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Abstract—Optimal bandwidth and power allocation is per-
formed in a wireless clustered ad hoc network (CAHN) when
Type-I Hybrid Automatic Repeat reQuest (HARQ) is used at the
link layer along with an Orthogonal Frequency Division Multiple
Access (OFDMA) scheme under individual data rate constraint.
The considered network topology imposes the resource allocation
manager to know only the channel state information (CSI)
statistics. Gaussian codes with a finite block length are assumed
in order to give the best achievable performance, with finite
latency, that one could expect from this HARQ-based CAHN. The
framework developed in this paper is well adapted to predict the
performance of strong channel coding over the Rayleigh channel.
Typically it gives useful insights on the behavior of the proposed
HARQ-based CAHN when LDPC codes are implemented.

I. INTRODUCTION

We focus on optimal resource allocation in the context of a
wireless clustered ad hoc network (CAHN). The nodes of this
network are managed by a cluster head (CH) collecting the
requests of the transmitting nodes, and performing a central-
ized resource allocation accordingly. OFDMA is considered
in order to allow simultaneous and interference-free peer to
peer links in the cluster avoiding to concentrate all the traffic
at the CH. To manage the CAHN, in addition to OFDMA, the
transmissions also follow a Time Division Multiple Access
(TDMA) scheme with specific slots reserved for signalling
and data. An important consequence is that the CH is able
to get statistical channel state information (CSI) only for
the different links in the cluster. Indeed, since the resource
allocation is centralized at the CH, the time to initiate a specific
link transmission and to transfer back the CSI may last several
frame periods resulting in a CSI which is completely outdated
when available at the CH. The only possibility offered to the
CH is to draw statistics from the received CSI along time and
use it for resource allocation as in [1].

In order to handle efficiently the unknown variation of the
channel at the transmitter side (since only channel statistics
are available), we propose to consider

• Frequency Hopping (FH) for providing channel frequency
diversity enough, leading to a equivalent fast fading
channel,

• and (Type-I) Hybrid Automatic Repeat reQuest (HARQ)
since it is a powerful mechanism enabling to accommo-
date the unknown channel variations by achieving a good
trade-off between channel coding and retransmission [2].

When HARQ is used, it is now well-known [3], [4] that the
relevant metric for data rate is the so-called goodput. In fact,
the goodput performs a natural trade-off between capacity (as
an information reward) and QoS (through packet error rate). In
order to increase the lifetime of the cluster and to mitigate also
the inter-cluster interference, we would like to find resource
allocation (occupied bandwidth and transmit power per user)
minimizing the total power in the considered cluster when a
minimal goodput per user is required assuming only statistical
CSI at the resource allocation manager.

Such an optimization problem has been already addressed
in [1] assuming that the coding used in (Type-I) HARQ is the
convolutive one. Here, we would like to obtain a benchmark
when using the best code, namely, the finite-length Gaussian
codes. We restrict to finite-length for delay purpose. Notice
that if infinite-length Gaussian codes were used, the HARQ
becomes useless and then the relevant data rate metric boils
down to the ergodic capacity as in [5]. Moreover using optimal
finite-length codes will provide a good insight on the resource
allocation to be done when using the best known practical
codes, such as LDPC [6].

In order to perform the resource allocation algorithm, the
goodput requires the error probability of the considered codes
(i.e., the finite-length Gaussian codes) in Rayleigh channel.
This can be obtained through the outage probability concept.
Indeed, even if the concept of outage probability is usually
dedicated to the analysis of the block fading channel [7],
and more generally of non-ergodic channels, it can be also
used in AWGN channels (and so, in ergodic channels) when
finite size inputs and outputs are considered [8] since their
mutual information is still a random variable. Then, an out-
age occurs whenever the coding rate R exceeds the mutual
information i(X;Y ) between the transmitted codeword X
and received codeword Y of length n [9], with probability
Po := Pr {i(X,Y ) ≤ R}. Like [9] in the context of AWGN
channels, the outage probability can still represent the ultimate
error probability of finite-length codes in the context of
Rayleigh channel. The distribution of the mutual information
in a (static) fading channel has been succinctly described in
[8], but a closed-form expression of the outage probability
has still to be obtained in Rayleigh fading channel. As a
consequence, an additional contribution of the paper is to
provide a new approximate closed-form expression for the
outage probability in Rayleigh channel.



