
Efficient 5G Resource Block Scheduling Using
Action Branching and Transformer Networks

Sylvain Nérondat∗†, Xavier Leturc∗, Philippe Ciblat†, Christophe J. Le Martret∗

∗Thales SIX GTS SAS, France
†LTCI, Télécom Paris, IP Paris, 91120 Palaiseau, France

firstname.lastname@{∗thalesgroup.com, †telecom-paris.fr}

Abstract—This paper presents a deep reinforcement learning-
based scheduling solution tailored for 5G networks. The proposed
neural network architecture, utilizing an encoder-only trans-
former and action branching, is designed to handle large action
spaces for resource block allocation in wireless environments. By
training on variable number of user equipment scenarios, the
solution generalizes well across different configurations. Experi-
mental results in Nokia’s wireless suite environment demonstrate
superior performance in packet loss, compared to heuristics.

Index Terms—Action branching, deep reinforcement learning,
scheduling, transformer, wireless suite.

I. INTRODUCTION

Packet scheduling is a critical mechanism in communication
systems, determining how data packets are prioritized and
transmitted to ensure efficient resource utilization, low latency,
and high-quality service in increasingly demanding network
environments.

Until recently, scheduling algorithms have relied on heuris-
tics. These heuristics were designed to achieve specific objec-
tives: round-robin (RR) aims to distribute resources equally
across all links, proportional fair (PF) seeks to distribute
rates fairly across all links, while the log-rule, exp-rule,
and modified largest weighted delay first (MLWDF) aim
to guarantee bounded delays. These heuristics operate with
limited information on flows and buffers, such as: i) average
or instantaneous data rate, ii) head of line (HoL) delay, or
number of bits.

Currently, approaches utilizing neural network (NN) archi-
tectures trained with deep reinforcement learning (DRL) have
emerged to tackle the scheduling challenge. A key advantage
of NN architectures is their flexibility in incorporating numer-
ous features, making it easier to expand features at the NN
input compared to heuristics. Additionally, DRL is model-
free, allowing for customized objectives through the reward
function.

Each user equipment (UE) is assigned specific quality of
service (QoS) associated with first in, first out (FIFO) buffers
with finite size, in which the packet data flows are stored.
Packets may be lost when new packets arrive and the buffer
is full, a situation referred to as buffer overflow (BO). Each
packet in the buffer is characterized by its age, i.e. the
time spent in the buffer since its arrival, expressed in time
transmission interval (TTI), which is the smallest unit of time

for the scheduling process. According to the QoS, packets
are assigned time duration constraints called packet delay
budget (PDB). A packet exceeding the PDB is referred to
as delay violation (DV). The corresponding packet is kept in
the buffer until transmission. Each link from the base station
(BS) to the UE is characterized by a link quality given by the
channel quality indicator (CQI). The number of bits that can
be scheduled is determined from the CQI.

NN architectures utilize input vectors from the state space
that are defined by the designer and are crucial for system
performance. Most schedulers in existing literature, whether
heuristic or NN-based, primarily consider HoL, number of
packets (NP), or both. An effective NN scheduler should, after
training, possess these properties: i) it should be permutation
equivariant (PE) with respect to the inputs, enhancing learning
and inference performance [1], ii) it should adapt to a variable
number of links, accommodating temporal fluctuations, a prop-
erty called number of links independent (NLI), iii) it should
collectively evaluate all users’ buffer data for scheduling to
achieve a global, potentially optimal solution, termed global
buffer management (GBM). Note that while NLI can handle a
varying number of links, good performance is not guaranteed.
This depends on factors such as training methods, hyperpa-
rameters, datasets, and the architecture’s generalizability, and
thus requires validation.

The scheduling operation assigns UEs to a set of resource
blocks (RBs) at each slot. Two approaches can be used
for this assignment: i) RBs are assigned sequentially, one
by one, or ii) RBs are assigned all at once. We refer to
approach i) as sequential RB scheduling (SRS), and ii) as
global RB scheduling (GRS). Approach i) can be seen as
a local optimization, while approach ii) represents a global
optimization. The solution proposed in this paper follows the
GRS approach.

