
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.0092316

Graph-Assisted Bayesian Node
Classifiers
Hakim Hafidi1,2, (Student Member, IEEE) Philippe Ciblat2, (Senior Member, IEEE) Mounir
Ghogho1, (Fellow, IEEE) Ananthram Swami3, (Fellow, IEEE)
1TICLab, College of Engineering and Architecture, Université Internationale de Rabat, Morocco
2LTCI, Telecom Paris, Institut Polytechnique de Paris, France)
3United States Army Research Laboratory, Adelphi, Maryland, USA

Corresponding author: Hakim Hafidi (e-mail: hakim.hafidi@uir.ac.ma).

ABSTRACT Many datasets can be represented by attributed graphs on which classification methods may
be of interest. The problem of node classification has attracted the attention of scholars due to its wide range
of applications. The problem consists of predicting nodes’ labels based on their intrinsic features, features of
their neighboring nodes and the graph structure. Graph Neural Networks (GNN) have been widely used to
tackle this task. Thanks to the graph structure and the node features, they are able to propagate information
over the graph and aggregate it to improve the classification performance. Their performance is however
sensitive to the graph topology, especially its degree of impurity, a measure of the proportion of connected
nodes belonging to different classes. Here, we propose a new Graph-Assisted Bayesian (GAB) classifier,
which is designed for the problem of node classification. By using the Bayesian theorem, GAB takes into
consideration the degree of impurity of the graph when classifying the nodes. We show that the proposed
classifier is less sensitive to graph impurity, and less complex than GNN-based classifiers.

INDEX TERMS Node classification, Attributed graphs, Degree of Impurity, Bayesian framework

I. INTRODUCTION
Attributed graphs are useful tools for representing interactive
phenomena such as social networks [1], financial market
fluctuations [2], road or air traffic, human scene [3], brain
activity [4], or gene interaction [5]. Graphs are described by
i) a set of nodes associated with the entities (subscribers in
social networks, planes in air traffic, etc.) and ii) a set of edges
connecting them in order to represent their relationships.
Graphs are said to be attributed when nodes and/or edges
have assigned values, called features. While this type of data
is rich for inference, it is not well suited to standard signal
processing or machine learning techniques. The adaptation
of these techniques to graph data has been the subject of
numerous studies that aim to perform graph classification
(e.g., molecules, handwritten characters) [6]–[8], edge pre-
diction (e.g., social network links) [9], node regression or
classification (e.g., citation networks) [10], [11].

This works focuses on node classification, which is one
of the most important tasks of machine learning on graphs.
Its objective is to predict the class (called also label) of
each unlabeled node of the graph by relying on both nodes’
features and nodes’ connections within the graph.

In most real world graphs, connections between nodes are

far from arbitrary. In social networks for instance, people
are more likely to connect with those who share similar
characteristics or areas of interest [12]. A citation network
has connections between articles if one cites another, so links
between articles addressing the same research topic are more
likely than links between those addressing different topics.
[13]. As in social sciences literature, a homophilic graph can
be described as one where similar nodes tend to be connected
to each other [12]. Using this principle, one should make
use of the topology of the graph to determine the class of
a node, rather than relying solely on intrinsic features, as is
commonly done with standard machine learning approaches.

When taking into account the graph topology in a classi-
fier, the first question is: what kind of information to share
over the graph? There are two approaches.

• Label Propagation (LP): only the labels (true or esti-
mated) are propagated through the adjacent nodes in
the graph to make a new decision. Several methods
relying on voting have been developed to merge labels’
information [14]. The labels at the initial step are either
provided or estimated using the node’s features only, i.e.
ignoring the graph.

• Feature propagation (FP): the nodes’ features are propa-

VOLUME 10, 2022 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

gated through the adjacent nodes at each step. Typically,
a weighted averaging of the current features of adjacent
nodes (sometimes followed by a nonlinear function) is
carried out for each node at each step.

In this paper, we focus only on the FP approach. Graph neural
networks (GNN) have recently been developed in order to
adapt Neural Networks to attributed graphs. Typically, at
each layer, they linearly combine the features of adjacent
nodes and then apply an activation function. The training
on labelled nodes consists of finding out the best weights of
each linear combination. In this paper, we propose to derive
in closed-form a classifier relying on (Bayesian) decision
theory. As a result, we obtain an interpretable algorithm
based on some parameters whose estimation step replaces the
training phase of the GNN.

Before we go any further, let us briefly review the works
on FP based on GNN. The most common way has been to
extend the convolutional neural network (CNN) to the graph
structure [15] by redefining the convolution operator on the
graph domain. These CNN-based methods suffer from a high
computational cost due to the necessity of performing an
eigendecomposition of the graph Laplacian. To overcome
this problem, different approaches avoid explicit computation
of this eigendecomposition by using a polynomial expansion
to represent the filters [16], [17]. More specifically, in [17],
the authors consider a first-order polynomial approximation
to build a neural network which they called Graph Convolu-
tional Network (GCN) to do semi-supervised node classifica-
tion. The GCN can also be seen as an aggregation operator,
i.e. the representation of a node is obtained by averaging
its intrinsic features with those of its first-order neighbors.
The authors in [18], [19] respectively introduced Graph At-
tention Network (GAT) and Attention-based Graph Neural
Network (AGNN) where different weights are assigned to
neighbors based on nodes’ and edges’ features. Other re-
searchers explored higher-order (or equivalently, multi-hop)
information of the graph by repeatedly mixing features of
neighbors at various distances [20] or by modifying the prop-
agation strategy of GCN [21]. Although these approaches
have achieved remarkable results on a number of benchmark
datasets, we notice that their performance vary significantly
across datasets. For instance, the gain compared to a simple
logistic regression (i.e. no contribution from the neighbors)
highly depends on the dataset.

We use the following example to explain the underlying
reason for the performance variations over datasets. We de-
fine p̄ as the average probability of intra-class connection
(i.e., the probability that two nodes from the same class
are connected), and q̄ as the average probability of inter-
class connection (i.e., the probability that two nodes from
different classes are connected). The degree of impurity of
the graph may be represented by the ratio q̄/p̄. Datasets with a
degree of impurity less than 1 are called assortative [22] and
correspond to graphs containing communities (nodes with
similar features are connected to each other). In Table 1,
we show the classification accuracies of a logistic regression

classifier and a two-layer GCN for two widely-used datasets
used for benchmarking GNN algorithms. We also display the
estimated values for p̄, q̄ and the degree of impurity q̄/p̄. As

TABLE 1. Intra- and inter-class connection probabilities and classification
accuracies.

Cora Citeseer
Intra-class connectivity (p) 23× 10−3 12× 10−3

Inter-class connectivity (q) 5.5× 10−3 4.3× 10−3

Degree of Impurity (q/p) 0.23 0.36
Logistic Regression (LR) 56.0% 57.2%
Two-layer GCN [17] 81.5% 70.3%
Gain between GCN and LR +45.5% +22.9%

expected, node classification using graph structure is easier
with graphs offering low degree of impurity (like Cora). This
may explain the performance variations over datasets.

In this paper, a different point of view is taken by propos-
ing a Bayesian classifier which does not rely on a neural
network structure and is able to better adapt to the level of
impurity than GNN-based classifiers.

Our approach to tackle the node classification problem
is related to the so-called collective classification [23], [24]
which refers to the classification of a set of connected
nodes by using their intrinsic features and/or labels and their
relative connections. Optimal collective classifications are
carried out by maximizing the joint likelihood. However,
optimal (and so exact) inference is an NP-hard issue in
general, and is thus generally not well suited for the real-
world networks. As a consequence, most collective classifiers
rely on developing approximate inference [23], [25]. Some
recent studies combine methods from collective classification
with neural networks to ensure a better end-to-end learning,
e.g. [26]. However, all the above-mentioned algorithms only
make use of features of first-hop neighbors and thus rely
on a propagation step to make use of higher-hop nodes’
information in an iterative manner. We instead introduce a
new classifier that directly takes into account higher-hop
nodes. This has the additional advantage of being more
interpretable. In our previous work [27], we proposed a first
order version of the Bayesian based classifier which is only
able to take into account first order neighbors. In this paper,
we conduct detailed derivations of the classifier which allow
us to consider higher orders. We also conducted a deeper
comparison between our classifier and GNN based classifiers
in terms of performance and complexity.

