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Abstract—

This paper proposes an extended coded caching scheme based
on piggyback coding for single-server multi-user networks with
decentralized caching. The proposed scheme is obtained by
adapting Polar codes and extending the original coded caching
scheme, which is based on index coding and a data assignment
that can be implemented via minimum graph-colouring. Polar
codes are adapted so that users can apply parts of their cache
contents as the frozen bits for Polar decoding, and the coded
caching is adapted so as to account for different user coding
rates and to combine transmissions to cache-aided and cache-free
users. Numerical simulations prove that our piggyback-coding
based scheme achieves higher rates than previous schemes also in
the finite block-length regime. Finally, real testbed measurements
are presented, which validate the practical implementation.

I. INTRODUCTION

Placing contents in cache memories during periods of low
network congestions is a powerful tool to reduce network
load during peak-traffic times. The fundamental works [1],
[2], see also [3]-[15], showed that smart placement and coded
multicasting strategies allow to further decrease the network
load by a multiplicative factor. These works modeled the
communication link from the server to the users as a noise-
free shared link. Subsequently, [16], [17] showed that further
reductions in network load are possible in asymmetric or
fading scenarios, see also [18]-[29]. Specifically, [16], [17]
proposed a new coding scheme, termed piggyback coding,
which exploits the noisy nature of the channel through a
joint design of the multicast transmissions and channel coding,
and proved that the piggyback coding achieves higher reliable
communication rates in an information-theoretic framework
where the blocklength tends to infinity.

The goal of this paper is three-fold: 1) Present an extended
coded caching scheme based on the piggyback coding schemes
in [16], [17], [19] for the single-server multi-user broadcast
network; 2) Provide a prototype implementation of the pro-
posed scheme based on Polar codes and show through nu-
merical simulations that it improves performance over classic
coded caching schemes also in the finite blocklength regime;
and 3) Validate the proposed implementation on a practical
testbed.
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We consider a setup with a single server, which stores
an entire library of N files, and K users, each wishing to
download one of these files. Some of the users (but not
necessarily all) are equipped with cache memories where they
can prefetch some of the contents in the library. We consider
a decentralized caching scenario where each cache-aided user
randomly prefetches information from the library to its cache
memory, irrespective of the contents prefetched by other users.
During this cache prefetching phase, also called placement
phase, the users have not yet chosen which specific file they
wish to download from the library. The cache-prefetching
should thus follow a universal algorithm as in [1]. Following
this placement phase, all users select one of the files for
download, and the server will deliver the missing information
(the information that was not placed in their cache memories)
during the subsequent delivery phase. In this article, we model
the network during the delivery phase either as a Gaussian or
a frequency-selective fading broadcast channel.

The coded-caching delivery scheme in [1], [2] proposed
that the server successively multicasts the XOR of contents
for different groups of users. Each user that is served by this
multicast transmission can recover its desired contents if it
has stored all other XORed contents in its cache memory.
Piggyback coding combines this idea with channel coding,
so as to allow different users in each group to be served at
their corresponding capacities. Furthermore, piggyback coding
allows to add contents to cache-free users to the various
multicast transmissions. We explain the principle of piggyback
coding directly on the Polar-codes implementation proposed in
this paper. For each Polar codeword, the server XORs contents
for a specific group of cache-aided users, where it zero-padds
the contents to the various users to the same length if required.
Then, it appends further contents for cache-free users to this
XORed bit string, and feeds the concatenated string to a Polar
encoder. In this last encoding step it is important that the
first bits of the string (the XOR-bits) are mapped to the most
reliable bits of the Polar code and the latter to less reliable bits.
A cache-free user simply decodes all the information bits from
the Polar code, and should thus have good channel conditions,
unless the XORed string is short. A cache-aided user should be
able to retrieve the bits intended for the cache-free users and
the high-order bits of the XOR string from its cache memory
and use them as “frozen bits” in a standard Polar decoding
algorithm, e.g., [30], [31], so as to be able to decode the part
of the XOR string containing its intended contents. Finally, it
also uses its cache contents to retrieve its intended contents
from the truncated XOR bits as in coded caching. In this sense,
in our piggyback coding implementation the cache contents



not only allow the users to cancel interference in the XORs,
but by serving as frozen bits the cache contents also allow the
users to decrease their decoding error probabilities.

A particularity of our piggyback-coding usage of Polar
codes is that different users are served by information bits
of different reliabilities. In fact, the most reliable bits of the
Polar codes are dedicated to the transmission of XORs, and
thus to the transmission of information to cache-aided users.
Cache-free users are typically served in positions with lower
reliabilities. In an information-theoretic setting this distinction
is not relevant because the probability of error tends to 0 on
all the Polar code information bits. Our numerical simulation
results show that also in the finite block-length regime studied
in this paper, cache-free users are served at similar bit-error
rates (BER) as if they were cache-aided users. This indicates
that the Polar code crystallizes sufficiently fast so that the
various information-bits have similar BERs and our piggyback
coding does not significantly penalize cache-free users by
serving them only on information bits with lower reliabilities.

Both the original coded-caching delivery scheme, as well
as the extended piggyback coding schemes require a careful
assignment of the various contents to the different multicast
transmissions. The optimal assignment for coded-caching de-
livery can be phrased as an Index Coding problem [32] and
solved by applying a minimum graph colouring algorithm to
a conflict graph that represents the contents that have to be
delivered [33]. (Each colour indicates a group of contents
that should be sent in a single multicast transmission.) Since
minimum graph-colouring is known to be NP-hard, [34]-
[36] proposed polynomial-time algorithms to obtain graph
colourings yielding large throughputs. Finding the assignment
for our piggyback coding delivery is even more complicated
because different users should be served at different rates and
because contents for cache-free users also have to be assigned.
In this paper, we solve this problem by iterative applications of
the Greedy Randomized Adaptive Search Procedure (GRASP)
for graph colouring in [34] to varying conflict graphs, which
allows to account for different rates at the various users. In a
second step, a maximum bipartite matching algorithm is used
to assign contents of cache-free users to the multicast groups
obtained in the first step.

We conclude the introduction with a list of the main
contributions of this article:

1) A practical scheme based on the piggyback coding idea
in [17]-[19] is proposed under decentralized caching.
The implementation is based on Polar codes [30] and
an extended data assignment algorithm. Polar codes offer
a natural tool to implement piggyback coding schemes
through smart selection of the frozen bits during the
users decoding steps. The data assignment is extended
to account for different rates at the various users and to
include also contents intended for cache-free users.

2) An implementation prototype of the proposed Polar pig-
gyback coding scheme is presented, and through numer-
ical simulations an improved throughput of our imple-
mentation in the finite block-length regime is shown for
Gaussian and frequency-selective fading channels. The
gains compared to the classical coded caching scheme

prove the utility of piggyback coding also for finite
blocklengths. Previous works [17]-[19], [21] had focused
on the asymptotic infinite blocklength regime. The gains
of our practical implementation compared to a system
without piggyback coding nor coded caching prove the
effectiveness of the proposed scheme. In particular, they
show that the proposed extended data assignment algo-
rithm efficiently assigns contents to both cache-aided and
cache-free users.

3) The practical implementation of the overall cache-aided
Polar coding scheme is validated with real test-bed
measurements on FIT/CorteXlab [37]. The present paper
thus significantly extends and improves over the previous
testbed implementation in [38], which implemented the
original coded caching scheme using the GRASP mini-
mum graph-colouring algorithm. In our implementation
we are able to serve cache-aided users at different rates
and can also include transmissions to cache-free users.

