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STATE PREDICTION FOR OFFLINE REINFORCEMENT LEARNING VIA
SEQUENCE-TO-SEQUENCE MODELING
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ABSTRACT

Recent offline reinforcement learning methods often frame
the problem as a sequence modeling task, employing a
decoder-only architecture to process states, actions, and a
single scalar value representing the sum of future rewards
(i.e., returns). However, the distinct characteristics of these
modalities, such as the non-smoothness of action sequences
and the scalar nature of returns, may hinder effective mod-
eling and optimization when using a shared architecture. In
this work, we propose a divide-and-conquer strategy, the
Reward-Guided Decision Translator (RGDT), that leverages
an encoder-decoder architecture by casting offline reinforce-
ment learning as a sequence-to-sequence modeling problem.
Our approach foregoes action prediction in favor of next
state prediction, mitigating the challenges posed by the non-
smoothness of action sequences. Furthermore, our formu-
lation enables direct conditioning of state generation on se-
quences of future returns, providing a more informative signal
for the model. By disentangling the processing of different
modalities, our approach addresses the limitations of shared
decoder-only architectures. Empirical results demonstrate
that our method significantly outperforms existing genera-
tive sequence modeling techniques and matches or surpasses
state-of-the-art methods across a range of continuous control
tasks from the D4RL benchmark.

Index Terms— Offline Reinforcement Learning, Se-
quence Modeling, Transformer Architecture

1. INTRODUCTION

Offline reinforcement learning (RL) has emerged as a promis-
ing approach for deriving effective policies from static
datasets, circumventing the necessity for online interactions
with the environment. This paradigm is particularly advanta-
geous in domains where real-world exploration is expensive,
hazardous, or impractical, such as robotics, healthcare, and
finance [1].

Offline RL datasets typically comprise sequences of three
distinct modalities: encountered states, actions executed by
a single or a mixture of policies, which may not necessar-
ily be optimal, and scalar reward information, which can be
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Fig. 1: RGDT framework overview. Our sequence-to-
sequence architecture maps future returns to past states via
an encoder-decoder structure, with actions inferred through
an inverse dynamics model. This design disentangles modal-
ity processing, separately handling vector states/actions and
scalar returns.

in the form of Q-values or the sum of future rewards per
timestep. This sequential nature of offline RL data makes it
an ideal candidate for the application of sequence modeling
techniques [2]. Recent work in the signal processing com-
munity has embraced this perspective, with [3] proposing an
offline RL method based on next state supervision, [4] intro-
ducing uncertainty estimation with generative adversarial net-
works, and Wu et al. introducing pre-trained policy guidance
in offline learning. These methods harness the capabilities of
transformer models, particularly the decoder component, to
directly learn policies from trajectories [5].

Transformers, initially designed for natural language pro-
cessing to handle discrete input tokens, have been adapted
for offline RL either by discretization-based tokenization of



input features from each modality [6], or by a higher-level
tokenization that considers only three tokens: states, actions,
and returns [2]. This approach has parallels in signal process-
ing, where Ohta et al. designed a sequential Audio Spectro-
gram Transformer with a memory token for real-time sound
event detection, and Seraphim et al. developed structure-
preserving Transformers for sequences of symmetric positive
definite matrices in EEG classification.

The primary advantage of discretization is the flexibility
it affords the model to learn distinct statistical properties of
each feature, as each discretized value is associated with its
own parameters [5]. However, this approach faces signifi-
cant scalability challenges with even relatively small datasets
and dimensions [6]. The higher-level modality-based tok-
enization offers greater scalability and simplicity, but with all
transformer layers beyond the embedding layer shared across
modalities, it may not adequately capture the unique charac-
teristics of each data type. For instance, in continuous control
tasks, action sequences often represent joint torques with non-
smooth trajectories [7], while state sequences are governed
by the environment’s dynamics and exhibit smoother patterns
(8].

