarity loss using stop-gradient and batch normalization

techniques.

• Supervised GCN: An encoder and a linear classifier trained jointly with

a supervised cross entropy loss.

All encoders are 2-layers GCNs that map nodes to normalized feature vectors460

of dimension two. Figure 4 summarizes the resulting distributions. GraphCL

embeddings clearly display both properties. Positive pairs are more aligned than

those learned using the negative cosine similarity and supervised loss with an

average cosine similarity of 0.9 for GraphCL and 0.75 and 0.7 respectively for

the other methods. Representations of GraphCL are also evenly distributed on465

the hypersphere and exhibit the most uniform distribution.

It has been shown in [49] that both the alignment and uniformity proper-

ties are important in learning highly transferable features to downstream tasks.

This contributes to the the success of GraphCL and may explain its ability to

outperform strong supervised baselines on nodes classification, especially on the470

transductive learning setup.

It is also worth noticing that although adding stop-gradient and batch nor-

malization techniques to the training procedure of the negative cosine similar-

ity loss (i.e. Siam+SG+BN in Figure 4) prevent the collapsing to the single

representation solution, the encoder fails to uniformly map the nodes’ represen-475

tations across the hypersphere. This explains its results on the classification

downstream task (see Figure 3b).

5.3. Computational and model complexity

Last we discuss the computational and model complexity of GraphCL. Let

G = (V, E) be a graph and N = |V| the total number of nodes in the graph.480

Moreover, let L be the number of layers, M the minibatch size and R the num-

ber of neighbors being sampled for each node in the inductive setting. We

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

assume for simplicity that the dimension of the nodes’ hidden features is con-

stant and denote it as P ′. The computational complexity and space complexity

of GraphCL depend on the choice of the encoder. We use the same encoder485

for the two branches (i.e. each of the subgraphs). For the transductive learn-

ing setup, the computational and space complexity are linear with respect to

the number of nodes and are respectively O(LNP ′2) and O(LNP ′ + KP ′2) .

For the inductive learning, we use a sub-sampling strategy to load the graphs

into memory; the computational complexity is then O(RLNP ′2) and the space490

complexity is O(MRLP ′ +LP ′2). The computational complexity is linear with

respect to the number of nodes. Both the number of layers L and the number

of sampled neighbors R are fixed and user-specified. The space complexity is

linear with respect to the minibatch size M . The sampling strategy sacrifices

time efficiency to save memory which is necessary for very large graphs.495

6. Conclusion

We introduced GraphCL, a general framework for self-supervised learning of

nodes’ representations. The key idea of our approach is to maximize agreement

between two representations of the same node. The representations are gener-

ated by injecting random perturbations to the graph structure and nodes’ intrin-500

sic features. We have conducted a number of experiments on both transductive

and inductive learning tasks. Experimental results show that GraphCL outper-

forms state-of-the-art unsupervised baselines on nodes’ classification tasks and

is competitive with supervised baselines. We further investigated different neg-

ative sampling strategies including training with a similarity based loss without505

contrasting with negative samples and propose a graph based negative sampling

strategy. In the future, we will investigate the potential of our approach in learn-

ing graphs’ representations that are robust to adversarial attacks on the graph

data and explore the reasons of the low quality of nodes’ representations when

training a siamese neural network without negative samples.510

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

References

[1] J. Atwood, D. Towsley, Diffusion-convolutional neural networks, in: Ad-

vances in Neural Information Processing Systems, 2016, pp. 1993–2001.

[2] T. N. Kipf, M. Welling, Semi-Supervised Classification with Graph Con-

volutional Networks, arXiv e-prints (2016) arXiv:1609.02907arXiv:1609.515

02907.

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geo-

metric deep learning: going beyond euclidean data, IEEE Signal Processing

Magazine 34 (4) (2017) 18–42.

[4] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How Powerful are Graph Neural520

Networks?, arXiv e-prints (2018) arXiv:1810.00826arXiv:1810.00826.

[5] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on

large graphs, in: Advances in Neural Information Processing Systems, 2017,

pp. 1024–1034.

[6] I. Chami, Z. Ying, C. Ré, J. Leskovec, Hyperbolic graph convolutional525

neural networks, in: Advances in Neural Information Processing Systems,

2019, pp. 4869–4880.

