Transtormer-Based Packet Scheduling
under Strict Delay and Buffer Constraints

Sylvain Nérondat*f, Xavier Leturc*, Christophe J. Le Martret*, Philippe Ciblat

*Thales SIX GTS SAS, France
TLTCI, Télécom Paris, IP Paris, 91120 Palaiseau, France
firstname.lastname @ { *thalesgroup.com, Ttelecom-paris.fr}

Abstract—This paper presents a packet scheduler for man-
aging multiple links with varying channel capacities, where
each link carries multiple data flows with finite buffers and
strict delay constraints. Packet loss can result from buffer
overflow or delay violations. We propose a deep reinforcement
learning scheduler based on an encoder-only transformer (EOT)
architecture, capable of handling a variable number of links
without dedicated training. Using deep Q-learning, the scheduler
minimizes the packet loss rate (PLR). Simulations show that our
approach outperforms a state-of-the-art fully connected (FC)
scheduler, delivering better performance under diverse configu-
rations of links, packet arrival rates, and channel capacities.

Index Terms—Deep Reinforcement Learning, Packet Schedul-
ing, Transformer.

I. INTRODUCTION

Packet scheduling is a critical mechanism in communica-
tion systems, determining how data packets are prioritized
and transmitted to ensure efficient resource utilization, low
latency, and high-quality service in increasingly demanding
network environments. This paper proposes a new deep neural
network (NN) architecture for a central packet scheduler that
manages several communication links, each with a specific
channel capacity. We assume that each link supports several
data flows, each with distinct constraints. The packets of each
data flow are stored in dedicated first in, first out (FIFO)
buffers with finite sizes. Each packet is defined by its waiting
time (WT), which is the duration it spends in the buffer since
its arrival. We consider two different kinds of traffic: i) the
delay constraint (DC) traffic for which the WT cannot exceed
a given limit, ii) best-effort (BE) traffic with no constraint. The
constraints considered in this work are: i) finite buffer length,
and 1ii) strict delay constraint for DC traffic. A finite buffer
size can lead to buffer overflow (BO) when new packets arrive
and the buffer is full, while delay violation (DV) may occur
if the packet’s WT exceeds the delay constraint of DC traffic.

Until recently, scheduling algorithms have relied on heuris-
tics. These heuristics were designed to achieve specific objec-
tives: round-robin (RR) aims to distribute resources equally
across all links, proportional fair (PF) seeks to distribute
rates fairly across all links, while the log-rule, exp-rule,
and modified largest weighted delay first (MLWDF) aim
to guarantee bounded delays. These heuristics operate with
limited information on flows and buffers, such as: i) average

or instantaneous data rate, ii) head of line (HoL) delay, defined
as the highest WT, and iii) the number of packets (NP).

More recently, new approaches based on NN architectures
trained using deep reinforcement learning (DRL) have been
proposed to solve the scheduling problem. One advantage of
NN architectures is their ability to accommodate as many
features as desired. This makes it straightforward to increase
the number of features at the input of the NN compared
to heuristics. Moreover, since DRL operates in a model-
free context, it allows for the design of bespoke objectives
through the reward function. The NN architectures take as
input vectors belonging to the state space, which plays a key
role in system performance and is defined by the solution
designer. Most of the schedulers proposed in the literature
(both heuristics and NNs) primarily use the HoL or NP in
the buffers, or both.

In this paper we investigate two new state space models
for the DC traffic. First, an extended version of the HoL
referred to as extended HoL (xHoL) which consists of taking
the HoL value plus its multiplicity, i.e. the number of packets
sharing the HoL value. The state size is increased by one for
each DC buffer compared to the conventional HoL. Second, a
state model that considers the WT information of all packets
in the buffers, referred to as all packet delays (APD). This
state has higher cardinality since it contains more information
than the HoL or xHoL, and is thus expected to have better
performance.