II. DETAILED MODEL DESCRIPTION

Consider a communication network with a single server and
users 1,..., K. The server has access to a library of N files:
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where each file consists of I’ independent and identically
distributed (i.i.d.) bits. The popularity of a file is defined
as the probability to be requested by a user k, i.e. user k
requests the file W,, with probability p,,. This popularity p,, is
computed according to a Zipf-distribution [39] with parameter
s as follows
1w

ey ke
Consequently, the popularity of W,, is a decreasing sequence.

Users are divided into two categories: i) users equipped with
a cache memory, where parts of files can be prefetched, and ii)
users without cache memories. Without loss of generality, we
can assume that users in Keyene := {1,..., Ko} have a cache
memory, for some given positive integer Ky > 0, and users
in Knocache := {Ko+1,..., K} don’t.

Communication takes place in two phases as explained next.

Pn 2

A. Decentralized Placement Phase

During the the placement phase, each cache-aided user
k € Kcuche downloads bits from the server according to a
common randomized policy. Specifically, each file is split into
Nehunks chunks of equal size Fink, and each cache-aided
user independently and randomly downloads chunks from the
various files in a way that it totally caches a fraction o € (0,1)
of the entire library (i.e., /N F' bits in total) and the number
of bits cached from file n is proportional to its file popularity
prn. This caching policy is achieved, if each cache-aided user
k € Keacne stores a fraction' ap, N of the chunks associated

INote that ap,, N has to be less than 1. If not, we replace its value by
1. When s = 0 (uniform distribution), p, = 1/N for any n leading to
appnN =a < 1.



with file W, in its cache memory Zj, which results in a total
cache size per user

N N
Z apn N Nehunks Fenunk = N Z pnF=aNF. (3)
n=1 T n=1

=1

B. Delivery Phase over a Wireless Channel

In the subsequent delivery phase, each user k makes a
demand d € {1,...,N} and sends it to the server and
all other receivers. This communication roughly consumes
2K log,(N) bits, which can be neglected when log, (N) < F.
This assumption is satisfied, for instance, in a video delivery
system containing only the most popular files.

The task of the server is to send a signal so that each user
can reconstruct its demanded file from the received delivery
signal and its local cache content Zj. The delivery system is
illustrated in Figure 1 and explained in detail in the following.

1) Fading Channel and Modulation System: Communica-
tion during the delivery phase takes place over a noisy broad-
cast channel from the server to the K users. For our numerical
simulations we either assume a Gaussian broadcast channel
or a frequency-selective fading channel. In the following we
describe the modulation system based on a fading channel.
For the Gaussian channel, the system is similar.

Communication takes place around the central frequency
fo and for a given baseband input signal z(-), the baseband
output signal at user k is:

L
Yi(t) = > anm)a(t — mom) + Bi(t), teR, (4
m=1

where

o L stands for the number of transmission paths (which is
assumed finite at all times and for all users);

e Tim corresponds to the delay of the m-th path for
user k. The delays are assumed to be fixed over the
communication duration.

e ap,m(t) corresponds to the random amplitude of the m-th
path for user k at time ¢. The exact model used in our
simulations is detailed in Section VI-B.

e Bi(t) is an additive circularly-symmetric zero-mean
white Gaussian noise process.

The baseband input signal z(-) corresponds to the output of
an OFDM modulator with N, subcarriers and a cyclic prefix
of length N.,. More precisely, the server has a bit stream c
produced by the proposed encoder (see Figure 1). This stream
is then QPSK-modulated and passed to the OFDM modulator.
The length of each OFDM symbol is given by 7' = (N, +
Nep)Ts where Ty is the sample period.

At the receiver-side, any user k passes its baseband receive
signal Yy (t) through low-pass filter, sampler with sampling
period T, and OFDM demodulator. Parameters N, and N,

are chosen® such that for each subcarrier f € {1,...,N.}

2we consider that NepT's smaller than the dispersion time of the channel
given in Eq. (4), and 7" much smaller than the coherence time of the channel.
Consequently, the amplitude ay, ., (t) remains unchanged during the duration
of a single OFDM symbol.

and OFDM symbol j = 1,2,..., the relation between the
corresponding QPSK symbol z(f, j) and output g (f,j) can
be written as

gk(fm]):hk(fa])x(f:j)+bk(faj)a , (5)

where b (f, ) is a memoryless Gaussian noise and h(f, j)
stands for an appropriate channel coefficient.

The stream y (see Figure 1) consists of log-likelihood
ratios (LLR) constructed from {gx(f,7): f=1,...,N,, j =
1,2,...} with respect to the QPSK mapping.

2) Encoding and Decoding: The server constructs the input
signal bit-stream c in function of all messages W7, ..., Wy,
the users’ demands d;,...,dx and their cache contents
Zi,...,Zk,- In the simplest case, the bit-stream c is obtained
by applying a traditional channel encoder to the bits of the
demanded file Wy, that are not cached at user k, for any user
k € K. In this article (Sections III and V) we propose a new
design of this encoder (and the decoder).

The LLR-stream y is passed to a decoder, which uses also
its cache-content Zj to reconstruct its demanded message
W, . In the simplest case, this decoder applies a traditional
channel soft decoder to y and then recover all the missing bits
of its demanded message W, from the decoded message. In
Sections III and V, we propose a more sophisticated decoding
algorithm that also uses the cache-contents to improve the
performance of standard Polar decoders.

i=1,2,...

III. DELIVERY SCHEME: MAIN STRUCTURE AND
EXAMPLE

A. General Structure

For each user & let W denote the set of the chunks of file
Wa, that are not cached at this user k. All the chunks of W
have to be sent to this user during the delivery phase.

The general two-stage structure of the delivery encoding
is illustrated in Figure 2 for the case of K = 4 users and
transmission taking place over 4 blocklengths of a given Polar
code. In a first step, called Data Assignment, the server assigns
for each user k all the bits of Wék to the various transmission
blocks b = 1,2,.... In this step, the chunks can be split into
subchunks that are possibly assigned to different blocks. In
a second step, called Channel Coding, the server combines
the various bits assigned to a given block b in a sophisticated
way and sends the obtained strings using a Polar code during
transmission block b. An example is given in Subsection III-B.
The following Sections IV-V are devoted to our choices of the
data-assignment procedure and the channel coding procedure.

As we will see, both procedures take into account the cache
contents at the users. Moreover, for the overall system to
perform well, the data-assignment procedure also has to adapt
to the decoding capabilities (i.e., the channel conditions) of
the various users. More specifically, the data-assignment is
performed in a way that:

« any (sub)chunk sent to a cache-aided user in a given block
has a rate below the capacity to this user and is stored at
all other cache-aided users served during this block;

« the (sub)chunks sent to cache-free users in a given block
are stored at all cache-aided users served in the same
block;
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Fig. 2: General structure of the delivery encoding. A Data Assignment procedure assigns the non-cached data into the various
transmission blocks. (4 blocks in the example.) A Channel Coding procedure encodes the data for a given block into an

independent (Polar)codeword that is sent over the channel.

o the sum-rate to all cache-free users plus the maximum
rate to a cache-aided user is below the capacity of any
cache-free user.

In the following subsection, we provide an illustrative

example for the two procedures.

B. An Example

Consider a setup with four users K = 4, where users 1—
3 have cache memories but user 4 does not, i.e., Keache =
{1,2,3} and Kyocache = {4}. The example is designed for a
network where users 1 and 2 have capacity at least 1/2, user
3 has capacity at least 1/6, and user 4 capacity at least 2/3.

For ease of exposition, we assume that each file consists
of Newnk = 3 chunks only. The channel coding that we

describe shortly is based on a Polar code of blocklength n that
equals twice the size of a chunk, i.e., n = 2Fyynk, and thus
each chunk is of rate 1/2 with respect to this blocklength.
We further simplify notation by naming the chunks of the
requested files as:

Wa, = (a,6,0);  Wa, = (b,,); (©6)

Wy, = (¢,¢,¢); Wy, = (e, €,é). @)
For the purpose of the example, chunks ¢ and e are divided
into 3 subchunks ¢ = (¢1,c2,c¢3), and e = (e, ea,e3) each
consisting of Fipunk/3 bits.