The rest of the paper is organized as follows: In Section II,
the error probability of finite-length Gaussian codes is com-
puted in closed-form over the Rayleigh channel. Based on
this new result, optimal power and bandwidth allocation is
performed in Section III. Finally, some numerical results are
given in Section IV and Section V concludes the paper.

II. THE ERROR PROBABILITY OF FINITE-LENGTH
GAUSSIAN CODES OVER THE RAYLEIGH CHANNEL

It is more convenient to deal with single link for deriving
the error performance of the finite-length Gaussian codes. The
extension to multiuser links will be treated in Section III.
Denoting by Y ∈ Cn the channel output:

Y = HX +N , (1)

where X and N are random vectors of length n with i.i.d.
elements Xk and Nk, respectively. Xk ∼ CN (0, Es), whereas
Nk ∼ CN (0, N0), and H is a n×n diagonal matrix with i.i.d.
elements Hk ∼ CN (0, σ2

h). Thus, the channel gains |Hk| are
Rayleigh distributed and a random SNR can be defined as:

SNRk =
|Hk|2Es

N0
. (2)

SNRk is exponentially distributed with parameter 1/SNR,
where SNR = σ2

hEs/N0 is the average SNR.
For finite n, the mutual information rate i(X,Y ) is a

random variable denoted by Zn. In [8], it was shown that
Zn = (1/n)

∑n
k=1 ik with (ik)k∈{1...,n} an i.i.d. random

process given by:

ik = log

(
1 + |Hk|2

Es

N0

)
+

√
|Hk|2Es/N0

1 + |Hk|2Es/N0
Wk,

where Wk are i.i.d. Laplace random variables with mean zero
and parameter 1, so that E [Wk] = 0 and Var (Wk) = 2, |Hk|2
is exponentially distributed with parameter 1/σ2

h, and Hk is
independent of Wk.

For the sake of simplicity, we resort to a Gaussian approx-
imation of Zn for the Rayleigh channel, which was shown
to be accurate in [9] for the AWGN channel. Thus, as the
sum of n i.i.d. random variables, Zn is approximated with a
Gaussian random variable N (m,σ2

n), where m := E [Zn] and
σ2
n := Var (Zn). The mean m = E [log(1 + SNRk)] is easily

obtained since Zn is the sum of i.i.d. random variables, and
since E [Wk] = 0. It is well known that this expectation leads
to:

m = e1/SNRE1(1/SNR), (3)

where E1(x) :=
∫∞
1
e−xu/udu =

∫∞
x
e−t/tdt is known as

the exponential integral [10]. The variance can be computed
from the conditional variance formula [11], and we have

σ2
n =

1

n

(
ς2 + κ2

)
. (4)

with ς2 := 2E [SNRk/(1 + SNRk)] and κ2 :=
Var (log(1 + SNRk)).

Like in [9], the error probability P
(n)
e is computed as the

cumulative distribution Po of the mutual information rate

Zn, i.e.P (n,R)
e = Pr {Zn ≤ R}. Since the Gaussian random

variable N (m,σ2
n) has been introduced as an approximation

to Zn, the distribution of Zn can be replaced with the Gaussian
distribution, leading to:

P (n,R)
e ≈ Q

(
m−R
σn

)
, (5)

where m and σ2
n are known explicitly from Eqs. (3)-(4).