Let us define some notations. Let G = (V, E) be an undi-
rected graph where V is a set of nodes and E ⊆ V × V is
a set of edges. Each node u ∈ V is represented by a feature
vector xu ∈ RF×1 where F is the number of node’s features.
An adjacency matrix A ∈ RN×N represents the topological
structure of the graph where N = |V| is the number of nodes
in the graph. Without loss of generality we assume the graph
to be unweighted i.e Au,v = 1 if (u, v) ∈ E and Au,v = 0
otherwise. Let X = [x1,x2, . . . ,xN]⊤. Let yu denote the
label of the u-th node and let K denote the number of classes,
i.e. yu ∈ {1, . . . ,K}.

2 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

FIGURE 1. An illustration of second order GAB for a node of interest u where N1(u) = {1, 2, 3} and N2(u) = {4, 5, 6, 7, 8}. First, we estimate the probability of
belonging to each one of the classes based on nodes’ features D(xu) = (D1(xu), . . . , Dk(xu)) either by training a multi-layer perceptron or by estimating
parameters of the generating distributions of nodes’ features. Then we compute Pu = (Pu(1), . . . , Pu(k)) using R1 as a transition matrix for nodes in N1(u)
and R2 for nodes in N2(u) (See Eq. (14))

The objective of node classification in this paper is to
predict the class of all unlabeled nodes in the graph given
the adjacency matrix A, the feature matrix X and the set of
available labels.

The paper is organized as follows: in Section II, we in-
troduce our new graph-assisted Bayesian classifier (GAB).
In Section III, we compare our approach with GNN-based
classifiers. In particular, we show our classifier has the shape
of a GNN only in the noise-free case (i.e., q = 0) and
under further conditions on the distribution of the features.
In Section IV, complexity issues are discussed. In Section
V, numerical results are provided. Comparison with existing
GNN-based methods are done on real datasets whose degree
of impurity has been modified by injecting artificial noise
(i.e., introducing fictitious edges between classes). We see
that our proposed Bayesian classifier offers better perfor-
mance than GNN-based classifiers. In Section VI, concluding
remarks are drawn.

II. NEW GRAPH-ASSISTED BAYESIAN CLASSIFIER
A. THE CLASSIFIER DERIVATION
In this section, we derive our new GAB classifier based on
Maximum A Posteriori (MAP) principle. We develop this
classifier for a node u, called node of interest in the rest of
the paper. Obviously, in practice, any node in the graph will
be seen as a node of interest in a Round-Robin manner. We
first consider the entire graph and then, in order to simplify
the derivations, we consider only the information provided
by the hop distance between the node and a node of interest.

Let
• Vu be the set of nodes which will be involved in the

classification of node u. Node u is not included in this
set.

• Xu = {xu}∪{xv, v ∈ Vu} be the set of feature vectors
of node u and its “helping” nodes.

• Dk be the distribution generating the feature vectors of
nodes belonging to class k.

We do not assume that theses distributions are known. We
instead either assume a shape for these distributions and then

estimate their parameters, or approximate them using a neural
network. The objective is to compute the posterior probabil-
ity that a node u belongs to class k knowing information on
the graph IG (typically its partial connectivity through the set
Vu), andXu. Consequently, the classifier makes the following
decision

ŷu = argmax
k

Pu(k).

where the posterior probability that needs to be computed is
defined as:

Pu(k) = P (yu = k|Xu, IG).

Using the Bayes’ rule, we obtain

Pu(k) = P (yu = k|Xu, IG)

=
P (Xu|yu = k, IG)P (yu = k|IG)

P (Xu|IG)
∝ P (Xu|yu = k, IG)P (yu = k) (1)

since the denominator does not depend on k and the prior
probability of an individual node u to belong to class k does
not depend on the graph information. The above posterior
probability can be rewritten as

Pu(k) ∝ Qu(k)πk (2)

with {
Qu(k) = P (Xu|yu = k, IG),
πk = P (yu = k).

Let V be the size of the set Vu. Let {v1, · · · , vV } be the
nodes of Vu. In Appendix A, we show that

Qu(k) = Dk(xu)

K∑
kv1

,··· ,kvV
=1

V∏
ℓ=1

Dkvℓ
(xvℓ)

× p(yv1 = kv1 , · · · , yvV = kvV |yu = k, IG).(3)

Eq. (3) cannot be simplified further since the term p(yv1 =
kv1 , · · · , yvV = kvV |yu = k, IG) cannot be split into indi-
vidual posterior probabilities. Indeed according to Example
1 below, one can see that in general p(yv1 = kv1 , · · · , yvV =
kvV |yu = k, IG) ̸=

∏V
ℓ=1 p(yvℓ = kvℓ |yu = k, IG).

VOLUME 10, 2022 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

Example 1: Let us consider the graph G = (V, E), where
V = {A,B,C} and E = {(B,C)}. We set the number of
classes to K = 3. We assume that only nodes belonging to
the same class can be connected. We now compute P (yB =
k, yC = k′|yA = 1, IG) in two different cases.

In the first case, we consider that IG provides only in-
formation on the connections between the pairs (A,B) and
(A,C). Consequently, we only know A is not connected to
B and A is not connected to C. This leads to the following
expression for k ∈ {2, 3}

P (yB = k|yA = 1, IG) = P (yC = k|yA = 1, IG) = 0.5,
(4)

and
P (yB = k, yC = k′|yA = 1, IG) = 0.25 (5)

which is equal to P (yB = k|yA = 1, IG)×P (yC = k′|yA =
1, IG).

In the second case, we consider that IG provides informa-
tion on all possible connections. Once again, for k ∈ {2, 3}

P (yB = k|yA = 1, IG) = P (yC = k|yA = 1, IG) = 0.5.
(6)

But we now have for k ̸= k′ ∈ {2, 3}

P (yB = k, yC = k′|yA = 1, IG) = 0, (7)

which is different from P (yB = k|yA = 1, IG) × P (yC =
k′|yA = 1, IG). □

Consequently, in order to pursue analytical derivations
offering practical algorithms, we make the following simpli-
fying assumption:

p(yv1 = kv1 , · · · , yvV = kvV |yu = k, IG)

=

V∏
ℓ=1

p(yvℓ = kvℓ |yu = k, IG) (8)

which corresponds to assuming statistical independence be-
tween the classes of node u’s neighboring nodes given the
graph. As seen in Example 1, this independence generally
does not hold true, but it is required to pursue closed-form
derivations.

Using Eqs. (3) and (8), we obtain

Qu(k) = Dk(xu)

K∑
kv1

,··· ,kvV
=1

V∏
ℓ=1

Dkvℓ
(xvℓ)

×
V∏

ℓ′=1

p(yvℓ′ = kvℓ′ |yu = k, IG)

= Dk(xu)

K∑
kv1

,··· ,kvV
=1

V∏
ℓ=1

Dkvℓ
(xvℓ)

× p(yvℓ = kvℓ |yu = k, IG)
= Dk(xu)

×
V∏

ℓ=1

(
K∑

k′=1

p(yvℓ
= k′|yu = k, IG)Dk′(xvℓ)

)
.

Finally, we get

Qu(k) = Dk(xu)

V∏
ℓ=1

(
K∑

k′=1

ru,vℓ
(k, k′)Dk′(xvℓ)

)
(9)

with
ru,v(k, k

′) = p(yv = k′|yu = k, IG). (10)

The term ru,v(k, k
′) is the probability to be in class k′ for

node v given that node u is in class k and that we have partial
(or total) information on the graph IG . Notice that the term
ru,v(k, k

′) depends on the graph statistics as we will see in
Eq. (13). In general, deriving a closed-form expression of
ru,v(k, k

′) with respect to the graph statistics is very difficult
due to combinatorial complexity.

