
Multi-bit Quantizer Design for Distributed
Parameter Estimation

Yue Bi∗†, Philippe Ciblat†, Yue Wu∗, Cunqing Hua∗
∗School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China

{wuyue,cqhua}@sjtu.edu.cn
† LTCI, Telecom Paris, IP Paris, 91120 Palaiseau, France, {bi,ciblat}@telecom-paris.fr

Abstract—We consider sensors deployed in diverse locations
measuring a common parameter through noisy observations.
These observations are quantized to be sent to a fusion center
doing the estimation of the common parameter. We design these
quantizers to minimize the worst-case mean square error for
common parameter estimation. Relying on an asymptotic regime
in terms of sensors’ number and on random multi-bit quantizer
per sensor, we provide a relevant continuous distribution for
the thresholds of these quantizers via signomial programming.
Through numerical simulations, we show that the proposed
quantizers outperform the uniformly-distributed one and some
deterministic ones even when the number of sensors is limited.

Index Terms—Distributed estimation, Minimax, Cramer-Rao
bound, Quantization, Signomial programming.

I. INTRODUCTION

In numerous surveillance applications, sensors are posi-
tioned in various locations with the aim of measuring a
common phenomenon and, consequently, the same parameter
[1]–[3]. The sensors, individually, do not carry out the final
parameter estimation. Instead, they transmit their data after
quantization through a propagation channel to a fusion center
(FC), which conducts the estimation. Discovering multi-bit
quantizers constitutes a key issue in estimation. The objective
of this paper is to find relevant multi-bit quantizers.

More precisely, most works consider that i) the quantized
version of a new arrival sample is sent to the FC according
to a sequential Round-Robin (RR) technique, ii) then the FC
collects all the quantized samples during one RR round to
perform the estimation, and iii) so the performance are eval-
uated for one RR round. In that context, Cramer-Rao bound
(CRB) or Mean Square Error (MSE) has been calculated under
different assumptions [4]–[12]. In [11], [12], lower bounds for
the estimation quality are provided and they are independent
of any quantizer. Nevertheless, when compared to a practical
quantizer, these bounds are too pessimistic. In other above-
mentioned papers, only performance with specified quantizers
are considered but without quantizer optimization.

In [13]–[20], the authors propose quantizer optimization
for different configurations and assumptions. For instance,
[13] proposes an optimal deterministic multi-bit quantizer
for one sensor at low Signal-to-Noise Ratio (SNR) case. In
[14], Bayesian CRB and a dynamic programming approach
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are considered to exhibit the optimal multi-bit deterministic
quantizer in a single sensor context. In [15]–[17], the authors
propose a deterministic quantizer obtained by minimizing the
CRB when the parameter vanishes (i.e., at low SNR) with a
particle swarm optimization algorithm. In [18], multi-sensors
are considered but each equipped with a one-bit quantizer.
The quantizer is assumed to be random at each sensor but the
related threshold cumulative density function is linear piece-
wise and data-dependent. The criterion is minimax, i.e., they
minimize the worst CRB with respect to the parameter range.
In [19], the same setup as [18] is considered but they find
the best threshold distribution without the linear-piecewise
structure assumption by optimizing the asymptotic relative
efficiency which is equivalent to work on CRB. In [20], a
scenario with multiple sensors is considered. Mathematically,
the authors optimize the worst case CRB in an iterative way
with respect to the threshold of each sensor.

In this paper, we consider multi-bit quantizers in multiple
sensors scenarios for the minimax approach. We assume that
each sensor has a random quantizer coming from a common
distribution between sensors. This common distribution is
optimized for the worst case (and not the average one as
in Bayesian approach) when the number of sensors is large
enough. In [19], the same approach was considered but for
one-bit quantizer. Here, the challenge is to extend [19] to
multi-bit quantizer. This extension is not straightforward since
i) expressing our CRB in closed-form requires order statistics,
and ii) the obtained optimization problem is not convex
anymore but requires the use of signomial programming.

The remainder of this paper is organized as follows: Section
II is devoted to the system model. Section III provides the
CRB for finite number of sensors. In Section IV, the CRB is
simplified when number of sensors goes to infinity. The opti-
mization problem is given and solved in Section V. Numerical
results showing the gain provided by our approach are drawn
in Section VI. Concluding remarks are in Section VII.

II. SYSTEM MODEL

We consider a distributed estimation system with K sensors
and one FC. The goal is to estimate a scalar parameter θ.
Sensor k ∈ {1, · · · ,K} collects a noisy sample yk. This
sample is transmitted after a quantization process with B bits.
The FC so receives KB bits. Transmission channels between
the sensors and the FC are assumed to be perfect.