This paper proposes a novel NN architecture for a GRS
packet scheduler trained with a deep Q-learning (DQL) algo-
rithm [3]. Although GRS is a joint approach (thus presumably
better than SRS), it suffers from the curse of dimensionality,
as the number of possible actions grows exponentially with
the number of RBs, rendering this approach inapplicable with
conventional NN architectures. To mitigate this issue, we
propose using the action branching (AB) architecture concept
[4], which involves i) implementing a NN fed by the state



vectors, and ii) distributing the output of the first NN to
Nf parallel branches, each performing dedicated processing,
where Nf is the number of RBs. The output of each branch
gives the Q-values of the possible actions (number of UEs),
from which we deduce the index of the scheduled UE using
an argmax. For part i), we use an encoder-only transformer
(EOT) architecture that possesses the three aforementioned
properties: PE, NLI, and GBM.

The proposed solution is evaluated using Nokia’s wireless
suite (WS) environment, which implements a simplified ver-
sion of the 5G downlink scheduling mechanism and is avail-
able online [2]. The objective of this paper is to experiment
with the new EOT-AB architecture using the WS environment
as is, without modifying the framework, and in particular the
state space information and reward.

The main contributions of this paper are: i) the proposal of a
DRL scheduling solution performing a GRS approach, based
on an AB architecture, and using an EOT for the first NN,
ii) the development of a masking procedure adapted to the
AB architecture, and iii) the performance evaluation of the
proposed architecture, and comparison with three heuristics
implemented in the WS environment, in terms of lost packets
and packet delays.

The rest of this paper is organized as follows. Section II
provides an analysis of the state of the art (SotA). Section III
depicts the system model. Section IV describes the proposed
solution. Section V presents and analyzes the numerical re-
sults. Section VI draws concluding remarks.

II. STATE OF THE ART SOLUTIONS WITH DRL

We analyze the SotA of solutions based on DRL aiming at
scheduling several RBs. Regarding the GRS, one can find two
kinds of approaches: i) the architecture outputs give the indices
of the UEs to be scheduled for each RB, ii) the architecture
outputs give a proportion of RBs to be allocated per UEs. In
that case, a non-linear post-processing is needed to convert the
proportions into the number of UEs per RB. In the following,
we refer approach i) to as GRS index (GRS-I) and ii) to as
GRS proportion (GRS-P). Notice that due to the non-linear
post-processing in the GRS-P approach, the proportions cannot
be exactly respected, thus we conjecture that this approach is
suboptimal compared to the GRS-I one.

The NLI, PE, and GBM properties are deduced from the
NN architecture characteristics and the formatting of input
state vectors. The state vectors feeding the NN architecture
can be: i) a single vector stacking all the UEs’ states, or
ii) a matrix where columns represent individual UE state
vectors. We refer to i) as vector state input (VSI) and ii) as
matrix state input (MSI). NN architectures in the literature are
either fully connected (FC) or architectures involving memory
mechanism like long-short term memory (LSTM). Regarding
the NLI property, the VSI format does not fulfill it because the
input vector size is fixed, depending on the number of UEs,
whereas MSI one is inherently NLI. For the PE property, FC
combined with MSI achieves it, as reordering the input vectors
produces the same outputs, and architectures like EOT without

positional encoding also fulfill this. The GBM property holds
in the VSI format since it encompasses all UE features. The
MSI format, along with a FC, cannot be GBM because state
input vectors the processing are processed piecewise, whereas
an architecture with memory fulfills it.

Following the classification presented in the previous para-
graph, we summarize the analysis of the publications identified
in Table I based on the following features: i) the allocation
approach, SRS, GRS-P or GRS-I, ii) the architecture property,
NLI, PE, and GBM. In [5], [6], authors use an SRS approach,
while in [7], [8], they use the GRS-P approach, and in [9],
[10] the GRS-I is employed. It is worth noting that none of
the identified references verify the three properties, except for
the solution proposed in this paper.

TABLE I: Summary of SotA scheduling solutions with DRL.

Ref. Allocation mode NLI PE GBM

[5] SRS X

[6] SRS X X

[7] GRS-P X X

[8] GRS-P X

[9] GRS-I X X

[10] GRS-I X X

Ours GRS-I X X X

III. SYSTEM MODEL

We implement our architecture within the Nokia’s WS
environment that is suited for reinforcement learning (RL)
algorithms evaluation since its implementation follows the
conventional state, action, reward of the RL scheme [11].
We focus in this paper on the TimeFreqResourceAllocation-
v0 (TFRA) challenge presented in [2], and referred to as WS-
TFRA in the sequel. In the following sections, we describe the
WS-TFRA environment and the corresponding communication
model, followed by the implemented RL model.