This disparity explains why discretization, despite be-
ing modality-agnostic, often yields superior performance.
The advantage of disentangling transformer components per
modality has been explored extensively in signal processing
applications. [9] introduced RESTAD, a Transformer-based
model for time-series anomaly detection that effectively sepa-
rates the processing of normal and anomalous signal patterns,
while [10] employed contrastive representation learning on
wireless channel-state sequences for human-orientation de-
tection. [11] proposed “Speed,” a scalable preprocessing
pipeline for EEG data enabling self-supervised sequence
learning, demonstrating how proper signal-domain prepro-
cessing aids downstream representation learning. Specifi-
cally, in offline RL, there is work that explores the effect
of disentangling transformer components per modality [12].
This approach hardcodes the importance of each modality
into the design of a multimodal architecture after attention
analysis of the decision transformer, using multiple small
transformers. However, instead of training a model to dis-
cover the importance and leverage it with a mixture of models,
an automated approach within a single model would be more
desirable.

In this work, we develop a modality-aware sequence-
based approach for offline RL that exhibits both the flexibility
of disentangled parameters across different modalities and the
scalability of high-level modality-specific tokenization within
a single model. We adopt a sequence-to-sequence modeling
framework where the model translates from one modality to
another—specifically, from sequences of future returns to se-
quences of past states. This approach aligns with successful
encoder-decoder architectures in signal processing: [13] de-
signed CNN-Transformer architectures for audio captioning

that map audio features to text descriptions, [14] presented
YourMT3+, which transcribes polyphonic audio into multi-
ple instrument tracks, and [15] proposed parameter-efficient
transfer learning for Audio Spectrogram Transformers.

Our sequence-to-sequence modeling leverages the vanilla
transformer architecture with an encoder-decoder structure
[16], ensuring each modality has its own transformer compo-
nents (see figure 1). This approach is conceptually similar to
[17]’s LMCodec, which uses a causal Transformer for neural
speech coding with coarse/fine token hierarchies. With our
formulation, each modality has disentangled weights while
still using the high-level modality tokenization employed
by decision transformers. The idea of translating from one
modality to another using an encoder-decoder architecture is
widely common in the literature and forms the cornerstone
for fields like speech-to-text, text-to-speech, and image-to-
text translation. Finally, actions are predicted using an inverse
dynamics model, a design choice we explain in subsequent
sections. Our experimental results demonstrate that this ap-
proach substantially outperforms decoder-based counterparts
and matches or surpasses state-of-the-art off-policy methods
across a range of continuous control tasks.

2. PRELIMINARIES

We adopt the Markov decision process (MDP) framework to
model our environment, denoted by M = (S, A, p, P, R, ),
where S and A represent the state and action spaces, respec-
tively. The probability distribution over transitions is given
by P (s¢+1 | st,a¢), while the reward function is defined as
R (s¢,a). The discount factor, ~, is used to weigh the im-
portance of future rewards. The agent starts in an initial state
s1 sampled from the fixed distribution p (s1) and chooses an
action a; € A from the state s; € S at each timestep ¢. The
agent then transitions to a new state s;y; according to the
probability distribution P (- | s;,a;). After each action, the
agent receives a deterministic reward r; = R (¢, a).

2.1. Setup and Notation

Throughout this paper, we adopt a consistent notation where
bold symbols (e.g., s, a) denote vectors, while regular sym-
bols (e.g., 7, g) represent scalars. This distinction is particu-
larly important as we deal with various modalities of different
dimensionalities in our sequence-to-sequence formulation.
Our goal is to model the offline RL problem as a sequence
modeling problem, with the agent having access to a fixed-
size static training dataset 7. We use 7 to represent a trajec-
tory and |7 to denote its length. The return-to-go, which we
refer to as 'return’ for short throughout the paper, of a trajec-

tory 7 at timestep ¢ is defined as the sum of future rewards
7]

starting from that timestep, ie., g+ = >, ., 7. We use
G to represent the discounted returns which are computed
I7]=1 ¢ —¢

asGy =) ., v "'re.
The sequence of states, actions, rewards, and returns
of trajectory 7 are represented by s = (sl, e ,SM), a =



(al, . 7aM), r = (7"1, . 77°‘7.|), and g = (gl, . 7g‘7.|),
respectively. We use m and n to denote the dimensionality of
the states and actions respectively.

