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  Abstract— We propose a method to estimate the amplitude of 

an unexpected power loss which, leveraging on a calibration, 

enables the real-time monitoring of a network link. It is based on 

an existing fiber-longitudinal power profile evaluation technique. 

The reliability of the method is assessed experimentally. When the 

anomaly is located at 0 km from the beginning of the span, the 

estimation bias is smaller than 0.2 dB for losses up to 10 dB. When 

the anomaly is located at 25 km from the beginning of the span, 

the same estimation bias is observed but for losses up to 5 dB. In 

both cases, the standard deviation of the estimation is smaller than 

0.2 dB. 

I. INTRODUCTION 

ptical communication systems were designed with large 

static margins to always ensure the target performance 

without any external intervention. Since system monitoring was 

limited or even non-existent, margins were considered to cover 

for inaccuracies of the optical system parameters and time-

varying network conditions [1]. Recently, elastic monitoring-

enabled networks promise to squeeze down margins and adapt 

the transmission to the network conditions.  

To meet this expectation, affordable and reliable monitors 

were developed. Regarding the optical fiber parameters 

estimation, low-cost and accurate methods were proposed for 

characterizing the chromatic dispersion [2] or the non-linear 

parameter [3]. Moreover, to describe the time-varying network 

conditions, a polarization state monitoring method was 

proposed in [4]. In [5], it has been shown that the power 

attenuation uncertainty has a significant impact on the system 

characterization. Therefore, accurately estimating power losses 

–which may come from abnormal splicing, excessing connector 

loss, intrusion, or tapping– enables us to make the best possible 

decision in terms of operational cost or outage avoidance. 

Decisions may include repairment, rerouting (as in [4]), or a 

transmission parameters adjustment.  

At the present day, one solution to estimate the location and 

the value of a power loss is the use of an optical time-domain 

reflectometer (OTDR) in adjacent bands. Although this 

technique is quite accurate, it often requires human intervention 

since it is rarely available at optical nodes because of its cost. 

For this reason, novel techniques able to estimate the 

longitudinal power profile by employing coherent receiver 

samples have been proposed in [6] and [7]. Their approach 

requires a dispersion-unmanaged optical link but does not need 
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any additional hardware or propagation of adjacent signals. 

Both techniques enable the localization of power losses in 

multi-span links through an anomaly indicator (AI) function. 

While they both show a link between the value of the inserted 

loss and the AI, they do not focus on the loss estimation 

problem and on the possible accuracy of the estimation. This 

latter feature could eventually be accomplished by measuring 

the loss from the in-line optical amplifiers' inputs and outputs 

and by feeding it back to the transponders. Nevertheless, the 

acquisition and the distribution of these data would be rather 

expensive and should be avoided. 

In this letter, based on the longitudinal power profile 

estimation technique developed in [6], we propose a 

calibration-based method to estimate the value of a power loss 

due to anomalies. The calibration is done at each span amplifier 

and enables the real-time monitoring of an optical link. We 

experimentally evaluate the accuracy of the loss amplitude 

estimation for a three-100km-span link.  

The paper is organized as follows: in Section II, the 

experimental set-up is described. In Section III, the proposed 

method to estimate the loss location 𝑧0 and the value of the loss 

𝑙dB -related to the transmission factor 𝑇0- is introduced. In 

Section IV, experimental results are provided, showing the 

relevance of our method.  

II. EXPERIMENTAL SET-UP 

Fig. 1 depicts the experimental set-up. We consider a 300 km 

fiber link composed of three 100 km spans of single- mode fiber 

(SMF). Thirty 32 GBd dual-polarization (DP) quadrature 

phase-shift keying (QPSK) channels are used. The attenuation 

constant of the fibers is equal to 𝛼dB = 0.206 dB/km. The total 

cumulated chromatic dispersion of the link is 5100 ps/nm. The 

channel under test (CUT) is digitally pre-distorted with a 

cumulated chromatic dispersion (CD) of 3000 ps/nm. The 

launch power at every span is 5 dBm for the CUT and 0 dBm 

for each adjacent channel. Losses are inserted through variable 

optical attenuators (VOA) and are placed at three different 

locations: i) at 0 km, ii) at 25 km, or iii) at 50 km into the second 

span. The inserted losses may vary from 1.6 dB to 9.9 dB. The 

proposed method is based on samples acquired from the four 

real-valued outputs of the coherent receiver sampling at a rate 

of 200 GSamples/s.  
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III.  PROPOSED METHOD  