A. WS environment and communications model

WS-TFRA implements a BS designed to send traffic to
K UEs, which are uniformly distributed within a 1000-meter
square around it. The UEs move according to a random walk
at constant speeds, according to a normal distribution. Free
space propagation is assumed along with shadowing. The total
bandwidth W is divided into Nf RBs, which are allocated by
the scheduler to UEs at each TTI. The data to be scheduled to
the different UEs are stored in finite length buffers at the BS,
each buffer containing at most B packets. There are two kinds
of QoS classes: guaranteed bit rate (GBR) and non-GBR, and
four types of traffic: voice, video, delay critical (DC), and web,
each with a specific QoS. Voice, video, and DC are GBR,
while web is non-GBR. WS-TFRA ensures that the traffic
types are equally represented, which requires that the number
of UEs is a multiple integer of four, i.e. K = 4p, with p ∈ N∗.
In the following, our developments are presented in a more
general manner for possible future extensions, considering that
the number of QoS levels is equal to nQ, while keeping the



constraint K = pnQ. Each UE is assigned a single service,
which is uniformly randomly drawn from Q := {1, . . . , nQ}.
The traffic characteristics are defined by the inter-arrival time
τq , i.e. the time between the arrival of two consecutive packets
in the buffer, and the incoming packet size Bq , where q ∈ Q.
The QoS corresponding to traffic q is given by the PDB Dq .

The scheduling sequence is depicted as follows. At each TTI
t, the scheduler selects the different UEs to be served on the
Nf RBs of the slot. To do so, the BS selects one UE per RB,
with the possibility of allocating multiple RBs to the same UE.
The number of bits delivered by the BS to each selected UE
depends on the CQI index nck ∈ {0, . . . , nCQI} with nCQI = 15,
where 0 represents the worst channel quality, and 15 represents
the best. Depending on the number of allocated RBs, the
CQI and the packet sizes, a packet may be not completely
transmitted, resulting in partial packet transmission. The age
of a packet continues to be incremented as long as it is not
fully transmitted. Once the bits have been extracted from the
buffers, the age of the packets is incremented. New packets
arrive in the buffers according to τqk and Bqk , which depends
on the traffic type of UE k. If a new packet arrives while the
corresponding buffer is full, a BO occurs, and the packet is
lost. Finally, the UEs move, and the sequence is repeated at
each TTI.

B. Reinforcement learning model

In this section, we describe the state, action, and reward
used in our architecture, which are derived from those of WS-
TFRA. Several adaptations are required to convert the outputs
of WS-TFRA to fit our architecture: i) going from sequential
to joint RB allocation, and ii) adapting the state vector format
to the MSI format.

Next, for the state, action, and reward, we first review
the outputs of WS-TFRA, followed by a description of the
proposed adaptations.

1) State space: The state space implemented in WS is
the concatenation of the features associated with each buffer
and the RB index in the slot. Each packet j of UE k is
characterized by its number of bits bj,k and its age dj,k. The
feature associated with the buffer of UE k for RB n during
time slot t is denoted by fnk,t and is defined as:

fnk,t := [bk,dk, n
c
k,hk]

T , (1)

where T is the transposition operator, bk := [b1,k, . . . , bB,k]
and dk := [d1,k, . . . , dB,k] are the vectors containing the
number of bits and the age of each packet, respectively. Let
qk ∈ Q be the QoS of UE k and hk its corresponding one-hot
encoded vector, i.e. hk is a vector with all entries equal to
zero except the qkth entry, which is equal to one. The number
of entries in the vector fnk,t is equal to (2B + nQ + 1). The
resulting state provided by the WS-TFRA at RB n of slot t
writes

snt,WS := [fn1,t
T , . . . , fnK,t

T , n]T , (2)

The number of entries of vector snt,WS is equal to K(2B +
nQ + 1) + 1.