A good NN architecture for a scheduler after training is
expected to verify the following properties:

o It should be permutation equivariant (PE) with regards
to the inputs since this property provides superior per-
formance for both learning and inference phases [1].

o It should adapt to changes in the number of links over
time while maintaining good performance, a property we
denote as number of links independent (NLI).

« It should consider jointly the buffer information of all
users to perform the scheduling in order to provide a
global and thus potentially optimal solution. We denote
this property as global buffer management (GBM).

Note that the terms NLI and GBM are introduced for
the first time in this paper, representing new concepts and
contributions. It is important to emphasize that while the
NLI property enables the architecture to handle a varying

number of links, it does not necessarily guarantee good
performance. The performance depends on factors such as
the training process (algorithm, hyperparameters, dataset...)
and the architecture’s ability to generalize; therefore it must
be validated.

In this paper, we propose a scheduling solution based on
DRL using a NN architecture trained to minimize the packet
loss rate (PLR) due to BO and DV, employing a deep Q-
learning (DQL) algorithm [2]. We have selected an encoder-
only transformer (EOT) architecture that possesses the three
aforementioned properties: PE, NLI, and GBM. The main
contributions of this paper are: i) a synthesis and analysis
of the state of the art (SotA) about DRL schedulers, ii) the
proposal of two new state spaces, iii) the proposal of a DRL
scheduling solution that minimizes the PLR due to BO and
DV using an EOT architecture, iv) the performance evaluation
and comparison of three different state spaces, and v) the
assessment of the generalization capability of the proposed
architecture and the SotA in terms of PLR.

The rest of the paper is organized as follows. Section II
provides an analysis of the SotA. Section III describes the sys-
tem model. Section IV introduces the optimization problem.
Section V is devoted to the implementation of the evaluated
solutions. Section VI presents and analyzes the numerical
results. Finally, concluding remarks are offered in Section VII.

II. STATE OF THE ART OF DRL SCHEDULERS

We analyze the SotA of scheduling solutions based on NN
architectures for which the decision is obtained at the output
of the NN, thus discarding hybrid solutions involving a NN
but for which the decision is left to a heuristic.

One important feature to classify the solutions proposed
in the literature is the way the state vectors are fed at the
input of the NN architecture. Let f;, denote the ng x 1
column state vector of link ¢ where ng is the number of
the state components. We can identify two approaches: i) the
state vectors are defined as single column nyng x 1 vectors
[£5,£5, ..., £ _]7 where T' denotes the transposition op-
erator and ny, is the number of links, ii) the state vectors are
fed in series (one after the other) corresponding to gathering
the vectors into the ng x ny matrix [fo,fs,...,£,, _1]. We
refer case 1) to as vector state input (VSI) and ii) to as matrix
state input (MSI).

The state input characterization is instrumental in explain-
ing the SotA with regards to the three architecture properties
listed in the introduction. We summarize the analysis of the
publications identified in Table I along the following features:
1) the state format, VSI and MSI), ii) the architecture property,
PE, NLI, and GBM, iii) the information used to elaborate the
state space: NP, HoL, xHoL, and APD.

In [3]-[6] the authors use a fully connected (FC) neural
network architecture with a VSI. Since the size of the vector
and thus the size of the NN input depends on njy it thus
cannot be NLI. It is also not PE since shuffling the state
vectors does not provide the same outputs. In contrast, the NN
architecture gets as an input the information of all the links

and consequently is GBM. To get the NLI property while
using the FC, [7] proposes to first select a fixed number of
links using a PF heuristic and then to build a VSI with the
selected links as input to the network. Since a FC is used, the
architecture is not PE and since only a subset of the links are
used to perform the scheduling, it is not GBM.

In [8]-[11] authors use a MSI approach and are thus NLI
by construction since the input size of the NN architecture
depends only on ng. References [8], [9] use a long-short term
memory (LSTM) architecture that involves internal memory
(or hidden states). These solutions are not PE since the
scheduling decision depends on the input order of the state
vectors, and thanks to the memory it can be categorized as
GBM. References [10], [11] use a FC architecture and since
the inputs are processed independently it is thus PE but not
GBM. Notice that in [11] combinations of VSI and MSI have
been evaluated but for the sake of clarity Table I reports the
best solution found.