To represent segments of trajectories, we define T,tf as a
segment of the trajectory 7 from timestep ¢; to t. The se-
quence of states, rewards, and returns in the segment Tff are
denoted by s{> = (sy,,...,Ss,), and g{> = (guy,.--,Gt,)s
respectively.

2.2. Sequence Modeling for Offline RL

In general, sequence modeling approaches in offline RL per-
ceive trajectory data as an unstructured sequence suitable for
modeling via the GPT architecture [S]. Typically, this data is
articulated in one of the two following forms:

7g|7'\7s|7'\7a|7'\) ) (l)

7]
. 73?771t7Gt =1 (2)

DT ‘= (91751,31»92,82,32,~-~

TrT = {s,},sf7 e ,s;",a%,a?, ..

In this context, the subscripts on all tokens denote the
timestep, while the superscripts on states and actions signify
dimensions. The core objective is to develop a model capa-
ble of predicting action distributions. This can either be con-
ditioned on desired returns and preceding states, a strategy
employed in Decision Transformer (DT) [2], which typically
aligns with the trajectory representation in (3); or it can en-
tail crafting a distribution of actions based on previous states,
accompanied by the utilization of a discounted return guided
beam search for selecting actions, a methodology followed by
Trajectory Transformer (TT) [6] and commonly correspond-
ing to the trajectory configuration outlined in (2). Despite the
distinct technical variations between these approaches (e.g.,
the implementation of quantization in [6] as opposed to [2]),
both avenues employ a decoder-only architecture and funda-
mentally aim to employ the transformer architecture as a tool
for policy modeling.

3. OFFLINE RL AS A SEQUENCE-TO-SEQUENCE
MODELING PROBLEM

In this work, our goal is to disentangle the processing of dif-
ferent modalities in transformer-based approaches for offline
RL by formulating the problem as a sequence-to-sequence
modeling task. Given a dataset 7 of trajectories, where each
trajectory 7 is composed of sequences of states, actions, and
returns-to-go tuples s, a, g, we model the relationship:

Model: gi {8t j

o V¢ >0 3)

This formulation captures our sequence-to-sequence ap-
proach, where we learn to map sequences of future returns

4+ K41 SO t ¢
911 to sequences of historical states s; ;- . Here, s;_p_

denotes states from timestep ¢t — K to ¢, and gfi{(ﬁl denotes
returns from timestep ¢ + 1 to ¢ + K. + 1. For simplicity,
we refer to these sequences as s_g, and g4, throughout
the paper, with K, and K being the encoder and decoder
context lengths, respectively.

This sequence-to-sequence formulation offers several ad-
vantages. Firstly, it enables mapping segments from differ-
ent timesteps, allowing direct conditioning on a sequence of
upcoming returns rather than a single scalar sum. Our experi-
ments indicate that this direct conditioning of state generation
enhances performance. We attribute this improvement to the
richer, more detailed representation of future behavior pro-
vided by the sequence, which facilitates more effective credit
assignment.

Additionally, this approach permits the use of different
context lengths for returns and states. Considering a larger
context length for returns, K., helps avoid short-sightedness
in policy decisions, similar to the role of the discount factor in
value-based RL algorithms. This extended context allows the
model to capture long-term dependencies more effectively. In
contrast, the context length for states, K5, can be smaller due
to the Markov property of the environment, which implies that
fewer past states are needed for next state prediction.

3.1. Model Architecture

An encoder-decoder architecture[16] provides a robust frame-
work for addressing sequence-to-sequence modeling prob-
lems. In our setting, the source segments of returns, g4 g, ,
are processed by an encoder model, which consists of a
stack of identical layers. Each layer has two sub-layers:
a multi-head self-attention mechanism and a position-wise
fully connected feed-forward network. The target sequence,
S_K,, 1s processed by a decoder model, which also comprises
a stack of layers. Notably, the number of layers in the decoder
does not necessarily have to match the number of layers in
the encoder. Each decoder layer includes its own masked
multi-head self-attention mechanism and position-wise fully
connected feed-forward network. Additionally, the decoder
introduces a third sub-layer that performs multi-head atten-
tion over the encoder’s output. This architecture allows for
separate processing of each token modality with distinct sets
of weights and the use of networks with varying depths. In
contrast, the GPT architecture [5], used in prior sequence
modeling approaches to offline RL [2, 6], which only em-
ploys a variant of the decoder part of the transformer model,
lacks this level of flexibility.