Assume that after the placement phase as described in
Subsection II-A, Users 1-3 have the following cache contents:

Zl = (fL,b,C, 6) (8)

[«
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Zs = (a,

b,b,c,e,é) ©)
Zs = (a,a,b, ¢

,C,e,6) (10)

(We are not showing cache contents pertaining to files that are
not requested during the delivery phase.) The four users thus
have to learn the following (sub)chunks during the delivery
phase

W, = (a,a) (11a)
W, =b (11b)
st (c1,¢2,c3) (11¢)
Wy, = (e1,e2,€3,€,€). (11d)

Data Assignment:
The missing (sub)chunks in (11) are assigned to the channel
coding blocks in the following way:

1) subchunks (a,b,cq,e;) are assigned to block 1, which
will serve the group of users G() = {1,2,3,4};

2) subchunks (@, ¢z, e2) are assigned to block 2, which will
serve the group of users G(2) = {1,3,4};

3) subchunks (cs,é€) are assigned to block 3, which will
serve the group of users G(3) = {3 4};

4) subchunks (e3,€) are assigned to block 4, which will
serve the group of users G(*) = {4}.

Notice that in each block b:

o Each (sub)chunk intended for a given cache-aided user in
g (®) is stored in the cache memories of all other cache-
aided users of G,

o Each (sub)chunk intended for a cache-free user (here
always user 4) is stored in the cache memories of all
cache-aided users of G(®).

e The cache-aided users 1, 2, 3 are served at data rates
r1 = 1/2, ro = 1/2, and r3 = 1/6, respectively, if they
are in G

o The data rate to the cache-free user 4 is ril) = rf) =

1/6 during the first two blocks, r(?’) = 1/2 during block
(4)

3, and r; ' = 2/3 during the last block 4. In general it
is chosen as r(b) =r — r(b) where
4 - max cache,max?
Tmax = 2/3 (12)
rc(sc)he max -= Max Tg. (13)
’ kegh)

cache

(Le. rcac)he max denotes the largest data-rate of all cache-

aided users served in block b.)
The channel codings that we describe in the following enable
reliable communication if users 1 and 2 can reliably decode
at rates 7y = ro = 1/2, user 3 at rate r3 = 1/6, and the
cache-free user 4 at rate ry,.x = 2/3.

Channel encoding in block 1 (Fig. 3):

The server first appends n(rmax — 1), 7(Fmax — 72), and
n(TmaX*Tg) zeros at the end of the three chunks a, b, ¢1, and it
appends nrgc)he max = 1/2 zeros at the beginning of subchunk
e1, SO as to make them all of same length. Then it takes the
componentwise XOR of the four resulting nrmax = 2n/3-

length packets M, 74, Me, , M, to form

mW = g, ® My B Mme, S e, . (14)

[TIeT TTTT ] ma
® _
CLIFTTT T ] m
o _
d TTTTTT]T me
LITTTTTIef] me,
= CEEETETTT ™ = m, & me
most least SMme, D Me,
reliable reliable
bits bits

Fig. 3: Creation of “information bits” for the Polar encoder

used in block 1.

The encoder applies a standard blocklength-n Polar encoder
[30] to the information bits m(Y), where it ensures that these
bits are mapped to the information bits of the Polar code in
decreasing order of reliability. The codeword produced by the
Polar code is transmitted over the channel in block 1.

Channel decoding in block 1 (Figs. 4-6):

Let y(l), yé ), y(l), yfl) denote the output vectors of the

OFDM modulators at the four receivers corresponding to the
first block.

We explain how the users in G recover their desired
chunks from these vectors. User 1 retrieves (sub)chunks b, cq,

—> - [T]
—> L[]
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—> L || @ - @
—>| Polar L
y§1) 1 Codes : -
| Decoder =
— | —
— l—| 0]
1 e
- 19| ( frozen
— <+—1{0] bits
—> 4—2

Fig. 4: Decoding procedure at the cache-aided User 1.

and ey from its cache memory to form the n(1 — r1)-length
frozen-bit vector

fr=er[[[0---0],

where || stands for string concatenation and [0 - - - 0] is an all-
zero vector of length n(rﬁﬂx —r4). It applies the standard Polar
decoding algorithm with the frozen bit vector f; to the outputs
yg ), where it ensures again that these frozen bits are used in
decreasing reliability order. If the Polar decoder succeeds, it

produces the string
= (1)

mcache, 1+

5)

= [ma ® my D mc]nm» (16)

where the operator [z], returns the first ¢ bits of the bit-
string x. In this case, user 1 can obtain the desired chunk
a = [Ma]nr, by forming

a=m (1) @[

cache, 1

]nrl @[mc]nrl- (17)

=b



User 2 proceeds in an entirely analog way, where it simply
exchanges the roles of the chunks a and b and uses its outputs
y2 instead of y;.

—> -
—> L [T] @ - H “
—> 4—_
—> l—] |
— Polar [+
y<1> — Codes [}
3 — le—
) Decoder [ 1+ »
— «—]0]
— «— 0 frozen
—» le—] 0 bits
= [0

Fig. 5: Decoding procedure at the cache-aided User 3.

User 3 retrieves (sub)chunks a, b, and e; from its cache
memory, creates the n(1 — r3)-length frozen-bit vector

fa=as®by | az @bz |l e ] [0---0], (18)

and applies the Polar decoding algorithm with this frozen bit
vector f3 to the received vector yél). If the Polar decoder
succeeds, it produces

= (1)

Meache,3 = @1 &b &, (19)

and user 3 can decode its desired subchunk c; by forming

€1 = Mighe.s ® a1 @ by (20)

The cache-free user 4 applies the Polar decoder to yfll) with
the standard all-zero frozen bit vector of length n(1 —rpax) =
1/3n. If successful, the Polar decoder returns the XORed
sequence m@), and user 4 can obtain its desired chunk el
by retrieving the appropriate bits:

= [m™
Sl L @b
— (1]
— =
— >
— |
™ Polar :: —
(1 =™ 3 -

Vi ) IC)Jode;s1 [ .
_,| Decoder | | i— 1
—p] le—| ()
— le—| 0 frozen
— l«—| 0] bits
—> <—E

Fig. 6: Example of the decoding procedure at the cache-free
User 4.

Channel encoding and decodings in block 2 (Fig. 7):

The encoder appends n(rmax — 1) and n(rmax — 73) Zeros
at the end of the two (sub)chunks a and cs, and it appends

n'réfc)he max = T/2 zeros at the beginning of subchunk es.
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Fig. 7: Creation of “information bits” for the Polar encoder
used in block 2.

Then it takes the componentwise XOR of the three resulting
NTmax-length strings mg, Me,, Me,:

M2 = g ® Mey ® Me,. (22)

Finally, the server applies a standard blocklength-n Polar
encoder to the information bits m(?), where it ensures that
these bits are mapped to the information bits of the Polar code
in decreasing order of reliability (Z-parameter).

Decoding is similar to block 1, but where the users consider
the block-2 outputs y§2), yz(f), yf), chunk a is replaced by
a, subchunks c¢; and e; by co and es, and chunk b and the
corresponding zero-padded string my are ignored.

Channel encoding and decodings in block 3 (Fig. 8):

The encoder directly forms the nrpya,-length bit string 773

20 i R

most least
reliable reliable
bits bits

Fig. 8: Creation of “information bits” for the Polar encoder
used in block 3.

by appending € after cs:

m®) = [es || €. (23)

It applies a standard blocklength-n Polar encoder to the
information bits (%), where it respects the decreasing order
of reliability.

