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Performance Analysis of Network Sensing in the
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Abstract—This paper investigates the network sensing problem
in a distributed multiple-input multiple-output (MIMO) radar
system. We first formulate the received signal model in dis-
tributed MIMO systems as a function of the target’s location.
Based on the problem formulation, we derive the Cramér-Rao
lower bound (CRLB) of the location estimation error for a
single target, whose dependence on the layout of the transmitters
(TXs) and receivers (RXs) is revealed. Using the tools from
stochastic geometry, we then model the locations of TXs and
RXs as homogeneous Poisson Point Process (PPP) and investigate
the network-level sensing performance. Particularly, we derive
the scaling law for the average estimation error, revealing the
impact of various system parameters such as the number of
antennas, SNR, TX/RX densities, and path loss exponent. More
importantly, we unveil that the estimation error scales with the
SNR and the number of antennas to the power of ´1, and with
the TX/RX densities to the power of ´γ{2, where γ is the path
loss exponent. Our numerical results confirm the accuracy of our
theoretical derivations and the correctness of conclusions.

Index Terms—Cramér-Rao lower bound (CRLB), Poisson
Point Process (PPP), network-level sensing performance

I. INTRODUCTION

Network sensing is becoming increasingly important for the
next-generation wireless system, especially with the advent of
integrated sensing and communication (ISAC) technologies.
ISAC enables both communication and radar functions using
the same hardware, spectrum, and signals, offering key ad-
vantages such as reduced cost, improved spectral efficiency,
and enhanced power efficiency, compared to systems requiring
separated transceiver designs [1–7]. These features benefit a
wide range of applications, including autonomous driving for
environmental sensing, smart home and building monitoring,
and smart city traffic management [8].

The application of network sensing is a natural step beyond
the conventional ISAC by exploiting the massively deployed
base stations in cellular and cell-free wireless communications
[9]. One promising application of network sensing is estimat-
ing the location of the target using wireless communication
signals transmitted by transmitters (TXs). These signals, once
reflected from the target and received by receivers (RXs), carry
valuable information about the target’s position. By analyzing
the received signals, the location of the target can be inferred.
A well-known method based on exploiting the bistatic ranges
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(BRs), i.e., the sum of TX-target and target-RX distances,
was proposed in [10], where a closed-form least-square (LS)
solution to a set of elliptic equations was derived to estimate
the target’s position. Another approach, presented in [11], in-
volves discretizing the coverage range into grids and applying
hypothesis testing (HT) in each grid to determine whether the
target is present. Building upon the grid-based approach, [12]
reformulated the network sensing as a compressive sensing
problem by modeling the received signal response at each grid
point and applied sparse Bayesian learning (SBL) to estimate
the targets’ locations. In addition, [13] introduced a method
that directly senses the target in the beamspace by exploiting
the beamspace response, whose performance can be effectively
analyzed based on pairwise error probability (PEP) [14].

In light of these developments, this paper provides a general
performance analysis for single-target location estimation in
network sensing, using the Cramér-Rao lower bound (CRLB)
as a metric. We first formulate a concise system model that
reveals how the target location affects the received signals,
in the presence of multiple antennas at each TX and RX.
Based on this model, we extend existing CRLB derivations
of [15] to include the contributions of multiple antennas, and
highlight the exact dependence of the derived CRLB on the
specific TX/RX locations. To gain insights into network-level
sensing performance, we further model the deployment of TX
and RX as practical homogeneous Poisson Point Processes
(PPPs), which enables us to derive the large-scale performance
on the average CRLB. This result characterizes the theoretical
limits of network sensing as a function of various system
parameters such as the number of antennas, signal-to-noise
ratio (SNR), path loss exponent, and TX/RX densities. Unlike
existing work, such as [16], which uses approximations, our
derivations apply rigorous lower bounds to the CRLB, where
a direct connection to the system parameters is unveiled.

