
Helping mitigate climate change through efficient
reinforcement learning-based wind farm flow control

Elie Kadoche1,2 Pascal Bianchi1 Florence Carton2 Philippe Ciblat1 Damien Ernst1,3

1Polytechnic Institute of Paris, 19 Place Marguerite Perey, 91120 Palaiseau, France
2TotalEnergies OneTech, 2 Place Jean Millier, 92400 Courbevoie, France

3Montefiore Institute, University of Liège, 4000 Liège, Belgium
elie.kadoche@totalenergies.com

Abstract

Improving wind farm efficiency is critical for reducing greenhouse gas emissions
and scaling renewable energies. One effective approach to increase a wind farm’s
power output is wake steering, where certain turbines are intentionally misaligned
with the wind to enhance downstream airflow and reduce wake losses. How-
ever, designing robust, large-scale wake steering controllers remains challenging
due to uncertain and time-varying wind conditions. We propose an attention-
based reinforcement learning architecture and a carefully designed reward shaping
methodology to develop more efficient wake steering controllers. Using a steady-
state, low-fidelity simulator, we show that our approach increases energy capture
relative to strong baselines, illustrating how machine learning can directly improve
renewable energy generation and contribute to climate change mitigation.

1 Introduction

Wake steering Within wind farms, wake effects of upstream turbines reduce the power output
of downstream turbines, decreasing the total farm energy production. Wake losses quantify this
impact as the percentage of power loss due to wake-induced interference. Greedy control maximizes
each turbine’s output individually by keeping all turbines aligned with the wind. To mitigate the
negative impact of wake effects, wind farm flow control (WFFC), i.e., coordinated turbine control,
can be implemented. One method, known as wake steering, consists in misaligning upstream turbines
in relation to the wind in order to move their wakes away from the downstream turbines. This is
accomplished through yaw control, i.e., active rotation of a turbine’s nacelle around its vertical
axis. Figure 1 displays a simulation of wake steering applied to a three turbines wind farm with the
wind coming from the west. However, as wind farms grow in size, designing robust wake steering
controllers in uncertain and time-varying wind conditions is challenging.

Figure 1: Example of WFFC on a three turbines wind farm.

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025.



Related works Wake steering is traditionally implemented using lookup tables (LUTs) [1] which
fail to adapt to real-time wind dynamics. Model-based approaches offer some adaptability but heavily
depend on the accuracy of their underlying wind model. To overcome these limitations, model-free
reinforcement learning (RL) has emerged as a powerful alternative to traditional methods [2]. But
existing RL-based wake steering methods face significant limitations in terms of scalability, sample
efficiency, wind dynamics consideration, and wind conditions generalization. While some studies
address one or more of these challenges, none comprehensively tackle all of them together. In
this work, we leverage self-attention mechanisms within a single-agent RL policy, demonstrating
significant improvements in sample efficiency, learning performance and generalization.

Markov Decision Process The wake steering problem is defined over an episode consisting of 18
discrete time steps, during which the yaw angle of each turbine is adjusted. We consider a wind farm
of 19 turbines. The WFFC problem is formalized as a Markov decision process (MDP). At a given
time step t, the state is st = (XWt , XFt , XYt) where XWt represents the current, wind conditions
(noisy), XFt represents a wind forecast on the next three time steps (noisy), and XYt represents
the current absolute orientations of each turbine’s nacelle. The action at is a vector of each turbine
individual yaw setting, i.e., a rotational movement bounded in [−20, 20] degrees due to mechanical
constraints of the yaw actuators. Numerical simulations are conducted with FLOw Redirection
and Induction in Steady State (FLORIS) [3], a steady-state, low-fidelity simulator developed by
National Renewable Energy Laboratory (NREL) and wind data time series are generated using an
auto-regressive moving average (ARMA) process of order 1.