[7] S. Luan, M. Zhao, X.-W. Chang, D. Precup, Break the ceiling: Stronger

multi-scale deep graph convolutional networks, in: Advances in Neural In-

formation Processing Systems, 2019, pp. 10943–10953.530

[8] T. N. Kipf, M. Welling, Variational Graph Auto-Encoders, arXiv e-prints

(2016) arXiv:1611.07308arXiv:1611.07308.

[9] M. Zhang, Y. Chen, Link prediction based on graph neural networks, in:

Advances in Neural Information Processing Systems, 2018, pp. 5165–5175.

[10] P. D. Hoff, A. E. Raftery, M. S. Handcock, Latent space approaches to535

social network analysis, Journal of the American Statistical Association

97 (460) (2002) 1090–1098.

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1611.07308

[11] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation

of Word Representations in Vector Space, arXiv e-prints (2013)

arXiv:1301.3781arXiv:1301.3781.540

[12] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social

representations, in: International Conference on Knowledge Discovery and

Data Mining, 2014, pp. 701–710.

[13] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks,

in: International Conference on Knowledge Discovery and Data Mining,545

2016, pp. 855–864.

[14] Y. Dong, N. V. Chawla, A. Swami, metapath2vec: Scalable representa-

tion learning for heterogeneous networks, in: international conference on

knowledge discovery and data mining, 2017, pp. 135–144.

[15] C. Zhang, D. Song, C. Huang, A. Swami, N. V. Chawla, Heterogeneous550

graph neural network, in: International Conference on Knowledge Discov-

ery & Data Mining, 2019, pp. 793–803.

[16] C. Zhang, A. Swami, N. V. Chawla, Shne: Representation learning for

semantic-associated heterogeneous networks, in: International Conference

on Web Search and Data Mining, 2019, pp. 690–698.555

[17] D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: Inter-

national Conference on Knowledge Discovery and Data mining, 2016, pp.

1225–1234.

[18] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, R. Devon

Hjelm, Deep Graph Infomax, arXiv e-prints (2018) arXiv:1809.10341arXiv:560

1809.10341.

[19] R. Devon Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-

man, A. Trischler, Y. Bengio, Learning deep representations by mu-

tual information estimation and maximization, arXiv e-prints (2018)

arXiv:1808.06670arXiv:1808.06670.565

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1808.06670

[20] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A Simple Framework

for Contrastive Learning of Visual Representations, arXiv e-prints (2020)

arXiv:2002.05709arXiv:2002.05709.

[21] K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for un-

supervised visual representation learning, in: IEEE/CVF Conference on570

Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.

[22] K. Hassani, A. Hosein Khasahmadi, Contrastive Multi-View Representa-

tion Learning on Graphs, arXiv e-prints (2020) arXiv:2006.05582arXiv:

2006.05582.

[23] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, Y. Shen, Graph contrastive575

learning with augmentations, in: Advances in Neural Information Process-

ing Systems, Vol. 33, 2020.

[24] M. Gutmann, A. Hyvärinen, Noise-contrastive estimation: A new estima-

tion principle for unnormalized statistical models, in: Conference on Arti-

ficial Intelligence and Statistics, 2010, pp. 297–304.580

[25] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, D. Larlus, Hard

negative mixing for contrastive learning, in: Advances in Neural Informa-

tion Processing Systems, Vol. 33, 2020.

[26] M. Wu, M. Mosse, C. Zhuang, D. Yamins, N. Goodman, Conditional Neg-

ative Sampling for Contrastive Learning of Visual Representations, arXiv585

e-prints (2020) arXiv:2010.02037arXiv:2010.02037.

[27] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,

C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al., Bootstrap

your own latent-a new approach to self-supervised learning, in: Advances

in Neural Information Processing Systems, Vol. 33, 2020.590

[28] X. Chen, K. He, Exploring Simple Siamese Representation Learning, arXiv

e-prints (2020) arXiv:2011.10566arXiv:2011.10566.

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2006.05582
http://arxiv.org/abs/2006.05582
http://arxiv.org/abs/2010.02037
http://arxiv.org/abs/2011.10566