To decode, User 3 applies a standard Polar decoder to its
block-3 outputs y§3) using the n(1—r3) = 5n/6-length frozen
bit vector

fs=ell[0---0]. (24)

If successful, the Polar decoder directly returns cs.

User 4 applies the Polar decoder to yf) with the standard
all-zero frozen bit vector of length n(1 — ryax) = n/3. If
successful, the Polar decoder returns (3, and user 4 obtains
its desired chunk € by retrieving the appropriate bits:

e = [m(3)] (3) (25)

(nrcache ,max

+1)mry”

Channel encoding and decodings in block 4 (Fig. 9):
The encoder directly forms the n7yayx-length bit string 774
by appending é after es:

m® = [es || €. (26)
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Fig. 9: Creation of “information bits” for the Polar encoder
used in block 4.

It applies a standard blocklength-n Polar encoder to the
information bits /(4.

User 4 applies the Polar decoder to yf) with the standard
all-zero frozen bit vector of length n(1 — rmax) = n/3. If
successful, the Polar decoder returns es and é.

IV. DATA ASSIGNMENT PROCEDURES

Recall that the data assignment procedure assigns all the bits
of the non-cached message bits {W) }rex into the various
transmission blocks b =1,2,.. ..

In this paper we propose a data assignment procedure
consisting of two subprocedures. A first procedure partitions
all subchunks intended to cache-aided users into groups,
where all subchunks within a group will be transmitted during
the same block. The second procedure assigns each subchunk
intended to cache-free users to one of the groups established in
the first procedure. We describe the details of both procedures
in the following two subsections.

It is assumed that the server has an estimate of the data
rates at which the various users can decode and that a code
of blocklength n is used for transmission over the channel.

A. Step 1: Assignment of (Sub)Chunks for Cache-Aided
Users—Minimum Graph Colouring on Conflict Graphs

Similar to [33]-[36], the relevant information about the
various cache contents is captured in a conflict graph. The
conflict graph however has to be adapted to account for the
fact that users will be served at different rates. We describe two
procedures, a stronger procedure with higher implementation
complexity and a weaker procedure that is simpler. The two
procedures are also explained in form of pseudo codes in
Algorithms 3 and 4. Both procedures rely on the Greedy
Randomized Adaptive Search Procedure (GRASP) for graph
colouring introduced in [34] as well as on a Conflict graph
construction. For completeness, these preliminary steps are re-
called in the pseudo codes of Algorithms 1 and 2, respectively.

1) More complex procedure: For each cache-aided user
k € Keache, the server splits each chunk of W(;k into (%“:k]
subchunks, each one consisting of no more than nry, bits, and
constructs a conflict graph based on these subchunks. Specif-
ically, it assigns a vertex to each subchunk of {W} }rex .
and labels this vertex by a pair (I,k), where k indicates
the intended user and [ the number of the subchunk within
W, . Two vertices (,k) and (I,k) are connected in the
conflict graph unless the I-th subchunk of W(Qk is cached
at user k and the [-th subchunk of Wé;; is cached at user
k. After constructing the conflict graph, the server runs a
minimum graph colouring algorithm such as the GRASP-
algorithm proposed in [34] on the subchunk conflict-graph.
All subchunks with the same colour are assigned to the same
transmission block b=1,2,....

Algorithm 1: GRASP Graph Colouring Procedure from
[34].

Result: GRASP Graph Colouring of vertices VV with
respect to edge set £ and randomization
parameter 5 € [0,1] with Maxz! Iterations

Initialize C* = (;

for 1 =1,...,MaxI do

Initialize colouring C = (J;

V=V;

for £=1,...,|V| do

Set dpin and dpax to smallest and largest degrees
in V;

Randomly pick a vertex v with degree at least
dmin + B(dmax - dmin);

if 3 colour c of C that is not assigned to any
neighbor of v then
‘ Add ? to C with colour c;

else

Add 7 to C with a new colour ¢’;

Remove v from f/;

end

end
end
for all colours c of C do

for v € C of colour ¢ do
If possible, assign a different colour ¢ # ¢ of C to

v;

end

if |C| < |C*| then
‘ C*—=¢C;

end

end
Return C*;

Algorithm 2: Conflict_Graph())

Result: Construction of Conflict Graph £ on a set of
chunks or subchunks V

Initialize edge set of V to & = {);

for (v,9) €V xV do

v = (la k)’

o= (I, k);

if [-th (sub)chunk of Wﬁ’lk is not in Z; OR I-th
(sub)chunk of Wé% is not in Z;, then
| Edge £(v,7)= true;

end

end
Return &;




(c2,3) (c3,3)

Fig. 10: Illustration of the subchunk conflict-graph with a min-
imum graph colouring for the example in Section III-B. This
conflict graph/graph colouring is used in the more complex
procedure.

The subchunk conflict graph of the example in Section I1I-B
and a possible minimum colouring are shown in Figure 10,
where for simplicity, subchunks are labeled with letters
a,a,b,cy,co,c3 as introduced in Section III-B. (Correspon-
dence with the notation in above text is obtained by noting
that ¢ and a are chunks of file I/Vc'l1 and are thus denoted
(1,1),(2,1) in the text; b is a chunk of file W} and thus is
denoted (1,2) in the text; and ¢1, ¢a, c3 are subchunks of file
W}, and thus denoted (1,3),(2,3),(3,3) in the text.) As we
see, (sub)chunks a, b, c; are assigned to the same colour and
will thus be sent in the same subblock, (sub)chunks a and c»
have the same colour and will be sent in the same block, and
subchunk c3 has a colour on its own and will be sent in a
separate third block.

For large file sizes I and small rates 7, the set {W} }
consists of many subchunks. In this case, the complexity of the
proposed graph colouring procedure can be prohibitively large.
In fact, the GRASP graph colouring algorithm of [34] has
complexity O(|Vyup|?), for Vg denoting the set of subchunks.
The size of this set grows proportionally with the number
of chunks (and thus with the file size F') and inversely
proportional with the rates {ry }rex

cache *

Algorithm 3: More Complex Data-Assignment for Cache-
Aided Users
Result: Assignment of all bits of {W} }rex
b=1,2,...,

to blocks

cache

Initialize vertex set Vyp = 0;
for k € Keache do
Split each chunk of Wék into V;%“kﬂ disjoint
subchunks with at most Fipunx bits;
For each subchunk add a vertex v = (I, k) to Vp,
where [ is a unique subchunk identifier;
end
Esup =Conflict_Graph(Vyp);
Csub =GRASP_Graph_Colouring(Vyyp, Esup) 3
To each transmission block b = 1,2, ... assign all
subchunks (vertices) of Cy, of a given colour c;

2) Simpler procedure: In the following, we explain a sim-
pler (generally less efficient) way to assign the subchunks
to the various transmission blocks. The idea is to create the
conflict graph as in [33]. Le., a node of the conflict graph is

(a,1)
(a,1)

O ®

(¢;3)

First-Round { Second-Round; Third-Round
Graph Colouring Graph Colouring Graph Colouring

e O e

Fig. 11: Ilustration of the chunk conflict-graph with an
iterative minimum graph colouring for the example in Sec-
tion III-B. This conflict graph/graph colouring is used in the
simpler procedure.

associated to an entire chunk and is labeled by (I, k), where k
denotes the intended cache-aided user and [ the number of the
chunk within W . As before, two vertices (I, k) and (I', k')
are connected in this graph unless the [-th chunk of Wék is
cached at user k¥’ and the I’-th chunk of Wé;c is cached at user
k.