II. DISTRIBUTED MIMO RADAR SYSTEM WITH A SINGLE
TARGET

We consider a distributed MIMO radar system with Nt TXs
and Nr RXs. Each TX is equipped with Mt uniform linear
array (ULA) antennas and centrally located at dt

k “ pxt
k, y

t
kq

for all k P rNts
1, while each RX is equipped with Mr ULA

antennas and centrally located at dr
ℓ “ pxr

ℓ , y
r
ℓ q for all ℓ P

rNrs. In this paper, a single sensing target at location ds “

px, yq is considered.
We assume that Nt TXs send signals simultaneously and

denote the transmitted signal from the k-th TX as
?
ρsskptq,

1The notation rNs defines the set t1, ¨ ¨ ¨ , Nu.
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where ρs is the normalized SNR. Assuming that the beam-
forming vector for k-th TX is given as wk P CMtˆ1 with
normalized energy, i.e., }wk}2 “ 1, the received signal for
ℓ-th RX can be obtained by the reflection from the sensing
target, which is given by [11]

rℓptq “

Nt
ÿ

k“1

αk,ℓbpθrℓ qskpt ´ τk,ℓq ` nℓptq, (1)

and we define αk,ℓ as

αk,ℓ
∆
“ σ

d

ρsLr
ℓL

t
kc

2

p4πq3f2
c

aHpθtkqwk, (2)

where Lr
ℓ

∆
“ }dr

ℓ ´ ds}´γ and Lt
k

∆
“ }dt

k ´ ds}´γ denote
the path loss in the transmission link between the k-th TX
and the target and reflection link between the target and the ℓ-
th RX, respectively, γ is the path-loss exponent, σ denotes
the radar cross section (RCS), τk,ℓ “

}dr
ℓ´ds}`}dt

k´ds}

c is
the propagation delay of the transmission and reflection links
with light speed c, fc denotes the central frequency, and
nℓptq P CMrˆ1 denotes the additive complex Gaussian noise,
i.e., nℓptq „ CN p0, IMr

q. Moreover, θtk denotes the angle-of-
departure (AoD) for the k-th TX, while θrℓ denotes the angle-
of-arrival (AoA) for the ℓ-th RX, and θtk and θrℓ are given
respectively as

θtk “ arctan

ˆ

xt
k ´ x

ytk ´ y

˙

, (3)

θrℓ “ arctan

ˆ

xr
ℓ ´ x

yrℓ ´ y

˙

. (4)

In (1), apθtkq P CMtˆ1 and bpθrℓ q P CMrˆ1 represent the array
response vectors at angles θtk and θrℓ for the k-th TX and ℓ-th
RX, respectively, i.e.,

apθtkq “ r1, ¨ ¨ ¨ , e´jπpMt´1q sin θt
k sT, (5)

bpθrℓ q “ r1, ¨ ¨ ¨ , e´jπpMr´1q sin θr
ℓ sT. (6)

In this paper, we aim to discover how parameters affect the
performance of estimating the location of the sensing target
based on the received signals. To facilitate the analysis, the
following assumptions and definitions are applied.

Definition 1: The effective bandwidth βk for transmitted
signal skptq is given by [15]

β2
k “

ż

f2|Skpfq|2df, @k P rNts, (7)

where Skpfq is the frequency response of transmitted signal
skptq.

Assumption 1: The waveform for each TX is energy nor-
malized, i.e.,

ş

T
|skptq|2dt “ 1, where T is the common

duration of all transmitted waveforms.
Assumption 2: The transmitted signals are approximately

orthogonal among different TXs with any time delay τ of
interest2, i.e,

ż

T

skptqs˚
k1 pt ´ τqdt «

#

0 if k ‰ k1,

1 if k “ k1,
(8)

2This assumption is reasonable in a Code-Division Multiple Access
(CDMA) system, which is commonly adopted in related studies [15].

where p¨q˚ is the conjugate operator.
Assumption 3: αk,ℓ and τk,ℓ in (1) are approximately

independent 3.

