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Abstract—Distributed estimation systems enable nodes to esti-
mate a target parameter in a collaborative manner. These systems
are useful in sensor networks or distributed machine learning.
Here, we explore distributed estimation in graph-connected net-
works without a fusion center, where nodes exchange information
with neighbors to estimate this target parameter synchronously.
Due to packet collision, there is a tradeoff between the number of
exchanges and the quality of these exchanges. To fix this issue, we
propose to activate the nodes randomly. The main contribution
of the paper is to determine an activation rate offering a good
target estimation quality as fast as possible.

Index Terms—Distributed estimation, stochastic activation,
consensus.

I. INTRODUCTION

We focus on systems without a fusion center, where sensors
are connected by an undirected, self-loop-free graph. Each
node observes a noisy version of the target parameter θ and
exchanges data with its neighbors to improve its estimation
performance. The objective of each node is to collect sufficient
information on θ spread through the other nodes. If the
samples depend linearly on θ, the objective for all nodes is
to achieve an average consensus, corresponding to the mean
of the collected samples.

To reach this average consensus, two node activation strate-
gies exist: i) the asynchronous strategy, where the activation is
random and in practice restricted to a single sensor or, at most,
a pair of sensors at a given time. With this strategy, there is no
packet collision but the number of exchanges per unit of time
is inherently small which leads to a slow convergence rate. The
main advantage is the absence of coordination between nodes
for synchronization. In that setting, algorithms like Random
Gossip [1], [2] and Broadcast Gossip [3] have been developed
and extensively studied over some imperfect configurations,
such as directed graphs [4], [5], link failures [6], and unstable
sensors [7]. The broadcast gossip leverages the broadcast
nature of wireless channels but even if it converges to a
consensus, the consensus does not correspond to the sample
average. To overcome this issue, a Push-Sum approach has
been developed in that wireless context by [8] inspired by
[9]. Extensions to scenarios with link failures have been
explored in [10]. Analyses of the convergence rate of this
Push-Sum approach have been conducted in [11], [12]. ii) the
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synchronous strategy where the activation is synchronous and
may be coordinated, for instance, through Global Positioning
System (GPS). In that case, we assume nodes operating in full-
duplex mode. During each time slot, all nodes simultaneously
transmit and receive, which may lead to packet collisions at
the receiver side even with a multi-user detector. Therefore,
an activation policy is required to balance data transmission
and collision risk.

The goal of the paper is thus to provide a stochastic node
activation mode in a synchronous strategy that minimizes
the Mean Square Error (MSE) of the target parameter as
quickly as possible. To achieve this, we propose applying
Push-Sum approach along with an independent identically-
distributed Bernoulli activation distribution process with an
common activation rate of (1− γ). We also propose a simple
way to design γ by establishing a link between the theoretical
convergence rate (given in [11]) and γ. Numerical results show
the effectiveness of the proposed stochastic activation principle
and the designed γ. They also show that using an averaged
optimized γ, which depends only on the stochastic properties
of the graph rather than on individual graph realizations,
performs comparably to a graph-dependent γ.

The rest of this paper is organized as follows: the system
model is introduced on Section II. Push-Sum approach with
stochastic activation is proposed in Section III. The design of
γ based on the convergence rate of the Push-Sum is given in
Section IV. Numerical results are in Section V. Concluding
remarks are drawn in Section VI.