For the sake of simplicity, we consider the following model
between θ and yk:

yk = θ + wk, (1)

where wk is a zero-mean white Gaussian noise with variance
σ2
w and θ is assumed to be within the finite support I ⊂ R.
The output qk of the quantizer Qk at sensor k is

qk = Qk(yk). (2)

This quantizer Qk transforms the continuous scalar yk into
B bits in such a way

Qk(u) ,


0 if u < τk,1,

L if u ≥ τk,L,
i if τk,i ≤ u < τk,i+1, for i ∈ {1, · · · , L− 1},

where L = 2B−1 and {τk,i}i∈{1,··· ,L} is a strictly increasing
sequence of thresholds.

The goal of this paper is to find a relevant way to build the
threshold sequence per sensor. For doing that, we rely on the
derivations of the Cramer-Rao bound for θ at the FC.

III. NON-ASYMPTOTIC CRAMER-RAO BOUND

The Cramer-Rao Bound for any unbiased estimation at the
FC can be written as

E[(θ̂ − θ)2] ≥ CRB(θ) =
1

F (θ)
, (3)

where F (θ) is the Fisher Information associated with quan-
tized bits q , {qk}k∈{1,··· ,K} and is written as

F (θ) , EQ|θ

[(
∂ log pQ|θ(q|θ)

∂θ

)2
]

(4)

with pQ|θ the distribution of q for the parameter value θ. As
data are independent between sensors, we have

F (θ) =

K∑
k=1

Fk(θ), (5)

where Fk(θ) is the Fisher information provided by one quan-
tized sample for the k-th sensor and

Fk(θ) , EQ|θ

[(
∂ log pQ|θ(qk, θ)

∂θ

)2
]
. (6)

According to [7], we get

Fk(θ) =

L∑
i=0

1

pQ|θ(qk = i|θ)
·
(
∂pQ|θ(qk = i|θ)

∂θ

)2

(7)

where pQ|θ(qk = i|θ) can be decomposed as follows

pQ|θ(qk = i|θ) =

∫
pQ|Y (qk = i|yk)pY |θ(yk|θ)dyk (8)

since the value of qk depends only on yk according to Eq. (2).
As yk|θ follows a Gaussian distribution with mean θ and
variance σ2

w, we deduce

pQ|θ(qk = i|θ) =


Ψ (τk,1, θ) if i = 0

1−Ψ (τk,L) if i = L

Ψ (τk,i+1, θ)−Ψ (τk,i) otherwise,

where

Ψ(τ, θ) , Φ

(
τ − θ
σw

)
(9)

with Φ the cumulative distribution function for standard nor-
mal distribution.

Then, we have

∂pQ|θ(qk = i|θ)
∂θ

=


− ψ(τk,1, θ) if i = 0,

ψ(τk,L, θ) if i = L,

− ψ(τk,i+1, θ) + ψ(τk,i, θ) otherwise,

where

ψ(τ, θ) ,
1

σw
φ

(
τ − θ
σw

)
(10)

with φ the probability density function for standard normal
distribution.

Finally, we obtain that

Fk(θ) = η1(τk,1, θ) + ηL(τk,L, θ) +

L−1∑
i=1

η(τk,i, τk,i+1, θ)

with

η1(τ, θ) ,
(ψ(τ − θ))2

Ψ(τ − θ)
, (11)

ηL(τ, θ) ,
(ψ(τ − θ))2

1−Ψ(τ − θ)
, (12)

η(τ, τ ′, θ) ,
(ψ(τ ′ − θ)− ψ(τ − θ))2

Ψ(τ ′ − θ)−Ψ(τ − θ)
. (13)

IV. ASYMPTOTIC CRAMER-RAO BOUND

By considering large number of sensors, the CRB can be
approximated by

CRB(θ) ≈ 1

K · F (θ)
(14)

where

F (θ) , lim
K→∞

1

K

K∑
k=1

Fk(θ) (15)

= lim
K→∞

1

K

K∑
k=1

(
η1(τk,1, θ) + ηL(τk,L, θ)

+

L−1∑
i=1

η(τk,i, τk,i+1, θ)
)
. (16)

Like [19], the evaluation of the term F (θ) will be done
by assuming that the thresholds {τk,i}k,i correspond to a
realization of a random variable. The realizations on k are iid
but the realizations on i have to be sorted since τk,i ≤ τk,i+1

by construction. Therefore, we rely on the order statistics
[21]. Let λ be the probability distribution for the L ordered
threshold for any sensor (the distribution is assumed to be
the same whatever the sensor, so we skip the index k). We
also define the marginal probability distribution for the first
threshold (actually, τk,1 for any sensor) as λ1, the marginal



probability distribution for the last threshold (actually, τk,L
for any sensor) as λL, and the joint probability distribution
between two consecutive thresholds (actually, (τk,i, τk,i+1) for
any sensor with i ∈ {1, · · · , L− 1}) as λi. We thus obtain

