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Abstract—Emerging 5G networks will need to efficiently
support ultra-reliable, low-latency communications (URLLC)
services, which require extremely low latency (msec order)
with very high reliability (99.999%). We consider a URLLC
system with short packets and incremental redundancy hybrid
automatic repeat request (IR-HARQ). We aim at maximizing
the throughput by optimally tuning the IR-HARQ mechanism
subject to URLLC constraints and a fixed energy budget.
We propose a dynamic programming algorithm for solving
the throughput maximization problem in the finite blocklength
regime and assess its performance numerically.

I. INTRODUCTION

Next generation (5G) communication systems are designed
to efficiently support new applications and use cases in areas
such as augmented and virtual reality (AR/VR), industrial
automation, intelligent transportation, and robotics. A key
feature will be the satisfaction of services requiring highly
demanding end-to-end latency (few milliseconds) and relia-
bility levels in terms of packet delivery success (> 99.999%).
In this new paradigm, which is termed ultra-reliable, low-
latency communications (URLLC), a careful reexamination of
the throughput-oriented system design and a holistic system
view are mandatory in order to meet the stringent reliability
and latency requirements.

Providing URLLC guarantees even in simple settings leads
to new, unexplored operating regimes. Reducing drastically
the latency imposes the use of very short messages and times-
lots (mini slots), which results in small packet duration and
faster decoding. Communicating with short packets implies in
turn using small blocklength channel codes, which make the
widely used asymptotic information theoretic results not ap-
plicable. Transmission rates with non-zero error probabilities
kick in and relevant bounds quantifying the effect of finite
blocklength are required. An accurate and convenient normal
approximation combining the maximum coding rate with the
packet error probability under a given packet size has recently
been proposed in [1].

Reducing the packet size due to latency constraints has
in principle a negative impact on the reliability. A way to
compensate for this is to exploit some form of diversity. In our
paper, we employ incremental redundancy hybrid automatic
repeat request (IR-HARQ) as a means to introduce time
diversity. This retransmission scheme with feedback secures

a low probability of packet transmission failure but on the
other hand takes a toll on the required latency. To fix this, the
amount of information contained in the transmitted packets
has to be reduced and replaced by redundant information,
which leads to lower throughput. Another important factor
that should not be disregarded is the energy consumption. At
the expense of additional power it is relatively easy to shorten
the delay without any compromise of the throughput, but
characterizing the interplay between latency, reliability, and
throughput under a fixed energy budget is a very challenging
task.

In this work, we consider the problem of throughput max-
imization in the finite blocklength regime subject to URLLC
constraints and a maximum energy budget. We show how to
optimize the parameters of the IR-HARQ mechanism, namely
the number of information bits, the number of transmission
rounds, and the blocklength-power allocation, in order to
maximize the achieved throughput. In our previous work [2],
we solved an optimization problem of similar configuration
but with the objective of energy minimization. Throughput
maximization is considered in [3] by solely optimizing the
blocklength of a two round IR-HARQ and in [4] using rate
refinement over possibly infinite number of retransmissions of
equal size and power. Imposing as well a reliability constraint,
[5] performs rate maximization. Jointly adjusting power and
blocklength, similarly to our work but with only one trans-
mission, is studied in [6] with the objective of minimizing
the energy of a FIFO scheduler. A dynamic programming
solution to jointly optimize rates and powers, as in our paper,
is proposed in [7]. However, the system model is different
from ours as type-I HARQ is used therein and cross layer op-
timization of buffer’s and scheduler’s behavior is performed.
Finally, throughput maximization for IR-HARQ problem is
considered in [8] assuming infinitely large blocklength and
performing length adaptation. Differently from prior work, in
this paper, we solve the throughput maximization problem
in the finite blocklength regime subject to latency, reliability
and maximum energy constraints. A dynamic programming
algorithm is proposed for solving the non-convex optimization
problem, which allows us to properly adapting the operating
parameters of the IR-HARQ mechanism. Interestingly, we see
that the solution (system operating points) to the throughput
maximization problem is very similar to that of the energy
minimization problem [2].