Proposed adaptations. Since we propose a joint UE alloca-
tion for all the RBs in the slot, we only need to consider the
state at the beginning of the time slot, i.e., f1k,t. In addition,
the state vector as defined in (1) was found not to achieve very
good performance. Therefore, we propose a new one:

f̃1k,t = [hk ⊗ [bk/Bqk,th,dk/Dqk ], n
c
k/15]

T (3)

where ⊗ represents the Kronecker product, and Bqk,th and Dqk

are the maximum values allowed for bj,k and dj,k respectively.
The length of vector f̃1k,t is equal to (2BnQ + 1). This new
definition considers the same entries as in (1), but arranged
differently by inserting zeros, and normalized to 1. Moreover,
since we use a NLI architecture that can handle a variable
number of UEs, we need MSI inputs. Thus, we have to reshape
(2) with n = 1, and replacing f1k,t by f̃1k,t, into a matrix where
each column correspond to f̃1k,t:

st,a := [f̃11,t, . . . , f̃
1
K,t] (4)

which has dimensions (2BnQ + 1)×K.
2) Action: At RB n in slot t, WS-TFRA takes as input a

scalar action:
ant,WS = i (5)

where i is the index of the buffer to be scheduled.
Proposed adaptations. The joint RB allocation requires to

adapt the action format to be taken as:

at,a := (i1t , . . . , i
Nf

t ) (6)

where ijt corresponds to the buffer to be scheduled during the
jth RB of slot t.

It is worth noting that the proposed modification results in
an action space with a dimension of KNf . For instance, in
WS, where Nf = 25, setting K = 32, we obtain KNf >
1037, which confirms the curse of dimensionality discussed in
Section I, and highlights the need for the AB architecture to
mitigate it.

3) Reward: The reward implemented in WS is given by:

rjt,WS =

{
0, if j < Nf

−nd,t − nb,t, if j = Nf

(7)

where nd,t and nb,t denote the total number of bits subject
to DV in the buffers and the number of bits in the non-GBR
buffers, respectively. The reward is computed after the RB
allocation and before new packets arrive. The objective of this
reward is thus to minimize the number of bits in the buffers
subject to DV for all traffic types, plus the number of bits in
the non-GBR buffers.

Proposed adaptations. For the GRS-I approach, we propose
to use the reward (7) at n = Nf . In addition, since the WS-
TFRA reward is a non-positive integer, we propose mapping
it to the range [0, 1] using the exponential function:

rt,a = er
Nf
t,WS . (8)



IV. PROPOSED SOLUTION

The scheduling problem, with the action space, state space
and reward defined in Section III, can be modeled as a
Markovian decision process (MDP), not presented here due
to space limitation. In that context, the DQL is known to
find the optimal policy, and thus the optimal scheduler, which
maximizes the long-term average discounted reward [11].

We now expose the proposed NN architecture, and then
present the implementation of the masking mechanism.

A. NN architecture

The proposed architecture follows the AB architecture phi-
losophy as described in [4] along with the use of an EOT NN,
referred to as EOT-AB in the sequel, and illustrated in Fig. 1.

EOT

𝐰𝐰𝑢𝑢
1, 𝑏𝑏𝑢𝑢1

M
as

k 
𝑚𝑚
0

Ar
gm

ax

𝑖𝑖𝑡𝑡1

𝐬𝐬𝑡𝑡,𝑎𝑎
𝐖𝐖𝑒𝑒 ,𝐛𝐛𝑒𝑒

𝐰𝐰𝑢𝑢
𝑁𝑁𝑓𝑓 , 𝑏𝑏𝑢𝑢

𝑁𝑁𝑓𝑓

M
as

k 
𝑚𝑚
𝑁𝑁
𝑁𝑁−

1

Ar
gm

ax

𝐚𝐚𝑡𝑡,𝑎𝑎

M
as

k 
𝑚𝑚
1

Ar
gm

ax

𝐰𝐰𝑢𝑢
2, 𝑏𝑏𝑢𝑢2

… …

�𝐬𝐬𝑡𝑡,𝑎𝑎 �𝐨𝐨𝐸𝐸

𝐯𝐯

𝛂𝛂1

𝛂𝛂2

𝛂𝛂𝑁𝑁𝑓𝑓

𝐯𝐯

𝐯𝐯

𝐯𝐯

𝐐𝐐1

𝐐𝐐2

𝐐𝐐𝑁𝑁𝑓𝑓

𝑖𝑖𝑡𝑡2

𝑖𝑖𝑡𝑡
𝑁𝑁𝑓𝑓

g, 𝑏𝑏

Fig. 1: Proposed EOT-AB architecture combining an EOT and
an AB structure. Gray blocks are learned.