Actually, one can easily prove that

ς2 = 2− 2

SNR
e1/SNRE1(1/SNR). (6)

In addition, a simple approximation for the term κ2 can be
obtained at low SNR regime, and is given by:

κ2 ≈ log2(1 + SNR)−m2 (for SNR small enough). (7)

In Fig. 1, the closed-form expression given in Eq. (5) with
m, ς and κ given by Eqs. (3)-(6)-(7) respectively is compared
to the empirical outage probabilities for several values of rates
R and blocklength n.
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Figure 1. Approximate and empirical outage probability vs SNR.

III. RESOURCE ALLOCATION ALGORITHM

In all the paper, the superscript T stands for the transposi-
tion operator, and the (multi-variate) complex-valued circular
Gaussian distribution with mean a and covariance matrix Σ is
denoted CN (a,Σ).

A. System model and optimization problem

Each link is a frequency-selective channel and OFDM
with N subcarriers is used to compensate for the frequency
selectivity. It is assumed that the channel remains constant
over one OFDM symbol but may change between two
consecutive OFDM symbols. The channel corresponds to
the link between the transmitting user k and any receiv-
ing node in the network, including the cluster head. Let
hk(i) = [hk(i, 0), . . . , hk(i,M − 1)]

T be the channel impulse
response of link k associated with OFDM symbol i, where
M is the number of taps. Let us denote by Hk(i) =
[Hk(i, 0), . . . ,Hk(i,N − 1)]

T the Fourier Transform of hk(i).
Assuming well-designed OFDM cyclic prefix and FH pattern,



the received signal at OFDM symbol i and subcarrier n for
link k is:

Yk(i, n) = Hk(i, n)Xk(i, n) + Zk(i, n), (8)

where Xk(i, n) ∼ CN (0, EkW/N) is the transmitted symbol
by link k at subcarrier n of OFDM symbol i, and the
additive noise Zk(i, n) ∼ CN (0, N0W/N) where N0 is the
noise power spectral density and W is the total bandwidth.
It is assumed that each channel is an independent random
process with possibly different variances ς2k,m for each tap,
i.e.hk(i) ∼ CN (0,Σk) with Σk := diagM×M (ς2k,m). Direct
calculations show that the diagonal elements of Hk(i) are
identically distributed [5], i.e.Hk(i, n) ∼ CN (0, ς2k) with
ς2k = Tr(Σk).

Let us assume that the resource allocator only knows the
CSI statistics given by:

Gk :=
ς2k
N0

. (9)

Since Gk is independent of i, the resource allocation algorithm
will not distinguish between the subcarriers for a given link,
and thus cannot allocate which subcarriers link k will use,
but only how many. So the bandwidth proportion occupied
by link k is equal to γk = nk/N where nk is the number
of subcarriers assigned to link k. Thus γk corresponds to the
bandwidth parameter to be optimized. Due to the independence
of Gk with respect to the subcarrier index, it is natural for link
k to use the same average energy Ek on each subcarrier, which
is the energy parameter to be optimized.

We remind that we would like to minimize the total energy
consumption under individual data rate constraints. The energy
consumed for sending one OFDM symbol is actually equal to∑K

k=1 γkEk. In addition, as HARQ is used, the goodput will
be the meaningful metric for the data rate. We will denote
by ηk(γk, Ek) the goodput related to link k with respect to
the bandwidth γk and the energy Ek. As a consequence, the
considered optimization problem can be written as follows.

Problem 1.

min
(γ,E)

K∑
k=1

γkEk, (10a)

s.t. log ηk(γk, Ek) ≥ log η
(0)
k , ∀k, (10b)

K∑
k=1

γk ≤ 1, (10c)

γk ≥ 0, Ek ≥ 0, ∀k. (10d)

Notice that the log in Eq. (10b) has been introduced for
algorithmic concerns and will be explained in detail in next
the Subsection.

