
Joint Scheduling-Offloading policies in
NOMA-based Mobile Edge Computing Systems

Ibrahim Djemai
SAMOVAR, Telecom SudParis, IP Paris

91011 Evry, France
ibrahim.djemai@telecom-sudparis.eu

Mireille Sarkiss
SAMOVAR, Telecom SudParis, IP Paris

91011 Evry, France
mireille.sarkiss@telecom-sudparis.eu

Philippe Ciblat
LTCI, Telecom Paris, IP Paris

91120 Palaiseau, France
philippe.ciblat@telecom-paris.fr

Abstract—We consider a Non Orthogonal Multiple Access
(NOMA)-based wireless network where User Equipments (UEs)
are connected to a Base Station (BS) equipped with a Mobile Edge
Computing (MEC) server. The UEs can process their buffered
data packets with strict delay either locally or by offloading
them to the base station’s MEC server. In order to minimize
the dropped packets due to buffer overflow or delay violation,
the scheduling-offloading problem is formulated as a Markov
Decision Process (MDP) and solved using various optimal and
Reinforcement Learning (RL) algorithms. The output of each
policy is, for each user, the number of packets to be processed
and the type of processing (locally or remotely). The decisions
rely on the channel state information and the buffers states.
The numerical results show the great advantage of using NOMA
compared to Orthogonal Multiple Access (OMA). We further
analyze the scalability capabilities of the used algorithms, which
validates the benefits of using Deep Reinforcement Learning
(DRL) techniques.

Index Terms—Scheduling, MEC, NOMA, MDP, RL

I. INTRODUCTION

Emerging 5G and future generation networks are faced with
new challenges in terms of higher data rates, lower energy and
higher reliability with the ever-increasing number of connected
devices and the exponential growth of mobile data traffic.
To efficiently use the bandwidth resources and enable high
data-rates, Non-Orthogonal Multiple Access (NOMA) was
introduced as a promising technique to replace Orthogonal
Multiple Access (OMA) techniques. It accommodates the
high demands by allowing users to transmit in time and
frequency simultaneously. On the other hand, an increase in
computational complexity is perceived for the new applications
and services at the end devices. As their current processing
power is insufficient to cope with these demands, Mobile-Edge
Computing (MEC) was proposed as a work-around. It allows
the devices to offload their intensive processing to a powerful
computational server located at the Base Station (BS), to be
processed and sent back. As a result, the load on the end
devices can be reduced and their processing sped up whilst
preserving their battery life.

In such NOMA-based 5G system with MEC server at the
network edge, efficient resource allocation-offloading poli-
cies are required to organise the flow of packets and take
advantage of the aforementioned technologies. The policy
controls the actions to be decided by the users to opti-
mize some performance metrics. Sequential Decision Making

(SDM) and Reinforcement Learning (RL) are tools that are
used to devise the best policies in given known or unknown
environments. To mention some of the recent works in this
scope, the authors in [1] proposed a heuristic algorithm that
minimizes the task average execution delay by optimizing
NOMA’s Successive Interference Cancellation (SIC) ordering
and resource allocation in IoT networks. An online packet
offloading algorithm is also developed in [2] that maximizes
the long term system throughput and minimizes the signaling
overhead. A multi-base stations and multi-users framework
is considered in [3] where a multi-agent Deep RL (DRL)
is used to jointly optimize the packet offloading, sub-station
and sub-channel resource allocation, and minimize the en-
ergy consumption in the system. In [4], joint optimization
of offloading policy (including a packet splitting for partial
offloading) and channel resource allocation (i.e. NOMA/OMA
sub-carrier allocation) using DRL is also proposed. Moreover,
a DRL-based online packet offloading in multi-carrier NOMA-
enabled MEC networks is developed in [5] to optimize sub-
carrier allocation. Finally, the work in [6] focused on an
ultra-dense network, with small BSs and clustering, to jointly
optimize user clustering, and resource and power allocation.