First, the state space, st,a, undergoes an affine embedding,
s̃t,a := West,a + be, where We is a matrix with dimensions
de × (2Bnq + 1), and be is a vector of dimensions de × 1.
Next, s̃t,a is processed by an EOT module, without positional
encoding [12], which has the three following properties: NLI,
GBM, and PE. The implementation details for the EOT can
be found in [13], and it is available in conventional machine
learning frameworks like PyTorch. The EOT output is a de×K
matrix, denoted by õE . In a typical EOT setting, the output
would pass through an affine unembedding. To integrate the
sequence of an EOT with the AB architecture, we propose
to distribute the unembeddings across each branch. For jth
branch, the affine unembedding is a 1×K vector that writes
αj := wj

uõE + bju, where wj
u is a 1× de vector, and bju is a

scalar. The kth entry of αj represents the advantage function
of action k for RB j [4]. Additionally, following [4], dueling is
applied to estimate the value function represented by a 1×K
vector that writes v = gõE + b, where g is a 1 ×K vector,
and b is a scalar. The kth entry of v represents the estimated
value for UE k. Vector v is then added on each branch to αj

to produce Qj , an estimate of the Q-value for each action.
To prevent suboptimal decisions due to selection of an empty
buffer, action masking [14] is applied on each branch. Detailed
mask implementation is provided in Section IV-B. Finally, the
action ijt is selected by taking the argmax on the masked vector
Qj . As highlighted in gray in Fig. 1, We, be, EOT, wj

u, bju,
g, and b are learned during the training phase.

B. Action masking procedure

The action masking procedure [14] aims to prevent the
selection of ”invalid” actions, i.e. actions that are not possible
or allowed. In [14], authors i) theoretically validate this
approach, ii) demonstrate that action masking improve training
convergence and inference performance compared to more
conventional methods, such as invalid action penalty. In the
scheduling problem, there is no invalid actions, but suboptimal
ones when an empty buffer is selected. Here, we propose using
action masking for empty buffers. Once the actions at,a have
been determined, the RBs are filled with the bits taken from
the selected buffers. During this process, no new bit arrives,
the buffer contents evolve only due to bits extraction. The RBs
are filled sequentially, and for each RB, the bits are extracted
from the UE buffer (the selection order of the RBs is not
significant). As a result, a UE may be selected multiple times,
reflected by multiple occurrences of the same index in at,a.

Two situations can lead to the selection of an empty buffer:
i) the first time a UE is selected when its buffer is already
empty, ii) a UE is selected multiple times, eventually emptying
the buffer. Therefore, we need to track each buffer’s status
(empty or not) after each RB allocation, and, when an empty
buffer is detected, set its mask to empty. This sequential
adaptive masking procedure, to the best of our knowledge,
is not covered in the literature and is illustrated in Fig. 1. In
this figure, the RBs are selected sequentially from RB #1 to
RB #Nf (top to bottom). The initial mask, m0, is set based
on the buffer statuses at the beginning of the slot. For RB #1,
the buffer i1t is selected among the non-empty buffers, thanks
to the mask m0, which is applied to the Q-values in Q1. After
bits are extracted from buffer i1t , we update the mask if the
buffer becomes empty. This corresponds to the curved arrow
pointing from i1t . We then update the mask, resulting into m1,
apply m1 to the second branch, and repeat the process until
the last branch.

V. NUMERICAL RESULTS

A. Communication setup
We use the default parameters of the WS-TFRA: a band-

width of W = 5 MHz, Nf = 25 RBs, and B = 8. The
parameters of the four traffics and QoS parameter Dq are
reported in Tab. II. For GBR traffics, both Bq and τq are fixed,
while for the non-GBR traffic, they are drawn according to a
geometric distribution G:

B4 = min (max (1,G(1/20 000)) , 41 250) (9)
τ4 ∼ G(1/β) (10)

with β = 10, the default parameter in WS-TFRA.



TABLE II: QoS and traffic parameters.

Service QoS class q Dq Bq τq

Voice GBR 1 100 584 20

Video GBR 2 150 41 250 33

DC GBR 3 30 200 20

Web non-GBR 4 300 Eq. (9) Eq. (10)

B. Training and inference setup and benchmark algorithms

The proposed scheduler is trained over 2000 episodes of
2622 steps each (i.e. 65 536 RBs) with a fixed β = 10.
The number of UEs varies from episode to episode in K :=
{32, 36, 40}. Our objective is to train a single NN achieving
good performance across different values of K, avoiding the
need to implement a dedicated NN for each possible K. The
inference is conducted over 1000 episodes of 2622 steps for
each K ∈ K.