Before introducing our method for estimating the loss 

amplitude, we briefly remind the estimation technique for the 

longitudinal power profiles described in [6]. This technique 

relies on the non-commutative relationship between the 

chromatic dispersion (CD) and the nonlinear self-phase 

modulation (SPM) along a fiber link of length L. Such a power 

profile, denoted by 𝑅(𝑧) where 𝑧 is the propagation distance, is 

computed as the normalized correlation between the 

magnitudes of two signals noted 𝑦1 and 𝑦2(𝑧). The first signal 

𝑦1 is the reconstructed transmitted waveform (from the decoded 

bits). The second signal 𝑦2(𝑧) is obtained in several steps. First, 

polarizations are demultiplexed. Second, the CD corresponding 

to a distance 𝐿 − 𝑧 is compensated and a phase rotation of 𝜖 is 

performed to compensate for SPM effects partially. As in [6], 𝜖 

is set to 0.01. Finally, the CD corresponding to the remaining 

distance 𝑧 is compensated. In practice, we compute each 𝑅(𝑧) 

independently for each 𝑧. The granularity 𝛥𝑧 =  𝐿/𝑁, which 
depends on the number of points 𝑁 of the profile, can be tuned. 

It is set to 𝛥𝑧 =1 km in this letter.  

Our proposed method to estimate the value of a loss is 

summarized in the bottom part of Fig. 1. We first need a 

reference configuration that provides the reference power 

profile denoted by 𝑅ref(𝑧). Then, during a second phase, we 

periodically monitor the power profile denoted by 𝑅mon(𝑧). For 

example, one reference profile and two monitoring profiles –

each with a different inserted power loss at 125 km– are plotted 

in Fig. 1, in the “power profile estimator” box. Finally, we 

compute the so-called anomaly indicator (AI) defined as [6]:  

𝐴𝐼(z) =  𝑅ref(𝑧) − 𝑅mon(𝑧).  (1) 

When a loss occurs, the 𝐴𝐼 function does not vanish and allows 

us to estimate its location 𝑧0 and its amplitude 𝑙dB. This latter 

quantity can be determined by finding and inverting the 

transmission factor 𝑇0 through 𝑙dB = −10 log10(𝑇0). In the 

coming paragraphs, we go through the details for determining 

𝑇0. 

At the present form, 𝑅(𝑧) is a normalized correlation and 

therefore, to evaluate 𝑇0, we propose to correlate 𝑅(𝑧) to the 

power. We suggest an affine relationship between 𝑅𝑖(𝑧) and the 

optical power in the link 𝑃𝑖(𝑧) as follows: 

𝑅𝑖(𝑧) = 𝐶 ∙ 𝑃𝑖(𝑧) + 𝜃𝑖 ,  (2) 

where 𝑖 ∈ {ref, mon}, 𝐶 > 0 is a proportionality factor and 𝜃𝑖 

is an offset factor. We assume that 𝐶 is independent of the 

configuration, i.e., reference or monitoring, for a given link and 

given transmission parameters. The offset 𝜃𝑖  depends on the 

total accumulated noise. Since some noise contributions (ASE, 

SPM and cross-phase modulation XPM effects) depend on the 

configuration, so does 𝜃𝑖. Consequently, injecting (2) into (1) 

leads to: 

𝐴𝐼(𝑧) = 𝐶 ∙ (𝑃ref(𝑧) − 𝑃mon(𝑧)) + Δ𝜃,  (3) 

with Δ𝜃 = 𝜃ref − 𝜃mon. Let 𝑘 be the index of the span in which 

the anomaly occurs and 𝑧(𝑘) the beginning of this span. If this 

loss is located at 𝑧0, the power 𝑃mon(𝑧) at a given point 𝑧 > 𝑧0 

and up to 𝑧(𝑘+1), is multiplied by a transmission factor 𝑇0 < 1. 

At 𝑧(𝑘+1), we assume the amplifier compensates for the total 

losses of the previous span. Hence, we can express 𝑃mon(𝑧) as: 

 

𝑃mon (𝑧) =  {

𝑃ref(𝑧), 0 ≤ 𝑧 < 𝑧0

𝑇0 ∙ 𝑃ref(𝑧), 𝑧0 ≤ 𝑧 < 𝑧(𝑘+1)

𝑃ref(𝑧), 𝑧(𝑘+1) ≤ 𝑧 < 𝐿.

  (4) 

Combining (3) and (4) implies that:  

𝐴𝐼(𝑧)

= {

Δθ, 0 ≤ 𝑧 < 𝑧0

𝐶 ∙ (1 − 𝑇0) ∙ 𝑃ref(𝑧) + Δ𝜃, 𝑧0 ≤ 𝑧 < 𝑧(𝑘+1)

Δ𝜃, 𝑧(𝑘+1) ≤ 𝑧 < 𝐿.