In this work, we investigate a multi-user system with
NOMA users and a BS equipped with MEC functionalities.
We aim at devising efficient resource scheduling-offloading
policies that minimize the total packet loss, under the strict
delay constraint for the task, which was introduced first in [7].
Unlike this latter work (which considers only OMA), we allow
NOMA communications. Therefore, this paper focuses on the
benefit of using NOMA when comparing to an OMA-based
scenario, i.e Time Division Multiple Access (TDMA) scenario,
even with the computational complexity that comes with it.
In addition, using sequential decision making methods, we
propose offline optimal and reinforcement learning algorithms,
and show their superior results compared to other naive
scheduling methods. Finally, we experiment with a higher state
space configuration that illustrate how well the used algorithms
scale, and show that Deep Q-Learning is the method of choice
when expanding the system state space.

The remainder of the paper is organized as follows. In
Section II, we describe the system model. In Section III, we
formulate the optimization problem as an MDP and solve it
using various offline and reinforcement learning algorithms.

In Section IV, we present and analyze the numerical results.
Finally, we give some concluding remarks in Section V.

II. SYSTEM MODEL

We consider 2 User Equipments (UEs) served by a BS
with MEC server. The UEs are equipped with buffers to store
the application data that need to be processed within a strict
delay. The decision for offloading or processing locally is
made at the BS level at the beginning of each time slot of
size T s. The decision is then broadcasted to the UEs for
free. Therefore, at each time slot, the UEs process either
their data packets locally using their processor, or remotely
by offloading them to be processed at the BS and then receive
the results. When both UEs offload their packets to the MEC
server, NOMA is considered as the multiple access technique.
In the sequel, we provide more details on the buffer model and
strict delay constraint, the channel model, the NOMA rates in
uplink and downlink, and the scheduling decisions with their
corresponding time constraints.

A. UE Buffer Model

The buffer at each UEi, i ∈ {1, 2}, is modeled as a vector
bi of size Bd. Each position is labeled with the age of the data
packet in it, while -1 is used to represent an empty slot. The
data packets are ordered from oldest to newest, and we refer
to the age of the data packet at time slot n at the position j as
bji [n], therefore we have bji [n] ≥ bj

′

i [n] if j < j′. The number
of packets present in the buffer is denoted qi. Fig. 1 shows
the model described.

𝑏0[𝑛] 𝑏1[𝑛] … 𝑏𝑞[𝑛] −1 −1…

𝑞 Packets in the buffer empty slots

Buffer of capacity 𝐵𝑑 (ordered from oldest to newest)

Fig. 1. Buffer Model

At each time slot, a new batch of data packets di[n] arrives
at the buffer with age 0 and increases after each time step.
The packet arrival is assumed to follow the Poisson Random
Distribution, with mean λd :

p(di[n] = d) = e−λd · (λd)
d

d!
(1)

If the number of empty slots is smaller than number of arrived
packets at a given time, i.e., Bd − qi < di[n], then the
difference number of packets will be dropped due to buffer
overflow. Additionally, after updating the age of the packets
in the buffer, each data packet that reaches the maximum strict
delay K0 will be dropped due to delay violation.

B. Channel Model

The channel between the UEs and the BS is modeled as a
Rayleigh flat-fading channel, with an Additive White Gaussian
Noise (AWGN) of power spectral density N0. The bandwidth
is denoted WDL for the downlink (DL) and WUL for the uplink

(UL). The channel response is constant during a time slot, with
hi the complex amplitude of the channel for UEi, i ∈ {1, 2},
and gi = |hi|2 its gain. We assume no channel correlation
across successive time slots. We model the variation of the
channel gain by the continuous random variables gi = g
following the exponential distribution with mean ξ:

p(g) =
1

ξ
e

−g
ξ (2)

We assume that the BS makes its decision based on a quantized
version of the channel. In practice, the BS broadcasts a training
sequence, the UEs then estimate their channel, and send back
a quantized version in order to limit the size of the overhead.
The quantized channel gain for UEi is defined as g̃i = Q(gi),
where Q is the quantization function and g̃i is the lower value
of the interval in which hi belongs to. We also denote g̃+i as
the upper value of that interval. Notice that g̃+i can be deduced
from g̃i. The finite set of the quantized channel states is G.