From the SotA analysis, we deduce that the VSI approach
along with a FC architecture cannot lead to the NLI or PE
property. In [7] a trick is proposed to render the solution NLI
but to the expense of the GBM property. Solutions based on
MSI are NLI by construction but cannot achieve both PE and
GBM at the same time. The solution proposed in this paper
based on a EOT architecture distinguishes itself from the SotA
since it allows to verify the three properties simultaneously.

Regarding the information used in the state vector, all the
references use either HoL or NP, or both. Note that in [9] the
information used is binary, it is equal to zero if the buffer is
empty (i.e. NP = 0) or equal to one otherwise. In this work
we propose two new state spaces, namely xHoL. and APD.

TABLE I
DRL STATE OF THE ART SYNTHESIS.

Archi. property
Ref. State input NLI | PE | GBM State info.
[3] VSI v HoL
[4] VSI v NP, HoL
[5] VSI v NP, HoL
[6] VSI v NP, HoL
[7] VSI v NP
[8] MSI v v NP
[9] MSI v v Iinp)
[10] MSI v v NP, HoL
[11] MSI v v NP, HoL
Ours MSI v v v NP, HoL, xHoL, APD

Regarding the BO and DV constraints we have identified
that [4], [5] consider both BO and DV constraints, [3], [6],
[10], [11] consider the DV constraint, whereas the other
references do not consider such constraints. This information
is not reported in the table due to lack of space.

III. SYSTEM MODEL

‘We consider a communication network with nj, active links
characterized by the two kinds of traffic: DC and BE. For each
traffic of each link, the ingoing packets are stored into FIFO
buffers leading to a total number of ng := 2n;, buffers, where
:= stands for “by definition”. Let £ € {0,...,ny — 1} be the

index of the link, and let p € {0,1} be the index of their
traffic. By convention, we consider that p = 0 (resp. p = 1)
corresponds to DC (resp. to BE). A buffer associated with the
(th link and pth traffic is numbered ¢ := 2/+4p. Consequently,
¢; == |i/2] and p; := ¢ mod 2 where ¢; and p; are the link
and the traffic related to buffer 7. In the rest of the paper, we
use equivalently i or (¢;,p;) for the buffer i.

We assume that a buffer can contain at most B packets.
Packets arriving once a buffer is full are discarded and a BO
occurs, thus leading to packet loss. We define the slot as the
smallest unit of time. Each packet arriving in a buffer has
a WT set to O that is incremented by 1 at each time slot.
Let d;; be the WT of the jth packet in the ith buffer with
j € {0,...,B — 1} assuming that the packets are ordered
in the buffer according to their WT in the decreasing order,
ie. do; > di; > --- > dp_1. By convention d;; = —1
represents an empty entry. For DC buffers, we have d; 20, <
D, where D is the maximum WT granted to a packet, i.e.
the maximum number of slots a packet can be stored in the
buffer. For BE buffers, we have d; 20,11 € {—1,0,1,2,...},
since there is no delay constraint.

Let n; denote the number of packets in buffer ¢ during
a given slot, i.e. the number of entries d;; whose value is
greater than —1. Note that dy; is identified as the HoL of
buffer i. Let nt° represent the number of packet with a delay
equal to do; in buffer i. We note C := {ng,---,n;,, _}, as
the set of channel capacities for the different links, where nj
represents the number of packets that the channel associated
with link ¢ can support for error-free transmission. Finally,
let n¢,,, = maxC. At each slot, a buffer ¢ is selected by
the scheduler. The number of packets transmitted, denoted
as nf := min(ng ,n;), corresponds to the oldest packets
extracted from this buffer and sent through the channel.