A. Cramér–Rao Lower Bound

Given the received signal in (1) for all ℓ P rNrs, we aim to
derive the CRLB [17]. For the network sensing problem, the
vector of unknown parameters is given by

ϕ “ rx, y,αTsT, (9)

where αT ∆
“ rαT

R,α
T
I s with αR and αI denoted as the real

and imaginary part of the vector rα1,1, α1,2, ¨ ¨ ¨ , αNt,Nr sT P

CNtNr respectively. The CRLB based on ϕ can be better
derived by first calculating the Fisher information matrix
(FIM) for

ψ “ rτT,αTsT, (10)

where delays τ “ rτ1,1, τ1,2, ¨ ¨ ¨ , τNt,Nr
sT P RNtNr , and α is

defined in (9). Based on (1), the log-likelihood function based
on the parameters ψ is given by

ln ppr|ψq “ ln p
`

rrT1 , ¨ ¨ ¨ , rTNr
sT|ψ

˘

∝ ´

Nr
ÿ

ℓ“1

ż

T

›

›

›

›

›

rℓptq ´

Nt
ÿ

k“1

αk,ℓbpθrℓ qskpt ´ τk,ℓq

›

›

›

›

›

2

dt. (11)

Based on the log-likelihood function, the FIM with respect to
the parameter vector ψ can be derived as summarized in the
following lemma.

Lemma 1: For the log-likelihood function in (11) for all
ℓ P rNrs, and under Assumption 1-3 and Definition 1, the
FIM for the unknown parameters ψ “ rτT,αTsT is given by

Jpψq “

«

´Err
B
2 ln ppr|ψq

Bτ Bτ T s ´Err
B
2 ln ppr|ψq

Bτ BαT s

´Err
B
2 ln ppr|ψq

BαBτ T s ´Err
B
2 ln ppr|ψq

BαBαT s

ff

,

“

„

Sτ 0NtNr,2NtNr

02NtNr,NtNr
2MrI2NtNr

ȷ

, (12)

where Sτ is defined as

Sτ “ 8π2Mr diag
´

␣

|αk,ℓ|
2β2

k

(

kPrNts,ℓPrNrs

¯

. (13)

Proof: The proof follows by extending the derivation of
the CRLB from [15] to the MIMO scenario.

Each diagonal element of the FIM quantifies the amount
of information in the received signal about a specific un-
known parameter, reflecting the sensitivity of the likelihood
function to variations in that parameter. Higher values indi-
cate more sensitivity. For example, the information provided
by the received signals about τk,ℓ is captured by the term
8π2Mr|αk,ℓ|

2β2
k , which depends on factors such as the dis-

tances in the TX-target and target-RX links, the SNR, the path
loss exponent, and the effective bandwidth.

Using Lemma 1, we derive the FIM with respect to ϕ using
chain rule derivatives, and then the CRLB for target estimation.

3The path loss Lt
k and Lr

ℓ in the radar channel coefficients αk,ℓ are
connected via the fading exponent ´γ, whose impact on the CRLB can be
ignored in practice. This assumption is also considered in [15].
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Lemma 2: The FIM with respect to ϕ is given by

Jpϕq “

»

–

´Err
B
2 ln ppr|ψq

BdsBdT
s

s ´Err
B
2 ln ppr|ψq

BdsBαT s

´Err
B
2 ln ppr|ψq

BαBdT
s

s ´Err
B
2 ln ppr|ψq

BαBαT s

fi

fl ,

“

„

Sds
02ˆ2NtNr

02NtNrˆ2 2MrI2NtNr

ȷ

, (14)

where Sds is given by

Sds “

Nt
ÿ

k“1

Nr
ÿ

ℓ“1

8π2Mr|αk,ℓ|
2β2

kvk,ℓv
T
k,ℓ, (15)

with vk,ℓ,@k P rNts, ℓ P rNrs defined as

vk,ℓ “

«

Bτk,ℓ

Bx
Bτk,ℓ

By

ff

“
1

c

„

cos θtk ` cos θrℓ
sin θtk ` sin θrℓ

ȷ

. (16)

Proof: Following the chain rule for derivatives, the FIM
with respect to ϕ can be derived through a projection matrix,
given as

Jpϕq “ PJpψqPT, (17)

where P is derived from the derivative of ψ with respect to ϕ,

i.e., P “
BψT

Bϕ
. The rest of the proof follows straightforward

algebraic manipulation.
Unlike Jpψq, the FIM with respect to ϕ is not block diago-

nal. The off-diagonal elements in the FIM indicate the corre-
lation between pairs of parameters. Specifically, they measure
how much information about one parameter is affected by
variations of another. According to the above derivations, we
summarize the derived CRLB in the following theorem.