C. Non-Orthogonal Multiple Access (NOMA)

NOMA is a multiple access technique that allows the
superposition of UEs signals in time and frequency, using
distinct codes (Code Domain NOMA), or distinct power levels
(Power Domain NOMA), thus achieving a higher spectral
efficiency compared to Orthogonal Multiple Access methods.
Successive Interference Cancellation (SIC) is used to decode
the signals at the receiving side. In our case, we consider
Power Domain NOMA.

Base
Station

UE2

UE1

𝒉𝟏

𝒉𝟐

Downlink

Uplink

SIC

UE2 Signal
Decoding

Substract UE2

decoded signal
from the

received signal

UE1 Signal
Decoding

UE1 Decoded
Bitstream

SIC

UE1 Signal
Decoding

Substract UE1

decoded signal
from the

received signal

UE2 Signal
Decoding

UE1 Decoded
Bitstream

UE2 Decoded
Bitstream

UE2 Signal
Decoding

UE2 Decoded
Bitstream

Fig. 2. Uplink and Downlink NOMA scenarios

1) Uplink Case: In our scenario with 2 UEs, we consider
UE1 to have a better channel gain than UE2 : g̃1 > g̃2. (This
order can be swapped between the UEs at a given time step
as the equations remain the same but with interchangeable
indices. This holds true throughout the article). UEs send their
signals xi with offloading powers P o

i , for i ∈ {1, 2}. The BS
receives a combination of both signals expressed as:

y =

2∑
i=1

√
P o
i hixi + w (3)

where w is the AWGN noise. The BS proceeds into decoding
the signals using SIC, as illustrated in Fig. 2. The obtained
rate expressions are given by the equations below. The use of

g̃+2 in Eq. (4) is to consider the worst-case scenario for the
interference term when calculating the rate for UE1. :

CNOMA, UL
1 = WUL log2

(
1 +

P o
1 · g̃1

P o
2 · g̃+2 +WULN0

)
(4)

CNOMA, UL
2 = WUL log2

(
1 +

P o
2 · g̃2

WULN0

)
(5)

2) Downlink Case: The BS has power Ps, where αiPs is
allocated to UEi with

∑2
i=1 αi = 1. The users UE1 and UE2

receive yi for i ∈ {1, 2}:

x =

2∑
i=1

√
αiPs · xi, yi = hi · x+ wi (6)

With SIC decoding as in Fig. 2, the corresponding rate
expressions are as following, with α1 = α and α2 = 1− α:

CNOMA, DL
1 = WDL log2

(
1 +

αPs · g̃1
WDLN0

)
(7)

CNOMA, DL
2 = WDL log2

(
1 +

(1− α)Ps · g̃2
αPs · g̃2 +WDLN0

)
(8)

D. Scheduling Decisions and Time Constraints

Three different decisions can be made at the beginning
of a time slot n of duration T s: Idle, Local Processing or
Offloading for each UE.

• Idle : The UE will not execute any packet, ui = 0.
• Local Processing : The UE can process locally up to U ℓ

packets during the time slot.
• Offloading : The UE will offload up to Uo packets to the

BS, to be processed and returned, all within the time slot.
In the offloading case, the operation includes 4 phases (trans-
mission, waiting, reception and decoding) indicated in the
equations below, and has to be done within the time slot
duration T s. We distinguish two sub-cases:

• Only one of the users UEi, i = 1 or i = 2, offloads
ui < Uo packets to the MEC server:

ui

(LUL

CTDMA, UL
i︸ ︷︷ ︸

Transmission - P o
i

+ Tw︸︷︷︸
Waiting time

+
LDL

CTDMA, DL
i︸ ︷︷ ︸

Signal reception time

+
1

β
· LDL

CTDMA, DL
i︸ ︷︷ ︸

Decoding time

)
≤ T s (9)

where LUL, LDL are the number of bits transmitted (UL)
and received (DL) respectively, β ∈ (0, 1] is the decoding
efficiency, and CTDMA, UL

i , CTDMA, DL
i are the respective rates

for UL and DL defined by:

