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Abstract—Going toward extreme multiple input multiple out-
put (MIMO) antenna systems, each individual radio frequency
(RF) chain will require cost and energy efficient implemen-
tations. Among the power hungry components is the digital-
to-analog converter (DAC). While lowering the resolution can
reduce power consumption, the introduced quantization error
will lead to degraded performance. In this paper, we propose
to use spatio-temporal delta sigma modulation (DSM) upstream
of the low-resolution converter in a downlink massive MIMO-
orthogonal frequency division multiplexing (OFDM) scenario. Its
role is to shape quantization noise toward unused frequency re-
sources and directions of space. At the heart lies an optimization
based design of the modulator’s noise transfer function (NTF)
using available channel state information (CSI). A constraint to
shape quantization noise away from adjacent frequency bands is
studied as well. Numerical results show that the recently thriving
spatial DSM is outperformed by its spatio-temporal counterpart.
Additional filtering is however still required to reach spectral
masks set by current communication standards.

Index Terms—Delta-Sigma modulation, spatio-temporal,
MIMO, OFDM, quantization.

I. INTRODUCTION

Massive multiple input multiple output (MIMO) has be-
come a pillar technology in contemporary communication
systems. To provide the further needs for increased capac-
ity, larger antenna arrays are envisioned. Scalability of this
approach will require a careful redesign of the transceiver
radio frequency (RF) chain to keep power consumption, cost
and implementation constraints low. In partial load scenarios,
the digital-to-analog converters (DACs) become significant
power consumers in the transmit chain [1], rising exponen-
tially with resolution [2]. This motivated the study of low-
resolution DACs in massive MIMO systems, with various
approaches to deal with the quantization error emerging from
the literature. Prohibitive complexity and incompatibility with
spectral masks imposed by communication standards still
hinder practical implementations.

As massive MIMO systems equipped with low-resolution
DACs and conventional linear precoders suffer from important
performance degradation [3], a common approach to handle
the quantization distortion is through the design of quantized
precoders [4]–[7]. In this paradigm, a precoder generates a
signal directly on the set of quantization levels. Consequently,
no additional quantization error is incurred from passing
through the low-resolution DAC. For this task, the best per-
forming precoding methods revolve around finding fast sub-

optimal, hyper-parameter dependent solutions to integer opti-
mization problems [5]–[7]. Additionally, the better perform-
ing symbol dependent precoders require recomputation for
every transmitted orthogonal frequency division multiplexing
(OFDM) symbol, leading to high computational complexity.
Also often overlooked is the impact of low-resolution DACs
on out-of-band (OOB) emissions [8]. Multiple designs dis-
miss this issue and are therefore incompatible with standard
required constraints in this area [9, section 6.6].

Another approach to the problem relies on pre-processing
the signal before quantization. In delta sigma modulation
(DSM), a higher resolution signal is encoded into a lower
resolution counterpart while shaping the quantization noise
introduced in the process toward unused resources. When
applied to the temporal domain, some oversampling is re-
quired to separate the noise into frequency bands unoccupied
by the signal. With the recent growth of the antenna arrays,
spatial noise shaping has regained attention. The idea is to
steer quantization noise into directions that are unoccupied by
served users by designing the noise transfer function (NTF)
in an appropriate manner. In [10], the NTF design relied on
angles of departure (AoDs) or angle sectors occupied by users.
This approach was then extended to take full channel state
information (CSI) into account [11]. More specifically, flat
fading multi-path channels were considered, with the designed
NTF leveraging the path loss for each direction. Both methods
are symbol agnostic and only require recomputation at every
channel coherence period. In [12], a quantized precoding
algorithm and a first-order spatial DSM were combined.

Spatio-temporal DSM has received some past attention
[13]–[15], showing that quantization noise can indeed be
shaped in frequency and space, with a lesser focus on the
NTF design itself.