B. Resource allocation algorithm

First of all, on each subcarrier, link k undergoes an average
SNR given by:

SNRk = GkEk. (11)

Then, in Type-I HARQ, the goodput ηk takes the following
form [1]

ηk(γk, Ek) = γkrk(1− P (n,rk)
e (GkEk)), (12)

where P
(n,R)
e (SNR) is the error probability with respect to

SNR, of a (n,R) Gaussian code, and rk is the information
rate of link k. Thanks to Eq. (5), we know

P (n,R)
e (SNR) = Q

(√
n(m(SNR)−R)

σ(SNR)

)
(13)

where m(SNR) is given in Eq. (3) and σ(SNR) =
√
nσ2

n with
σ2
n given in Eq. (4). It is assumed that the information rate rk

is fixed during the optimization procedure, and the choice of
rk will be discussed in Section IV.

Following the same reasoning as in [1], one can see that
Problem 1 is feasible if, and only if:

K∑
k=1

η
(0)
k

rk
< 1. (14)

In the rest of the paper, it is assumed that Eq. (14) holds.
Before going further, let us introduce the Conjecture 1.

Conjecture 1. ∀k, the function log(1/ηk) is biconvex in
(γk, Ek).

In order to be convinced, one can remark, from Eq. (12),
that

log ηk(γk, Ek) = log γk + log rk + log(1− P (n,rk)
e (GkEk)).

(15)
The log-goodput is clearly concave in γk > 0. To analyze
the concavity of the log-goodput with respect to Ek, we
need to study the function x 7→ f(x) := log(1 − Q(u(x))),
where Q is the Gaussian tail, and u is the function given by
u(x) :=

√
n(m(x)−R)/σ(x). One can easily check that if u

is concave, then f is concave, and the log-goodput too. Since
u′′(x) =

√
n∆(x)/σ4(x), where

∆(x) = σ2(x)
(
m′′(x)σ(x)−σ′′(x)(m(x)−R)−m′(x)σ′(x)

−m(x)σ′(x)
)

+ 2(σ′(x))2σ(x)(m(x)−R).

The sign of u′′ is thus driven by those of ∆. Proving that
∆(x) ≤ 0 for all x > 0 is difficult. Nevertheless it can be
conjectured from Fig. 2.

In order to facilitate the optimization procedure, we would
like to find particular structure to Problem 1. One can firstly
see that the objective function given in Eq. (10a) is biconvex
in (γ,E) [12]. The constraints in Eqs.(10c)-(10d) are trivially
convex and thus biconvex. Thanks to the Conjecture 1, one can
assume that constraint given by Eq. (10b) is also biconvex. As
a consequence, we can assume that Problem 1 corresponds
to the minimization of a biconvex objective function over
a biconvex set, and thus falls within the class of biconvex
optimization problems. Notice that if the constraint given
by Eq. (10b) would be written directly on the goodput (and
not on its log), Problem 1 were not biconvex anymore since
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we have checked that the goodput is quasi-convex (and not
convex, unfortunately) with respect to the energy. Taking the
Conjecture 1 as true, we can deduce that our optimization
problem is biconvex. Finding optimal solutions to biconvex
optimization problem has been solved in [13]. The optimal
solution can be actually exhibited using a modified primal-dual
approach called Global OPtimization (GOP) algorithm. We use
this GOP algorithm in the next Section to solve Problem 1.

IV. NUMERICAL RESULTS

Due to the complexity of GOP, only K = 2 communication
links are considered with average SNRs configured to 10 dB
and 30 dB, respectively. The transmitters use Gaussian codes
of given length n and given rates rk. The coding rates
choice will be explained later. For the sake of simplicity the
goodput request is uniform η

(0)
k = ηT /K, with ηT the total

goodput demand of the cluster (in bit/s/Hz). The total goodput
requirement ηT is related to the sum-rate of the cluster ρ (in
bit/s) using the bandwidth W (in Hz) ρ = ηTW .

A. GOP results versus increasing sum-rate demand

First of all, the rate rk is arbitrarily fixed to a value that
satisfies Eq. (14). If ηT < 1/2 then rk = 1/2, hence∑K

k=1 η
(0)
k /rk = K (ηT /K)/(1/2) < 1. Else if 1/2 ≤ ηT < 1

then rk = 1, hence
∑K

k=1 η
(0)
k /rk = ηT < 1, and so on.