CTDMA, UL
i = WUL · log2

(
1 +

P o
i · g̃i

WUL ·N0

)
(10)

CTDMA, DL
i = WDL · log2

(
1 +

P s · g̃i
WDL ·N0

)
. (11)

• Both users offload : In this case, NOMA will be used
and the execution time at each UE will depend on the
NOMA rates previously defined in Eqs. (4, 5, 7, 8).

u1

(LUL

CNOMA, UL
1︸ ︷︷ ︸

Transmission - P o
1

+ Tw︸︷︷︸
Waiting time

+
LDL

min(CNOMA, DL
2 , CNOMA, DL

1)︸ ︷︷ ︸
Signal reception time

+
1

β
· LDL

CNOMA, DL
1

+
1

β
· LDL

CNOMA, DL
2︸ ︷︷ ︸

Decoding time

)
≤ T s (12)

u2

(LUL

CNOMA, UL
2︸ ︷︷ ︸

Transmission - P o
2

+ Tw︸︷︷︸
Waiting time

+
LDL

CNOMA, DL
2︸ ︷︷ ︸

Signal reception time

+
1

β
· LDL

CNOMA, DL
2︸ ︷︷ ︸

Decoding time

)
≤ T s (13)

As described in section II-C, we assume that UE1 has a
better channel gain than UE2, g̃1 > g̃2. Therefore, when
receiving both signals using the slowest rate of the two,
min(CNOMA, DL

2 , CNOMA, DL
1), UE1 has to decode UE2’s signal

before decoding its own signal, which explains the two terms
of the decoding time in Eq. (12). Moreover, by setting the
equality in Eqs. (9), (12) and (13), we can extract the optimal
offloading powers P o, which cannot exceed a threshold Pmax.

III. PROBLEM FORMULATION AND RESOLUTION

A. Problem Formulation
In this section, we formulate our scheduling problem (how

many packets to schedule for computing and at which level:
locally or remotely) as a Markov Decision Process (MDP).
The problem boils down to exhibit policies that minimize
the overall data packet loss due to either buffer overflow or
delay violation. These policies output an action to be made
at the beginning of each time step, given some information
on the system (e.g. channel conditions, number of packets in
the buffer and their age, multiple access). Here the policies
we developed correspond to the optimal ones, based on the
MDP model, as well as those obtained thanks to the model-
free Reinforcement Learning approach.

The MDP models an environment using a state space S, an
action space A, a (state) transition probability matrix T , and
an expected cost matrix C. Consequently, at each time step n,
an agent is at a state s[n], takes an action a[n], leading to a
new state s[n+ 1] according to the matrix T (independent of
time), while receiving a cost c[n + 1]. In our setup, the state
space represents all the useful information required for making
a relevant decision on the scheduling. From that, this space S
contains the information on the buffer and channel status for
both users, and a state is defined as:

s = (b1,b2, g̃1, g̃2), s ∈ S.

The actions are the following ones: offloading packets or
processing locally packets or idle, and the number of packets
ui to be processed for each UEi within the limit defined for
each type (Uo for offload and U ℓ for local).

The problem at hand is considered as MDP, since the
transition from a state s[n] to a state s[n+1] depends only on
the current state s[n] and the current action a[n]. We denote
wi[n] = max(ui[n], ri[n]) as the number of packets that leave
the buffer of user i after taking an action a[n], where ri[n] is
the number of packets that have reached the maximum delay
K0 after incrementing the age of all packets by 1.

The state transition probability for our model is given by:

p(s′|s, a) = p(b′
1|b1, a) · p(b′

2|b2, a) · p(g̃′1) · p(g̃′2) (14)

where p(g̃′i) is the distribution of the channel gain g̃′i, and
p(b′

i|bi, a) is the probability transition between two buffer
states for user i.