3.2. Training the Sequence-to-Sequence Decision Trans-
lator

In a sequence-to-sequence framework, the mapping from the
source space to the target space is learned by performing next
token prediction in the target space. In our case, the map-
ping from g i, to s_g_ is learned by performing next state
prediction. To this end, we introduce a probabilistic function
po which models the distribution of states. This function is
parameterized by the transformer model with both its com-
ponents—the encoder and decoder—which we denote with
weights 6, and it assigns probability density at the ¢-th time
step, conditioned on the future K, instances of returns and



K historical state instances.

More precisely, the state distribution function pg is mod-
eled using a multivariate Gaussian distribution parameterized
by the transformer model which outputs its mean pp and a
diagonal covariance matrix X, i.e.,

po(Sit1 | S—K5»9+KT) =
N (no(s—k,,9+k,), Xo(s—k., 9+K,)) » 4)
Vit > 1

Subsequently, py can be learned by minimizing the neg-
ative log-likelihood (NLL) loss, which can be expressed as
follows:

J(Q) == _Est+l

1 7g+K7_NT[IOgP9(St+1 | s—k.,9+K,)+
t—1

Z Liiti<k,}1og po(sit | Si—K579+KT)]

i=t—K,
&)

By setting 11;1 1<k} to 1, we recover the training regime
commonly employed in sequence-to-sequence approaches,
where the model is trained to predict other tokens in the
context, effectively varying the context length from 1 to K.
This strategy of training with varying context lengths, even
when the full context is available, is widely used in sequence
prediction tasks to expose the model to diverse scenarios,
potentially promoting robustness, adaptability, and general-
ization to unseen sequences.

However, in our case, since subsequent states are highly
correlated, as can be seen in Figure 2, this approach may lead
the model to overfit easily to these correlations by assigning
high attention to nearby states, potentially neglecting more
distant tokens that could be valuable for the ultimate objective
of return maximization. To address this issue, we propose
a simple adaptation: setting 15, 1<x,} to 0. As Figure 2
shows, this final token prediction approach makes the model
less biased toward the linear correlations between subsequent
states in the dataset.

3.3. Policy Extraction and Inference

Predicting states using the transformer model is insufficient
for defining a controller. Nevertheless, a policy can be in-
ferred by estimating the action a; that caused the transition
from state s; to s, at any timestep ¢ in 7. Given two con-
secutive states, we generate an action according to the inverse
dynamics model [18, 19], which we model as a conditional
multivariate Gaussian distribution, as follows:

T (ar | s¢,8641) = N(Nqb (St,8t41) P3P (st,8t41)) (6)

Note that the same offline data utilized to train the state pre-
dictor model py can also be employed to learn 7. Further-
more, we employ the same framework as used for the trans-
former model, utilizing maximum likelihood estimation to
learn the parameters ¢.

Algorithm 1 Inference with RGDT

1: Input: g4k, ,5_K,

2: Output: a,

3: procedure INFERENCE(g+k, ,S—_K.)
4: Initialize £ < 1

5 while not done do

6: St+1 ¢ po(S—k., 9+K,)

7: &y < fp(st,8¢41)
3
9

Execute a;
: Observe s;11 ~ P(- | s¢,a¢)
10: t+—t+1
11: end while
12: end procedure

L . K, +1
During inference, a desired sequence of returns g, rt

and an initial state s; are specified. In practice, to filter for
good behavior during inference, the whole sequence of re-
turns g is constructed by taking the best return per-timestep
from the dataset of trajectories 7. The RGDT model then
generates the first state So = pup(sy, gf’”). Then, both s;
and §; are fed to the inverse dynamics model 7, which gen-
erates a deterministic action according to a; = pg(s1,S2).
After executing the action ay, the agent observes the next state
so from the transition probability distribution P (- | s1,a1).
Subsequently, the RGDT generates the next goal state Sg
based on g§T+3, S1, S as inputs. This process continues until
the episode terminates.