F (θ) =

∫ ∞
−∞

η1(τ, θ)λ1(τ)dτ +

∫ ∞
−∞

ηL(τ, θ)λL(τ)dτ

+

L−1∑
i=1

∫ ∞
−∞

∫ τ ′

−∞
η(τ, τ ′, θ)λi(τ, τ

′)dτdτ ′. (17)

The ordered thresholds are obtained thanks to an unique
random variable whose probability density function is g and
the cumulative distribution function is G. More precisely, for
each sensor, we collect L realizations related to the random
variable driven by g. Then these variables are ranked in
order to provide the ordered thresholds. Consequently, the
distributions for the ranked variables are given by

λ1(τ) = c[1−G(τ)]L−1g(τ), (18)
λL(τ) = c[G(τ)]L−1g(τ), (19)

λi(τ, τ
′) = ci[G(τ)]i−1[1−G(τ ′)]L−ig(τ)g(τ ′), (20)

with c = L and ci = L(L− 1)
(
L−2
i−1
)
.

V. PROPOSED QUANTIZER

Our goal is to minimize the asymptotic CRB with respect to
g. According to Eq. (14), minimizing the CRB is equivalent to
maximizing F . Therefore by incorporating Eqs. (18)-(20) into
Eq. (17) and over the infimum of θ, we obtain the following
minimax optimization problem.

Problem 1 (Functional optimization problem). Assuming
g(τ) ≥ 0, we solve

max
g

inf
θ

f(g, θ)

s.t.
∫
g(τ)dτ = 1, with

f(g, θ) =

∫
η1(τ, θ) · c[1−G(τ)]L−1g(τ)dτ

+

∫
ηL(τ, θ) · c[G(τ)]L−1g(τ)dτ

+

L−1∑
i=1

∫∫ τ ′

η(τ, τ ′, θ) · ci[G(τ)]i−1

·[1−G(τ ′)]L−ig(τ)g(τ ′)dτdτ ′. (21)

We propose to replace this functional optimization problem
with a vector optimization problem by discretizing g. Before
going further, we assume that the support of θ is symmetric
about the origin, i.e. I = [−W0,W0], with W0 > 0. Then,
we discretize the interval I into N(> 0) regular subintervals
{Jj , [uj−1, uj ]}j∈{1,··· ,N} with u0 = −W0 and uN = W0

whose the middle of each interval is mj for j ∈ {1, . . . , N}.
The discrete version of g at mj is given by its normalized
value i.e.,

aj =
g (mj)∑N

j′=1 g (mj′)
∀j ∈ {1, · · · , N}. (22)

We now define the cumulative sequence of a ,
{aj}j∈{1,··· ,N} as

A` =
∑̀
j=1

aj ,

and the complement cumulative sequence as R` = 1 − A`.
By convention, we also put A0 = 0. Define also the sequence
{θj}j∈{1,··· ,M} with θ1 = −W0 and θM = W0 representing
a quantization of the parameter range.

We discretize the function f(g, θ) into a set of functions
f̃j(a) as follows

f̃j(a) =

N∑
`=1

d
(1)
`,jR

L−1
` a` +

N∑
`=1

d
(L)
`,j A

L−1
` a`

+

L−1∑
i=1

N∑
`2=1

`2∑
`1=1

d
(i)
`1,`2,j

Ai−1`1
a`1R

L−i
`2

a`2 (23)

with d(1)`,j = c · η1(u`, θj), d(L)`,j = c · ηL(u`, θj), and d(i)`1,`2,j =
ci · η(u`1 , u`2 , θj). The discretized version of Problem 1 is
straightforward. But in terms of optimization, we have the
following objective function to maximize minj f̃j(a). In order
to handle the minimum operator easily, we introduce a new
variable x bounding all functions f̃j(a). We then obtain the
following optimization problem.