Prior work has only looked at flat fading channels and
therefore did not need to consider OFDM modulations. Our
contribution in this paper fills this gap and considers spatio-
temporal NTF design using full CSI of frequency selective
multi-path channels in a downlink massive MIMO-OFDM
scenario. Commonly used stability constraints used in the
optimization based design of the modulator are compared
against each other. In an effort to reach standard compliance,
the problem is extended to minimize OOB emissions caused
by the coarse quantization.

This paper is structured as follows. Section II introduces the
considered system model. Section III exhibits the NTF design



problem and its solution. Section IV provides numerical
results. Section V concludes the paper.

A. Notations

Scalar values, column vectors and matrices are represented
by normal lowercase, bold lowercase and bold uppercase
respectively. The transpose and hermitian operations are de-
noted by (·)T and (·)H. The imaginary unit is denoted as j.
Discrete variables appearing in both time and frequency have
their latter form denoted with (̃·). The index n is preferred
for the time-domain while the index k is rather used for the
frequency domain. The L2 norm associated with a positive
definite matrix A and a vector x = [x1, · · · , xK−1]

T is de-
fined as ∥x∥2,A=

√
xHAx. If A = Id is the identity matrix,

we denote ∥x∥2,Id simply by ∥x∥2. The L1,IQ norm is defined
as ∥x∥1,IQ=

∑K−1
k=0 |R(xk)|+|I(xk)| and the L∞,IQ norm as

∥x∥∞,IQ= maxk∈{0,··· ,K−1} max (|R(xk)|, |I(xk)|).

II. SYSTEM MODEL

A massive MIMO-OFDM model is considered in the
downlink scenario, as illustrated in Fig. 1, where there are
one base station composed by B antennas and U users each
equipped with one antenna. We assume U < B. The output
of the base station at time n is a vector x[n] of length B.
The receive signal at time n for user u is a scalar denoted
by yu[n]. When referring to the N -length OFDM frame for
a given antenna or user index, the signals are the vectors
xb = [xb[0], · · · , xb[N − 1]]T and yu.
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Fig. 1. Block diagram of the system model.

The signal x[n] is transmitted over a multipath frequency
selective channel H[t] ∈ CU×B , t ∈ J0, T − 1K, with T the
number of taps. A plane wave model, such as in [8], is used.
With the antenna elements disposed in a uniform linear array
(ULA), the entries of H[t] are defined as

hu,b[t] = ψuγu,te
−j2πα(b−1) sin(ϕu,t). (1)

ψ2
u = (100/δu)

2 denotes the large scale fading, with δu being
the distance in meters from the base station to user u. The
inter-antenna spacing in multiples of the carrier wavelengths
is α. The power delay profile is given by γu,t where γu,0
stands for the line of sight (LoS) component while γu,t for
t ̸= 0 stands for the non line of sight (NLoS) components.

ϕu,t corresponds to the angle of departure for user u at the
time t.

Then the received signal y[n] = [y0[n], · · · , yU−1[n]]
T ∈

CU , n ∈ J0, N − 1K is expressed as

y[n] =

T−1∑
t=0

H[t]x[n− t] + η[n], (2)

where η[n] is a white circularly-symmetric Gaussian noise.
Under the assumption of sufficiently long cyclic prefix added
on the frame [x[0], · · · ,x[N − 1]] of length N , taking (2) to
the frequency domain gives

ỹ[k] = H̃[k]x̃[k] + η̃[k], (3)

where x̃[k] = [x̃0[k], · · · , x̃B−1[k]]
T, with x̃b[k] the output at

frequency k of the Fast Fourier Transform (FFT) of xb for
antenna b. A similar definition holds for ỹ[k].

A. System model without hardware impairments

When the system is equipped with high resolution DACs,
the quantization error introduced by the conversion can be
neglected. The following development describes the system
in the absence of any hardware impairment.

The symbols s̃[k] ∈ CU , with k ∈ J0, N −1K, are transmit-
ted. As OFDM will be used, the index k can be interpreted as
a frequency bin. Not all frequency bins carry data. A partition
of the set is defined : the bins in D carry useful symbols
while the bins in G (guard bands) and A (adjacent bands)
are empty, with A subject to spectral emission restrictions.
Finally D ∪ G ∪ A = J0, N − 1K.