4. EXPERIMENTS

We evaluate RGDT against leading offline RL approaches on
the D4RL benchmark [20], comparing performance with both
sequence modeling methods and off-policy algorithms. Our
experiments focus on three aspects: (1) overall performance
across continuous control tasks, (2) benefits of final token
prediction over full context prediction, and (3) advantages of
our sequence-to-sequence formulation.

Implementation Details and Hyperparameters. Our RGDT
implementation utilizes a transformer with hidden dimension
64 and 2 attention heads. The encoder and decoder comprise
2 and 3 layers, respectively, reflecting the asymmetric nature
of our sequence-to-sequence formulation. We employed con-
text lengths of K,, = 20 for returns and K, = 5 for states,
enabling the model to consider extended future horizons
while maintaining computational efficiency. For optimiza-
tion, we used the AdamW optimizer with a learning rate of
5 x 1074, linear warmup over 10,000 iterations, weight decay
of 1073, and dropout probability of 0.1. Training continued
for 150,000 gradient steps with a batch size of 256. The
inverse dynamics model consists of a neural network with
2 hidden layers of 512 units each, trained using the Adam
optimizer with learning rate 10~%, weight decay of 10~%, and
dropout of 0.1. This model was trained for 200,000 gradient
steps with a batch size of 1024.
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Fig. 2: (a) Pearson correlation between each state and its subsequent states in Walker2d-Medium, decreasing with timestep
offset. (b) Attention weights for GPT model with full context token prediction. (c) Attention weights with final token prediction
only. Full context prediction (b) biases attention toward linear state correlations observed in (a), while final token prediction (c)

shows more balanced attention distribution.

Benchmark and Compared Baselines. We evaluate RGDT
on the DARL benchmark [20] using the Gym environment
[21], focusing on six continuous control tasks: halfcheetah-
medium (HC-M), hopper-medium (HP-M), walker2d-medium
(WK-M) and their medium-expert (HC-ME, HP-ME, WK-
ME) variants. We compare against four established baselines:
10%BC [2], which replicates the top decile of behaviors in
the dataset; and two leading dynamic programming meth-
ods - Conservative Q-Learning (CQL) [22] and Implicit Q-
Learning (IQL) [23], as well as Decision Transformer (DT)
[2], the primary sequence modeling approach. All baseline
results are sourced from their respective papers with CQL
results adapted from [23] for the v2 datasets.

Full Context Token Prediction vs. Final Token Prediction.
An important aspect of our method is the training regime of
final token prediction as implied by equation 5. As demon-
strated in Figure 3, this approach leads to significantly better
performance compared to full context token prediction across
the D4RL medium tasks.
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Fig. 3: Comparison of RGDT training strategies on Gym
D4RL medium tasks.

5. CONCLUSION

We introduced RGDT, a sequence-to-sequence approach for
offline RL that disentangles modality processing through an

Table 1: Normalized scores on Gym D4RL tasks (10 seeds).
Our method RGDT achieves the best performance.

Dataset | 10% BC | CQL | IQL | DT | RGDT
HC-M 425 | 440 | 474 | 426 | 444
HP-M 569 | 585 | 663 | 676 93.2
WK-M 750 | 725 | 783 | 740 83.3
HC-ME 929 | 91.6 | 867 | 868 93.4
HP-ME 1109 | 1054 | 915 | 107.6 | 112.4
WK-ME 109.0 | 108.8 | 109.6 | 108.1 | 113.3
Total 4872 | 480.8 | 479.8 | 486.7 | 539.0

encoder-decoder architecture. By translating future returns
to state sequences and using an inverse dynamics model for
action inference, our method effectively addresses the lim-
itations of decoder-only architectures and achieves superior
performance on the D4RL benchmark.

Future work could explore: (1) adapting RGDT to vi-
sual observations and complex state spaces, (2) investigat-
ing transfer learning across tasks with similar dynamics but
different return structures. The sequence-to-sequence formu-
lation presented here offers a promising foundation for ad-
dressing the multimodal nature of sequential decision-making
while maintaining computational efficiency.
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