II. SYSTEM MODEL

We consider a point-to-point communication link, where
the transmitter has to send B information bits within a
certain predefined latency, which we expressed by a certain
predefined maximum number of channel uses, denoted by N`.
If no retransmission mechanism is utilized, the packet of B
bits is transmitted only once (one-shot transmission) and its
maximum length is N`. When a retransmission strategy is em-
ployed, we consider hereafter IR-HARQ with M transmission
rounds, i.e., M−1 retransmissions. Setting M = 1, we recover
the no-HARQ case as a special case of the retransmission
scheme. We denote nm with m ∈ {1, 2, ...,M} the number
of channel uses for the m-th transmission.

The IR-HARQ mechanism operates as follows: B infor-
mation bits are encoded into a parent codeword of length∑M

m=1 nm symbols. Then, the parent codeword is split into M
fragments of codeword (sub-codewords), each of length nm.
The receiver requests transmission of the m-th sub-codeword
only if it is unable to correctly decode the message using
the previous (m−1) fragments of the codeword. In that case,
the receiver concatenates the first m fragments and attempts to
jointly decode it. We assume that the receiver knows perfectly
whether or not the message is correctly decoded (through
CRC) and ACK/NACK is received error free. Every channel
use (equivalently the symbol) requires a certain amount of
time, therefore we measure time by the number of symbols
contained in a time interval. The latency constraint is ac-
counted for by translating it into a number of channel uses
as follows: we have

∑M
m=1 nm ≤ N`. Penalty terms D(~nm),

where ~nm is the tuple (n1, n2, ..., nm) ∈ Nm
+ can easily be

introduced at each m-th transmission in order to take into
account the delay for the receiver to process/decode the m-
th packet and send back acknowledgment (ACK/NACK). In
this paper, we will focus on the simplified version where
D(~nm) = 0.

The channel is considered to be static within the whole
IR-HARQ mechanism, i.e., there is only one channel co-
efficient value for all retransmissions associated with the
same bits. This is a relevant model for short-length packet
communication and IoT applications, which makes that our
communication scenario consists of a point-to-point link with
additive white Gaussian noise (AWGN). Specifically, in the
m-th round, the fragment (sub-codeword) cm ∈ Cnm is
received with power Pm = ||cm||2

nm
and distorted by an

additive white circularly-symmetric complex Gaussian ran-
dom process with zero mean and unit variance. The power
allocation applied during the first m rounds is denoted by
~Pm = (P1, ...Pm) ∈ Rm

+ .

III. PROBLEM STATEMENT AND PRELIMINARIES

The objective of this paper is to optimize the IR-HARQ
mechanism and maximize throughput by tuning the number
of transmitted information bits B, the number of transmis-
sion rounds M , and the blocklength-power allocation, i.e.,
(~nM , ~PM ), given a maximum packet error probability εrel,

a maximum latency constraint N` (URLLC requirements),
fixed energy budget Et, and maximum number of transmission
rounds Mr.

Before going further, we need to characterize the proba-
bility of error in the m-th round of the IR-HARQ mecha-
nism as a function of (~nm, ~Pm). To derive this packet error
probability, we resort to the results for the non-asymptotic
(finite-blocklength) regime [1] since URLLC involves short
packets. In IR-HARQ with m transmissions, the packet error
probability or equivalently the outage probability, denoted by

εm, can be expressed as εm = P

(
m⋂
i=1

Ωi

)
where Ωi is

the event corresponding to “the concatenation of the first
i fragments of the parent codeword, with lengths ~ni and
energies per symbol ~Pi, is not correctly decoded when optimal
coding is employed”.

For infinite blocklength, an error occurs if the mutual
information is below a threshold and in the case of IR-HARQ,
it can easily be seen that for i < j we have Ωi ⊆ Ωj

[9], [10], which leads to εm = P(Ωm). In contrast, when
a finite blocklength (or a realistic coding scheme) is assumed,
the above statement does not hold anymore and an exact
expression for εm seems intractable. Therefore, in the majority
of prior work (see for instance [3], [10], [11] and references
therein), the exact outage probability εm is replaced with the
simplified εm defined as εm = P(Ωm), since εm and εm
are numerically close. Note that for m = 1 the definitions
coincide and ε1 = ε1 = P(Ω1). In this work, we also adopt
this approach assuming that the approximation is valid. Then,
εm can be upper bounded [1, Lemma 14 and Theorem 29] and
also lower bounded as in [11] by employing the κβ-bounds
proposed in [1]. Both bounds have the same first two dominant
terms and the error probability is approximately given by

εm ≈ Q


m∑
i=1

ni ln(1 + Pi)−B ln 2√√√√ m∑
i=1

niPi(Pi + 2)

(Pi + 1)2

 (1)

where Q(x) is the complementary Gaussian cumulative dis-
tribution function. For the sake of clarity, we may show the
dependency on the variables, i.e., εm(~nm, ~Pm) instead of εm,
whenever needed.