We hereafter define the range of possible actions and next
state transitions, where for a state s, each next state s′ and
action a have to satisfy the below-mentioned conditions.

• The offloading powers corresponding to the chosen action
a are less than or equal to the maximum offloading power,
P o
i ≤ Pmax.

• The number of processed packets is less than or equal to
the size of the buffer, ui ≤ qi.

• The age difference between the same buffer slot in the
states s and s′ is less than or equal to 1,

bj
′

i ≤ bji + 1, j = {0, · · · , Bd}.

• The size of the next buffer state is greater than or equal to
the difference between the size of the current buffer and
the number of packets leaving the buffer, q′i ≥ qi − wi.

• The age of the next state packets is bigger than the same
current packets ages by 1,

if bj+wi

i ̸= −1 then bj
′

i = bj+wi

i +1, j = {0, · · · , Bd−wi}.

• The age of the next state packets is less than or equal to
0 for empty slots in the current buffer state,

if bj+wi

i = −1 then bj
′

i ≤ 0, j = {0, · · · , Bd − wi}.

• The empty slots in the current buffer, when wi ̸= 0
packets leave the buffer, have an age of 0 or less in the
next state,

if qi = Bd and wi ̸= 0

then bj
′

i ≤ 0, j = {Bd − wi, · · · , Bd}.

If these conditions are satisfied, the probabilities of transi-
tion for the buffers are given by:

if q′i < Bd then:

p(b′
i|bi, a) = e−λd · (λd)

q′i−qi+wi

(q′i − qi + wi)!

else:

p(b′
i|bi, a) = 1− e−λd

Bd−qi+wi−1∑
j=0

λj
d

j!

We consider the cost function as an infinite-horizon dis-
counted function (with factor γ) taking into account the packet
losses. Therefore, we get

J(π) = lim
N→∞

Eπ
[N∑
n=0

γn(cv(s[n], a[n]) + co(s[n], a[n])
]
(15)

where
• π is the policy for which the cost function is evaluated.
• cv(s[n], a[n]) = w1[n] − u1[n] + w2[n] − u2[n] is the

instantaneous cost due to delay violation, i.e. the number
of packets that reach the maximum delay K0 and are
discarded.

• co(s[n], a[n]) =
∑

i∈{1,2}
∑+∞

j=Bd−qi[n]+wi[n]+1(qi[n] −
wi[n] + j − Bd) · e−λd · (λd)

j

j! is the instantaneous cost
due to buffer overflow, which is the number of arrived
packets following the Poisson distribution that could not
enter the buffer.

Our goal is to find the optimal policy π⋆ according to the
minimization of the cost function defined in Eq. (15):

π⋆ = argmin
π

J(π). (16)

B. Problem Resolution
To solve this optimization problem, we use a variety of Se-

quential Decision Making SDM algorithms. SDM techniques
are aimed at producing the best policies π that optimize the
behavior of an agent in a given environment.

Model-based methods, e.g. Value Iteration (VI) and Policy
Iteration (PI), rely on full knowledge of the environment
dynamics (Transition model T and Cost model C) to produce
the optimal policy π⋆ in an offline procedure. In the case of
VI, the optimization is executed by incrementally improving
a randomly initialized value function V (s) (a function that
estimates the quality of being at each state) using the Bellman
equation until converging to the optimal solution with a
stopping criteria. It is described by the following equation:

V k(s) = min
a∈A

(
C[s, a] + γ

∑
s∈S

T [s′|s, a] · V k−1(s′)
)

(17)

where V k(s) takes the minimum value possible by an action
a at iteration k.