II. SYSTEM MODEL

We consider a network of K full-duplex sensors modeled
as an undirected connected simple graph G = (K, E) where K
is the set of sensors, and E is the set of links between sensors.
Let Kk denote the set of neighbors of sensor k. We also define
A as the adjacency matrix of the graph G.

a) Node activation: the wireless network operates syn-
chronously with a subset of nodes active at each time slot,
communicating only with neighbors. We define the activation
vector ct ∈ {0, 1}K at time t as

ct , (c1,t, c2,t, . . . , cK,t)
ᵀ
, (1)

where ck,t = 1 if sensor k is activated at time t, and 0
otherwise. Superscript (.)ᵀ stands for matrix transposition. We



denote by K̃k,t ⊆ Kk the set of the activated neighbors of
sensor k at time t, and K̃k,t , |K̃k,t| its cardinality.

b) Communication failure: receiving nodes may fail to
decode the packets sent by its neighbors. It means that the
multi-packets detector did not succeed sometimes to recover
each packet. We define the collision-free vector st ∈ {0, 1}K
at time t as

st , (s1,t, s2,t, . . . , sK,t)
ᵀ, (2)

where sk,t = 1 if sensor k has correctly decoded all the
packets, i.e., is collision-free, and 0 otherwise. We assume that
sk,t follows a independent (over k and t) Bernoulli distribution
with success probability (1 − pk,t). We model the failure
probability pk,t as an increasing function of the number of
active neighbors of sensor k at time t. Therefore we get

pk,t = 1− f(K̃k,t), (3)

where f : N 7→ [0, 1] is a monotonically decreasing function.
The exact form of f depends on the physical layer protocol
and is beyond the scope of this work.

We also assume that a sensor not succeeding to decode
its received packets broadcasts a negative-acknowledgment
(NACK) message to all its neighboring nodes which become
aware of the communication failure. We denote K′k,t ⊆ Kk
the set of collision-free nodes neighboring to node k at time
t, and K ′k,t = |K′k,t|.

c) Sensor observations and estimations: we consider
each sensor gets one noisy sample linearly dependent of the
target parameter θ as follows

yk = θ + εk (4)

where εk is i.i.d. and follows a zero-mean Gaussian distribu-
tion with variance σ2.

In centralized setting, according to Eq. (4), the minimum
variance unbiased estimate is

xavg =
1

K

K∑
k=1

yk.

The objective of the distributed estimation algorithm is to share
xavg at each node after convergence. This algorithm is iterative
and we denote by xk,t the shared information (equivalently,
the estimate of θ) at sensor k and time/iteration t. Obviously,
we have xk,0 = yk. Consequently, we force the distributed
algorithm to satisfy both properties:
• (P1) Average conservation: the average xavg,t =

(1/K)
∑K
k=1 xk,t at each time is equal to xavg,0 = xavg .

• (P2) Consensus: after convergence, each sensor shares
the same value xc. Due to P1, it can be proven that
xc = xavg . Consequently, after convergence, each sensor
knows the best centralized estimate.

We define the MSE at time t as

MSEt , E
[
1

K
‖xt − θ · 1‖2

]
, (5)

where xt = (x1,t, . . . , xK,t)
ᵀ and 1 = (1, . . . , 1)ᵀ.

According to P1 and P2 as well as the model given by
Eq. (4), one can easily prove that

MSEt =
1

K
MSE′t +

σ2

K
(6)

where MSE′t = E[‖xt − xavg.1‖2], (σ2/K) comes from
E[|xavg−θ|2] and the cross-term vanishes since

∑K
k=1(xk,t−

xavg) = 0.

III. BROADCAST PUSH-SUM APPROACH WITH
STOCHASTIC ACTIVATION

The goal of this section is to exhibit a distributed algorithm
satisfying P1 and P2 even in presence of packet collision.

One approach is to combine linearly the received samples
at each sensor, i.e., xt+1 = Gt · xt where Gt depends on
the chosen algorithm. In that case, P1 and P2 are satisfied if
and only if Gt is doubly-stochastic at any time t. Due to the
collision, Gt may loose its initial double-stochastic property.
To overcome this issue, the nodes involved in the collision
should be removed in advance to work on a subgraph during
one iteration. But it is impossible since the collision is not
known in advance. Retransmission may be done but during a
specific iteration and this additional iteration requires a global
coordination which is not advocated. Therefore algorithms
based on xt+1 = Gt · xt are not appropriate.