2 Reward shaping

Traditional reward function A commonly used reward formulation in the literature is the nor-
malized total farm power output rt+1 = (1/N)

∑N−1
i=0 (P i

t /Φ
i
t), with P i

t the turbine i individual
power output and Φi

t its theoretical maximum power output at time step t. However, when training
a wake steering policy across all wind directions (0-360°), this reward becomes problematic: for
directions where wind tracking is nearly optimal, the reward approaches 1, as wake effects are
minimal. In contrast, for directions where wake steering is necessary, even the optimal policy yields
a reward significantly below 1 due to strong wake losses. Consequently, using this reward over the
full directional space biases the policy toward trivial wind tracking, which can achieve high rewards
without learning effective wake steering - precisely what we aim to avoid.

Improved reward function We propose a reward function normalizing improvements relative
to a baseline and ensuring the agent optimizes wake steering across all conditions. Our reward
function is defined as rt+1 = ∆Pt

1∆Pt<0 + exp(−pL̄t)∆Pt
1∆Pt≥0, with the power difference

∆Pt
= (Pt − P̄t)/P̄t and with P̄t the baseline power output. We use as a baseline a perfect wind

tracking controller that does not perform any wake steering. The optimal magnitude of ∆Pt depends
on the wake losses: a near-zero ratio can be optimal when wake losses are low (making WFFC
unnecessary) but suboptimal when wake losses are high (making WFFC necessary). To address this,
we introduce an exponential scaling term, parameterized by p = 3, that adjusts the reward based on
the baseline wake losses L̄t. This term ensures a balanced reward across different wind conditions
by restricting the power difference when the wake losses are significant. Additionally, if power
production falls below the baseline, the agent is penalized with a negative reward.

3 Models

Each model is a policy in an actor-critic framework: given the state st, it outputs a critic value vt
and an actor distribution parameterized by turbine-wise von Mises distributions with location µ̄t and
concentration κ̄t. Actions are sampled from these distributions during training, while at test time
each turbine’s action is set to its mean µ̄t.

Fully-connected neural network The most commonly used architecture in the literature is a feed
forward neural network (FNN)-based model, composed exclusively of fully connected (FC) layers.
The input is a single concatenated vector comprising all the state features. However, this architecture

2



may be inefficient, as it requires the model to simultaneously infer complex spatial and temporal
dependencies from a high-dimensional, entangled input vector without explicit structural guidance.

Attention-based neural network We propose an attention-based architecture (Figure 2) to better
exploit the multi-modality of the WFFC problem. Inputs are split in four different embeddings. 1) A
FNN is used to create the wind embedding EWt

. 2) A FNN is used to create the forecast embedding
EFt . 3) A FNN is used to create each turbine positional encoding Ei

pet . 4) A FNN is used to create
each turbine specific embedding Ei

Yt
from turbine orientations. The final embedding of each turbine

is the sum of all these embeddings. Whereas wind and forecast embeddings are shared between all
turbines, positional and turbine embeddings are specific for each turbine. In the context of WFFC,
self-attention captures relationships between turbines by identifying which ones are most relevant for
yaw control. It allows the model to consider all turbines simultaneously and understand how wake
effects propagate across the farm. The multi-head mechanism enhances this by providing multiple
perspectives on these interactions.

Figure 2: Model architecture, incorporating multi-head self-attention (MHSA) blocks. FC layers
refer to standard dense layers applied once to the input, while feed-forward layers apply the same FC
layer independently (a) to each turbine’s embedding, (b) in attention blocks, (c) and to each turbine’s
embedding in the actor branch, after the last attention block.

4 Simulations

Training We train each model using a proximal policy optimization (PPO) [4] actor-critic method
and generalized advantage estimator (GAE) [5]. At each training step, we simulate 360 independent
episodes of 3 hours, resulting in 6,480 time steps. To ensure comprehensive coverage of all possible
wind conditions, each of the 360 episodes has a different initial wind direction. More specifically,
wind directions are sampled in 1° increments, such that the first episode has an initial direction in
[0, 1] degrees, the second episode in [1, 2], etc. It ensures that the entire directional space is covered,
speeding up generalization and mitigating sampling biases during training. Each model is trained for
150 steps, corresponding to a total of 972,000 simulated time steps. The training curves, shown in
Figure 3, show the superior performance of the attention-based model.