In this simplified procedure, the server assigns the sub-
chunks to the various transmission blocks in an iterative way.
In each round, it constructs a conflict graph containing the
remaining chunks, and if the conflict graph has changed from
the previous iteration, the server applies a minimum graph-
colouring algorithm on the chunk conflict-graph, and otherwise
it uses the same graph colouring as in the previous iteration.
Then, it retrieves for each node (I, k) in the conflict graph
the next subchunk of size nry bits, and assigns all subchunks
of the same colour to the same transmission block. It further
eliminates all chunks from the graph, for which all subchunks
have already been assigned and starts the next round.

Figure 11 shows the simplified procedure (the conflict
graphs and a minimum graph colouring for each round) for
the example in Section III-B. In round 1 the server retrieves
the entire chunks @ and b, because users 1 and 2 are served
at rates 11 = 7o = 1/2 and in the example Fipyx = n/2,
and it retrieves subchunk c; because user 3 is served at rate
rs = 1/6, which corresponds to a single sub-chunk. The server
then assigns a, b, ¢ to transmission block 1 because they have
the same colour, and it assigns @ to the second transmission
block, because it has a different colour. In round 2, the server
retrieves subchunk c¢; (and in round 3 it retrieves subchunk
¢3), because r3 = 1/6, and assigns it to the next transmission
block. In this simpler procedure we use 4 colours and thus 4
transmission blocks, compared to only 3 for the more complex
procedure. So the reduced complexity of the simpler procedure
can come at the expense of reduced performance.

Irrespective of which of the two procedures is used, the
server assigns the subchunks to the transmission blocks in a
way that each subchunk transmitted in a given block is stored
at all users served in this block except, of course, the user to
which it is intended.



Algorithm 4: Simpler Data-Assignment for Cache-Aided
Users
Result: Assignment of all bits of {W} }rex
b=1,2,...,

to blocks

cache

Initialize vertex sets Vehunk = Vehunk = 0
for k € Keache do
For each chunk of W add a vertex v = (j, k) to
Vehunk, Where j is a unique chunk-identifier;
end
Echunk = Conflict_Graph(Venunk );
b=1;
while Ve nonempty do
if Vchunk 7& f)chunk then
Cehunk =GRASP_Graph_Colouring(Vehunk , Echunk);
end

Vehunk = Vehunks
for colours c =1,2,... of Cechunk do

for v = (4,k) € Cenunx of colour ¢ do
Assign the first nry bits of the j-th chunk of

W, to transmission block b;

Remove the assigned bits from the j-th chunk
of W ;

if j-th chunk of W} is empty then
| Remove v = (j, k) from Vepunk

end

end
b—>b+1;

end

end

.
=N
=]
o

==

First-Round
Bipartite Matching

Second-Round
Bipartite Matching
Fig. 12: Tllustration of the iterated bipartite graph and a
maximum bipartite matching for the example in Section III-B.

B. Step 2: Assignment of (Sub)Chunks for Cache-Free Users—
Maximum Matching on Bipartite Graph

We describe how to assign the subchunks intended for the
cache-free users to the various transmission blocks, or rather
to the groups (colours) formed in the previous subsection. We
summarize this assignment in Algorithm 5. At first, the server
constructs a bi-partite graph that on the left-hand side (LHS)
contains for each block b = 1,2,..., Byax,cache @ Node with
all subchunks {(I, kcache) : Kcache € gc(fjghe} that we assigned to
block b in the previous Section IV-A, and on the right-hand
side (RHS) it contains a node for each chunk of {W} }rex

nocache

(i.e., each chunk intended for a cache-free user). There is an
edge between a node on the LHS {(I, kcache) : Kcache € gc(fjc)he}
and a node (I,k) on the RHS if, and only if, @/l users
Kcache € gffc)he have stored the [-th chunk of Wc,tk in their cache
memories. (So here the edges are constructed in a different
way than in the conflict graph.)

Consider again an iterative procedure, where in each round
the server runs a maximum bipartite matching algorithm on
this graph. For each edge in the resulting matching, which
connects on the LHS a group of chunks {(/, kcache): Kcache €
gc(fghe} and on the RHS a single chunk (I, k), k € Kuocaches
the server retrieves a subchunk of size nry bits (if possible)
from chunk (/, k) and it assigns this subchunk to the same
transmission block b. It then retrieves the freshly assigned
bits from the chunk on the RHS, and retrieves the chunk all-
together from the graph if it is empty. Moreover, the group of
chunks on the LHS of the edge is also removed.? After having
treated all the edges of the bipartite matching, the procedure is
restarted in a next iteration, now using the modified bipartite
graph. The iteration stops when the bipartite graph is empty,
or when it only contains nodes on one of the two sides. In the
latter case, remaining nodes on the RHS (if any) are grouped
to transmission blocks in a way that the total number of bits
sent in each new block b = B ax cache + 1, - . . does not exceed
nry, for any user k € Kyocache served in this block.

Figure 12 shows the procedure for our example of Subsec-
tion III-B, assuming that the complex procedure is used in Step
1. In the first round, the bipartite matching connects chunk e
to the group {a,b,c;}. Since user 4 is meant to decode at
rate Tmax = 2/3 and users 1 and 2 at rates v = ro = 1/2
(user 3 at a smaller rate 1/6), a subchunk e; of size n/6 is
assigned to the same transmission block as the group (a, b, ¢1).
Moreover, the group (a, b, ¢1) is retrieved from the graph, but
not chunk e. The matching in this first round also connects
chunk € to subchunk {c3}. Since user 4 is of rate 2/3 and
subchunk c3 of rate 1/6, the entire chunk é, which is of rate
1/2, is assigned to the same transmission block as c3. Both
(sub)chunks c¢; and e are removed from the graph for the next
round. In the second round, the bipartite matching connects
the group {a,ca} to e, and the server thus assigns subchunk
ez which is of rate 1/6 (because a is of rate 1/2 and user
4 is meant to decode 7y = 2/3) to the same transmission
block as the group {a, co}. Both end points of the edge can be
removed from the graph for the next round. In the third round,
the graph thus consists only of two chunks e (actually only
the subchunk ez associated with e¢) and é from the RHS. As
their sizes are compatible, these (sub)chunks are concatenated
and assigned to one new transmission block.

V. CHANNEL CODING IN A SINGLE BLOCK—THE
GENERAL SCHEME

In the preceding Section IV, we explained how the vari-
ous subchunks of files {W } are assigned to the different
transmission blocks. In this section, we explain the channel

3 An improved algorithm could be envisioned where bits to multiple cache-
free users can be assigned to the same block. For simplicity we refrain from
using this generalization.



Algorithm 5: Data-Assignment for Cache-Free Users.

Result: Assignment of all bits of {W }rex o tO
blocks b =1,2,... assuming Bpax cache 1S the
number of blocks assigned in Algorithms 3 or 4
and gc(fjghe contains all users with bits assigned to

block b.

Set Ve = {17 cee 7Bmax,cache};
Initialize vertex set Viign = 0;
for k£ € Kiocache dO
For each chunk of W add a vertex v = (j, k) to
Vright, Where j is a unique chunk identifier;
end
Initialize edge set £ = 0);
for b € Vieri, v = (I, k) € Viigne do
if [-th chunk of W(Qk is in all cache memories of

users gc(fghe then

| E(b,v) = true

end

end

while Vier # 0 and Viigne # 0 do

Find maximum matching EviaxMaiching Of bipartite
graph (Vieg, Vright, €):

for all edges in e € EmaxMatching dO

Let b, the left-vertex of e and v, = (I, k) the
right-vertex;

if [-th chunk of W} contains more than nry, bits

then
Assign next nry, bits of I-th chunk of W} to
block b.;
Remove the assigned bits from [-th chunk of
Wy s
else
Assign all bits of I-th chunk of W to block
be;
Remove node v, = (I, k) from Vigni;
end
Remove node b, from Vieg;
end
end

if Vright #+ (0 then
Assign the remaining bits to new blocks

b= Bmax,cache + 1, RN

end

As we will see, transmission in this block is reliable if each
cache-aided user k € Geuehe can reliably decode at rate 7, and
each cache-free user k € Guocache can decode at rate ..
Denote by y user k’s output observed in this block.
Encoding: For any cache-aided user k € G.yene, the encoder
appends n(rmax —7Tk) zeros at the end of bit-string my, to form
the n-length bitstring my, and combines all these strings to

Meache = @ my.

k€Geache

(29)

It further constructs the bit-string Mpecache DY concatenating
all bits of strings {m: k € Gnocache } and appends N7 cache, max
zeros at the beginning of the string:

| M

nocache, 1 || || k’nocache, | Gnocache |

Mnocache = [0 R 0]
N——
NTcache, max Symbols
(30)
where for ease of notation we denote the users of Gnocache
by Enocache, 15 - - - 5 Fnocache, |Grocaere| - 1NE €Ncoder then feeds the
NTmax-length bit-string

€29

M = Mcache D Mnocache)

to a standard blocklength-n Polar encoder, for which it ensures
that the Polar code assigns the n bits of m to the information
bits and the frozen bits of the Polar code in decreasing order
of reliability (Z-parameter). It finally transmits this codeword
over the channel.