Actually, the appropriate approach is the so-called Push-
Sum introduced in [8], [9]. These algorithms update two vari-
ables per node: vk,t (initialized by xk,0) and wk,t (initialized
by 1). The variable related to the average xk,t is obtained
by dividing vk,t by wk,t, assuming wk,t 6= 0. Therefore, the
update process can be expressed as

vt+1 = Gt · vt, wt+1 = Gt ·wt, xt+1 = vt+1/wt+1,

where Gt is the update matrix, vt = (v1,t, v2,t, · · · , vK,t)ᵀ,
wt = (w1,t, w2,t, · · · , wK,t)ᵀ, and division is elementwise.

To ensure P1 and P2, the update matrix Gt in the Push-Sum
approach have to meet the following conditions [13]: (C1)
they are column-stochastic, and have strictly positive diagonal
entries, (C2) they are chosen through an i.i.d. process, and
(C3) the average update matrix E [Gt] is primitive.

Now, we will design Gt adapted to the synchronous strategy
with random collisions and stochastic activation. For the
stochastic activation scheme, we consider an i.i.d. (over k and
t) Bernoulli process with activation probability (1−γ). Notice
that γ is the same for any node for the sake of simplicity. At
time 0, we set vk,0 = yk = xk,0 and wk,0 = 1. At time t,
• with probability (1− pk,t), node k updates its data as

vk,t+1 =
∑

`∈K̃k,t∪{k}

hk,`,t · v`,t, (7)

wk,t+1 =
∑

`∈K̃k,t∪{k}

hk,`,t · w`,t. (8)

• with probability pk,t (which corresponds to collision
event), node k updates its data as

vk,t+1 = hk,k,t · vk,t, wk,t+1 = hk,k,t · wk,t. (9)



where, for a given ` ∈ [K] and k ∈ K′`,t, hk,`,t is defined as

hk,`,t =


1

K` + 1
if k 6= `,

Kk −K ′k,t + 1

Kk + 1
if k = `, node k activated,

1 if k = `, node k inactivated.
(10)

Then, the entries of Gt, denoted by gk,`,t, are equal to hk,`,t
if this last term is involved in Eqs (7)-(9). It is easy to check
that C1 holds, that C2 is satisfied since activation and collision
processes are i.i.d., and that C3 is satisfied since the support
of E[G] is those of (I+A) where I is the identity matrix.

IV. ACTIVATION RATE DESIGN

The goal of this section is to characterize γ with respect
of the properties of the graph and the proposed algorithm in
Section III. Based on Eq. (6), the MSEt is directly connected
to MSE′t. Therefore, hereafter, we exhibit a mathematical
relationship between γ and MSE′t.

In [11], it is proven that, for t large enough, logMSE′t is well
approximated by an upper bound described by a decreasing
affine function whose the absolute value of the slope (in the
rest of the paper, called “slope”) is given by

ω , − log
(
ρ
(
E [Gt ⊗Gt] · (J⊥ ⊗ J⊥)

))
, (11)

where ρ(·) is the spectral radius, and J⊥ , I − 1
N 11ᵀ.

Consequently, we would like to design γ as the maximum
of ω. For this purpose, we derive ω in closed-form partially
by establishing an expression for E [Gt ⊗Gt].

For the sake of simplicity, we now omit the index t as all
matrices since they are i.i.d.. The entries of E [Gt ⊗Gt] are
Gk,`,k′,`′ , E [gk,` · gk′,`′ ]. We have

gk,` =


ãk,`

K` + 1
if k 6= `,

1−
∑K
k1=1 ãk1,`

K` + 1
if k = `,

(12)

with ãk,` = skak,`c`. For the expression of Gk,`,k,`′ (short-
ened in G), we have three subcases:
• Case 1: k 6= ` and k′ 6= `′.

G =
1

(K` + 1)(K`′ + 1)
E [ãk,` · ãk′,`′ ] . (13)

• Case 2: k = ` and k′ 6= `′ (or k 6= ` and k′ = `′).