As for PI, the algorithm runs two phases iteratively until
convergence: Policy Evaluation and Policy Improvement. The
first phase evaluates the value function at iteration k using the
previous iteration quantities of the value function V k−1(s) and
the policy πk−1(a|s). It is described as following:
V k(s) =

∑
a∈A

πk−1(a|s)
(
C[s, a] + γ

∑
s∈S

T [s′|s, a] · V k−1(s′)
)

(18)
The second phase improves on the policy πk(a|s) by choosing
the actions a that minimize the value function at each state
s according to Eq. (19). The algorithm converges when the
policy stops changing, π⋆ = πk = πk−1:

πk(a|s) =

1 if a = argmin
a∈A

V k(s)

0 otherwise
(19)

On the other hand, model-free methods, e.g. Q-Learning (QL),
attempt to explore the environment to fill its state-action value
matrix Q(s, a). Similar to the value function, the state-action
value function estimates the quality of being in a given state
and taking a given action. The process is done in a trial-
and-error manner, where a balance between exploration and
exploitation is needed using the exploration rate ϵ to insure
convergence after enough episodes. An episode corresponds to
a sequence of time step starting from a random state with no
terminal state in the system. Obviously, the Q(s, a) obtained
at the end of an episode carries over to the beginning of
the next episode. The update for the state-action value matrix
Qnew(s, a) is detailed in the equation below:

Qnew(s[n], a[n]) = Qold(s[n], a[n])

+ℓ·
(
c[n+1]+γ ·max

a′∈A
Qold(s[n+1], a′)−Qold(s[n], a[n])

)
(20)

The action a[n] is chosen using an ϵ-Greedy approach, which
selects the best available action with probability 1 − ϵ and a
random action otherwise. c[n + 1] is the instantaneous cost
(sum of dropped packets) after following action a[n] and
transitioning to a new state s[n + 1]. ℓ is the learning rate
that scales the correction step taken at each update.

Another variant is Deep Q-Learning (DQN) [8], a method
that approximates the state-action value function using Neural
Networks (NN). It scales well to larger state spaces as we shall
demonstrate in the simulation results.
The training of the NN, called the Evaluation Network (EN),
is done using a secondary network, called the Target Network
(TN). The TN is a frozen copy of the EN and gets updated
every few episodes to ensure the stability of the training and
the convergence of the EN. The agent is run through the
environment, where the current state s[n] is fed to the EN with
a set of parameters θ. The EN outputs the state-action values
qθ(s[n], a[n]), and an action a[n] is extracted following the ϵ-
Greedy approach. The tuple (s[n], a[n], c[n+1], s[n+1]) gets
stored in an over-writable data buffer to be used later. Once
the buffer is filled sufficiently, a batch of randomly sampled
tuples are chosen from it and exploited at the TN with the
set of parameters θ̂ to calculate the quantity for each item in
the batch qθ̂(s[n+ 1], a[n+ 1]). This quantity is then used to
calculate the Bellman step for qθ̂(s[n], a[n]) as follows:

qθ̂(s[n], a[n]) = c[n+1]+γ ·max
a∈A

qθ̂(s[n+1], a[n+1]) (21)

We compute the Mean Square Error (MSE) loss between
qθ̂(s[n], a[n]) and qθ(s[n], a[n]), denoted as L(qθ, qθ̂), and we
use it to update the weights of the EN with the mini-batch
gradient descent method and a learning rate ℓ.

IV. NUMERICAL RESULTS

We consider a buffer of size Bd = 3, a maximum delay
K0 = 2 and a time slot duration of T s = 1 ms. The
maximum packets that can be offloaded is Uo = 3, while
the maximum that can be executed locally is U ℓ = 1. The
offloaded packets are of size LUL = 1000 bits and are
sent with an offload power not exceeding Pmax = 2 mW

through a quantized Rayleigh-faded channel with m = 3
channel gain states G = {−20,−1.487, 1.492} dB. Uplink
and downlink bandwidths are set to WUL = 1 MHz and
WDL = 5 MHz, respectively. The channel noise spectral
density is N0 = −87 dBm/Hz. We consider Tw = 0.1 ms.
The size of the packets in downlink is LDL = 100 bits
and these packets are sent back to the UEs with a power
P s = 50 W and a power allocation coefficient α = 0.5 (in
the case of NOMA). The decoding efficiency β is set to 1.