Notice that some works have tried to approximate more
accurately the term εm or εm [12]–[15]. For instance, in [12],
the authors provide more involved expressions for εm, but
the feedback scheme considered is different from ours; the
feedback time index in [12] is not predefined (it is a random
variable) and is adapted online. In [13], [14] justifications for
the approximation εm ≈ εm when using non-binary LDPC
codes or tail-biting convolutional code can be found. In [15],
the authors use saddlepoint approximation to find a tight
approximation of εm, but closed-form expression is provided
only for binary erasure channels. Therefore, we consider that



using the Gaussian approximation in (1) provides a relevant
tradeoff between analytical tractability and tightness of the
approximations.

IV. THROUGHPUT OPTIMIZATION

We remind that our main goal is to optimize the IR-HARQ
by determining the blocklength and the power of the packet
sent in every round in order to maximize the throughput.
Throughput is defined as the average ratio of successfully
decoded bits divided by the number of symbols used. The
throughput can be derived using the renewal theory where the
expected value of delay is

∑M
m=1 nmεm−1 and the expected

reward is B(1−εM ). Consequently, our goal can be translated
into the following optimization problem.

Problem 1: General problem

max
B,M,~nM , ~PM

B(1− εM )∑M
m=1 nmεm−1

(2)

s.t.
M∑

m=1

nm ≤ N` (3)

εM ≤ εrel (4)
M∑

m=1

nmPmεm−1 ≤ Et (5)

M ≤ Mr (6)

Solving the general problem is intractable. Therefore we
consider a simpler one by modifying slightly the objective
function. To that end, we force the numerator to be equal to
B(1− εrel) which means we force the constraint given in (4)
to be active. This leads to the following optimization problem

Problem 2:

max
B,M,~nM , ~PM

B(1− εrel)∑M
m=1 nmεm−1

(7)

s.t.
M∑

m=1

nm ≤ N` (8)

εM ≤ εrel (9)
M∑

m=1

nmPmεm−1 ≤ Et (10)

M ≤ Mr (11)

The following result proves that the solution of Problem
2 achieves almost the same performance as the one of the
original Problem 1.

Proposition 1: Let (Bmod,Mmod, ~nmod
M , ~Pmod

M ) be the so-
lution of Problem 2, which result in a value Th for the
throughput according to (2). Let Th? be the highest (optimal)
value for the throughput given by the solution of Problem
1. Then (Bmod,Mmod, ~nmod

M , ~Pmod
M ) is a feasible point of

Problem 1 and it holds that Th ≤ Th? ≤ Th
1−εrel .

Proof: The constraints of the two problems are the same,
therefore they share the same feasible domain that we denote
by D. Thus, (Bmod,Mmod, ~nmod

M , ~Pmod
M ) is a feasible point

of Problem 1. Since Th? is the optimal value and Th just
a feasible one, we have that Th ≤ Th?. Furthermore, the
solution of Problem 2 guarantees that for every point in D
it holds B∑M

m=1 nmεm−1
≤ Th

1−εrel . Therefore if x? ∈ D is the
optimal point of Problem 1 and gives an error probability of
ε?M then Th?

(1−ε?M ) ≤
Th

1−εrel from which we can easily show
that Th? ≤ Th

1−εrel .
We propose to perform the optimization over B via one-

dimensional grid-search. Consequently, Problem 2 can be
further simplified and leads to the following Problem 3.

Problem 3:

min
M,~nM , ~PM

M∑
m=1

nmεm−1 (12)

s.t.
M∑

m=1

nm ≤ N` (13)

εM ≤ εrel (14)
M∑

m=1

nmPmεm−1 ≤ Et (15)

M ≤ Mr (16)

The rest of the section is devoted to the solution of Problem 3,
which can be solved iteratively using a dynamic programing
approach.