For DC traffic, after packet extraction from the buffer, let
ng& represent the number of remaining packets with a WT
equal to D in buffer 2¢;. Since these packets will have a WT
equal to D + 1 in the next slot, thereby violating the delay
constraint, they need to be removed. Such packets are thus
discarded, leading to packet loss. Let also ng, :=nj, +n§£7,
denote the total number of packets that leave buffer 2¢;, either
due to extraction for transmission or due to DV.

For BE traffic, let ”gtzi 4= ngéi 11 denote the total number
of packets that leave buffer 2¢; 4+ 1 solely due to extraction.

Then, the WT of each remaining packet is incremented
by 1, and the number of remaining empty memories in
the buffer is equal to x; = B — n; + n. After that, n]
packets arrive following a Poisson distribution with param-
eter \; € [0, Amax|- We note A := Z?:Qo_l X;. There are
n¢ := max(0,n] — k;) additional discarded packets due to
BO. This process is repeated at each slot.

Our objective is to design a scheduler minimizing the PLR
due to BO and DV.

IV. PROBLEM FORMULATION

The PLR minimization is formulated as minimizing the
number of lost packets due to BO and DV over an in-

finite horizon by modeling the scheduling problem as a
Markovian decision process (MDP). A MDP is characterized
by: i) a set of states sg, ii) a set of actions ay, iii) a
reward r(sg, a, Sg+1) which represents the gain obtained by
transitioning from sj to spy; after taking action ag, and
iv) the transition probabilities satisfying the Markov prop-
erty: PI‘{S/CJr1|Sk7 Ak ySk—1,Qk—15- - - } = Pr{sk+1|sk, ak}.
The agents’ actions are guided by a policy p, such that
ay := p(sk). The goal of the DRL is to determine the optimal
policy p* that maximizes expected discounted return [12]:

+oo
ZVkT(Smak,SkH)] (1)

p* = argmaxE
a k=0

where v € [0,1) is the discount factor. Solving (1) enables
the scheduler to select the optimal action aj = p*(s).

In the following, we define tailored state and action spaces,
as well as a reward function, to model a MDP that addresses
the scheduling problem.

A. State definitions

Since the proposed solution is MSI we define the state
of the system at time k£ by the n; x ny matrix s; :=
ifo,...,f.,—1] where f; is the ny x 1 column state vector
of the ¢th link with ny its number of elements (for the sake
of notation clarity we drop the k index for f;). The value
of ny depends on the considered features to represent the
state vector for both the DC and BE traffics. For the BE
traffic, we always consider the NP in the buffer, i.e. ngpi1.
We also always consider the link capacity as a feature of the
state, i.e. ny. For the DC traffic we consider three different
models as introduced in Section I, hence the state vector can
be written as f; := [fP% nosp1,n§]”7 where £PC° is the
vector composed with the features specific to the DC traffic
for the state space of type x. As a consequence, ny is equal
to the number of entries of fP plus 2. We now define the
fKDC*”” vectors for the three state space models.

1) State-HoL (S-HoL): This model considers the features
used in the SotA, i.e. the NP and the HoL, hence:

£PC-SHol [do,2¢, M12¢) @

In that case we have n; = 4.
2) State-xHoL (S-xHoL): In this model, we slightly im-
prove the S-HoL one by adding the HoL multiplicity, i.e.

nHoL the number of packets having the HoL value:

DC-S-xHoL HoL
fl o= [nQZ) 7d0,2£7n2f]’ (3)

In that case we have ny = 5.

3) State-APD (S-APD): In this model we consider the full
DC buffer information. One possibility is to set the state
vector with all the packet WT values, i.e. [do.2¢; - - -, dB—1,2¢]
of length B. Another possibility is to set the state vector
with the instantaneous distribution of the packet WT values
[Po,2¢,P1,2¢5 - - - s PD+1,2¢]) Of length D + 2 defined as the WT
histogram normalized by B. Both solutions contain the same
information but we propose to use the second one. Indeed, it is
very likely that B > D+-2 and thus the second representation

offers a smaller the size for the input vectors, easing the
implementation and training. Moreover, the size of the link
state is independent of the buffer size. Therefore, we have:

DC-S-APD ,__
fe = [p0,2z,p1,2é, e

s PD+1,2¢]- 4)
In that case we have ny = D + 4. The impact of the state
vector size on the complexity with regard to the state space
models is discussed at the end of Section V.