- RN bitg
— > Coded
— = Pol »| Caching [—>
=" olar
> »| Decod
Ye [ »| Code > ceoder
— > Decoder A
— | § Frozen
- > ] .
o > < Dbits
L > “calculator
Cache
Memory | Zj

Fig. 13: Example of the delivery decoding for a single block
at a cache-aided user iy.

Decoding at cache-aided user k € Gepcne (Fig. 13):

encoding and decoding in a given block b = 1,2, .. .. For ease
of notation we shall drop the subscript b indicating the block.

We simply assume that the data assignment procedure in
the previous section associates with the current block the sets
of cache-aided users Geache € Keache and cache-free users
Gnocache € Knocache and for each & € G := Geache U Gnocache
a bit-string my, of length r;n bits. Define

Tcache,max = IMaX T (27)
kegcachc
and in case Gyocache 1S NONEMpty
Tmax ‘= Tcache,max T § Tk (28)

k€ Gnocache

User k € Geane retrieves the bit-strings {m;: j €
Geache \{k}} and {m;: j € Gnocache } from its cache memory,
forms the zero-padded or concatenated strings {m;: j €
Geache \{k}} and Myocache as described above to compute

mdec,k’ = @ mj @ Mnocache - (32)
jegcache\{k}
It divides this nrpyax-length bit-string as
Cp = [ﬁldec,k]nr;c (33)
fk: = [mdeC,k](nrk+1):nrn]ax7 (34)

and applies the standard Polar decoding algorithm with the
n(l — ry)-length frozen-bit vector fi||[0---0] to its output



vector yi, where it ensures that the bits are used in decreasing
reliability order. If the Polar decoder succeeds, it produces the
nr-length bit-string [Mcache|nr, and user k can retrieve its
desired bits my, = [Mg]nr, by forming:

my = [mcache]nrk, @D c. (35)

| > —

| | » Polar — My
v [T—>] Code '

| | » Decoder 0 )

o > 0 frozen

- > 0 bits

| | 0

[ — 0

Fig. 14: Example of the delivery decoding for a single block
at a user kpocache Without cache.

Decoding at cache-free user k € Geache (Fig. 14): Each
cache-free user k € Ghocache applies a standard Polar decoder
with an all-zero frozen bit vector f; of length n(1 — ryax)
to its outputs yg. If successful, the Polar decoder returns
the XORed sequence m in (31). User k can then obtain
the desired message my by retrieving the appropriate bits
from m. Specifically, when k is the i-th user in Gyocache, 1-€-,
k = knocache,i» User k obtains my, as

my = [m]n(rcnchc,maerZ;;ll Tk +1):m(reache, max+ Dby Tk

nocache, j

noczc%e g)

VI. NUMERICAL RESULTS

This section presents the bit-error rates (BER) and the
sum-throughputs of our proposed scheme obtained through
computer simulation and a testbed implementation. In our
computer simulations we compare the performance of our
proposed scheme also to previous schemes.

This section is organized into three subsections: Subsection
VI-A, explains the common setup for both the computer
simulations and the testbed implementation; Subsection VI-B
presents the simulation results; and Subsection VI-C the
testbed measurements.

A. Practical Setup

1) Physical Layer Model: A QPSK-OFDM modulation is
used with 64 carriers (48 data carriers, 4 pilot carriers, and 12
null carriers) and a cyclic prefix of length 16. A bandwidth
of 1 MHz is considered, and thus the OFDM symbol duration
is T'= 80 ws. All physical layer parameters are presented in
Table I.

2) Codeword and Frame Model: We use Polar codes of
blocklength n = 2048. Since we employ a QPSK modulation,
any codeword requires 1024 channel uses. Moreover, since
only 48 subcarriers of each OFDM symbol are used to transmit
codeword symbols, any codeword is spread over [1024/48] =
22 OFDM symbols.

)

Bandwidth (MHz) B=1
Sampling Period (us) Ts =1
Number of carriers per OFDM symbol N, =64
Number of data carriers per OFDM symbol 48
Length of cyclic prefix per OFDM symbol Nep = 16
OFDM symbol duration (us) T =280

TABLE I: Parameters of the physical layer.

Any frame contains a single codeword and in the testbed
implementation also various headers, where these latter con-
tain information for channel decoding (e.g., number of XORs,
chunks involved in the XOR, etc), synchronization, and chan-
nel estimation. We denote by Nj, the overhead in OFDM
symbols for each frame due to headers. In our numerical
simulations we simply assume Nj, = 0. For the testbed mea-
surements we will have a variable-length N, which depends
on the number of users served by the codeword; in our testbed
implementation it is mostly N;, = 24. We conclude that since
each OFDM symbol spans 80 channel uses, a frame spans in
total 80(22+ N},) channel uses. The headers that we use in our
testbed measurements are shown in Figs. 23 and 24 at the end
of the paper and discussed in more details in Section VI-C.
They are based on the implementation of the simpler coded
caching scheme in [38] and could be reduced in size. For
the parameters used in this paper (X = 5 users, 22 OFDM
symbols per codeword, and N;, ~ 24), the header reduces
the throughput approximately by a factor 2. The throughput
loss would be even larger for increasing number of users
or increasing number of (sub)chunks. (For K = 32 users,
which is the typical number of active users scheduled in a
4G cell, and all rates either r,;, = 1/6 or integer multiples
thereof, N}, would be around 30 and the header would reduce
the rate approximately by a factor 2/5.) Notice that any
sort of coded caching scheme encounters the problem of a
increased header size. Coded caching however also allows
to reduce the number of transmitted packets, and thus the
number of headers, which can partly mitigate this degradation,
see [38] for more information. Further improvements can be
obtained with the coded caching schemes proposed in [40]-
[42], which operate using fewer chunks (i.e., having smaller
subpacketization levels).

The data assignment and channel coding are done according
to the procedures described in Sections III-IV, where for the
data assignment we use the simplified procedure.