First of all, we introduce the states at the end of m-th round:

S1 = (N1, ε1)

Sm = (Nm, εm, Em, Vm),m ∈ {2, 3, ...}

where ∀m ∈ N?: Nm =
∑m

i=1 ni, Em =
∑m

i=1 niPiεi−1
and Vm =

∑m
i=1 ni(1−

1
(1+Pi)2

). We have Vm < Nm ≤ N`.
Let SM be the set of all feasible final states. By feasibility,
we mean that a state SM in SM satisfies the constraints of
Problem 3 and there is a path (~nM , ~PM ) leading to SM . We
have SM ⊂ {1, 2, ..,N`}× [0, εrel]× [0,Et]× [0,N`] ∀M ∈
{1, 2, ..,Mr}. Our objective is to find the sequences/paths of
states minimizing (12) to every SM ∈ SM being a possible
candidate to achieve optimality. Then, the optimal solution of
Problem 3 is retrieved by choosing out of those SM the one
with the smallest minimum.

The first three variables of the states Sm are chosen in
order to be able to check the constraints (13)-(15). The
dispersion variable Vm is added so as the description of
Sm to depend only on the previous state Sm−1 and the
variables nm and Pm, which constitute the branch between
Sm−1 and Sm. The functions connecting these states can
be easily found and let them be: Sm = fS(Sm−1, nm, Pm),
Sm−1 = f−1S (Sm, nm, Pm).

For sake of simplicity, we introduce the following notation
“min
X|Y

f(X)” which stands for “minimize f(·) over the vari-

ables X given constraints Y ”. Now the Problem 3 can be seen
as the solution of

min
M,SM |M∈{1,..,Mr}, SM∈SM

{
min

~nM , ~PM |SM

M∑
m=1

nmεm−1

}
.



As mentioned previously, we perform the outer minimiza-
tion by exhaustive search (even though we will prove below
that only a few states S ∈ SM are good candidates). On the
other hand, the inner minimization is solved dynamically since
it can be written as

min
nM ,PM |SM

{
min

~nM−1, ~PM−1|SM ,nM ,PM

{nMεM−1+

M−1∑
m=1

nmεm−1}
}

. The inner minimization is done under fixed (SM , nM , PM ),
which allows the first term nMεM−1 to get out as a constant
since this term can be expressed as a function, let it be
K(·), of only those fixed variables. Moreover, SM−1 =
f−1S (SM , nM , PM ) is fixed, which can be confirmed that it is
an equivalent to (SM , nM , PM ) constraint when minimizing
the second term. So, we have

min
~nM , ~PM |SM

{
M∑

m=1

nmεm−1} = min
nM ,PM |SM

{
K(SM , nM , PM )

+ min
~nM−1, ~PM−1|SM−1=f−1

S (nM ,PM ,SM )
{
M−1∑
m=1

nmεm−1}
}
.

The above formula can be proven for every m ∈ {1, ...,M},
which enables to use a dynamic programming approach.
Specifically, in order to find the optimal solution for the state
Sm, it is sufficient to know the optimal solution of every
Sm−1 connected to it through a branch (nm, Pm). Therefore
we can start by straightforwardly computing the values for all
feasible S1 and afterwards in every m iteration of the dynamic
programming algorithm, we compute the optimal solution for
Sm by using the corresponding Sm−1.

Furthermore, we show that the optimal solution of Problem
3 has characteristics that reduce the number of states needed
to be tested.

Proposition 2: For M increasing, feasible points of Problem
3 with better values of the objective function (12) appear.
Therefore, the optimal solution satisfies (16) with equality,
i.e., M? = Mr.

Proof: In [2, Appendix C], it is proven that if the last
(i.e., M -th) packet with blocklength and power (nM , PM ) is
properly split into two packets with (n′M , PM ) and (nM+1 =
nM − n′M , PM ), then the average energy is decreased. The
same splitting can easily be shown to decrease the objective
function (12); hence this new configuration with an extra
round gives better result while satisfying the constraints.
Therefore, more transmission rounds improve the perfor-
mance.

Proposition 3: Let (M?, ~n?M? , ~P ?
M?) be the optimal point

of Problem 3. We remind that M? = Mr due to Proposition
2. Let ε?m = ε(m,~n?m, ~P

?
m), where ~n?m (resp. ~P ?

m) is an
extracting vector from the m-th first components of ~n?Mr

(resp. ~P ?
Mr

), be the error probability at every round m < Mr.
We have ε?m > εrel and finally at round Mr we have
ε?Mr
≤ εrel < ε(~n?Mr−1, n

?
Mr
− 1, ~P ?