We compare the performance of the proposed approach
with the heuristics implemented in WS and optimized for
WS-TFRA: i) ProportionalFairChannelAwareAgent, which is
a PF algorithm, ii) BoschAgent, which is described in [15] and
referred to as Bosch agent (BA) hereafter, and iii) Knapsacka-
gent an algorithm called knapsack (KP), for which [2] provides
no bibliographic reference. Notice that we were unable to
compare our approach with those listed in Tab. I due to
insufficient information in the papers to implement them.

C. Performance metrics

We compare the solutions in terms of the following perfor-
mance metrics, collected at the end of the inference episodes:
i) the number of packets exceeding their PDB, ii) the number
of packets lost due to BO, and iii) the time spent by a packet
in the buffer between arrival and departure in TTI, referred to
as packet delay (PD) in the sequel. Since the age of a packet
is determined by the age of the last transmitted bit: i) a packet
is said to exceed its PDB as soon as, at least one bit of the
packet exceeds the PDB, ii) the PD is evaluated as the number
of slots between the arrival of the packet in the buffer and the
departure of the last bit of this packet from the buffer.

D. Performance results

1) Inference performance on the training setup: We set
β = 10 as during training, evaluate the inference performance
of the learned NN for K ∈ K, and compare it with that of the
heuristics. Table III provides the number of packets lost due to
BO and DV with respect to (wrt) K. Several observations can
be made: i) the PF performs better than BA, but still loses
a significant number of packets, ii) both KP and EOT-AB
outperform BA and PF, iii) EOT-AB outperforms KP for all
values of K, achieving zero packet loss for K = 32, while
KP has a loss of 3, iv) for K = 36, performance is similar,
with a slight advantage for EOT-AB, v) for K = 40, KP loses
almost five times more packets than EOT-AB. In conclusion,
EOT-AB outperforms all the heuristics.

Fig. 2 depicts both the cumulative distribution function (cdf)
and the histograms of the PD for each service, for KP and

TABLE III: Lost packets due to BO and DV wrt K.

K 32 36 40

PF 1816 18 650 143 048

BA 19 751 90 955 493 521

KP 3 5 200

EOT-AB 0 3 42

EOT-AB, only for K = 40 due to space limitation. The
other heuristics are not displayed since they yield significantly
worse performance. The histograms are plotted on the log10
scale because of the high dynamic range of the values,
allowing both high and low numbers of packets to be displayed
simultaneously. The red vertical line shows the PDB value.
The cdf shows the amount of received packets vs. the packet
delay. From the histograms, we observe that: i) some voice and
DC packets exceed their PDB when using EOT-AB, while no
packet exceeds the PDB for KP, ii) the PD spread for the
GBR traffics is larger with EOT-AB than with KP, iii) the PD
spread for non-GBR traffic is identical for both EOT-AB and
KP. The cdf shows that, for non-GBR traffic, although the PD
spread is similar, the EOT-AB cdf increases faster than the KP
cdf. Specifically, 90% of packets are received within 7.6 TTIs
for EOT-AB, whereas it takes 22 TTIs for KP to achieve the
same result, which is approximately three times longer.

These observations can be explained by the design of the
reward (7). Indeed, nd,t represents the number of packets in
buffers exceeding the PDB for all traffic types, while nb,t
represents the number of packets in buffers that do not exceed
the PDB, only for non-GBR traffic. As a consequence, nb,t
incentivized EOT-AB to empty the non-GBR buffers, whereas
KP lacks such an incentive. Moreover, for β = 10, the non-
GBR traffic has the highest bit load among all services, which
reinforces the bias in favor of the non-GBR traffic at the
expense of GBR traffic types.

2) Generalization vs. β : We evaluate here the gener-
alization capability of EOT-AB and KP vs. β. The metric
considered here is the number of packets contributing to the
packet error rate, as specified in the 5G standard, i.e., the
sum of the number of packets lost due to BO and the ones
exceeding the PDB for the DC traffic. We call this metric PER
lost packets. Fig. 3 plots the number of lost packets wrt β in
the range [7.5, 10], the lower β, the higher the arrival rate.
The metric is averaged over 1000 inference episodes, only for
K = 32 due to space limitation. One can observe that EOT-AB
shows a slight increase of lost packets for β = 7.5, whereas
KP loses progressively more packets as β decreases, reaching
ten times more lost packets at β = 7.5. This demonstrates
the good generalization capability of the proposed approach
in more stringent conditions.