The symbols pass through the linear precoder P ∈
CNB×NU . Working frequency bin per frequency bin, the
precoder has a block diagonal structure where the k-th block
in the diagonal is denoted by P[k] ∈ CB×U , k ∈ J0, N − 1K
and its application to the symbols results in

z̃[k] = P[k]̃s[k]. (4)

As the focus is not on the precoder, a zero forcing (ZF)
precoder is chosen for simplicity, although the later develop-
ment can as well be applied with other precoding strategies.
The ZF precoder is defined by

PZF[k] =
1

β
H̃[k]H(H̃[k]H̃[k]H)−1, (5)

with β > 0 a scaling factor to ensure that the resulting
transmit signal meets a given power constraint.

In order to implement OFDM, an Inverse Fast Fourier
Transform (IFFT) per antenna b is applied on z̃b. Then we
obtain the sample zb[n] at time n for antenna b. Stacking the
samples with respect to the antenna indices gives

z[n] = [z1[n], · · · , zB [N − 1]]T, n ∈ J0, N − 1K. (6)

In the absence of quantization, we have x[n] = z[n].
Finally, the precoder scaling factor β is chosen such that the
transmit signal verifies 1

|D|
∑N−1
n=0 E

[
∥x[n]∥22

]
≤ Et.



On the receive side, for each user, the cyclic prefix is
removed and the FFT operation is applied. Then the corre-
sponding samples ỹ[k], given in (3), are just scaled back,
leading to

r̃[k] = βỹ[k]. (7)

Given that a ZF precoder was considered, combining equa-
tions (3), (4) and (5) into (7) leads to

r̃[k] = s̃[k] + βη̃[k], k ∈ J0, N − 1K, (8)

on which a threshold detector may be applied to retrieve the
symbols.

B. System model with low-resolution DACs

We now consider the case with low-resolution DACs.
Consequently, x[n] ̸= z[n] due to the coarse quantization
operation. In order to reduce the impact of quantization error
on the resources of interest, a spatio-temporal DSM encodes
the signal onto the quantization levels prior to the conversion.
The goal of this paper is to propose a design of this DSM
such that the quantization noise is :

• not cast into angles targeting users. This property may
be satisfied thanks to the “beamforming” ability of the
B transmit antennas.

• not cast into adjacent frequency bands regardless of the
angles. This property is imposed to remain compliant
with current communication standards imposing spectral
masks.

The quantization noise shaping is dictated by the NTF. To
summarize these ideas, Fig. 2 schematically represent the
ideal NTF where the red area is forbidden while the green
one is authorized for the quantization noise location.

Angle of departure (spatial shaping)

Frequency (temporal shaping)

Data
subcarriers 

Adjacent
subcarriers 

User 1 User 2User 3
Adjacent

subcarriers 

Fig. 2. Illustration of a target NTF for the spatio-temporal DSM. The areas
in green can be used for casting quantization noise, while the others should
be avoided

DSM can be represented thanks to the so-called error-
feedback architecture [16, section 7.2.2] as illustrated in
Fig. 3, where Q(·) is the uniform scalar quantization operation
applied separately to the real and imaginary parts, and g is
the feedback filter. As the NTF is driven by g, the goal of
this paper is actually to design g.

The filter g is assumed to be 2-D finite impulse response
(FIR) with support J0, Tant−1K×J0, Ttime−1K, with Tant ≤ B

+

+

+

-

Fig. 3. Corresponding feedback architecture for the STP-aided quantizer.

and Ttime ≤ N . Moreover, the operations mentioned in Fig. 3
can be written as follows

xb[n] = Q(vb[n]) = vb[n] + ϵb[n]

vb[n] = zb[n] + (g ⋆ ϵ)b[n]
(9)

where ⋆ is the 2-D convolution defined by

(g ⋆ ϵ)b[n] =

Tant−1∑
ℓ=0

Ttime−1∑
m=0

gℓ[m]ϵb−ℓ[n−m]. (10)

Defining f = δ+ g, with δ the 2-D Dirac pulse, the input-
output relationship of DSM takes the expression

xb[n] = zb[n] + (f ⋆ ϵ)b[n]. (11)

In the rest of the paper, we make the common assumption
that ϵb[n] is white and independent of the input signal zb[n],
see e.g. [10], [16].