Theorem 1: Let pds denote the target’s estimated location.
The CRLB on the estimation mean squared error (MSE) of
target’s location ds is given by

E
”

}ds ´ pds}2
ı

ě r
`

Jpϕq´1
˘

s2ˆ2

“ tr
`

S´1
ds

˘

, (18)

where Jpϕq and Sds
are given in (14) and (15), respectively.

We have shown in (18) that the accuracy of the target
location estimation strongly depends on many parameters. In
order to quantify their impacts explicitly and shed light on
network-level sensing performance, we will characterize the
scaling law of CRLB with respect to TX/RX densities in the
coming subsection, using the tools from stochastic geometry.

B. The Scaling Law of CRLB in Distributed MIMO Radar
Systems

In this subsection, we want to eliminate the effects of the
specific layout of TXs and RXs by considering the large-scale
average sensing performance. For the derivation, we consider
the following assumptions.

Assumption 4: TXs follow a homogeneous PPP with in-
tensity λt, while RXs follow an independent PPP with inten-
sity λr, i.e., pxt

k, y
t
kq „ Φtpλtq and pxr

ℓ , y
r
ℓ q „ Φrpλrq [18].

Assumption 5: The effective bandwidth is the same for all
TXs, i.e., β1 “ β2 “ ¨ ¨ ¨ “ β.

Assumption 6: The path loss exponent is greater than 2,
i.e., γ ą 2, which is common for outdoor wireless scenarios.

Based on (18), a lower bound on the CRLB, called the
Miller-Chang type CRLB [19], is derived as

EΦt,Φr

”

E
”

}ds ´ pds}2
ıı

,

ěEΦt,Φr

”

Eθt
,θr

|Φt,Φr

“

tr
`

S´1
ds

˘‰

ı

(19)

ěEΦt,Φr

„

tr

ˆ

´

Eθt
,θr

|Φt,Φr
rSds

s

¯´1
˙ȷ

, (20)

where (19) follows from the law of iterated expectation, and
θt and θr denote the sets of AoAs and AoDs. The inequality
in (20) employs the Jensen’s inequality. Note that the lower
bound in (20) only includes the angle information in the
inverse operator, which gives a rather tight bound.

Let η ∆
“

8π2ρsσ
2β2c2

p4πq3f2
c

. With this substitution, we can reorga-
nize (20) for further approximation as follows,

Eθt
,θr

|Φt,Φr
rSds

s

“Eθt
,θr

|Φt,Φr

«

Nt
ÿ

k“1

Nr
ÿ

ℓ“1

MrηL
r
ℓL

t
k|aHpθtkqwk|2vk,ℓv

T
k,ℓ

ff

ď

Nt
ÿ

k“1

Nr
ÿ

ℓ“1

MrMtηL
r
ℓL

t
kEθt

,θr
|Φt,Φr

“

vk,ℓv
T
k,ℓ

‰

(21)

“

Nt
ÿ

k“1

Nr
ÿ

ℓ“1

MrMtηL
r
ℓL

t
k

c2

„

1 0
0 1

ȷ

, (22)

where the inequality (21) holds due to the complex Cauchy-
Schwarz-Buniakowsky inequality, i.e., |aHpθtkqwk|2 ď

}aHpθtkq}2}wk}2 “ Mt, and (22) is derived from the rotation
invariant property of the PPP distribution [18]. Specifically,
θt|Φt and θr|Φr are uniformly distributed between ´π

2 and
π
2 , and it follows that Eθ|Φrcos θ sin θs “ Eθ|Φrcos θs “

Eθ|Φrsin θs “ 0, and Eθ|Φrcos2pθqs “ Eθ|Φrsin2pθqs “ 1{2.
Remark 1: The derivation based on (21) provides the

optimal scaling law with respect to the number of transmit
antennas Mt. This result can be achieved by probing all energy
towards the target, thereby realizing the full beamforming gain.
Although this is not practically achievable, we argue that this
is a necessary simipification for deriving the lower bounds.
In fact, such assumption does not change the scaling law of
the system parameters of interest that will be discussed in the
following.