3) Figures of Merit: Two figures of merit have been con-
sidered for evaluating the cache-aided coding scheme.

o Per-user BER: The BER; of user k£ is the number of
unsuccessfully transmitted information bits for user k
during the delivery phase (i.e., the number of wrongly-
decoded bits of W at user k) divided by the total
number of information bits transmitted to user k during
the delivery phase:

#wrongly-decoded bits of W

BER), :=
g #bits of W),

(37



o Sum-Throughput: The sum-throughput 7 is the number
of successfully transmitted information bits to any of the
K users, divided by the total number of channel uses (i.e.,
the number of samples sent by the transmitter during the
entire transmission window). Since we always transmit
entire codewords (plus headers), we have:

2y ##successtully-decoded bits of Wy,

= . (38
TR0 (22 + N},) - #transmitted codewords (38)

4) Coding Schemes: We compare our proposed coding
scheme (which allows XORing strings of different sizes
and appends (sub)chunks to cache-free users) to three other
schemes:

e Uncoded caching: Users are successively served through
individual transmissions. No multicast is performed. (No-
tice that because of the chosen normalizations the same
BER and throughput curves also apply to a standard
transmission scheme without caching.)

e Coded caching [2]: All XORed strings are of same length
as in [2], and thus the rate of the XOR needs to be
adjusted to the weakest cache-aided user served by the
XOR. Chunks for cache-free users are sent in separate
codewords.

o Generalized coded caching [19]: XORed strings can be
of different lengths. Chunks for cache-free users are sent
in separate codewords.

In our simulations of the coded caching scheme, we use
the implementation of [38] combined with simple Polar code
transmissions of the multicast messages to the cache-aided
users. Cache-free users are scheduled in separate transmis-
sion blocks where they are served in a traditional manner
using Polar codes. The generalized coded caching scheme is
implemented using the data assignment and channel coding
procedures described in Sections III-IV but without cache-
free users. Cache-free users are again served using separate
standard Polar codes.

The same placement procedure is used for all the schemes.

B. Simulation Results

In our simulations we emulate a frequency-selective channel
as described in Eq. (4). where the delays and path attenuations
are given by [43]

ak,m(t) = Ak7m . SOSkﬂn(.]')7

te((G—-1)-T,5-T], (39)

with {|Ag m|*}.m the power delay profile of user k. As T is
the OFDM symbol duration, the path attenuation may change
every OFDM symbol through the term So0Sg ,,,(j) which is
obtained by

S0Sk,m(j) = SOS{I(j) +i.-SoS{™ (j)  (40)

with

SoSR (5) =

k,m
L

1 & ) 2l — w4+ Ok m (J)
N ;:; cos (Qﬂ'fdjT cos ( 1L, + Okm.e

(41a)
and
S08};.(/) =
L
1 & 2l — O.m (J
N ;COS (QWfdjT sin ( il 721;:5 kom () + 1/Jk,m,e> )
(41b)
Here, 0, (j) is the random walk process defined as:
Or,m (7)) = [Or,m (G — 1) 4+ 0 - wpem ()] ,
j=12,..., (42)

where wuy ,,,(j) is uniformly distributed over [0,7) and in-
dependent over OFDM symbols j = 1,2,..., paths m =
1,...,L, and users k; 65, (0) is uniformly distributed over
[—7, 7); and the operator [-]™ stands for max(—m, min(-, 7)).
Notice that the sign of ¢ is modified when 6, ,,, reaches the
value 7 or —7. The terms ¢y, ,,, ¢ and vy, ,,, ¢ are iid processes
uniformly distributed over [—7, 7). The parameters in Egs.
(41)—(42) are chosen according to Table II. Notice that the
Doppler frequency corresponds to walking speed.

Number of paths L=3
Delay Profile (us) Vk, 7,1 =0, Tp 2 =2, T3 =4
Power Delay Profile Vk, |Ag1]?=0.5, |Ag 2]?=0.3,
Ay 3/2=02
Number of sin. L;=238
Central Frequency (GHz) fo=24
Doppler frequency (Hz) fa =40
) 106

TABLE II: Parameters of the channel model.

According to [43], the correlation in time within one path
is given by E[S0Sy ,,(j)S0Sk.m(j + 7)*] = Jo(2mfaj'T)
where J; is the zero-order Bessel function of the first kind. If
we define the coherence time of the channel, denoted by T,
as the closest zero of the autocorrelation function, we get

T, ~ ﬁ

27 fa
According to Tables. I-II, we get 7. = 9,549us which
is equivalent to 119 OFDM symbols. The channel is thus
constant over one OFDM symbol as required. Diversity is
only ensured through frequency diversity because any given
codeword experiences only one channel realization.

In our numerical simulations, all users are assumed to have
perfect channel state information. As mentioned, we neglect
the headers, and thus set NV, = 0. We consider a system with
N = 20 files and K = 5 users.

We average our simulation results over 500 realizations
of the random user demands dj,...,dx drawn according
to a Zipf-distributed file popularity (see Section II) and 200
realizations of the random channel outcome. The parameter of
the Zipf distribution is set to s = 1 unless otherwise stated,
which corresponds to a non-uniform distribution. The caching



parameter is set to o = 0.1. In our setup, we have ap, N <1
for all files n = 1,..., N, and as a result each cache-aided
user stores a fraction ap, N of all chunks of file W,, in its
cache memory, for each n = 1,..., N. The size of each file
is F' = 66 528 bits. Each file consists of Ncpux = 33 chunks
and each chunk corresponds to Finynx = 2016 bits, which is
almost the size of a single codeword.

We study the two user configurations (cache availability,
SNR offset, and data rate) presented in Tables III and IV.

Users 1 2 3 4 5
SNR offset 0 dB 2 dB 2 dB 5 dB 7 dB
Cache-aided yes no

Data rate rL = % ‘ T2 = % ‘ T3 = % ‘ T4 = % Tmax = %

TABLE III: Configuration 1 with a single cache-free user.

Users 1 2 3 4 5
SNR offset 0 dB 2 dB 5 dB 6dB | 8 dB
Cache-aided yes no

Data rate ry = % ‘ ro = % ‘ r3 = % Pmax = %

TABLE IV: Configuration 2 with two cache-free users.

Let us first consider a memoryless Gaussian channel. In
Figure 15, we plot the per-user BER over a Gaussian channel
versus the per-user SNR for different caching schemes under
Configuration 1, where only User 5 has no cache memory.
User 3’s performances are not plotted since they are very close
to those of User 2, as the two have same SNR offsets and
same coding rates ro = r3. We remark that the per-user BER
is almost regardless of the applied scheme, and the SNR shifts
roughly correspond to the pre-defined SNR offsets. Since in
our proposed scheme the subchunks for user 5 are mostly
sent on less reliable bits of the Polar codes (they are mostly
appended after the XORs) than for the other schemes, this
implies that the Polar code is well “polarized” in the sense
that all reliable bits have approximately same probabilities of
error. Similar behaviors can be observed for Configuration 2.
Figures 16 and 17 show the sum-throughput n in function
of the SNR at the weakest user 1 for the various schemes,
under Configurations 1 and 2, respectively. We remark a 10%
increase in throughput of the proposed scheme compared to
a scheme with only uncoded caching. We further observe
that the gain is progressively achieved by introducing coded
caching, XORing strings of different rates, and appending
communications to cache-free users on the multi-cast XORs
for cache-aided users. The last feature of our proposed scheme
seems to provide the largest gains in these examples. This is
more visible in Configuration 2 where the number of cache-
free users is higher and thus appending their request chunks
to the XORed strings within the same polar codeword is of
greater interest.

We now consider the frequency-selective channel described
previously. In Figure 18, we plot the per-user BER versus the
per-user SNRs for the various schemes and under Configu-
ration 1. (User 3’s BER curve is close to User 2’s curve and
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Fig. 15: Per-user BERs versus the per-user SNRs over a
Gaussian channel under Configuration 1. Solid line: proposed
scheme; dashed line: generalized coded caching; dashdotted
line: coded caching; dotted line: uncoded caching.
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Fig. 16: Sum-throughputs 7 versus SNR at the weakest user
1 over a Gaussian channel under Configuration 1.

omitted.) Like for the Gaussian channel, the BER curves of the
various schemes behave analogously, and the same conclusion
applies as for the Gaussian channel. Figures 19 and 20 show
the sum-throughput 7 in function of the SNR at the weakest
user 1 for the various schemes and under Configurations 1
and 2, respectively. Our proposed scheme achieves again a
significant throughput gain over the coded caching scheme. We
further remark that for large SNR values the same throughput
is achieved as on the Gaussian channel because in this case
most codewords are successfully decoded over both channels.