Applying a 2-D Fourier transform (FT) on equation (11)
results in

X(ψ, ν) = Z(ψ, ν) + F (ψ, ν)E(ψ, ν), (12)

where

F (ψ, ν) =

Tant−1∑
b=0

Ttime−1∑
n=0

fb[n]e
−2iπψbe−2iπνn, (13)

and the other 2-D FT are defined similarly. The NTF to be
optimized can now be identified to F (ψ, ν).

As DSM incorporates a feedback loop, it is prone to
instability, which deteriorates the noise shaping capabilities.
The next section focuses design constraints to ensure stability
of the modulator.

C. Stability of DSM

By construction, the the output of DSM is bounded because
constrained by the quantizer’s full scale. By stability we refer
to the boundedness of signals internal to the DSM. Hereafter,
we define two conditions to enforce this property.

Condition 1, also used in [10], [11], forces the quantization
error signal ϵb[n] to be bounded. With L be the number of
quantization levels, ∆ be the quantization step and x the
sequence in which we stack all the elements xb[n] for any
b, n ∈ N, it is enounced in the 2-D case as :

Condition 1 (No overload): We assume that the initial
quantizer input vb[0] satisfies 2∥v0[0]∥∞,IQ≤ L∆ for any
b ∈ J0, · · · , B − 1K. If ∆∥g∥1,IQ+2∥z∥∞,IQ≤ L∆, then the
quantization error ϵb[n] is guaranteed to incur no overload,
i.e. 2∥ϵ∥∞,IQ≤ ∆.



The second condition is a bound on the maximal value of
the NTF [17]. This condition is not a sufficient nor a necessary
condition for stability, but is widely used in practice, such as
in the popular DSM toolbox [18].

Condition 2 (Lee): Let γ be a design parameter. We assume
that

max
(ψ,ν)∈[0,1]2

|F (ψ, ν)|≤ γ.

The choice of γ can be determined through extensive simu-
lations.

III. PROBLEM FORMULATION AND SOLVING

This section establishes the design of the NTF through
the filter f . The approach taken formulates an optimization
problem ensuring the resulting DSM satisfies the desired noise
shaping behavior as well as some stability conditions.

In the noiseless case, the received signal at user u can be
expressed as

yu[n] =

T−1∑
t=0

B−1∑
b=0

hu,b[t]zb[n− t] + du[n], (14)

where du[n] is a distortion component introduced by the
DSM, given by

du[n] =

T−1∑
t=0

B−1∑
b=0

hu,b[t](f ⋆ ϵ)b[n− t]. (15)

On the receiver side, only the data carriers D require low
distortion. We will only work with the 1-D FFT over the time
index which leads to

d̃u[k] =

N−1∑
n=0

du[n]e
−2jπ k

N n (16)

for any u ∈ J0, U − 1K and k ∈ J0, N − 1K.
Under the assumption that ϵb[n] is white noise independent

of the modulator input z and of variance σ2, after some
straightforward calculations omitted for brevity, the energy
of the distortion in the frequency domain is given by

E[|d̃u[k]|2] = Nσ2∥H̄u[k]̃f [k]∥22, (17)

with f̃ [k] = [f̃0[k], . . . , f̃Tant−1[k]]
T where , f̃ℓ[k] is the 1-D

FFT over the time index of f , and H̄u[k] ∈ CB×Tant a
Hankel matrix expressed as

H̄u[k] =



h̃u,0[k] h̃u,1[k] . . . h̃u,Tant−1[k]

h̃u,1[k] h̃u,2[k] . . . h̃u,Tant [k]
... . .