G =
1

K`′ + 1
E [ãk′,`′ ]

− 1

(K` + 1)(K`′ + 1)

K∑
k1=1

E [ãk1,` · ãk′,`′ ] . (14)

• Case 3: k = ` and k′ = `′.

G = 1− 1

K` + 1

K∑
k1=1

E [ãk1,`]−
1

K`′ + 1

K∑
k′1=1

E
[
ãk′1,`′

]
+

1

(K` + 1)(K`′ + 1)

K∑
k1=1

K∑
k′1=1

E
[
ãk1,` · ãk′1,`′

]
. (15)

According to Eqs. (13)-(15), we need to calculate E[ãk,`]
and E[ãk,` · ãk′,`′ ].

Let us begin with the term E[ãk,`]. For a given pair of
(k, `) ∈ [K]2, we have

E[ãk,`] = ak,`E [sk|c` = 1]P(c` = 1). (16)

We recall that sk follows Bernoulli distribution with a success
probability depending on the number of active neighbors
K̃k and the function defined in Eq. (3). We only calculate
E [sk|c` = 1] for the case where ak,` = 1 as E[ãk,`] is non-
zero only when ak,` = 1. We thus obtain

E[ãk,`] = ak,`(1− γ)

·
Kk∑
m=1

E
[
sk|c` = 1, K̃k = m

]
P(K̃k = m|c` = 1)

= ak,`

Kk∑
m=1

(
Kk − 1

m− 1

)
f(m)(1− γ)mγ(Kk−m). (17)

The summation starts with 1 as node ` is assumed to be
active, and nodes k and ` are connected. The random variable
(sk|c` = 1, K̃k = m) thus follows Bernoulli distribution
with success probability f(m). We also use the fact that
for ` ∈ [K], the activation of node ` follows Bernoulli
distribution with success probability 1−γ, making the random
variable (K̃k|c` = 1) binomial-distributed B(Kk, 1 − γ), i.e.
for 1 ≤ m ≤ Kk,

P(K̃k = m|c` = 1) =

(
Kk − 1

m− 1

)
(1− γ)(m−1)γ(Kk−m).

Let us continue with the term E[ãk,` · ãk′,`′ ]. For two pairs
(k, `) ∈ [K]2 and (k′, `′) ∈ [K]2, we have

E[ãk,` · ãk′,`′ ] = ak,`ak′,`′E [sksk′ |c`c`′ = 1]P(c`c`′ = 1).

Since sk and sk′ are independent when k 6= k′, and c` and c`′
are independent when ` 6= `′, we have

E[ãk,` · ãk′,`′ ] =

ak,`ak′,`′E[sk|c`c`′ = 1]E[sk′ |c`c`′ = 1](1− γ)2,
if k 6= k′, ` 6= `′,

ak,`ak,`′E[sk|c`c`′ = 1](1− γ)2, if k = k′, ` 6= `′,

ak,`ak′,`E[sk|c` = 1]E[sk′ |c` = 1](1− γ),
if k 6= k′, ` = `′,

ak,`E[sk|c` = 1](1− γ), if k = k′, ` = `′.

(18)

As E[sk|c` = 1] is calculated in (17), we only need to
calculate E[sk|c`c`′ = 1] for the case ak,` = 1 and ak′,`′ = 1.
We first consider the case that k 6= k′ and ` 6= `′. If node k
and `′ are not connected, i.e. ak,`′ = 0, we obtain

E[sk|c`c`′ = 1] = E[sk|c` = 1]. (19)

If ak,`′ = 1, node k has at least two active neighbors, then

E[sk|c`c`′ = 1] =
Kk∑
m=2

(
Kk − 2

m− 2

)
f(m)(1− γ)(m−2)γ(Kk−m). (20)



Therefore, when k = k′ and ` 6= `′, we have ak,`′ = ak′,`′ =
1, so Eq. (20) still holds. By combining both above-mentioned
cases, we obtain the following result.