Before going further, we make the following remark.
Remark 1 (How to take into account the labelled nodes?):
Some of the nodes in Vu may have already been labeled, so
their classes are known. Eq. (9) should then be adapted to
account for this knowledge. Let us consider that node v1 is
labelled and belongs to class k1. The following term

K∑
k′=1

ru,v1(k, k
′)Dk′(xv1)

should be replaced with

K∑
k′=1

ru,v1(k, k
′)δk′,k1

= ru,v1(k, k1)

where δ is the so-called Kronecker index. Consequently, if
Vu = Lu ∪ Uu with Lu being the set of labelled nodes and
Uu being the set of unlabelled nodes, we have that

Qu(k) = Dk(xu)
∏

v∈Lu

ru,v(k, kv)

×
∏
v∈Uu

(
K∑

k′=1

ru,v(k, k
′)Dk′(xv)

)

where kv is the class of the labelled node v.
As an example, we consider Lu = {v1} and Uu = ∅, and

obtain
Qu(k) = Dk(xu).ru,v1(k, k1),

which is the likelihood function for xu assuming class k, cor-
rected by a term depending on the probability of connection
between class k and that of the labelled neighbor node.

In order to obtain a practical algorithm, IG for each node
of interest, u, will be made to consist of only the distances
between this node and other nodes of the graph, i.e.,

IG = {distance of each node of G to root u}.

Therefore, we order Vu as follows

Vu = N1(u) ∪N2(u) · · · ∪ N∆u(u)

4 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

where Nd(u) is the set of d-hops neighbors of u and ∆u is
the maximum distance from node u; we have that ∆u ≤ V .
Hence, Eq. (9) can be rewritten as

Qu(k) = Dk(xu)

×
∆u∏
d=1

∏
v∈Nd(u)

(
K∑

k′=1

ru,v(k, k
′)Dk′(xv)

)
.

The above expression will be next simplified further.
We recall that ru,v(k, k

′) is equal to p(yv = k′|yu =
k, IG). As IG now merely consists of the distances between
each node and the node of interest, ru,v(k, k

′) no longer
depends on the specific path(s) connecting u to v but only hop
distance, between node v and node u. Moreover we assume
that the probability of connection between two nodes only
depends on the nodes’ classes but not on the specific nodes.
Consequently, ru,v(k, k′) is replaced with r(d)(k, k′).

To control the contributions of neighbors to the computa-
tion of the posterior probability, depending on their distance
to node u, we propose to modify the expression of Qu(k) as
follows

Qu(k) = Dk(xu)

∆u∏
d=1

∏
v∈Nd(u)

(
K∑

k′=1

r(d)(k, k′)γdDk′(xv)

)
.

(11)
where {γd}d=1,··· ,∆u

are hyper-parameters to tune. Simula-
tion results show that hyper-parameter γd decreases with d, as
expected. Setting γd = 1 for all values of d implies that all the
nodes in Vu have the same weights and so contribute equally.
This can be counter-productive especially when the degree of
impurity is high. Indeed, information from distant nodes may
not be reliable, mostly because of the simplifications made to
IG . The optimization of the hyperparameters should counter-
act this kind of phenomenon.

The goal now is to derive r(d)(k, k′). Let R(d) ∈ RK×K

be the matrix whose (k, k′)th element is r(d)(k, k′). It is
worth pointing out that, in general, R(1) is not symmetric
but is non-negative with the row-sums equal to 1 (while the
column-sums are not necessary equal to 1). Consequently,
R(1) (shortened to R) is a row-stochastic matrix. First of all,
we have that

r(d)(k, k′) = P (yv = k′|yu = k, Cd)

where IG has been replaced with Cd, which is defined as
the knowledge that both considered nodes are connected in
d hops.

In Appendix B, we show that

R(d) = Rd. (12)

Since we are able to find r(d)(k, k′) with respect to
r(1)(k, k′), we should now derive r(1)(k, k′) in closed-form.
We first define the following parameters:

• Let p(k) denote the probability that any two randomly
selected nodes belonging to the same class k are directly
connected.

• Let q(k, k′) denote the probability that two randomly
selected nodes not belonging to the same class are
connected. We let q(k, k) = p(k). We also assume
symmetry, i.e. q(k, k′) = q(k′, k).

• Let p̄ define the average probability of connection be-
tween nodes of the the same class, i.e.

p̄ =
1

K

K∑
k=1

p(k).

Similarly, let q̄ define the average probability of connec-
tion between nodes not belonging to the same class, i.e.

q̄ =
1

K(K − 1)

K∑
k,k′=1
k ̸=k′

q(k, k′).

• The degree of impurity (DoI), roughly evoked in Section
I, is defined as

DoI =
q̄

p̄
.

This defines a general stochastic block model (SBM), a
widely used random graph model for community detection
and clustering [28], [29]. Note that we use SBM only for
analytic tractability, and that unlike the work on community
detection, we are interested in node classification, given some
labeled samples.

By using Bayes’ rule, we have that

r(1)(k, k′) = P (yB = k′|yA = k, ĨG)

=
P (ĨG |yB = k′, yA = k)P (yB = k′|yA = k)

P (ĨG |yA = k)

=
P (ĨG |yB = k′, yA = k)P (yB = k′|yA = k)∑K

k′′=1 P (ĨG |yA = k, yB = k′′)P (yB = k′′)

=
q(k, k′)P (yB = k′|yA = k)∑K

k′′=1 q(k, k
′′)P (yB = k′′)

=
q(k, k′)P (yB = k′)∑K

k′′=1 q(k, k
′′)P (yB = k′′)

=
q(k, k′)πk′∑K

k′′=1 q(k, k
′′)πk′′

. (13)

As an example, if the probabilities of connection do not de-
pend on the classes, i.e., p = p(k) for any k and q = q(k, k′)
for any k ̸= k′, we obtain

r(1)(k, k′) =


pπk

pπk+q
∑

k′′=1
k′′ ̸=k

πk′′
k = k′

qπk′
pπk+q

∑
k′′=1
k′′ ̸=k

πk′′
k ̸= k′

.

Hence, according to Eqs. (2) and (11), we obtain

ûu = argmaxk πkDk(xu)

∆u∏
d=1

∏
v∈Nd(u)

×

(
K∑

k′=1

r(d)(k, k′)γdDk′(xv)

)
(14)

VOLUME 10, 2022 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

with r(d)(k, k′) given by Eq. (12). We notice that the shape
of the function to maximize is simple and corresponds to a
product over all the considered nodes of a weighted sum of
the possible distributions. The weights are perfectly charac-
terized thanks to our derivations.

B. PARAMETERS’ ESTIMATION

In order to implement our node classifier, i.e. to compute
Eq. (14), we need πk, p(k), q(k, k′), and the distributions
Dk(·) for all k and all k′. Since these are unknown, they
have to be estimated using the data. Here, in order to perform
this estimation using simple algorithms, we consider only the
available labeled nodes of the graph in the estimation. These
algorithms are described below:

• Estimation of πk: this is obtained by counting the num-
ber of labeled nodes belonging to class k divided by the
total number of labeled nodes.

• Estimation of p(k) and q(k, k′): we count all the pairs
of labeled nodes belonging to class k and k′; then we
count the number of these pairs that are connected in
1-hop. The estimate of q̂(k, k′) is obtained by dividing
the latter count by the former one. if these values do
not depend on k and k′, we also average over all the
involved pairs (with k ̸= k′ to obtain q(k, k′) = q̄ and
when k = k′ to obtain q(k, k) = p̄).

• Estimation of classes’ statistics Dk(·): we assume a
shape for the distribution , and this shape is dependent
on a set of parameters. For instance, in the Cora dataset,
the features are binary, so they are modeled as indepen-
dent Bernoulli random variables; the probability associ-
ated with each feature is estimated using the proportion
of non-zero elements of this feature in the labeled nodes,
and Laplace smoothing. If the features are continuous-
valued, we use the Gaussian distribution.