. ...

h̃u,B−Tant [k] . . . h̃u,B−1[k]
... . .

.
0

... . .
. ...

h̃u,B−1[k] 0 · · · 0


. (18)

A. Reducing in-band distortion

To communicate reliably, the filter f minimizes the in-
band distortion that is largest over the users. This leads to
the following optimization problem called P1.

Problem 1:

min
f,µ1

µ1 (19a)

s.t.
√∑
k∈D

∥H̄u[k]̃f [k]∥22 ≤ µ1 ∀u ∈ J0, U − 1K (19b)

f0[0] = 1, (19c)
C(f) ≤ γ. (19d)

Equation (19c) forces at least one delay in the feedback
loop, ensuring its computability. Equation (19d) is related to
one stability constraint (condition 1 or 2 depending on the
chosen function C(·)).

When Condition 1 is selected as a stability condition, we
have

C(f) = ∥f − δ∥1,IQ (20)

and γ = L + 1 − 2∥z∥∞,IQ where δ is the vector deduced
from the 2-D Dirac pulse δ offering the same dimension as
f .

When Condition 2 is selected as a stability condition, the
semi-infinite constraint needs to be discretized. With uniform
sampling of the space, the collection of constraints is given
by

Ck1,k2(f) = |F (k1/Nant, k2/Ntime)| (21)

for (k1, k2) ∈ J0, · · · , Nant − 1K × J0, · · · , Ntime − 1K where
Nant and Ntime are the number of samples in each dimension
of the grid.

As both stability constraints are linear, and as (19b) cor-
responds to a second-order cone constraint, problem P1 is
convex and more precisely a second-order cone program
which can be solved using standard optimization toolboxes.

B. Reducing in-band distortion and out-of-band emissions

Besides ensuring reliable communication in-band, it is
necessary to mitigate OOB emissions. Focusing on restricting
emissions on the adjacent band A, the energy of the NTF on
that band is expressed as∫

A

∣∣∣∣∣
Ttime−1∑
n=0

fb[n]e
−2iπnν

∣∣∣∣∣
2

dν

= ∥fb∥2K,

(22)

where fb = [fb[0], . . . , fb[Ttime − 1]]
T and the positive definite

matrix K is given by [K]n1,n2 =
∫
A e

−2iπ(n2−n1)νdν. This
leads to the following optimization problem called P2.

Problem 2:

min
f,µ1,µ2

wµ1 + (1− w)µ2 (23a)

s.t. constraints (19b)− (19c)− (19d) hold, (23b)
∥fb∥K≤ µ2 ∀b ∈ J0, Tant − 1K. (23c)



where the objective is a sum weighted by w to balance
between distortion going into user directions within the band
or in all directions on adjacent bands. As (23c) corresponds
to second-order cone constraint, P2 is also a convex second-
order cone program.

IV. NUMERICAL RESULTS

The simulation setup is for a massive MIMO system
with B = 128 antennas, U = 4 users and N = 4096
subcarriers per OFDM system. To simulate a 20MHz scenario
with 30 kHz subcarrier spacing, 612 carriers are reserved for
data and are surrounded on each side by 27 guard carriers.
The channel model uses T = 3 paths, corresponding to
a delay spread of 66 µs and the Rician factor is 4. The
constellation is 64-QAM. Simulations are achieved over 100
realizations of the channel. Other parameters are specified in
each simulation case. When using Lee’s stability condition,
simulations have shown that Nant = 5Tant and Ntime = 5Ttime
ensure sufficient sampling of the criterion. The signal to noise
ratio (SNR) is defined as Et/N0 with N0 the noise level of
the additive noise. Error vector magnitude (EVM) calculations
are performed without the additive noise. Six scenarios will
be considered :

• “1 bit quantizer” : 1 bit quantizer without any noise
shaping.

• “1 bit spatial” : 1 bit DSM optimized with P1, but
the error feedback filter has (Tant, Ttime) = (10, 1). No
frequency-domain noise shaping is possible.