E[ãk,` · ãk′,`′ ] =

ak,`ak′,`′F1+ak,`′ (Kk)F1+ak′,`(Kk′)(1− γ)2

if k 6= k′, ` 6= `′,

ak,`F1(Kk)(1− γ), if k = k′, ` = `′,

ak,`ak′,`F1(Kk)F1(Kk′)(1− γ),
if k 6= k′, ` = `′,

ak,`ak,`′F2(Kk)(1− γ)2, if k = k′, ` 6= `′.

(21)

where

Fi(K) ,
K∑
m=i

(
K − i
m− i

)
f(m)(1− γ)(m−i)γ(K−m). (22)

Finally, the term E [Gt ⊗Gt] can be obtained by putting
Eq. (17) and Eqs. (21)-(22) into Eqs. (13)-(15). The term γ
may be now obtained by calculating numerically the spectral
radius of a matrix whose the closed-form expressions have
been provided above.

V. NUMERICAL RESULTS

The considered underlying graphs are Random Geograph-
ical Graphs (RGG) [13], which are generated as follows:
first, we select K points uniformly within the unit square
[0, 1] × [0, 1] to represent the locations of the sensors. Then,
we connect any two sensors with an undirected edge if they
are within a specified radius r, which corresponds to the
communication range.

Simulations are conducted with K = 10 nodes and r = 0.4.
We generate 100 connected RGGs. On each graph, we run
2000 distributed estimation algorithm with the same x0. This
operation is repeated 100 times by changing x0. We fix the
target parameter θ = 2 and the noise variance σ2 = 1. For
the function of communication success probability in Eq. (3),
we choose f(•) = e−αmax{•−1,0}. It means that we consider
an exponential decay with respect to the size of the neighbors
in terms of performance. But perfect transmission is assumed
when a node has at most one active neighbor since f(1) = 1.
We evaluate the following metrics per underlying graph:
• Slope: obtained by doing a linear regression on t 7→

log(‖xt − xavg · 1‖2) by keeping these values below −2
when these values are obtained for one underlying graph
but tested for the 100 initializations with 2000 realizations
of the algorithm each.

• ω: obtained by numerically evaluating Eq. (11) through
Eqs.(17) and (21) for one underlying graph.

• Empirical ω: obtained by numerically evaluating
Eq. (11) by replacing the expectation with the empirical
mean of Gt ⊗Gt.

In Fig 1, we plot the average over all the considered
underlying graphs of the slope, ω and the empirical ω versus
γ for α = 0.5 (left) and α = 1 (right). The curves of ω
and the empirical ω well coincide validating our derivations
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Fig. 1: Average slope, ω and empirical ω versus γ for α = 0.5
(left) and α = 1 (right).

of E [G⊗G]. We observe that ω has a big and similar
impact of all the metrics. Therefore, we propose to select γ
maximizing ω for a given underlying graph and a specific α.
The maximization can be done through a simple 1-D search.

In Fig 2, we plot MSE′t versus t for different γ with α = 0.5
(top) and α = 1 (bottom). The “Optimal γ” curve is obtained
by maximizing ω for each graph. The ”Average Optimal γ”
curve is obtained by maximizing the average ω over all the
graphs. Both curves are of interest compared to arbitrary
choices for γ. The “Average Optimal γ” albeit offering a loss
compared to the best one is of great interest since it only
depends on the statistics of the graph model and it is more
practical in a distributed context.
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Fig. 2: MSE′t vs t for different γ with α = 0.5 (top) and α = 1
(bottom).

VI. CONCLUSION

This paper focuses a consensus algorithm with stochastic ac-
tivation scheme to avoid node collisions in synchronous setup.
the activation rate is obtained mathematically and depends on
the graph statistics. Extension to more complex schemes (rate
per node, etc) are for future works.
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