Concerning the algorithms, the stopping criterion for the
iterations on the Value Iteration algorithm is a gap on value
function update of δ = 10−7. In addition, the Q-Learning
was trained over 5 · 104 episodes of 5000 time steps, and
the learning rate ℓ is decayed linearly, from 10−2 to 10−3.
The Deep Q-Learning (DQN) was trained over 103 episodes
of 5000 time steps, with a fixed learning rate ℓ = 5 · 10−3,
a buffer size of 256 · 102 tuples, and a batch size of 256.
Moreover, the used NN was a Multi-Layer Perceptron (MLP)
with 3 hidden layers of 64 neurons. Both QL and DQN use
an exploration rate ϵ that decreases exponentially along the
training, from 1 to 0.01, to achieve better exploration of the
environment. The discounted factor γ is set to 0.99.

In following figures, we consider the next algorithms: Value
Iteration (VI), Policy Iteration (PI), Q-Learning (QL) and Deep
Q-Learning (DQN), compared to some naive methods. These
naive methods are: naive local (NL), where the UEs are only
allowed to execute their packets locally, naive offload (NO),
where the UEs can only offload their packets to the MEC
server, and naive random (NR), where the UEs choose a
random action at each time step. The figures display the overall
discount cost averaged over 103 episodes of 20000 time steps.

In Fig. 3.top, we consider the NOMA case, i.e. both UEs
can offload at the same time. We remind that VI and PI are
optimal. We notice that Q-Learning and Deep Q-Learning offer
remarkable performance while they are model-free, With Q-
Learning performing better than Deep Q-Learning (since the
latter is an approximation of the former). Previous algorithms
outperform the naive methods, proving the effectiveness of
using a sequential decision making or a reinforcement learning
approach.

In Fig. 3.bottom, we consider only the TDMA case, where
only one UE is allowed to offload at a given time while the
other one can still process its packets locally. We have similar
comments except that the Q-Learning and Deep Q-Learning
achieve the optimality since the space to explore is strongly
reduced without NOMA operations.

However, there is a noticeable difference between the per-
formances of the used SDM techniques in the NOMA setting
and the TDMA setting. Indeed, the introduction of NOMA in
the system improves the overall discounted cost, and gives a
cost up to 1.8 times lower compared to TDMA. Therefore, we
showcase that the use of NOMA is beneficial for our system,
even with a higher state space configuration, hence a slower
convergence time.

In Fig. 4, we plot a pie chart for the percentage of the
different actions taken by each algorithm. For instance, Value

and Policy Iteration take opposite approaches, in the sense that
Policy Iteration prefers local operations and offloading without
NOMA, whereas Value Iteration has an “offload while you
can” method utilizing more NOMA. Q-Learning and Deep
Q-Learning balance the processing actions between local and
offload. Therefore, NOMA is not used as often as in Value
Iteration or rarely as in Policy Iteration.

We increase the state space size by considering a buffer size
Bd = 4, a number of channel states m = 4, and a maximum
packets delay K0 = 3. The resulting state space is of size
78400 possible states compared to 3600 in the previous setup.
Fig. 5 shows the scalability performance of Q-Learning and
Deep Q-Learning (PI and VI are not included as they take
exponentially longer time to converge). We can see that DQN
still performs better than the naive methods, while Q-Learning
falls behind the Naive Offload method. This result affirms
that the use of Deep Q-Learning is essential when scaling
the system setup.