  
(5) 

As Δ𝜃 depend on several parameters, including 𝑇0 as shown in 

Fig. 1, we will focus our analysis directly on the peak amplitude 

𝐴peak of the 𝐴𝐼 function given by: 

𝐴peak(𝑧0, 𝑇0) = max
0<𝑧<𝐿

(𝐴𝐼(𝑧)) −  Δ𝜃

= 𝐶 ∙ (1 − 𝑇0) ∙ 𝑃ref(𝑧0) 

(6) 

From (6), we can see that 𝐴peak is directly proportional to the 

loss factor (1 − 𝑇0). 

To obtain 𝑇0 from 𝐴peak, we need to determine 𝐶  and 𝑃ref(𝑧0). 

To determine the latter coefficient, we propose to rely on the 

following attenuation model:  

𝑃ref(𝑧0) = 𝑃ref(𝑧(𝑘)) ∙ 10−𝛼dB∙
𝑧0−𝑧(𝑘)

10  
(7) 

where 𝛼dB is the fiber attenuation constant in dB/km. Injecting 

(7) into (6), we finally obtain: 

 
Fig. 1.  Experimental set-up and proposed method scheme. CUT: channel under test, Mux: multiplexer, WSS: wavelength selective switching, EDFA: 

erbium-doped fiber amplifier, VOA: variable optical attenuator, SMF: single-mode fiber. 
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𝐴peak(𝑧0, 𝑇0) = 

𝐶 ∙ (1 − 𝑇0) ∙ 𝑃ref(𝑧(𝑘)) ∙ 10−𝛼dB∙
𝑧0−𝑧(𝑘)

10  

(8) 

To evaluate 𝐶 ∙ 𝑃ref(𝑧(𝑘)), we will perform a calibration step. 

This calibration is done by modifying the output power of the 

amplifier at the beginning of the 𝑘𝑡ℎ span. This modification 

can be seen as a loss factor (1 − 𝑇0) applied at 𝑧0 = 𝑧(𝑘) in (8). 

Thus, we can extract the slope value 𝐶 ∙ 𝑃ref(𝑧(𝑘)) thanks to a 

linear regression. This calibration step also allows for the 

determination of the position of the beginning of the span of 

interest 𝑧(𝑘). 
To further use our calibration value and finally access to the 

value of losses anywhere along the fiber, according to (8), we 

need to estimate the loss position with respect to the amplifier 

location 𝑧0 − 𝑧(𝑘). According to [6], those two positions are 

given by the position of the maximum of the rising slope of the 

peak, i.e., the maximum of the derivative of the 𝐴𝐼. Since we 

only need to determine the loss position with respect to the 

amplifier location, it is sufficient and possible to take the 

relative position of the maximum of the two 𝐴𝐼 peaks, one given 

by the calibration and the other during the monitoring stage. 

In the following, we confirm through experiments that 

(5) and (8) hold. According to the experimental set-up 

described in Section II, the measured 𝐴𝐼𝑠 versus the 

propagation distance 𝑧 for different loss factors (expressed in 

dB) and loss locations, are plotted in Fig. 2a. We choose to 

remove Δ𝜃 from each of the 𝐴𝐼 to enable us to easily compare 

the curves. In addition, (5) is plotted for each loss location and 

their considered maximum loss value. As in [6], we remark that 

the loss location is closer to the maximum rising slope than the 

peak location. We also observe that the peak amplitude is an 

increasing function of the loss, as expected with (5). However, 

the peak amplitude for a given loss is a decreasing function of 

the loss location as expected with (8). There is thus a fair 

agreement between (5) and the experimental measurements. 

Note that the 𝐴𝐼 are not equal to a constant in the third span, 

compared to (5), due to the significant width of the peaks. 

In Fig. 2b, we plot the peak amplitude versus (1 − 𝑇0) for 

different loss locations. Based on 20 trials, 3𝜎-error bars are 

added, and two linear regressions are drawn. We observe that 

the linear regressions confirm the 𝑇0-dependence of (8). A 

calibration factor of 2.51 is determined from the slope of the 

100km case. The slope determined at 125 km is 0.73, not far 

from 2.51 ∙ 10−𝛼dB∙
25 km

10 = 0.77, confirming the relevance of 

the attenuation model. Consequently, (8) applies and we 

confirm that the AI metric and its peak are suitable choices for 

estimating our parameters of interest.  