It is worth pointing out that a semi-supervised estimation
approach may also be possible but this would require an
iterative approach that cycles between parameter estimation
and node classification. It is also worth noting that the estima-
tion step plays the role of the learning phase in GNN-based
classifiers or in the classifiers developed in [26].

The values of the hyperparameters γv are set to 1 by de-
fault. The optimization of these hyperparameters is addressed
in Sections IV and V.
This optimization will be shown to improve classification
performance. Indeed, these hyperparameters will adjust the
degree to which neighbors of different orders should con-
tribute to the classification of a node.

C. WHEN DOES GRAPH STRUCTURE NOT HELP GAB

Thanks to Eq. (14), we will be able to characterize some
conditions on the graph’s parameters for which the graph
through the proposed GAB helps each node to improve its
classification performance. Reasoning by contradiction, one
can see that the classifier does not take into account the

neighbors if and only if (iff) the function

k 7→
∏

v∈Nd(u)

(
K∑

k′=1

r(d)(k, k′)γvDk′(xv)

)
is independent of k for any d. Indeed, if true, the a posteriori
distribution to maximize depends on k only through Dk(xu).

The above-mentioned function leads to the same out-
put regardless of k for any feature values iff the weights
r(d)(k, k′) are identical for any k. Therefore the condition
for the neighbors to be useless is

r(d)(k, k′) = t(d)(k′),∀k. (15)

According to Eq. (12), it is easy to prove that if it is satisfied
for d = 1, then it remains true for any d. Therefore, we need
to only focus on d = 1. According to Eqs. (13) and (15), we
obtain

q(k, k′)πk′∑K
k′′=1 q(k, k

′′)πk′′
= t(1)(k′),∀k. (16)

We will now inspect some particular cases:
• In the case of constant intra-class and inter-class proba-

bilities of connection, we obtain the following constraint
for any pair (k, k′) such that k ̸= k′

πk′ + (q̄/p̄)

K∑
k′′=1
k′′ ̸=k′

πk′′ = (p̄/q̄)πk +

K∑
k′′=1
k′′ ̸=k

πk′′ .

By setting ν =
∑K

k=1 πk, we have

πk′(1− q̄/p̄) + πk(1− p̄/q̄) = ν(1− q̄/p̄)

which implies that

πk′ + πk

1− p̄/q̄

1− q̄/p̄
= 1 (17)

where k 7→ πk := πk/ν is a probability mass function.
As (1 − p̄/q̄)/(1 − q̄/p̄) is negative, this equation does
not hold except if p̄ = q̄. Consequently, the neighbors
are not involved in the GAB classifier when the degree
of impurity is 1 since there is no community structure.

• In the case of K = 2, Eq. (16) implies that

p(2)

q̄π1 + p(2)π2
=

q̄

p(1)π1 + qπ2

and
q̄

q̄π1 + p(2)π2
=

p(1)

p(1)π1 + q̄π2
,

which leads to
q̄ =

√
p(1)p(2). (18)

In this setup, the neighbors are not involved in the GAB
classifier when the inter-class probability of connection
is the geometric mean of the intra-class probabilities of
connection, and so not necessary when the degree of
impurity (defined through the arithmetic mean) is equal
to 1. Obviously, if p(1) = p(2), we go back to the first
item leading to p = q, i.e., a degree of impurity equal

6 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

to 1. But when p(1) ̸= p(2), the degree of impurity
leading to a graph-agnostic classifier is equal to the ratio
between the geometric mean and the arithmetic mean
of the intra-class probabilities of connection which is
strictly smaller than 1 in general case.

III. LINK TO GRAPH NEURAL NETWORKS
A. RECAP OF GRAPH NEURAL NETWORKS
GNNs are a class of graph embedding architectures which
use the graph structure in addition to node and edge features
to generate a representation vector (i.e., embedding) for each
node. GNNs learn node representations by aggregating the
features of neighboring nodes and edges. The output of the
ℓ-th layer of these GNNs is generally expressed as:

h(ℓ)
u = σ(ℓ)(ϕ(ℓ)(h(ℓ−1)

u , {h(ℓ−1)
v : v ∈ N1(u)})) (19)

where h
(ℓ)
u is the feature vector of node u at the ℓ-th layer

initialized by h
(0)
u = xu and N1(u) is the set of first-order

neighbors of node u. Different GNNs use different formu-
lations for the non-linear function σ(ℓ) (called activation
function) and the linear function ϕ(ℓ) [30]. Note that a first-
order GNN based classifier relies on one layer or equivalently
considers only the 1-hop neighborhood in the graph.

Graph Convolutional Neural Network (GCN): The con-
volutional propagation rule used in GCN is defined as follows

ϕ(ℓ) = (W (ℓ))⊤

h
(ℓ−1)
u

du + 1
+

∑
v∈N1(u)

h
(ℓ−1)
v√

(du + 1)(dv + 1)


(20)

where
• W (ℓ) is a learnable weight matrix,
• du is the degree of node u.

The activation function (for any layer except the last one) is
a rectified linear unit (ReLU). For the last layer, we consider
the softmax which for each node u outputs the probability
that node u belongs to class k. Then the node u is assigned
to the class with the highest probability [17].

Graph convolution Operator Network (GON): In [31],
[32], GON is defined as GCN where Eq. (20) is replaced with
the following one

ϕ(ℓ)
u = (W

(ℓ)
1)⊤h(ℓ−1)

u + (W
(ℓ)
2)⊤(

∑
v∈N1(u)

h(ℓ−1)
v). (21)

Unlike GCN, GON computes a transformation matrix of the
central node that is different from the transformation of its
neighbors.

Graph Isomorphism Network (GIN): In [33], GIN is
defined as GCN or GON where Eqs.(20)-(21) are replaced
with the following one

ϕ(ℓ)
u = (W (ℓ))⊤

(1 + α)h(ℓ−1)
u +

∑
v∈N1(u)

h(ℓ−1)
v

 .

(22)

where α is a positive hyper-parameter. GIN thus attributes
a different learnable weight to the central node (through α)
when combining information from its neighbors.

Graph Attention Network (GAT): In [34], GAT is de-
fined as GCN, GON or GIN but with the following layer link

ϕ(ℓ)
u =

∑
v∈N1(u)∪{u}

α(ℓ)
u,v(W

(ℓ))⊤h(ℓ−1)
v , (23)

where α
(ℓ)
u,v are normalized attention coefficients computed

by an attention mechanism as follows:

α(ℓ)
u,v =

eς(w
(ℓ)[(W (ℓ))⊤h(ℓ−1)

u ∥(W (ℓ))⊤h(ℓ−1)
v])∑

k∈N1(u)
eς(w

(ℓ)[(W (ℓ))⊤h
(ℓ−1)
u ∥(W (ℓ))⊤h

(ℓ−1)
k])

.

(24)
with ς the leaky ReLu function, the weighting row vector
w(ℓ) ∈ R2H , where H is the size of the hidden layer and
∥ corresponds to column concatenation.

B. RELATIONSHIP WITH A GNN BASED CLASSIFIER
In this Section, we compare the shape of the proposed GAB
and the GNN. In GNN, there is one activation function
between each layer which implies that the multi-hop infor-
mation has undergone several non-linear functions before ar-
riving at the node of interest. In GAB, the multi-hop mixture
is done prior to making the final decision and do not follow
a successive concatenation of linear combination and acti-
vation function. All the operations are intermixed, therefore
GNN and GAB are very different in terms of structure, except
for the one-layer/one-hop case. We therefore focus here on
the relation between the first-order GAB classifier and first-
order GNN-based classifier. For doing that, we consider a
binary classification problem (i.e K = 2). According to Eq.
(14), we assign node u to class 1 if:

Pu(1) ≥ Pu(2),

which implies that :

π1D1(xu)
∏

v∈N1(u)
(r(1, 1)D1(xv) + r(1, 2)D2(xv))

π2D2(xu)
∏

v∈N1(u)
(r(2, 1)D1(xv) + r(2, 2)D2(xv))

> 1.