Combing (20) with (22), a lower bound on the expected
estimation error (20) using full beamforming gain can be
further developed as

EΦt,Φr

„

tr

ˆ

´

Eθt
,θr

|Φt,Φr
rSds

s

¯´1
˙ȷ

ěEΦt,Φr

»

–tr

¨

˝

˜

Nt
ÿ

k“1

Nr
ÿ

ℓ“1

MrMtη

c2
Lr
ℓL

t
kI2

¸´1
˛

‚

fi

fl

“2EΦt,Φr

»

–

˜

MrMtη

c2

˜

Nr
ÿ

ℓ“1

Lr
ℓ

¸˜

Nt
ÿ

k“1

Lt
k

¸¸´1
fi

fl



4

“
2c2

MrMtη
EΦr

»

–

˜

Nr
ÿ

ℓ“1

Lr
ℓ

¸´1
fi

flEΦt

»

–

˜

Nt
ÿ

k“1

Lt
k

¸´1
fi

fl . (23)

Lemma 3: Using the tools from stochastic geometry,

EΦr

„

´

řNr

ℓ“1 L
r
ℓ

¯´1
ȷ

and EΦt

„

´

řNt

k“1 L
t
k

¯´1
ȷ

are given by

EΦt

»

–

˜

Nt
ÿ

k“1

Lt
k

¸´1
fi

fl“Γ
´

1 `
γ

2

¯

ˆ

πλtΓ

ˆ

1 ´
2

γ

˙˙´
γ
2

, (24)

EΦr

»

–

˜

Nr
ÿ

ℓ“1

Lr
ℓ

¸´1
fi

fl“Γ
´

1 `
γ

2

¯

ˆ

πλrΓ

ˆ

1 ´
2

γ

˙˙´
γ
2

, (25)

where Γp¨q is the gamma function, and also notice that γ ą 2.
Proof: See Appendix A.

Combing (23), (24) and (25), we have the lower bound to
the average target location estimation error summarized in the
following theorem.

Theorem 2: Under Assumption 1-6 and Definition 1, the
scaling law of the average target location estimation error is
characterized by

Emimo
Φt,Φr

”

E
”

}ds ´ pds}2
ıı

ě
2c2

MrMtη
Γ2

´

1`
γ

2

¯

ˆ

π
a

λrλtΓ

ˆ

1´
2

γ

˙˙ γ́

, γ ą 2. (26)

Theorem 2 establishes the scaling law for the average error
in estimating the position of a target, taking into account the
effects of various parameters. Here are the key observations
of the theorem:

‚ System parameters: The constant η, which encapsulates
parameters such as effective bandwidth, carrier frequency,
transmit power, and noise power, acts as a scaling factor.
This factor shows how certain system-level character-
istics, such as higher transmit power (ρs) or increased
effective bandwidth (β), contribute to lowering the error
bound by providing better signal clarity and information
acquisition.

‚ Number of antennas: The average estimation error
scales inversely with the number of TX and RX an-
tennas, Mt and Mr. Increasing the number of antennas
effectively increases spatial diversity, which allows more
robust signal measurement and results in a lower CRLB.

‚ Intensity for TX/RX distributions: The TX/RX den-
sities (λt and λr) also have significant effects on the
estimation accuracy. Higher densities of TXs and RXs in
a given area provides a richer spatial sampling, resulting
in more measurements and thus a reduction in the CRLB.
This effect is represented by the term

`?
λrλt

˘´γ
, where

increasing the density reduces the error by a factor of ´
γ
2 .