Problem 2 (Discretized optimization problem). Assuming
a` ≥ 0 for ` ∈ {1, · · · , N} and x ≥ 0, we solve

max
a,x

x (24a)

s.t. f̃j(a) ≥ x ∀j ∈ {1, · · · ,M}, (24b)
N∑
`=1

a` = 1. (24c)

Focusing on Problem 2 rather than on Problem 1 leads to a
loss in performance which may be controlled by the choice of
N . We can find a stationary point of Problem 2 by Signomial
Geometric Programming (SGP). However, SGP faces certain
difficulties when addressing optimization problems with equal-
ity constraints. We thus change the optimization variables from
a to A , {A1, A2, · · · , AN−1} (A0 and AN are excluded
from the variable vector as they are always equal to 0 and 1
respectively). Functions in Eq. (23) are rewritten as

fj(A)

=

N∑
`=1

d
(1)
`,jR

L−1
` (A` −A`−1) +

N∑
`=1

d
(L)
`,j A

L−1
` (A` −A`−1)

+

L−1∑
i=1

N∑
`2=1

`2∑
`1=1

d
(i)
`1,`2,j

Ai−1`1
(A`1 −A`1−1)

×RL−i`2
(A`2 −A`2−1). (25)

The function fj is a signomial and can be written as a differ-
ence of two posynomials [22]. Let’s write this decomposition
below

fj(A) , fj,d(A)− fj,n(A), (26)



where fj,d and fj,n are two posynomials.
Thanks to Eqs. (25)-(26), Problem 2 can be rewritten as

Problem 3 which is a SGP and so can be solved easily (see
[23] for more details on the practical algorithms).

Problem 3 (Final optimization problem). Assuming A` ≥ 0
for ` ∈ {1, · · · , N} and x ≥ 0, we solve

min
A,x

x−1 (27a)

s.t.
x+ fj,n(A)

fj,d(A)
≤ 1,∀j ∈ {1, · · · ,M}, (27b)

A`−1
A`

≤ 1, ∀` ∈ {2, · · · , N − 1}, (27c)

A` ≤ 1, ∀` ∈ {1, · · · , N − 1}. (27d)

Once Problem 3 is solved, we obtain the points
{a?`}`=1,··· ,N . Then we compute g(τ) by doing a Lagrangian-
polynomial interpolation on the set {(m`, a

?
` )}`=1,··· ,N fol-

lowed by a normalization step. Finally, each sensor builds its
quantizer as follows: it obtains (L − 1) realizations from the
random variable whose distribution is g(τ). Each sensor sorts
its realizations to be employed as its thresholds.

VI. NUMERICAL RESULTS

We assume that each sensor sends 2 bits (L = 4) and
M = 8. Problem 3 has been numerically solved by algorithm
described in [24]. Two cases for discretization problem have
been computed: N = 3 or N = 10. We also examine the
performance of the uniformly-distributed (i.e. a` = 1/N,∀` ∈
{1, · · · , N}) and the regular deterministic quantizers.

In Fig. 1, we plot the optimized continuous distribution
g(τ). Two cases have been considered: N = 3 and N = 10.
We observe that the solutions are different from the uniform
distribution, which implies the necessity of the optimization.
Moreover, N = 3 does not match with N = 10 exhibiting
better performance, as shown later in Fig. 2 and Fig. 3. This
implies that N = 3 is insufficient.

(a) N = 3 (b) N = 10

Fig. 1: Proposed distribution g(τ) obtained by polynomial
fitting based on discrete solution of Problem 3.

In Fig. 2, we plot the average CRB per sensor (ob-
tained as the inverse of the average Fisher information
minj′

1
K

∑K
k=1 Fk(θ′j′) where the set {θ′j′}j′∈{1,··· ,M ′} with

M ′ = 100 covers the parameter range well, and actually
much more than the set chosen for optimization) versus K.
The SNR (defined as 1/σ2

w) is put at 8dB. This evaluation is
executed for 20 different realizations of quantizers per sensor.

Fig. 2: Average CRB vs K (SNR=8dB).

Related standard deviation is also plotted. We observe that
even for small values of K, our optimization obtained through
an asymptotic approach is still valid. The information provided
by each sensor at the system is higher with the optimized
version of the random quantizer. Only the standard deviation
decreases with K.

In Fig. 3, we plot the CRB (obtained as the inverse of
the Fisher information minj

∑K
k=1 Fk(θ′j)) versus SNR for

six quantizers including those of [15] (IDEA) and [14], [16]
(PSOA) and the unquantized case obtained by setting L =∞
and uniform quantizer in Eq. (16). The optimized random
quantizer with N = 10 gives improvement compared to the
other ones especially at high SNR. For instance, at mid/high
SNR, the gain is around 1dB.

Fig. 3: CRB vs SNR (K = 2000).

VII. CONCLUSION

Our work proposed a worst-case random quantizer in the
context of quantized communications of observations to a
fusion center in order to estimate a common parameter. The
proposed quantizer outperforms uniformly-distributed, regular
deterministic and previously-proposed quantizers for mid/high
SNR scenarios.
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