By setting

S(x) =
D1(x)

D2(x)

and taking the log, we obtain the following test T (where
T > 0 means "decide class 1"):

T = log

(
π1

π2

)
+ log (S(xu))

+
∑

v∈N (u)

log

(
r(1, 2) + r(1, 1)S(xv)

r(2, 2) + r(2, 1)S(xv)

)
.

As q(1, 2) = q(2, 1), two classes in the system lead to q̄ =
q(1, 2) = q(2, 1). Consequently,

r(1, 2) + r(1, 1)S(xv)

r(2, 2) + r(2, 1)S(xv)
=

q̄π2+p(1)π1S(xv)
p(1)π1+q̄π2

p(2)π2+q̄π1S(xv)
q̄π1+p(2)π2

.

VOLUME 10, 2022 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

Therefore, the test T can be split into three parts:

T = log

(
π1

π2

)
+ log

(
q̄π1 + p(2)π2

p(1)π1 + qπ2

)
+ log (S(xu))

+
∑

v∈N (u)

log

(
q̄π2 + p(1)π1S(xv)

p(2)π2 + q̄π1S(xv)

)
.

The first part corresponds to a constant term and so is con-
nected to the threshold. The second part is the contribution
of the node of interest. The third part, which is the most
interesting, corresponds to the contribution of the neighbors
in the test. Clearly, in general, this term is not linear with
respect to the nodes’ features and so the test cannot be seen
as a one-layer GNN.

If, in addition, p(1) = p(2) = p̄, the test can be written
easily with respect to the DoI as follows

T = log

(
π1

π2

)
+ log

(
DoI.π1 + π2

π1 +DoI.π2

)
+ log (S(xu))

+
∑

v∈N (u)

log

(
DoI.π2 + π1S(xv)

π2 +DoI.π1S(xv)

)
.

For instance, we remark that if the DoI is much larger than
the pdf ratio between the classes (which may be roughly
related to the Kullback-Leibler divergence), then the third
term is almost independent of the nodes’s feature and the
information provided by the graph is not used since it is not
reliable.

Consider now that the graph is pure (i.e., r(1, 2) =
r(2, 1) = 0 or equivalently q = 0), we obtain

T = log(
π1

π2
) + |N (u)| log

(
r(1, 1)

r(2, 2)

)
+

∑
v∈N (u)∪{u}

log(S(xv)), (25)

where we consider that p(1) may be different from p(2).
Once again the proposed classifier does not boil down to
a one-layer GNN. Actually, it can be a GNN if the term
log2(S(xv)) is a linear combination of xv . This can be
achieved if the function S(xv) is at least a power-function
of xv , such as the Gaussian function or Binomial function.

Let us first consider the Gaussian case, i.e. xv ∼
N (µ(v),Σ) where µ(v) is either µ1 (if class 1) or µ2 (if
class 2) and the correlation matrix is independent of the class
(if not, a second-order polynomial occurs and the GAB is
different from a GNN). According to Eq. (25), the first-order
GAB test is equal to

T = ω0 +

 ∑
v∈N (u)∪{u}

ω⊤
1 xv

 , (26)

where

ω0 = log

(
π2

π1

)
+ (|N (u)|+ 1)(µ⊤

2 Σ
−1µ2 − µ⊤

1 Σ
−1µ1),

ω⊤
1 := [ω1,1, · · · , ω1,F] = (µ2 − µ1)

⊤Σ−1. (27)

Consequently this test is a GNN-based test.
Let us now consider the Binomial case. We assume that

features xv,f are independent binary random variables with
probabilities P (xv,f = 1|yv = 1) = α

(1)
f and P (xv,f =

1|yv = 2) = α
(2)
f . Eq. 25 can be written as Eq. (26) with

ω0 = log

(
π2

π1

)
+ F

F∑
f=1

log

(
1− α

(2)
f

1− α
(1)
f

)
,

ω1,f = − log

(
α
(1)
f

α
(2)
f

1− α
(2)
f

1− α
(1)
f

)
.

Consequently this test is a GNN-based test as well.

IV. DISCUSSION ON COMPLEXITY ISSUES
In this section, we compare the different versions of the
proposed GAB and the GAT in terms of parameters/weights
to tune and the number of flops for doing this tuning during
the training phase. We will consider only the two-hops case
for the GAB and the two-layers case for the GAT.

First of all, we evaluate the number of parameters to be
tuned. Let H and dmax be respectively the size of the hidden
layer and the maximum degree of the considered graph.

For a GAB classifier, we need to estimate
• K2 parameters for the transition matrix R through the

terms {p(k)}k and {q(k, k′)}k ̸=k′ ;
• the parameters of the class’ distributions (obviously, this

value depends on the shape of the assumed distribu-
tions):

-- KF parameters when each class of each feature is
Bernoulli-distributed

-- (KF +KF 2) parameters when each class is arbi-
trary Gaussian-distributed. The number of parame-
ters can be reduced if the Gaussian distribution per
class is structured. For instance, if the covariance is
independent of the class, we only have (KF +F 2)
parameters. If in addition, the covariance matrix is
diagonal or is assumed as a diagonal matrix for the
sake of simplicity, we have (KF +F) parameters;

-- K parameters for the priors {πk}k.
When Cora or PubMed dataset are considered (see Table 5
for more details), the distribution is assumed to be Bernoulli
in our numerical evaluations (even if not), which implies that
the total number of parameters to estimate, Np is given by

Np = K(K + F + 1). (28)

For GAT, we need to tune/learn the weights and the atten-
tion parameters of the neural network. As only two layers are
considered we obtain FH weights for the first layer, HK

8 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

weights for the second layer, and 2H (resp. 2F) weights for
the attention mechanism for the first layer (resp. the second
one). As a consequence, the number of weights to tune,
denoted by Nw is as follows:

Nw = FH +HK + 2(H +K). (29)

According to the number of classes and features given in
Table 5 and by assuming a hidden layer of size H = 256,
we have the following values Np and Nw for the Cora and
PubMed dataset in Table 2.

TABLE 2. Number of parameters or weights to be tuned/learnt.

Dataset Np (GAB) Nw (GAT)
Cora 10,087 369,066
PubMed 1,512 129,286

We observe that the number of parameters for GAB is
much smaller (by more than an order of magnitude) than for
GAT. In addition, the parameters in GAB are interpretable.
Moreover, since for GAT, parameters are learnt using an
iterative process, the computational complexity in terms of
the number of epochs may significantly vary with the chosen
optimization algorithm.

We here consider two variants for the GAB. The first
one (denoted by GAB2) corresponds to the case where
γ1 = γ2 = 1 while the second one (denoted by GAB2γ) is
optimized with respect to the pair γ = (γ1, γ2). Let Nt, Ng ,
and Nv be the number of training nodes, the number of tested
pairs γ, and the number of nodes for validation respectively.
To estimate the Np parameters during the training phase,
we need NpNt flops since each parameter corresponds to
counts or sums over each training node. To select the best
pair of hyperparameters γ, we compute our GAB on all
validation and test nodes. A GAB evaluation leads to at most
K2D2

maxF flops by looking at Eq. (14). Indeed we consider
that to compute each test for one class, we need d2maxKF
flops where F corresponds to the flops required to compute
Dk(·) as it is the case for the Bernoulli case or the diagonal
correlation matrix Gaussian case. Finally, we have that

Nflop|GAB2γ = NpNt +NgNvK
2d2maxF. (30)

When we only consider GAB2, the second term in the Right
Hand Side (RHS) has to be omitted. Note that the 2D grid for
the hyperparameter γ is [0 : 0.1 : 1]2 leading to Ng = 121.