• “1 bit spatio-temporal P1” : 1 bit DSM optimized with
P1 at (Tant, Ttime) = (10, 10). Here OOB emissions are
disregarded. Only in-band distortion is relevant.

• “1 bit spatio-temporal P2” : 1 bit DSM optimized with
P2 at (Tant, Ttime) = (15, 15). OOB emissions are taken
into consideration.

• “2 bit spatio-temporal P1” : Same as “1 bit spatio-
temporal P1”, except with 2 bits.

• “No quantizer” : Ideal transmitter without quantization.

A. Maximum stable input range

The impact of the stability condition is analyzed using
scenario “Spatio-temporal P1”. As the stability of the modu-
lator is highly dependant on the input signal’s backoff to the
DSM’s internal quantizer full scale, we proceed to search for
the optimal input range. The DSM input zb[n] corresponds
to the output of an IFFT due to OFDM. Consequently, it
can be assumed to be Gaussian distributed. Defining the
clipping probability pclip as the probability that |zb[n]| is larger
than the full scale of the quantizer (L − 1)∆, it relates to
it by (L − 1)∆ = 2

√
2Eterfc−1(pclip) where erfc is the

complementary error function.
In Fig. 4, we plot the bit error rate (BER) versus pclip

at medium SNR (3 dB) for both stability conditions coming
from (20) and (21). With low clipping probability, BER is
high because the signal power is small compared to the intro-
duced quantization noise power. At large pclip, the modulator
faces instability. Overall, condition 2 with γ = 1.7 performs

best and is retained for the remaining simulations. Similar
conclusions were reached at low and high SNR.

Fig. 4. EVM versus pclip for different stability conditions and γ.

B. Discussion on the design of problem P2

We analyze the impact of the weight w in the objective
function under the scenario “Spatio-temporal P2”. Fig. 5 il-
lustrates the adjacent channel leakage ratio (ACLR) and EVM
tradeoff existing between different choices of w. To determine

Fig. 5. ACLR versus EVM for multiple values of w.

the chosen w, the distance to the intersection between the
asymptotes in EVM → 0% and EVM → ∞% is taken. The
resulting point, w = 10−3, offers an ACLR of 13.9 dB and an
EVM of 3.8%. The target of an ACLR of 45 dB as advocated
by 3GPP [9] is not achieved. Choosing smaller values of
w in hopes of improving ACLR causes significant EVM
degradation. To overcome this issue, temporal oversampling
and higher resolution DACs can be an option.

C. Performance analysis

In Fig. 6, the NTFs for three scenarios (spatial, P1, P2)
are plotted versus the angles and the frequency bins. The
adjacent bands and users are also overlaid on top. Without
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Adjacent band

Fig. 6. NTF level versus angles and frequency bins for scenarios (a) spatial, (b) P1, and (c) P2.

any constraint on OOB emissions, P1 enables deeper notches
on the user locations, and thus better in-band performance
than P2. The spatial-only NTF has no capability of providing
different noise shaping over the frequency axis.

In Fig. 7, the BER curve is plotted for the six scenarios.
The spatio-temporal P1 scenario outperforms its spatial coun-
terpart. When taking into account OOB emissions, as done
with P2, the in-band noise shaping is less sharp and a slight
BER degradation is observed. Finally, raising the resolution
to 2 bits enables the proposed method to come within 2 dB
of the perfect case.

Fig. 7. BER performance between the various scenarios.

V. CONCLUSION

In this work, a spatio-temporal DSM was optimized in
the context of a massive MIMO-OFDM system. A flexible
method balancing between in-band and OOB quantization
noise mitigation was proposed. With large antenna arrays,
simulation results at low resolution show promising BER
performance. However, when it comes to reducing OOB emis-
sions, further investment is required to reach typical targets
set by communication standards. Future works may study
the impact of time-domain oversampling or higher resolution
modulators in hopes of improving ACLR performance.
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