Nevertheless, since 𝐴peak decreases exponentially with 𝑧0, 

the peak may be harder to detect and estimate if the loss is far 

away from the amplifier (see the 150-km case in Fig. 2a).  

IV. EXPERIMENTAL PERFORMANCE 

Here, we assess the experimental performance of the 

proposed method. To compute 𝐴𝐼, we need an estimate of the 

power profiles. Each power profile (the reference and the 

monitoring ones) is obtained by averaging 𝑁p elementary 

power profiles. The correlations involved in each elementary 

profile are estimated using a sequence of 𝑁s samples where the 

sampling rate is twice the symbol rate. Here, 𝑁s = 2048. In (6), 

Δ𝜃 is replaced with a rough estimate given by 𝐴𝐼(𝐿). In Fig. 3a, 

we plot the standard deviation of the estimated 𝑙dB versus 𝑁p 

for different values 𝑙dB of inserted losses located at 125 km. 

Each standard deviation is computed thanks to 20 trials, i.e., 20 

estimated �̂�0. It highly decreases with 𝑁p until reaching an 

asymptote above 𝑁p = 20000. Depending on the accuracy 

needed, by the alarm threshold for instance, the value of 𝑁p can 

be adapted accordingly. Notice that Fig. 2a and Fig. 2b have 

been plotted with 𝑁p = 20000 and 𝑁p = 3000 respectively. 𝑁p = 

3000 has been chosen in Fig. 2b to see the error bars.  

In Figs. 3b-i and ii, we plot the estimated losses 𝑙dB versus the 

inserted losses 𝑙dB with 3𝜎-error bars at 100 and 125 km, 

respectively. The mean value corresponds to the circle point, 

and each bar has been obtained thanks to 30 estimated losses 

𝑙dB. The estimation is very accurate when the loss is located at 

the output of the amplifier for all inserted losses. For losses 

located at 125 km, the estimation bias is smaller than 0.2 dB, as 

well as the standard deviation, for inserted losses up to 5 dB. 

For higher inserted losses, both the estimation bias and the 

standard deviation are larger. This is mainly due to localization 

 
Fig. 2.  Experimental results. a) Anomaly indicators minus 𝛥𝜃 versus the propagation distance in km for different values of loss located at three different 

locations b) Values of AI peak amplitude versus the loss factor (1 − 𝑇0). 
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errors. Indeed, by also plotting 𝑙𝑑𝐵 –with squares– and its 3𝜎-

error bars when the location is known, we observe that the bias 

is reduced and the standard deviations are smaller than when 

the location is unknown and estimated with the 𝐴𝐼 peak 

positions. This remaining bias is mostly due to the difference 

between the calculated slope at 125 km from the calibration 

factor and the actual slope given by the linear regression, a 

difference which was mentioned at the end of Section III. 

To generalize our experimental results and more particularly 

the calibration to other set-ups, we perform a set of simulations 

to see the impact of the symbol rate. All simulation parameters 

except the symbol rate are identical to the ones described in 

Section II. For simplicity, we consider a single-channel field. In 

Fig. 4, we plot the normalized peak amplitude versus (1 − 𝑇0) 

for various symbol rates but constant power with 𝑧0 = 𝑧(2), i.e., 

the loss located at the beginning of the second span. By 

normalized peak amplitude, we mean 𝐴peak divided by the 

value of 𝐶 ∙ 𝑃ref(𝑧(2)) computed for the 32 GBd case. Once 

again, we remark that the peak amplitude is proportional to 

(1 − 𝑇0) validating (8). However, the slopes are different, 

which implies that the calibration factor is different for each 

symbol rate. Hence, if multiple symbol rates are to be used, a 

look-up table is required to profile all transmission modes.  

V. CONCLUSION AND PERSPECTIVES 

We proposed a simple method for monitoring a link by 

estimating the value of an unexpected power loss. We showed 

with experiments that the method offered an accurate estimate. 

Consequently, we advocate its use for real-time monitoring in 

WDM systems. The performance should indeed not be much 

dependent on the wavelength in the C-band as well as on the 

number of channels since we are mainly exploiting the intra-

channel effects.  However, when the loss is close to the end of 

the span, because of small peak amplitudes, new algorithms 

should be developed to exhibit an accurate estimate from 𝐴𝐼.  
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Fig. 4.  Simulations results. AI peak amplitudes for different symbol 

rates for a loss located at 100 km. 
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Fig. 3.  Experiments. a) Standard deviation of the estimated loss. b) Estimated versus inserted loss at i) 100 and ii) 125 km. Dashed line : inserted loss. 

Markers: estimation. 
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