For GAT2, we just consider the number of flops required
for learning the weights (so the hyperparameters such as the
learning rate are assumed to be obtained for free). To learn
the weights, we apply a gradient-descent like algorithm with
Ne epochs. Hereafter, we consider only the neural network’s
weights which are dominant. So the weights related to the
attention mechanism are ignored.

We consider one epoch. For the first layer (resp. second
layer), we have FH (resp. HK) weights to update and so
FH (resp. HK) sums have to be computed once the gradient
is known. For estimating the gradient, we average over Nt

nodes, over the sum of the neighbors (at most dmax) and a

matrix computation of size HF (resp. KH) with the current
feature of size F (resp. H). Consequently, we have

Nflop|GAT2 = NeFHNtdmaxFH +NeHKNtdmaxHK.
(31)

In Table 3, we report the rough number of flops for
Cora (with a supervision of 30% and 5%) and PubMed
(with a supervision of 5%) with three classifiers. We set
Ne = 500, Nt = 140 (Cora-5%) or Nt = 1000 (Cora-
30% and PubMed-5%). Moreover dmax = 168 for Cora and
dmax = 171 for PubMed.

TABLE 3. Number of flops for the training phase.

Dataset GAB2 GAB2γ GAT2
Cora-30% 1.01× 107 1.99× 1011 1.14× 1019

Cora-5% 1.41× 106 1.99× 1011 1.60× 1018

PubMed-5% 1.51× 106 9.31× 1010 1.40× 1018

In the inference phase, applying our classifier (GAB2)
leads to K2d2maxF flops (which corresponds to the number
of flops in the second part of the RHS in Eq. (30) without Ng

and Nv). For GAT2, we have FHdmaxFH +HKdmaxHK
flops (actually, we apply Eq. (31) by removing Ne and Nt).
In Table 4, we report the rough number of flops during the
inference phase for Cora and PubMed.

TABLE 4. Number of flops for the inference phase.

Dataset GAB2/GAB2γ GAT2
Cora 2.3× 109 1.60× 1012

PubMed 1.3× 108 2.80× 1011

We remark that the numbers of flops for our GAB clas-
sifiers are much smaller (by many orders of magnitude)
than for the GAT in both training and inference phases.
Consequently, the structure imposed by the derivations of the
GAB enable us to have interpretability and less complexity
than the black box GAT.

V. NUMERICAL RESULTS
In this section, we conduct experiments with two kinds of
datasets: the synthetic ones where we especially analyze
the robustness to the degree of impurity; and some real
benchmark ones where we compare our classifier to many
other approaches based on GNN. The performance of our
classifier (and the ordering with respect to standard GNN
based approaches) depend on the dataset and the level of
supervision.

A. SYNTHETIC DATASETS
For the sake of simplicity, we consider two classes, i.e.,
K = 2. Each class is associated with a different statistical
distribution of the node’s feature vector xv . We assume
here that the two distributions are multivariate Gaussian,
i.e. xv follows N (µ1, Σ1) in class 1 and N (µ2, Σ2) in
class 2, with unknown mean and covariance. We assume that
the features are uncorrelated in the two classes, i.e. Σ1 =

VOLUME 10, 2022 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

FIGURE 2. GAB and GNN performance on synthetic datasets versus DoI.

diag(σ2
1) and Σ2 = diag(σ2

2), where σ2
1 and σ2

2 are (F × 1)
vectors. To average over different configurations, different
distributions are generated by drawing µ1 and µ2 randomly
from U([0, 1]F) and drawing σ1 and σ2 randomly from
U([0.5, 3.5]F). Moreover, the links are generated randomly
using different values of the probability of intra-connectivity,
p̄, and the probability of inter-connectivity, q̄ where q̄ ≤ p̄.

In each experimental setting, we evaluate the average node
classification accuracy using a Monte Carlo simulation with
1, 000 runs. We set the number of nodes to N = 5, 000 and
the number of features to F = 500. For each run, we train
each classifier on 500 (already-labeled) nodes and test its
accuracy on 2, 000 nodes. We use the remaining nodes for
validation.

In Fig. 2, we plot the classification accuracy versus the
Degree of Impurity (q̄/p̄) for one-order GAB and one-layer
GCN. Both approaches perform well when DoI is small.
Their performance decreases with increasing DoI. We ob-
serve, however, that the GAB is more robust to DoI than
the GCN especially beyond a DoI of one half. As expected,
the GAB is graph-agnostic when Eq. (18) is satisfied. For in-
stance, when p(1) = p(2) = 0.05 then the agnosticity occurs
at q̄/p̄ = 1 while when p(1) = 0.025 and p(2) = 0.075,
the agnosticity is reached at q̄/p̄ = 0.866. We remark that
GNN has similar behavior with respect to the usefulness of
the information coming from the graph.

B. REAL DATASETS
Unless otherwise stated, we use the attributed graphs de-
scribed in Table 5, and we use the training/validation/testing
split equal to 30%, 20%, 50%, respectively. To implement the
GNN based classifiers, we use Pytorch where we initialize all
the GNN weights by Glorot initialization, and we train them
to minimize the cross entropy loss using the Adam optimizer
with an initial learning rate of 0.005.

In Fig. 3, we plot the accuracy versus the DoI: on the top,
the GAB at several orders as well as the best combination
of powers γd in Eq. (14). Here, the training phase enables
us to estimate the parameters of the GAB except the γd.

FIGURE 3. Accuracy performance with added noisy edges in Cora.

The powers γd are optimized with a grid search approach
during the validation phase, on the middle panel, the GAT
with several layers, and on the bottom panel the GCN at
several layers. The dataset is here always Cora which implies
that the distributions are Bernoulli. The x-axis starts with the
real value of the DoI and we add links between previously
unconnected nodes that belong to different classes with the
goal of gradually varying the DoI to 1. The above mentioned
classifiers are trained for each "impure" graph. We remark
that the information on the graph is less accurate for any
approach when we consider more hops; actually, the confi-

10 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

TABLE 5. Description of the real datasets.

Dataset Classes Nodes Edges Features
Cora [24] 7 2,708 5,429 1,433
CiteSeer [24] 6 3,327 4,732 3,707
PubMed [24] 3 19,717 44,338 500
CS [35] 15 18,333 163,788 6,805
Physics [35] 5 34,493 495,924 8,415
Sexual [36], [37] 2 1,888 2,096 20

5 10 15 20 25 30
Size of the training set (%)

76

78

80

82

84

86

88

90

Ac
cu
ra
cy
 (
%
)

GAB* (Pubmed)
GAT (Pubmed)
GCN (Pubmed)
GAB* (Cora)
GAT (Cora)
GCN (Cora)

FIGURE 4. GAB and GNN performance on Pubmed versus the size of the
training set.

dence on the "far" data is smaller. Nevertheless by averaging
properly the hops as in GABγ, the performance are improved
slightly. In any case, GABγ is better then the best other
approaches since it enables to better adapt to the impurity.
Moreover GABγ outperforms the graph-agnostic classifier;
so it always manages to take benefit of the graph.

In Table 6, we compare our approaches GABγ and GAB⋆
up to five hops (in GAB⋆, we approximate the unknown
distributions by two-layer NNs which are learnt during the
training phase) with the methods presented and analyzed in
[26]. We copy-paste the values given in [26] where the best
number of layers and the best version of each approach have
been selected. We select the best version of GAB in the sense
that we optimized the hyperparameters γ by allowing at most
the fifth-order case. In GABγ, the shape of the distributions
is a priori given. For instance, for PubMed, we considered a
Bernoulli one while it is inaccurate. We plot the accuracy rate
and the ranking (in brackets) for a 30%-supervised graph. For
computing the average accuracy and the ranking (for all the
considered datasets) for our GAB approach, we select the
best one. We remark that the performance of our approach
is close to GBPN and GAT which are the best ones in the
literature. When GABγ is bad, it corresponds to the case
PubMed where the used distribution does not fit well with
the true one. So improvement can be done by choosing a
better approximation. In addition to the good performance
of our proposed approach, we have interpretability of our
algorithms since we wrote them in closed-form and we are
able to understand the meaning of each element.