B. Action space

Let A := {0,--- ,nq — 1} be the action space, i.e. the
set of available actions for the scheduler. The action a; = ¢
corresponds to selecting the buffer ¢ at slot k triggering the
transmission of n} packets over the channel.

C. MDP model

The transition from a state s; to the next state Sg4
depends on the number of extracted packets and the number
of arriving packets in each buffer, represented by the vector
n" := [ng,...,ny,_1]. From the state and action space
definitions in Section IV-A and Section I'V-B, and following
the same approach as in [3], one can prove that the considered
models are MDP since we can identify a transition function
t such that sgy; = t(sg, ax, n”) showing that s depends
only on s; and aj, (details are omitted).

D. Reward

Let 7, be the reward associated with BO that we define as
the opposite of the number of packets discarded due to BO
in the DC and BE buffers for all links:

nr—1

To(Sks Ak Sk+1) = — Z (n3e +n3p11), (&)
£=0

and rg4 be the reward associated with DV that we define as
the opposite of the number of packets discarded due to DV
for the DC buffers for all links:

TLLfl

d
Tq(Sk, Ak, Spy1) = — E Noe- (6)
=0

It is worth noticing that ny and nf in (5) and (6) are taken
at step k.

In order to strongly penalize the loss of packets, we define
the global reward r as the sum of the exponential of both (5)
and (6), which can be written as:

ewrd(Sk,ak,Sk+1) 4 ewro (Sk,ak,Sk+1)

2)

N

7(Sks Gk, Sk1) =

where the parameter w > 0 is a hyperparameter controlling
the behavior of the exponential function.

V. PROBLEM SOLUTION

As explained in Section II, the MSI approach is NLI by
construction but neither a FC nor a NN architecture with
hidden states (such as LSTM) allows to achieve both PE and
GBM at the same time. This is the reason why we propose
to use an EOT architecture [13] that is able to achieve the
three properties. First, it is NLI since we are in the MSI
case. Second the EOT is GBM by construction thanks to
the attention mechanism that combines all the input vectors
through the scale dot product. Third, we render the EOT PE
by removing the positional encoding [14].

Since we are dealing with potentially high dimension state
space (see Section IV), we train the scheduler architecture
using the DQL algorithm proposed in [2]. Thus, the output
of our architecture for each input f; is a 2 x 1 vector Qg
representing the ()-values for the DC and BE traffics. Then,
the buffer to be scheduled is determined by an arg max over
the ny Q-value vectors. In addition, to avoid choosing an
empty buffer, we apply action masking [15] before selecting
an action.

Our architecture is depicted in Fig. 1 and synthesized in
Algorithm 1. The input state vectors are first passed through

f,

-1

11| || ||

£ 1, Qn, o, U Qo
f

ny-1 fl fo f"L—l

f, fo
Fig. 1. The proposed architecture with the EOT.

an affine embedding, £, :== W.f, +b,, where W, is a matrix
of dimensions d. xn ¢, and b, is a vector of dimensions d. x 1.
Note that we assume d. > ny. The d. x 1 vectors f'g are
then entered in the EOT block, see [16] for implementation
details. The EOT performs multi-head attention on H heads
and the size for each head is d,t,. The fully connected feed-
forward network in the EOT has d. inputs, the hidden layer
has d,1, neurons with ReLU activation function, and the
number of outputs is equal to d.. The d. x 1 output vectors f,
of the EOT are then passed through an affine unembedding,
Q = Wuf'g + b,, where W, is a matrix of dimensions
2 x d. and b, is a vector of dimensions 2 x 1. Defining
Q = [Q0(0)7 Q0(1)7 ey Qanl(O), QnL,1(1)], the buffer
i* to be scheduled is then deduced by i* := argmax; Q.
Note that W, b, W,,, and b,, are learned during the training
along with the EOT parameters. Note also that due to the
embedding, the size of the space vectors ns has a very limited
impact on the global complexity. Indeed, the embedding
transforms the ny x 1 vectors into d. x 1 ones with d. > ny
which is a constant regardless of the state model. Thus the
complexity is mainly driven by d..