VI. CONCLUSION

We have proposed in this paper a new architecture for packet
scheduling suitable to the 5G context. The proposed solution
is based on an AB architecture capable to handle the very
large action space induced by the joint RB allocation, and



0 20 40 60 80 100 120 140
Packet delay

100

101

102

103

104

105

106
Hi

st
og

ra
m

 in
 lo

g 1
0

KP
EOT-AB

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

(a) Voice (GBR).

0 20 40 60 80 100
Packet delay

100

101

102

103

104

105

Hi
st

og
ra

m
 in

 lo
g 1

0

KP
EOT-AB

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

(b) Video (GBR).

0 5 10 15 20 25 30 35
Packet delay

100

101

102

103

104

105

106

Hi
st

og
ra

m
 in

 lo
g 1

0

KP
EOT-AB

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

(c) Delay critical (GBR).

0 20 40 60 80 100
Packet delay

100

101

102

103

104

105

106

Hi
st

og
ra

m
 in

 lo
g 1

0

KP
EOT-AB

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

(d) Web (non-GBR).

Fig. 2: CDF and histogram of packet delay for the different
services for K = 40.

leverages the EOT architecture to handle a varying number of
UEs, and is in addition GBM and PE. The proposed solution
has been tailored to the WS-TFRA, using the environment
outputs. Simulations in this framework show that the EOT-
AB outperforms the heuristics implemented in WS in terms of
number of lost packets, which is encouraging. However, it fails

7.5 8.0 8.5 9.0 9.5 10.0
0

25

50

75

100

125

150

175

Nu
m

be
r o

f p
ac

ke
ts

 lo
st

KP
EOT-AB

Fig. 3: Total number of PER lost packets vs. β for K = 32.

to outperform KP for the GBR traffics in terms of PD. This
is because the WS reward is actually not well-suited to DRL
architectures, and in particular to EOT-AB, to accommodate
all traffic types, and will thus need to be adapted in future
work.

REFERENCES

[1] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” Advances in neural information processing
systems, vol. 30, 2017.

[2] A. Valcarce. Wireless suite: A collection of prob-
lems in wireless telecommunications. [Online]. Available:
https://github.com/nokia/wireless-suite

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[4] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures
for deep reinforcement learning,” in Proceedings of the aaai conference
on artificial intelligence, vol. 32, no. 1, 2018.

[5] E.-M. Bansbach, V. Eliachevitch, and L. Schmalen, “Deep reinforcement
learning for wireless resource allocation using buffer state information,”
in 2021 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2021, pp. 1–6.

[6] F. Al-Tam, A. Mazayev, N. Correia, and J. Rodriguez, “Radio resource
scheduling with deep pointer networks and reinforcement learning,” in
IEEE International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), 2020.

[7] A. Paz-Pérez, A. Tato, J. J. Escudero-Garzás, and F. Gómez-Cuba, “Flex-
ible reinforcement learning scheduler for 5G networks,” in 2024 IEEE
International Conference on Machine Learning for Communication and
Networking (ICMLCN), 2024, pp. 566–572.

[8] Z. Gu, C. She, W. Hardjawana, S. Lumb, D. McKechnie, T. Essery,
and B. Vucetic, “Knowledge-assisted deep reinforcement learning in 5G
scheduler design: From theoretical framework to implementation,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 7, 2021.

[9] J. S. Shekhawat, R. Agrawal, K. G. Shenoy, and R. Shashidhara, “A rein-
forcement learning framework for QoS-driven radio resource scheduler,”
in IEEE Global Communications Conference (GLOBECOM), 2020.

[10] A. Robinson and T. Kunz, “Downlink scheduling in LTE with deep
reinforcement learning, LSTMs and pointers,” in IEEE Military Com-
munications Conference (MILCOM), 2021.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[13] M. Phuong and M. Hutter, “Formal algorithms for transformers,” arXiv
preprint arXiv:2207.09238, 2022.

[14] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” arXiv preprint arXiv:2006.14171, 2020.

[15] P. M. de Sant Ana and N. Marchenko, “Radio access scheduling using
CMA-ES for optimized QoS in wireless networks,” in 2020 IEEE
Globecom Workshops (GC Wkshps). IEEE, 2020, pp. 1–6.