In Fig. 4, we plot the accuracy rate versus the training

size (in percentage) for our approach (GAB⋆) and the GCN
and GAT with two-layers/hops. In solid line, we consider
PubMed dataset and in dash line, we consider Cora dataset.
We observe that for PubMed, our approach outperforms the
state of the art regardless of the training size. Actually we
should note than as PubMed is a large dataset, a small portion
of training still leads to a large amount of data to estimate
the statistics required for GAB. In contrast, for Cora, our
approach outperforms GCN and GAT only when the training
is large enough (and as Cora is a small dataset, large enough
means also when the training set in percentage is large
enough).

According to all the previous experiments, we remark that
our GAB approach is more robust to the degree of impurity
and its performance is close to or better than the tested GNN
approaches on a number of benchmark graphs.

VI. CONCLUSION

In this work, we tackled the problem of node classification
on attributed graphs. We start from the observation that GNN
based models’ performance depend on the graph topology,
and more specifically on the degree of impurity of the graph.
We adopted a different path and used the Bayesian theorem to
propose a new graph-assisted Bayesian-based node classifier.
This classifier is able to take into account the degree of
impurity of the graph. It is also shown to significantly out-
perform some GNN-based classifiers, in addition to provid-
ing more interpretability and requiring lower computational
complexity (if the model of the nodes’ distributions is well
approximated in closed-form).

APPENDIX A DERIVATIONS FOR EQ. (3)

We first focus on the term Qu(k). We get

Qu(k) = P (Xu|yu = k, IG)
=

∑
{kv}v∈Vu

P (Xu|yu = k, {yv = kv}v∈Vu
, IG)

× p({yv = kv}v∈Vu |yu = k, IG)

As the classes of the neighbors are given, the information on
the graph becomes redundant and so useless. Therefore IG
can be removed from the first term.

Qu(k) =
∑

{kv}v∈Vu

P (Xu|yu = k, {yv = kv}v∈Vu
)

× p({yv = kv}v∈Vu
|yu = k, IG)

VOLUME 10, 2022 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

TABLE 6. 30%-supervised node classification accuracy (%).

Dataset MLP GCN SAGE GAT GMNN DeeperGCN GBPN GABγ GAB⋆
Cora 72.1±1.3 87.1±0.7 86.9±0.8 87.1±0.9 86.4±0.9 87.2±0.9 86.4±0.9 86.9±0.8 86.3±1.1

CiteSeer 71.2±0.9 73.5±1.0 73.2±1.0 73.1±1.2 72.9±1.2 73.9±0.8 74.8±0.8 75.2±0.9 74.7±0.8

PubMed 86.5±0.2 87.1±0.3 87.8±0.4 88.1±.3 86.7±0.2 84.7±0.3 88.5±0.3 86.4±0.2 89.5±0.3

CS 94.2±0.2 93.2±0.2 93.7±0.2 94.0±0.3 93.3±0.3 94.9±0.2 95.5±0.3 94.5±0.3 95.2±0.4

Physics 95.8±0.1 96.1±0.1 96.3±0.1 96.3±0.1 96.1±0.1 96.7±0.1 96.9±0.1 96.4±0.1 96.7±0.1

Sexual 74.5±1.4 83.9±1.2 93.3±0.8 93.6±0.9 77.0±1.7 65.0±1.1 97.4±0.4 96.5±0.7 97.1±0.5

Given the classes, the samples of each node are run indepen-
dently, so we get

Qu(k) =
∑

{kv}v∈Vu

∏
v′∈Vu

P (xv′ |yu = k,

{yv = kv}v∈Vu
)

× p({yv = kv}v∈Vu
|yu = k, IG)

=
∑

{kv}v∈Vu

P (xu|yu = k)

×
∏

v′∈Vu

P (xv′ |yv′ = kv′)

× p({yv = kv}v∈Vu |yu = k, IG)
= Dk(xu)

∑
{kv}v∈Vu

∏
v′∈Vu\{u}

Dkv′ (xv′)

× p({yv = kv}v∈Vu
|yu = k, IG).

which concludes the derivations by doing a re-ordering.

APPENDIX B DERIVATIONS FOR EQ.(12)

• Let us start with d = 2:

r(2)(k, k′) = P (yv = k′|yu = k, C2)

=

K∑
k′′=1

P (yv = k′|yu = k, yw = k′′, C2)

× P (yw = k′′|yu = k, C1)

As the class of w is known, the information on the class
of u becomes useless and only the fact that v and w are
1-hop neighbor remains important. Therefore, we obtain

r(2)(k, k′) =

K∑
k′′=1

P (yv = k′|yw = k′′, C1).r(1)(k, k′′)

=

K∑
k′′=1

r(1)(k′′, k′).r(1)(k, k′′). (32)

where w is the node connecting u and v. Such a node w
exists since u and v are 2-hop connected. According to
Eq. (32), we have

R(2) = R2.

• For any d, we have,

r(d)(k, k′) = P (yv = k′|yu = k, Cd)

=

K∑
k′′=1

P (yv = k′|yu = k, yw = k′′, C1)

× P (yw = k′′|yu = k, Cd−1)

=

K∑
k′′=1

P (yv = k′|yw = k′′, C1).r(d−1)(k, k′′)

=

K∑
k′′=1

r(1)(k′′, k′).r(d−1)(k, k′′).

Therefore
R(d) = R(d−1)R.

• Finally, by induction, we conclude the derivations.

APPENDIX C ADDITIONAL DETAILS ON
IMPLEMENTATIONS

Algorithm 1 The inference algorithm for GAB
Input: Graph topology G = (V, E); nodes’ features
{xu}u∈V ; labels of the set of labeled nodes {yu}u∈L;
a feature based classifier g; prior probabilities
π = (π1, . . . , πK), transition matrix R.

Output: prediction for each unlabeled node {yu}u∈U
▷ Step1: Initialize predictions
for u ∈ V do

for k ∈ (1, . . . ,K) do
if u ∈ L then

Du(k)← 1(yu=k)

else
Du(k)← g(xu; k)

end if
end for

end for
▷ Step2: Update predictions
for u ∈ U do

for k ∈ (1, . . . ,K) do
Pu(k)← Qu(k)πk ▷ Qu(k) is defined in Eq. (11)

end for
ŷu ← argmaxkPu(k)

end for

We recall that V = L ∪ U where L and U are respec-
tively the sets of labeled and unlabeled nodes. The feature
based classifier g is obtained either by training a multi-layer

12 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

perceptron or by estimating parameters of the generating dis-
tributions of nodes’ features. g(xu; k) returns the probability
that node u belongs to class k based on its intrinsic features.
Prior probabilities π and transition matrix R are estimated as
explained in section II-B.

REFERENCES
[1] S. P. Borgatti, M. G. Everett, and J. C. Johnson, Analyzing social networks.

Sage, 2018.
[2] A. Khazane, J. Rider, M. Serpe, A. Gogoglou, K. Hines, C. B. Bruss,

and R. Serpe, “Deeptrax: Embedding graphs of financial transactions,” in
IEEE International Conference On Machine Learning And Applications
(ICMLA), 2019, pp. 126–133.

[3] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Ried-
miller, R. Hadsell, and P. Battaglia, “Graph networks as learnable physics
engines for inference and control,” in International Conference on Ma-
chine Learning, 2018, pp. 4470–4479.

[4] Y. Li, R. Shafipour, G. Mateos, and Z. Zhang, “Supervised graph represen-
tation learning for modeling the relationship between structural and func-
tional brain connectivity,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 9065–9069.

[5] X. Li, H. Chen, J. Li, and Z. Zhang, “Gene function prediction with gene
interaction networks: a context graph kernel approach,” IEEE Transactions
on Information Technology in Biomedicine, vol. 14, no. 1, pp. 119–128,
2009.

[6] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Thirty-second AAAI
Conference on Artificial Intelligence, 2018.