VI. NUMERICAL RESULTS

This section studies the performance of the different so-
Iutions, FC and EOT, by evaluating their generalization ca-
pabilities with respect to A, ny, and C. To achieve this, we

Algorithm 1: Forward pass of architecture in Fig. 1
Input: {f,}}%;"
Output: ¢* ~
for £ € {0,...,TLL—1}: f, «— W, 1,
{flo, NN afnL—l} — EOT(E‘Q, ce. 7fnLj1)
for £ €{0,...,np — 1} : Qp + W1,
Q — {Qfﬁ B QnL—l}

return ¢* = arg max; Q

train the architectures using fixed values for some of these
parameters and then evaluate their performance by varying
these parameters. For each training and inference, we assume
that the \s are equal for each buffer, with A = A/ng.

A. Training setup

We train the proposed EOT architecture associated with
the three types of states defined in Section IV-A: S-HoL, S-
xHOL, S-APD that are denoted “EOT-HoL”, “EOT-xHoL”,
and “EOT-APD”, respectively in the sequel. For the sake
of comparison with the SotA, we also implemented a VSI
scheduler using a FC trained for the same state spaces,
denoted as “FC-HoL”, “FC-xHoL”, and “FC-APD”.

For the EOT, we select: i) a fixed number of link
ny, = 6, since the architecture is NLI, which corresponds to
ng = 12 buffers, ii) a fixed channel capacity configuration,
C ={1,1,2,2,3,3}. The architecture is trained using 2000
episodes of 7000 steps, with the following parameters: H = 4,
de = dmip = Hdaten = 256, and a learning rate equal to
5x 1074

For the FC, since it is not NLI, we train the architecture
for ny, € {4,6,8,10,12}, thus five different NNs. We assume
that the channel capacities belong to {1, 2, 3}. We characterize
the simulated per link-channel capacities by introducing ng,
whose kth entry corresponds to the number of links with
capacity k. Note that this representation is not equivalent to
C since any arrangement of C leads to the same nj. The
entries of C are drawn to satisfy the n§ indicated in Table IL
Once drawn, the entries of C are sorted in ascending order,
as done for the EOT with n; = 6. Notice that the median
of the Cs obtained using this procedure is always greater or
equal to 2. The architectures are trained using 4000 episodes
of 15000 steps, with the following parameters: two hidden
layers with ReLLU activation functions, 512 neurons per layer,
and a learning rate equal to 5 x 1075,

For all the trainings and both architectures, the schedulers
are trained for A = 1.8, D = 20, and B = 40. The training
parameters are: v = 0.99, a batch size equal to 64, and a target
network update equal to 50 steps. An e-greedy approach is
used for the exploration. The value of € at episode k is given
by €, = max(0.99 X €,_1,0.01), with ¢ = 1.

B. Inference setup

We assess the generalization capabilities of the trained
architectures along two cases: i) with respect to (wrt) A, and
ii) wrt ny, and C.

TABLE II
n° VALUES USED FOR THE TRAINING.
ny || 4 | 6 | 8 | 10 | 12
ng [T5L2,0] [12,2,2] [[3,2,3] | 3,4,3] [[4,4,4]

1) Generalization wrt A: Inferences are conducted with
ng =6and C = {1,1,2,2,3,3} for both EOT and FC, while
A varies within the range [1.5, 1.75]. This allows us to assess
the generalization capability of both architectures wrt A. For
each value of A, the inference is performed over a single
episode consisting of 1 x 10° steps. We verified that the PLR
variance is sufficiently small when using one single episode
with a high number of steps.