‚ Path loss exponent: The path loss exponent γ (typi-
cally between 2 and 4, depending on the environment)
strongly influences the estimation accuracy. In particular,
for γ ą 2, higher values of γ lead to a faster decay of
the received signal power with distance, which strength-
ens the importance of high TX/RX intensity. The error
bound is influenced by γ through terms Γ2

`

1 `
γ
2

˘

and

´

Γ
´

1 ´ 2
γ

¯¯´γ

, highlighting a nonlinear relationship
between γ and estimation error.

C. Distributed Level vs. Number of Antennas per TX/RX

To provide theoretical guidelines for system design, here,
we consider the single-antenna distributed radar system, where
TXs follow PPP distribution with density rλt and RXs also fol-
low an independent PPP distribution with density rλr. Hence,
the received signal for ℓ-th RX is given by

rℓptq“

ĂNt
ÿ

k“1

σ

d

ρsLr
ℓL

t
kc

2

p4πq3f2
c

skpt´τk,ℓq`nℓptq,@ℓ P r rNrs. (27)

Following the similar steps derived in Section II-B, the estima-
tion error of the target location in the distributed single-antenna
system is thus lower bounded by

Esingle

Φt,Φr

”

E
”

}ds ´ pds}2
ıı

ě
2c2

η
Γ2

´

1 `
γ

2

¯

ˆ

π

b

rλr
rλtΓ

ˆ

1 ´
2

γ

˙˙´γ

, γ ą 2. (28)

To make a fair comparison between sensing performances
of distributed MIMO radar systems in (26) and single-antenna
radar systems in (28), we consider the following setup

rλr “ Mrλr, rλt “ Mtλt, (29)

so that the two systems have, on average, the same total
number of antennas. Then, when γ ą 2, the comparison yields
the following inequality:

`?
λtλr

˘´γ

MtMr
ą

ˆ
b

rλt
rλr

˙´γ

, (30)

which indicates that when γ ą 2, the estimation error of the
target location decreases faster in the distributed single-
antenna radar system than in the distributed MIMO radar
system, under roughly the same number of antennas in the
network. This is because the estimation error in the single-
antenna system is scaled with the density of TXs and RXs
to the power of ´

γ
2 (γ ą 2), while in the distributed MIMO

system it is scaled with the number of transmit and receive
antennas to the power of ´1.

III. SIMULATION RESULTS

In this section, we present numerical results to evaluate the
impact of different parameters on target location estimation in
the single-target scenario. For the simulations, we use a system
with Mt “ Mr “ 4 TX/RX antenna, a bandwidth of 2 GHz,
a carrier frequency of 30 GHz, and a noise power spectral
density of N0 “ 5 ˆ 10´22 W/Hz. The effective bandwidth
is βk “ 0.577 GHz, with a radar cross section (RCS) of σ “

1m2 and a path loss exponent of γ “ 2.5. We also assume a
PPP intensity for the TX/RX of λt “ λr “ 1{302 m´2. The
target is positioned at ds “ p0, 0q.

To validate the effectiveness of the derived scaling law for
the averaged CRLB, as given in the right-hand side of (26),
we compare it with numerical results from Monte Carlo (MC)
simulations using expression (18). We also perform numerical
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Fig. 1: The evaluation on various parameters.

results from MC simulations with respect to intermediate
expression (23), to verify the correctness of our derivation in
Lemma 3 based on the PPP properties.

In the simulations, we examine the impact of various
parameters including:

‚ the number of TX/RX antennas in Fig. 1a,
‚ the SNR in Fig. 1b,
‚ the density of the TX/RX distribution in Fig. 1c,
‚ the path loss exponent in Fig. 1d.

As expected, Figure 1 shows that the theoretical result (red
curve) is consistently below the other two curves, reflecting
that the MC simulation based on (18) serves as an upper
bound for the result in (26) due to Jensen’s inequality in (20).
According to theorem 2, the estimation error scales inversely
with both the number of TX/RX antennas and the transmit
power ρs, corresponding to the slopes of the red curves in
Fig. 1a and Fig. 1b, respectively. Furthermore, the error scales
with the intensity λt{λr to the power of ´γ{2, which defines
the slope of the red curve in Fig. 1c. As shown in Fig. 1, we
observe that all the curves exhibit nearly identical behavior,
confirming the effectiveness of the derived scaling law in
Theorem 2. A small gap between the MC simulations and
the closed-form expressions is observed due to the limited
area of PPP in the simulation, which can be tightened by
expanding the TX/RX distribution area in the simulation. The
consistency between theoretical derivation and MC simulation

demonstrates the value of our result for practical network-level
sensing evaluation.