In Figure 21, we plot the sum-throughput 1 over the
specified frequency-selective channel in function of the Zipf
parameter s for a SNR at the weakest user equal to 8dB (high
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Fig. 17: Sum-throughputs 1 versus SNR at the weakest user
1 over a Gaussian channel under Configuration 2.

101

10~2

10-3

Per-user BER

10~4

107°

Per-user SNR

Fig. 18: Per-user BERs versus per-user SNRs over the
specified frequency-selective channel under Configuration 1.
Solid lines: proposed scheme; dashed lines: generalized coded
caching; dashdotted lines: uncoded caching; dotted lines:
Uncoded caching.

SNR regime) under Configuration 1. We remark that the gap
between caching approaches increases when s decreases, i.e.,
when the popularity of the files becomes more uniform.

C. Testbed Measurements

The proposed scheme of Sections III-IV (with the simplified
conflict graph construction in Section IV) was also tested on
the FIT/CorteXlab testbed (http://www.cortexlab.fr/), which is
composed of SISO or MIMO software defined radio (SDR)
nodes [37]. The testbed is hosted in a 180 m? shielded room,
which is partly covered with electromagnetic wave absorbing
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Fig. 19: Sum-throughputs 7 versus SNR at the weakest user 1

over the specified frequency-selective channel under Configu-
ration 1.
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Fig. 20: Sum-throughputs 7 versus SNR at the weakest user 1
over the specified frequency-selective channel under Configu-
ration 2.

material, and its layout is shown in Fig. 22. User nodes
are placed over a regular grid with an inter-node distance
of 1.8 meters, and allow any physical layer implementation
on both hardware and software. A unified server is available
for starting, coordinating, and collecting the results of the
experiments. As a development tool, the GNU Radio software
is employed for real-time experimentation.

The physical layer of CorteXlab is described in Table I and
is closely related to IEEE802.11p, except for the occupied
bandwidth.

The coefficients {hx(f,7)} in Eq. (5) are not time-varying
since the nodes and the electromagnetic environment are both
static, and thus the channel coefficients {hy(f,j)} do not
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Fig. 22: Testbed room.

depend on j. Echoes are mainly attenuated by the wave-
absorbing walls and can be neglected. The channel is thus
almost flat and the coefficients {h(f, )} do not depend on
f neither. Consequently, the channel between the server and
the user k£ is a static Gaussian channel (AWGN) with an
attenuation factor depending on the server-user distance and
the quality of the hardware at the user node.

The frame related to a single Polar codeword has the
following structure, see also Figure 23. Notice that the framing
structure has not been optimized for our context but follows
the general framework of FIT/CorteXlab and the structure
proposed in [38]. The codeword is split into 5 subpackets, each
of length at most [2048/5] = 410 bits, and an ID prefix of
16 bits is added at the beginning of each subpacket to number
the subpacket. Since the symbols are QPSK-modulated and
each OFDM symbol contains 48 data carriers, each subpacket
including its ID prefix can be sent with [(410+16)/2/48] = 5
OFDM symbols. For synchronization and signaling purposes,
a header consisting of 3 OFDM symbols (2 for synchronization
and 1 for signaling) is added to each subpacket+ID prefix.
At the beginning of the five subpackets+ID prefix+headers

pertaining to the same codeword, an extra header of variable-
length is added, where the first 2 symbols are meant for
synchronization and the rest for signaling. The signaling
header is described in Fig. 24, where compared to the header
in [38] we added a field indicating whether a cache-free user is
served (according to the data assignment procedure in Subsec-
tion IV-B, we serve at most one cache-free user with a single
codeword) and for each served user we indicate the size of its
subchunk as well as the corresponding subchunk ID numbers.
(In our implementation each chunk is cut into portions of
rmin? bits and a different ID is associated to each portion.
These IDs correspond to the subchunk ID numbers.) The
header is variable length because the number of served users
varies over the codewords and because we chose a variable-
length description for the subchunk IDs. (Please see [44] for
more details on the practical implementation of the header.)
In our set-up with K = 5 users and ry,;, = 1/6, the signaling
header of most frames consists of 4 OFDM symbols. Under
this assumption, the frame corresponding to each codeword
consists of 6 + 5(3 + 5) = 46 OFDM symbols. Since the
information in a codeword would fit into[2048/2/48] OFDM
symbols, the overhead related to the headers in a typical frame
is Nj, = 46 — [2048/2/48] = 46 — 22 = 24 symbols.

Synchronization is performed using the well-known
Schmidl& Cox timing and frequency offset estimators [45],
and channel estimation using the Least Square method [46].
Synchronization information in the headers is related to these
algorithms. The signaling information in the extra headers
describes the frame ID, the users served by the packet, the
number and the IDs of the subchunks combined in the XOR,
and the chunks intended for users without cache memories.
The subpacket’s header provides only information about phys-
ical layer parameters used in the corresponding subpacket.

To decrease the probability of packet loss, the transmitter
power-boosts the 6 OFDM symbols of the extra header at the
beginning of each frame by +12dB.

Our testbed implementation uses 6 nodes of the
FIT/CorteXlab testbed as illustrated in Figure 22: 1 represents
the server and the remaining 5 represent users. Among these
5 users, 4 use the hard disk at their nodes as cache memories
(Users 1-4) but the last one doesn’t. Table V indicates the
relative SNR offsets between the five users, whether they have
cache memories, and our choice of the data rates used for
the proposed scheme. Measurements are performed over 10
realizations of the random user demands d,...,d;, where
the parameter of the Zipf distribution is set to s = 1.

Users 1 2 3 4 5
SNR offset 0 dB —1dB | —13dB | —11dB 3 dB
Cache-aided yes no

Data rate ry = % { ro = % { r3 = % { T4 = % Tmax = %

TABLE V: Users configuration in the testbed setup.

In Figure 25, we display the sum-throughput 7 of our
proposed scheme and of the standard coded caching scheme
in function of a transmitter (TX) gain that is artificially
introduced at the transmitter side. We remark that at high TX
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Fig. 24: Tllustration of the entries of the extra signaling header.

gains the sum-throughput is roughly half the sum-throughput
of Figure 16 which has been simulated under the same cache
configuration and the same choice of rates but under different
SNR offsets (see Tables III and V). At high SNR, the effect
of the SNR offsets between the users and of the channel
statistics vanishes because all users can decode with almost
zero probability of error. The rate is simply determined by
the size of the headers (which corresponds roughly to half the
frame in this measurement setup) and the ability of combining
different chunks in the same codewords, which only depends
on the choice of the rates but not on the channels.
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Fig. 25: Sum-throughputs 7 versus TX gain for our proposed
scheme and for the coded caching scheme.

VII. CONCLUDING REMARKS

We have introduced a cache-aided coding scheme for
single-server multi-user networks in a decentralized caching
scenario. The scheme is based on Polar-codes and a novel
data-assignment technique. Its main novelties are to allow
to XOR strings of different sizes according to the capacity
of the cache-aided users and to append data intended to the
cache-free users. These appended data has to be cached at
all other users in a transmission and so can be used as
“frozen bits” in their Polar decodings. The paper further
proposes a new data assignment algorithm for the assignment
of data and users to be served by each Polar codeword.
The new algorithm is based on iterative applications of the
GRASP minimum graph-colouring algorithm, which allows
to account for different coding rates at the various users,
and a bipartite matching algorithm, which allows to combine
also transmissions to cache-free users. Numerical simulations
and real testbed measurements of this practical coded caching
scheme were performed, and showed that our new practical
scheme achieves higher throughputs than the existing schemes
even in the finite block-length regime.
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