Testing To evaluate the generalization of each solution across all wind conditions, we test them
on 360 wind directions, sampled in 1-degree increments. For each direction, we run 10 independent
test episodes of 18 time steps, using random seeds not used during training. This ensures that test

3



Figure 3: Training curves of each model, showing mean and variance over 10 different seeds. The
attention-based model has a much faster and stable convergence that the FNN model.

episodes remain distinct from training and provide comprehensive directional coverage. For each
episode, we compute each solution’s cumulative power production and quantify its improvement over
the standard wind-tracking solution. We then report the mean and variance of these improvements
across the 10 seeds for each wind direction and present the results in Figure 4. The attention-based
model (sub-Figure 4a) consistently increases wind farm energy production, achieving gains of up to
14 % in high wake-loss scenarios. We use a model predictive control (MPC)-like solution [6] as a
strong baseline (sub-Figure 4b). And in sub-Figure 4c, the performance of the attention-based model
trained with the traditional reward is displayed.

(a) Attention-based model. (b) MPC-like. (c) Traditional reward.

Figure 4: Performance of each solution relative to a wind tracking policy. The attention-based model
achieves performance comparable to the MPC-like solution, but with lower variance and higher
gains in strong wake loss conditions. When using the traditional reward, the attention-based model
completely fails to learn a wake steering strategy.

5 Conclusion

Our results show that machine learning (ML) can outperform traditional wake steering methods when
supported by domain-specific tools such as carefully designed policy models and reward functions.
Our attention-based model outperforms a traditional wake steering controller by better capturing
wind uncertainty, yielding lower variance and more robust performance across all wind conditions.
However, the results remain empirical and rely on simplified, steady-state, low-fidelity wake models.
For real-world deployment, future work should incorporate turbine fatigue consideration and validate
the approach in higher-fidelity and unsteady flow environments that better capture realistic wind
dynamics. As the problem grows in complexity, the strengths of RL - such as its ability to optimize
over long horizons, adapt to uncertain dynamics, and operate without explicit system models - should
further reinforce its suitability for wake steering control and climate change mitigation.

4



References

[1] P. Fleming et al. “Field test of wake steering at an offshore wind farm”. In: Wind Energy
Science 2.1 (2017), pp. 229–239. DOI: 10.5194/wes-2-229-2017. URL: https://wes.
copernicus.org/articles/2/229/2017/.

[2] Tuhfe Göçmen et al. “Data-driven wind farm flow control and challenges towards field imple-
mentation: A review”. In: Renewable and Sustainable Energy Reviews 216 (2025), p. 115605.
ISSN: 1364-0321. DOI: https://doi.org/10.1016/j.rser.2025.115605. URL: https:
//www.sciencedirect.com/science/article/pii/S1364032125002783.

[3] NREL. FLORIS. Version 4.2.2. 2021. URL: https://github.com/NREL/floris.
[4] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.06347

[cs.LG].
[5] John Schulman et al. “High-Dimensional Continuous Control Using Generalized Advantage

Estimation”. In: 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and
Yann LeCun. 2016. URL: http://arxiv.org/abs/1506.02438.

[6] Elie Kadoche et al. “On the importance of wind predictions in wake steering optimization”. In:
Wind Energy Science 9.7 (2024), pp. 1577–1594. DOI: 10.5194/wes-9-1577-2024. URL:
https://wes.copernicus.org/articles/9/1577/2024/.

[7] J. King et al. “Control-oriented model for secondary effects of wake steering”. In: Wind
Energy Science 6.3 (2021), pp. 701–714. DOI: 10.5194/wes-6-701-2021. URL: https:
//wes.copernicus.org/articles/6/701/2021/.

[8] Evan Gaertner et al. “IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore
Reference Wind Turbine”. In: (Mar. 2020). DOI: 10.2172/1603478. URL: https://www.
osti.gov/biblio/1603478.

A Appendix

A.1 Wind farm

Figure 5: We consider a wind farm of N = 19 turbines and a custom diamond layout, with a distance
of four turbines diameters between a turbine and its closest neighbors.