0 0.5 1 1.5
0

20

40

60

80

100

120

λd: Average Packet Arrival Rate

To
ta

l
D

is
co

un
te

d
C

os
t

(1)

VI
PI
QL

DQN
NO
NL
NR

0 0.5 1 1.5
0

20

40

60

80

100

120

λd: Average Packet Arrival Rate

To
ta

l
D

is
co

un
te

d
C

os
t

(2)

VI
PI
QL

DQN
NO
NL
NR

Fig. 3. Total discounted cost averaged over 1000 episodes vs average packet
arrival rate λd, with NOMA (1/top), and TDMA (2/bottom)

V. CONCLUSION

This paper introduced the problem of jointly optimizing
scheduling and offloading in a NOMA environment with 2
UEs and a MEC server at the base station. It is solved by
using sequential decision making methods including optimal
value iteration/policy iteration algorithms and other model-
free reinforcement learning algorithms. In that context, NOMA
technique has offered better performance than TDMA. Never-
theless, if the state space gets larger, scaling issue will arise
with some of the used algorithms, which makes the use of
Deep Q-Learning ever more important in larger systems.

1

37.10%

227.46%

3
1.25%

4

34.19%

4

34.25%

3
5.11%

2 23.54%

1

37.10%

VI

User1 User2

1

5.56%

2

34.02%

326.22%

4

34.19%

4

34.25%

3 36.75%

2

23.44%

1

5.56%

PI

User1 User2

1

13.02%

2

36.42%

3
16.34%

4

34.22%

4

33.42%

3 26.18%

2

27.38%1

13.02%

QL

User1 User2

1

17.57%

2

31.34%

3
18.85%

4

32.25%

4

32.64%

3
21.07%

2

28.72%
1

17.57%

DQN

User1 User2

Fig. 4. Pie Chart of the percentage of actions taken during an episode with
λd = 1.0 for VI (NW), PI (NE), DQL (SW), and QL (SE) algorithms. (1/red)
= NOMA, (2/gray) = Regular Offload, (3/orange) = Local, (4/green) = Idle

0 0.5 1 1.5
0

20

40

60

80

100

λd: Average Packet Arrival Rate

To
ta

l
D

is
co

un
te

d
C

os
t

QL
DQN
NO
NL
NR

Fig. 5. Performance of Reinforcement Learning Algorithms : Q-Learning
(QL) and Deep Q Learning (DQN) with a Bigger State Space Configuration
(Bd = 4,m = 4,K0 = 3)

REFERENCES

[1] L. P. Qian, A. Feng, Y. Huang, Y. Wu, B. Ji, and Z. Shi. Optimal SIC
Ordering and Computation Resource Allocation in MEC-aware NOMA
NB-IoT Networks. IEEE Internet of Things Journal, 6(2):2806–2816,
2018.

[2] M. Hua, H. Tian, X. Lyu, W. Ni, and G. Nie. Online Offloading
Scheduling for NOMA-aided MEC under Partial Device Knowledge.
IEEE Internet of Things Journal, 2021.

[3] W. Liu, Y. He, J. Zhang, and J. Qiao. Deep Reinforcement Learning-
Based MEC Offloading and Resource Allocation in Uplink NOMA
Heterogeneous Network. In 2021 Computing, Communications and IoT
Applications (ComComAp), pages 144–149. IEEE, 2021.

[4] T.P. Truong, T. Nguyen, W. Noh, S. Cho, et al. Partial Computation
Offloading in NOMA-assisted Mobile-Edge Computing Systems Us-
ing Deep Reinforcement Learning. IEEE Internet of Things Journal,
8(17):13196–13208, 2021.

[5] M. Nduwayezu, Q.-V. Pham, and W.-J. Hwang. Online Computation
Offloading in NOMA-based Multi-access Edge Computing: A Deep
Reinforcement Learning Approach. IEEE Access, 8:99098–99109, 2020.

[6] L. Li, Q. Cheng, X. Tang, T. Bai, W. Chen, Z. Ding, and Z. Han.
Resource allocation for NOMA-MEC Systems in Ultra-Dense Networks:
A Learning Aided Mean-Field Game Approach. IEEE Transactions on
Wireless Communications, 20(3):1487–1500, 2020.

[7] I. Fawaz, M. Sarkiss, and P. Ciblat. Delay-optimal Resource Scheduling
of Energy Harvesting-based Devices. IEEE Transactions on Green
Communications and Networking, 3(4):1023–1034, 2019.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