2) Generalization wrt ny and C: The inferences are
conducted with A = 1.5 for both EOT and FC, while
varying the number of links, with n;, € {4,6,8,10,12}.
The value of A is adjusted slightly from the training setup
to keep the PLR low for n; = 6, allowing the dynamics
of PLR degradation to be observed for n; > 6. For each
nr, the channel capacities, identical for both architectures,
are drawn from a uniform distribution in {1, 2,3}, and thus
are not sorted unlike during training. To maintain the same
setting as in the training phase, we ensure that the median
of C is greater or equal to two. Furthermore, we ensure
unique channel configurations for each ny. The number of
evaluated channel configurations depends on ny, and is equal
to 38,65, 78,86, 86 for ny, = 4,6, 8,10, 12 links respectively.
In summary, we assess the generalization capability wrt i) the
channel capacities for both architectures, and ii) the number
of links for the EOT, as it is trained only for n; = 6. This
makes the generalization task more challenging for the EOT.
Additionally, the fact that the Cs used for training are sorted,
while those used for inference are not, allows us to evaluate
the impact of the PE property on performance.

C. Performance results

We compare the performance of the inferred schedulers in
terms of PLR, defined as the ratio between the number of lost
packets due to either DV or BO and the number of arrived
packets in the buffers.

1) Generalization wrt A: Fig. 2 depicts the PLR of the
different schedulers versus the sum of arrival rate A. Each
point corresponds to the PLR obtained at the end of the
episode. The following observations can be made. First, the
performance of EOT-APD and EOT-xHoL is very similar,
regardless of A. Second, for A € [1.5,1.65], the EOT-xHoL
and EOT-APD schedulers outperform their FC counterparts.
For example, at A = 1.55, the PLR of the EOTs is approxi-
mately ten times smaller than the FCs. Last, the EOT-xHoL
significantly outperforms the EOT-HoL when A < 1.6 and it
is very close to the EOT-APD. This highlights the benefit of
incorporating the multiplicity of the HoL in the state space.

2) Generalization wrt ny, and C: Fig. 3 shows the PLR of
the different schedulers averaged over the channel capacity
realizations, as a function of the number of links ny. The

101
1072
o
-
o
—— FC-HoL
10-3 FC-xHoL
—m- FC-APD
EOT-HoL
EOT-xHoL
10-4 —e— EOT-APD
1.65 1.70 1.75

Fig. 2. PLR wrt A for n, =6, C = [1,1,2,2,3,3], nf = [2,2,2].

following observation can be made. First, the PLR of the EOT
schedulers is very similar for the three considered state spaces
as soon as ny > 4, and increases monotonically with ny.
Second, the PLR of the FC schedulers varies within the range
[1 x 1072,1 x 107!], regardless of ny, and is consistently
worse than that of the EOT schedulers, despite the fact that
the FC schedulers are specifically trained for each ny. This
highlights the strong generalization capability of the proposed
EOT schedulers. For n;, = 6, both FC and EOT architectures
generalize only wrt the channel capacities. In this case, the
EOT significantly outperforms the FC, which can be attributed
to the PE property of the EOT. For ny, # 6, the EOT continues
to outperform the FC, demonstrating its ability to generalize
with respect to both the channel capacities and the number
of links.

107!

I

FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
103 —e— EOT-APD

4 5 6 7 8 9 10 11 12
Number of links

¥id

Fig. 3. PLR wrt ny, for A = 1.5 and n§ € {1,2,3}.

VII. CONCLUSION

In this paper, we addressed the scheduling problem with
the objective of minimizing the PLR, where packet loss may
result from DV and BO. We considered two types of traffic:
packets with strict DC, and BE packets. As alternatives to
the conventional HoL state space, we proposed the xHoL,
which incorporates the multiplicity of the oldest packet in
the buffer, and the APD, which accounts for the WT of all
packets in the buffer. We introduced a scheduler based on
DQL using an EOT architecture. This architecture is capable
of handling a variable number of links, considers the entire
buffer information, and is permutation equivariant.