IV. CONCLUSION

In this work, we focused on the network sensing problem in
the distributed MIMO radar system with simultaneous signal
transmission. First, we derived the CRLB for the estimation
error in the single-target scenario. Additionally, assuming that
the TXs/RXs follow an independent PPP distribution, we
established the scaling law for the estimation error with respect
to the number of TX/RX antennas, SNR, intensity of TX/RX
distribution, and path loss exponent. Numerical simulations
are consistent with the theoretical analysis, confirming the
accuracy of our derivations.

APPENDIX A
PROOF OF LEMMA

For simplicity, we denote the function Lpxq as }x ´

ds}´γ , @x P R2. Based on the properties of the PPP,

EΦr

„

´

řNr

ℓ“1 L
r
ℓ

¯´1
ȷ

can be rewritten as

EΦr

»

–

˜

Nr
ÿ

ℓ“1

Lr
ℓ

¸´1
fi

fl “ EΦr

»

—

–

¨

˝

ÿ

xPΦr

Lpxq

˛

‚

´1
fi

ffi

fl
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“EΦr

„ˆ
ż 8

0

e
´s

ř

xPΦr
Lpxq

ds

˙ȷ

(31)

“

ż 8

0

EΦr

”

e
´s

ř

xPΦr
Lpxq

ı

ds

“

ż 8

0

EΦr

»

–

ź

xPΦr

e´sLpxq

fi

fl ds

“

ż 8

0

exp

ˆ

´λr

ż

R2

p1 ´ e´sLpxqqdx

˙

ds (32)

“

ż 8

0

exp

ˆ

´λr

ż

R2

p1 ´ e´s}x´ds}
´γ

qdx

˙

ds

“

ż 8

0

exp

ˆ

´λr

ż

R2

p1 ´ e´s}x}
´γ

qdx

˙

ds, (33)

where (31) holds due to the Laplace transform, and
(32) holds due to the probability generating functional
(PGFL) of the PPP, which states that Er

ś

xPΦ gpxqs “

exp
`

´λ
ş

R2p1 ´ gpxqqdx
˘

for some function 0 ď gpxq ď 1.
Thus, PGFL can be used in (32) since its exponential function
meets the constraint of 0 ď gpxq ď 1. (33) holds due to
its shift invariance. When we transform (33) into the polar
coordinates, (33) becomes

ż 8

0

exp

ˆ

´λr

ż

R2

´

1 ´ e´s}x}
´γ
¯

dx

˙

ds

“

ż 8

0

exp

ˆ

´2πλr

ż 8

0

r
´

1 ´ e´sr´γ
¯

dr

˙

ds, (34)

where according to [20, eq. (16)], we have that if γ ą 2, then
ż 8

0

r
´

1 ´ e´sr´γ
¯

dr “
1

2
s

2
γ Γ

ˆ

1 ´
2

γ

˙

, (35)

where Γp¨q is the Gamma function. Therefore, (33) can be
rewritten as

EΦr

»

–

˜

Nr
ÿ

ℓ“1

Lr
ℓ

¸´1
fi

fl “

ż 8

0

exp

ˆ

´πλrs
2
γ Γ

ˆ

1 ´
2

γ

˙˙

ds

“
Γp

γ
2 q

2
γ

´

πλrΓ
´

1 ´ 2
γ

¯¯

γ
2

(36)

“ Γ
´

1 `
γ

2

¯

ˆ

πλrΓ

ˆ

1 ´
2

γ

˙˙´
γ
2

, γ ą 2, (37)

where (36) holds due to the integral of e´βxn

xm in [21, P.109]
and the fact that Γp1` tq “ tΓptq results in (37). In the same

way, EΦt

„

´

řNt

k“1 L
t
k

¯´1
ȷ

can be simplified as (24).
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