[7] N. I. Kajla, M. M. S. Missen, M. M. Luqman, and M. Coustaty, “Graph
neural networks using local descriptions in attributed graphs: an applica-
tion to symbol recognition and hand written character recognition,” IEEE
Access, vol. 9, pp. 99 103–99 111, 2021.

[8] T. Gaudelet, B. Day, A. R. Jamasb, J. Soman, C. Regep, G. Liu, J. B.
Hayter, R. Vickers, C. Roberts, J. Tang et al., “Utilizing graph machine
learning within drug discovery and development,” Briefings in bioinfor-
matics, vol. 22, no. 6, pp. 1–22, 2021.

[9] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”
in Advances in Neural Information Processing Systems, 2018, pp. 5165–
5175.

[10] H. Hafidi, M. Ghogho, P. Ciblat, and A. Swami, “Graphcl: Con-
trastive self-supervised learning of graph representations,” arXiv preprint
arXiv:2007.08025, 2020.

[11] ——, “Negative sampling strategies for contrastive self-supervised learn-
ing of graph representations,” Signal Processing, vol. 190, p. 108310,
2022.

[12] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual Review of Sociology, vol. 27, no. 1,
pp. 415–444, 2001.

[13] E. Rahm and A. Thor, “Citation analysis of database publications,” ACM
Sigmod Record, vol. 34, no. 4, pp. 48–53, 2005.

[14] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in International Conference
on Machine Learning, 2003, pp. 912–919.

[15] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[16] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances in
Neural Information Processing Systems, 2016, pp. 3844–3852.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” International Conference on
Learning Representations, 2018. [Online]. Available: https://openreview.
net/forum?id=rJXMpikCZ

[19] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, “Attention-based
graph neural network for semi-supervised learning,” International Confer-
ence on Learning Representations, 2018.

[20] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. V. Steeg, and A. Galstyan, “MixHop: Higher-order
graph convolutional architectures via sparsified neighborhood mixing,” in
Proceedings of the 36th International Conference on Machine Learning,
2019, pp. 21–29.

[21] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propa-
gate: Graph neural networks meet personalized pagerank,” arXiv preprint
arXiv:1810.05997, 2018.

[22] B. Karrer and M. E. Newman, “Stochastic blockmodels and community
structure in networks,” Physical review E, vol. 83, no. 1, p. 016107, 2011.

[23] S. Chakrabarti, B. Dom, and P. Indyk, “Enhanced hypertext categorization
using hyperlinks,” Acm Sigmod Record, vol. 27, no. 2, pp. 307–318, 1998.

[24] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
“Collective classification in network data,” AI Magazine, vol. 29, no. 3, pp.
93–93, 2008.

[25] K. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propaga-
tion for approximate inference: An empirical study,” arXiv preprint
arXiv:1301.6725, 2013.

[26] J. Jia, C. Baykal, V. K. Potluru, and A. R. Benson, “Graph belief propaga-
tion networks,” arXiv preprint arXiv:2106.03033, 2021.

[27] H. Hafidi, M. Ghogho, P. Ciblat, and A. Swami, “Bayesian node clas-
sification for noisy graphs,” in 2021 IEEE Statistical Signal Processing
Workshop (SSP). IEEE, 2021, pp. 246–250.

[28] E. Abbe, “Community detection and stochastic block models: recent
developments,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6446–6531, 2017.

[29] T. P. Peixoto, “Bayesian stochastic blockmodeling,” Advances in network
clustering and blockmodeling, pp. 289–332, 2019.

[30] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Advances in Neural Information Processing Systems,
2017, pp. 1024–1034.

[31] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in Neural Information Processing Systems, 2016, pp. 1993–
2001.

[32] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph neural
networks,” in AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp.
4602–4609.

[33] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” International Conference on Learning Representations,
2018.

[34] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[35] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of
graph neural network evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[36] M. Morris, HIV Transmission Network Metastudy Project: An Archive of
Data From Eight Network Studies, 1988–2001, 2011.

[37] J. Jia and A. R. Benson, “Residual correlation in graph neural network
regression,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 588–598.

HAKIM HAFIDI received a master’s degree in big
data from the International University of Rabat,
Morocco, in 2018. Since 2019, He is enrolled in
a joint PhD program between the International
University of Rabat, Morocco and the Polytechnic
Institute of Paris, France. His research interests
include deep learning, signal processing and ma-
chine learning for graphs.

VOLUME 10, 2022 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Hafidi et al.: Preparation of Papers for IEEE Access

PHILIPPE CIBLAT was born in Paris, France, in
1973. He received the Engineering degree from
Telecom Paris (also known as ENST or Telecom
ParisTech) and the M.Sc. degree (DEA, in french)
in automatic control and signal processing from
University Paris-Saclay, France, both in 1996, and
the Ph.D. degree from University Gustave Eiffel,
Marne-la-Vallee, France, in 2000. He eventually
received the HDR degree from University Gustave
Eiffel in 2007. In 2001, he was a Postdoctoral

Researcher with University of Louvain, Belgium. At the end of 2001, he
joined the Communications and Electronics Department at Telecom Paris, as
an Associate Professor. Since 2011, he has been (full) Professor in the same
institution. He served as Associate Editor for the IEEE Communications
Letters from 2004 to 2007. From 2008 to 2012, he served as Associate Editor
and then Senior Area Editor for the IEEE Transactions on Signal Processing.
From 2018 to 2021, he served as Associate Editor for the IEEE Transactions
on Signal and Information Processing over Networks. From 2014 to 2019,
he was member of IEEE Technical Committee "Signal Processing for
Communications and Networking". His research areas include statistical and
distributed signal processing, signal processing for digital communications,
and resource allocation.

MOUNIR GHOGHO (Fellow, IEEE) has re-
ceived the M.Sc. degree in 1993 and the PhD
degree in 1997 from the National Polytechnic
Institute of Toulouse, France. He was an EPSRC
Research Fellow with the University of Strath-
clyde (Scotland), from Sept 1997 to Nov 2001.
In Dec 2001, he joined the school of Electronic
and Electrical Engineering at the University of
Leeds (England), where he was promoted to full
Professor in 2008. While still affiliated with the

University of Leeds, in 2010 he joined the International University of Rabat
(Morocco) where he is currently Dean of the College of Doctoral Studies
and Director of TICLab (ICT Research Laboratory). He is a Fellow of IEEE,
a recipient of the 2013 IBM Faculty Award, and a recipient of the 2000 UK
Royal Academy of Engineering Research Fellowship. He is the co-founder
and co-director of the CNRS-associated International Research lab DataNet,
in the field of Big Data and artificial intelligence. His research interests are
in Machine Learning, Signal Processing and Wireless Communication, on
which he has published over 300 papers in journals and conferences. He
has coordinated around 20 research projects and supervised over 30 PhD
students in the UK and Morocco. In the past, he served as an associate editor
of many journals including the IEEE Signal Processing Magazine and the
IEEE Transactions on Signal Processing.

ANANTHRAM SWAMI (Fellow, IEEE) is with
the US Army’s DEVCOM Army Research Lab-
oratory and is the Army’s Senior Research Sci-
entist (ST) for Network Science. He received the
B.Tech. degree from IIT-Bombay; the M.S. degree
from Rice University, and the Ph.D. degree from
the University of Southern California (USC), all
in Electrical Engineering. Prior to joining ARL,
he held positions with Unocal Corporation, USC,
CS-3 and Malgudi Systems. He was a Statistical

Consultant to the California Lottery, developed a MATLAB-based toolbox
for non-Gaussian signal processing, has held visiting faculty positions at
INP, Toulouse, and at Imperial College, London. Swami’s work is in the
broad area of network science, including communication and information
networks and cyber security. Recent awards include a 2018 IEEE ComSoc
MILCOM Technical Achievement Award and a 2017 Presidential Rank
Award (Meritorious). He is an ARL Fellow and a Fellow of the IEEE.

14 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3242866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