Through simulations, we demonstrated that the proposed
EOT scheduler outperforms FC schedulers from the SotA.
Notably, this is true even when comparing the EOT, trained
with a specific number of links, to a FC scheduler specifically
trained for the same number of links. This underscores the
advantages of PE architectures. Training the EOT with a
variety of link counts is expected to further enhance its
generalization performance. Additionally, we observed that
the xHoL state space improves upon the conventional HoL
state space, achieving performance close to that of the APD.

In the future, it would be interesting to study: i) the effect of
training the EOT with several values of ny, ii) the robustness
of the proposed scheduler to random channel, iii) solutions to
perform the scheduling for different resource blocks.

REFERENCES

[1] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdi-
nov, and A. J. Smola, “Deep sets,” Advances in neural information
processing systems, vol. 30, 2017.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, 2015.

[3] Z. Gu, C. She, W. Hardjawana, S. Lumb, D. McKechnie, T. Essery,
and B. Vucetic, “Knowledge-assisted deep reinforcement learning in
5G scheduler design: From theoretical framework to implementation,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 7,
2021.

[4] V. H. L. Lopes, C. V. Nahum, R. M. Dreifuerst, P. Batista, A. Klautau,
K. V. Cardoso, and R. W. Heath, “Deep reinforcement learning-based
scheduling for multiband massive MIMO,” IEEE Access, vol. 10, 2022.

[5] C.Xu,J. Wang, T. Yu, C. Kong, Y. Huangfu, R. Li, Y. Ge, and J. Wang,
“Buffer-aware wireless scheduling based on deep reinforcement learn-
ing,” in IEEE Wireless Communications and Networking Conference
(WCNC), 2020.

[6] T. Zhang, S. Shen, S. Mao, and G.-K. Chang, “Delay-aware cellular
traffic scheduling with deep reinforcement learning,” in IEEE Global
Communications Conference (GLOBECOM), 2020.

[7]1 A. Anand, R. Balakrishnan, V. S. Somayazulu, and R. Vannithamby,
“Model-assisted deep reinforcement learning for dynamic wireless
scheduling,” in Asilomar Conference on Signals, Systems, and Com-
puters, 2020.

[8] A. Robinson and T. Kunz, “Downlink scheduling in LTE with deep
reinforcement learning, LSTMs and pointers,” in /EEE Military Com-
munications Conference (MILCOM), 2021.

[9] F. AL-Tam, A. Mazayev, N. Correia, and J. Rodriguez, “Radio resource
scheduling with deep pointer networks and reinforcement learning,” in
IEEE International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), 2020.

[10] J. S. Shekhawat, R. Agrawal, K. G. Shenoy, and R. Shashidhara, “A
reinforcement learning framework for QoS-driven radio resource sched-
uler,” in IEEE Global Communications Conference (GLOBECOM),
2020.

[11] A. Paz-Pérez, A. Tato, J. J. Escudero-Garzas, and F. Gomez-Cuba,
“Flexible reinforcement learning scheduler for 5G networks,” in 2024
IEEE International Conference on Machine Learning for Communica-
tion and Networking (ICMLCN), 2024, pp. 566-572.

[12] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[14] H. Xu, L. Xiang, H. Ye, D. Yao, P. Chu, and B. Li, “Permutation
equivariance of transformers and its applications,” 2024. [Online].
Available: https://arxiv.org/abs/2304.07735

[15] S. Huang and S. Ontaiién, “A closer look at invalid action masking in
policy gradient algorithms,” arXiv preprint arXiv:2006.14171, 2020.

[16] M. Phuong and M. Hutter, “Formal algorithms for transformers,” arXiv
preprint arXiv:2207.09238, 2022.