5

https://doi.org/10.5194/wes-2-229-2017
https://wes.copernicus.org/articles/2/229/2017/
https://wes.copernicus.org/articles/2/229/2017/
https://doi.org/https://doi.org/10.1016/j.rser.2025.115605
https://www.sciencedirect.com/science/article/pii/S1364032125002783
https://www.sciencedirect.com/science/article/pii/S1364032125002783
https://github.com/NREL/floris
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1506.02438
https://doi.org/10.5194/wes-9-1577-2024
https://wes.copernicus.org/articles/9/1577/2024/
https://doi.org/10.5194/wes-6-701-2021
https://wes.copernicus.org/articles/6/701/2021/
https://wes.copernicus.org/articles/6/701/2021/
https://doi.org/10.2172/1603478
https://www.osti.gov/biblio/1603478
https://www.osti.gov/biblio/1603478


A.2 Detailed architectures

Due to the inherent symmetry in the WFFC problem, if an effective solution exists near the lower
bound of the action space, a corresponding solution near the upper bound is often equally viable.
By modeling actions with a circular distribution, like the von Mises, we ensure that the policy can
explore these equivalent solutions efficiently. It promotes a more effective and balanced exploration.

FNN-based model We use 2 hidden layers for the shared branch, with output sizes of 1024 and
4096. The shared actor branch comprises two FC layers with output sizes of 2048 and 256. The µ̄t

and κ̄t actor branches each contain a single FC layer with output size of N . The critic branch consists
of three FC layers with output sizes of 2048, 256, and 1. The FNN-based model has 22,091,047
trainable parameters.

Attention-based model In this work, each embedding layer has an output size of 256. The three
attention blocks consist of a MHSA layer with three attention heads and an output size of 256,
followed by two feed-forward layers: one increases the size four times and the other restores it. Both
actor branches contain three feed-forward layers with output sizes of 128, 64, and 1. The critic branch
follows the same structure, with three FC layers of output sizes 128, 64, and 1. The attention-based
model has 21,600,771 trainable parameters.

A.3 Hyperparameters

We consider low wind speeds, i.e., between 3 and 10 m/s, because this is where WFFC is the most
beneficial for energy production (wake losses have a greater impact). At each time step step t ≥ 1,
we use a simple ARMA process of order 1 to generate wind data. The direction is computed such
that Kt = (εt +Kt−1 + 0.1εt−1) mod 360 with εt ∼ N (0, 9). The speed is computed such that
Vt = ε′t + Vt−1 + 0.1ε′t−1 with ε′t ∼ N (0, 0.01). Noisy wind data is obtained by perturbing the
original values with noise sampled from uniform distributions: K ′

t = Kt+εK , where εK ∼ U(−3, 3),
and V ′

t = Vt+εV , where εV ∼ U(−0.1, 0.1). Numerical simulations are conducted with FLORIS [3],
a steady-state, low-fidelity simulator developed by NREL. The default Gaussian-curl hybrid model [7]
provided by FLORIS is used. The machines are International Energy Agency (IEA) 15 megawattss
(MWs) wind turbines [8]. For the PPO, hyperparameters are listed in Table 1.

Table 1: PPO hyperparameters used for each model. Only the learning rate and gradient clipping
parameters differ across models. At each training step, the learning rate is linearly interpolated
between its initial and final values. Each model requires approximately two hours of training on an
NVIDIA Grace CPU and an NVIDIA GH200 Hopper GPU.

Hyperparameter FNN-based model Attention-based model
Training steps 150 150
Discount factor 0.1 0.1
Learning rate (first) 1e-4 1e-5
Learning rate (last) 1e-6 1e-7
Gradient clipping 10 None
GAE λ parameter 0.95 0.95
Entropy coefficient 0.05 0.05
Clip parameter (actor) 0.01 0.01
Clip parameter (critic) 10 10
Value loss coefficient 0.1 0.1
Number of epochs 11 11
Train batch size 6480 6480
Mini batch size 360 360

6


	Introduction
	Reward shaping
	Models
	Simulations
	Conclusion
	Appendix
	Wind farm
	Detailed architectures
	Hyperparameters