In Fig. 3, we plot the power consumption (
∑K

k=1 γkEk)
resulting from GOP versus the goodput request ηT for different
code lengths. The ergodic capacity based algorithm from
[5] is displayed as a benchmark. We observe, as expected,
that the power consumption decreases when the block length
n increases but the performance gain with increasing n is
nonetheless limited.

In Fig. 4, we plot the occupied bandwith (
∑K

k=1 γk) re-
sulting from GOP versus the goodput request ηT for different
code lengths. We see that the bandwidth is not totally oc-
cupied when the goodput request is low. This enables us to
reduce the inter-cluster interference. In contrast, the ergodic

capacity based algorithm allocates the entire bandwidth for
any ηT ∈ [0, 1].

Let us now select rk in order to still improve the per-
formance. In Fig. 5, we plot the total power consumption
versus the goodpout request when Gaussian finite-length codes
(with n = 512) is used and when convolutive codes (with
rate-1/2 and length n = 512) is used. The optimization
problem and algorithm associated with the convolutive code is
described in [1] and is different from those proposed here since
P

(n,R)
e expresses very differently in closed-form. In addition,

optimal choice for rk (when Gaussian codes are used) and
optimal choice of the modulation (when the convolutive code
is used) are also simulated. We can observe that these practical
convolutive codes perform at about 4 dB from the Gaussian
codes. We can also remark that choosing optimally rk also
strongly improves the performance.
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Figure 3. Total transmit power of the proposed algorithm vs. ηT .
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B. How close are powerful FEC codes?

Finally, we show that the outage probability developed
within this framework can be used to predict the performance
of powerful FEC codes over the Rayleigh channel (other
practical coding schemes, such as convolutive codes, were
treated in [1]). The benefits of the LDPC codes come from
the relaxation of the ML-receiver assumption, and from the
fact that the LLR messages are well modeled by Gaussian
random variables under iterative decoding [14]. This observa-
tion motivates us to describe the waterfall in the LDPC error
performance, which is the capacity-achieving region of these
codes, using finite-length Gaussian codes.

In Fig. 6, we plot the PER of two BPSK modulated
(n = 504, R = 1/2) LDPC codes versus SNR. We used
a (3, 6)-regular code and an irregular PEG code [15]. The
error probability of a (n = 504, R = 1/2) Gaussian code
is plotted too, as well as its shifted versions using some
SNR gaps. It is very interesting to observe that we obtain
a tight approximation of the LDPC performance by shifting
the finite-length Gaussian code error probability with a gap,
whereas it was impossible to directly resort to gaps on the
ergodic capacity function [1]. Approximation is very tight
for PER between 10−3 and 1. The difference is noticeable
beyond 10−3, and may be explained by the floor behavior of
LDPC, which is not present for Gaussian coding. This result
corroborates one of [3] which tells that the operating point of
FEC when optimizing the goodput is generally high (PER of
about 10−1). We infer from Fig. 6 that the allocated power in
the CAHN when using this irregular LDPC code will be only
1.9 dB away from the best achievable performance.

V. CONCLUSION

We firstly computed in closed-form the error probability
of Gaussian codes with finite-length over the Rayleigh chan-
nel. Based on this new result, we found the optimal power
and bandwidth allocation of a Type-I HARQ-based OFDMA
network relying on statistical CSI only. Next, we showed the
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Figure 6. PER versus SNR for several FEC codes (n = 504 and R = 1/2).

performance are very close to that obtained by the ergodic
capacity metric. In addition, this framework can serve as a
basis for Type-I HARQ-based OFDMA resource allocation
when powerful FEC is used, typically LDPC coding. Finally,
future research towards approximate solutions could be of
great interest to speed up the allocation procedure.
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