Mr
).

Proof: Assume that for m0 < Mr we have ε?m0
< εrel.

Then the point (m0, ~n
?
m0
, ~P ?

m0
) is better than the optimal

point, which leads to contradiction. Furthermore, proving
ε?Mr
≤ εrel < ε(~n?Mr−1, n

?
Mr
− 1, ~P ?

Mr
) is fairly simple since

the first inequality is the reliability constraint and the second
cannot be violated; otherwise the point (~n?Mr−1, n

?
Mr
−1, ~P ?

Mr
)

is better than the optimal solution, which again leads to a
contradiction.

As ε?Mr
≤ εrel < ε(~n?Mr−1, n

?
Mr
− 1, ~P ?

Mr
), we conjecture

that ε?Mr
≈ εrel since the last round would enable to satisfy

the constraints without going way too far from the boundary.
Proposition 3 also leads to E?

Mr
≈ Et, where E?

Mr
is the

energy consumed by the optimal solution of Problem 3. The
reason is that if enough energy is allowed by the energy
constraint (15) to be spent on PMr

so as to compensate for a
one symbol decrease of nMr

(and still satisfy the reliability
constraint (14)), then Proposition 3 is violated. Therefore, the
average energy spent by the optimal solution E?

Mr
should be

close to the boundary Et.

V. ALGORITHM IMPLEMENTATION

In practice, the dynamic programming algorithm requires
the variables of the states to take discrete values. Specifically:
• Nm has already a discrete form since it is an integer

inside the interval [0,N`], but it can be quantized using
bigger than one symbol step size for accelerating the
simulation. Let N be the set of the discrete values that
Nm can take.

• εm is real and from Proposition 3 we know εm ∈ [0, εrel].
It turns out that if instead of εm the use of the equivalent
(due to Q−1() being a one-to-one mapping) variable
cm := Q−1(εm) is employed, more accurate results are
yielded. If we assume only realistic error probabilities
of value lower than 0.5 then cm ∈ [0, Q−1(εrel)]. Let
C ⊂ [0, Q−1(εrel)] be the set of the discrete values that
the dynamic algorithm allows cm to take.

• Em is real and Em ∈ [0,Et]. After quantization let E be
the set of the discrete values Em can take.

• Vm is real and Vm ∈ (0, Nm) ⊂ (0,N`). After quan-
tization let V be the set of the discrete values Vm can
take.

The dynamic algorithm consists of two stages: a first one
for computing the performance of the feasible states and a
second one for searching over those states to find the optimal
solution. The complexity is dominated by the first stage and
is equal to the number of iterations of the dynamic algorithm
multiplied by the number of states examined per iteration
times the number of branches departing from every state. In
our implementation, we compute the branch (nm+1, Pm+1)
departing from a state Sm through fixing the variables Nm+1

and Em+1 of the arriving state Sm+1 and subsequently we
acquire the feasible εm+1 and Vm+1. Therefore the overall
complexity is O(Mr · |N||E||C||V| · |N||E|).

The above complexity characterizes a rather slow algorithm,
however in reality the algorithm can be accelerated by remark-
ing that most of the times all paths ending up at states with the
same (Nm, cm, Em) which the algorithm considers, present



dispersions Vm within a small range of values. Therefore if a
reasonable resolution of the discrete set V is considered so as
no significant approximation errors are introduced, the number
of feasible states with same (Nm, cm, Em) and different Vm
turns out to be rather small (often just one value). Therefore,
the variable |V| can be thought as constant.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results to assess the
system performance. In Fig. 1, we investigate the effect of
the error probability on throughput. The figure is obtained
as follows: we solve Problem 2 with reliability constraint
(9) to hold in equality and we let the achieved εrel to take
different values. This procedure actually requires only one
run of the dynamic algorithm because after the computation
of the performance of each state, we can restrict the search
of the minimum only among the states with the given εm.

Fig. 1. Throughput vs. error probability for N = 400, Et = 267, and
B = 32 bytes.

As shown in Proposition 2 and confirmed by Fig. 1, more
transmission rounds result in higher throughput. Moreover
since we have short packets (finite blocklength regime), it is
not possible to attain εM → 0 with a finite energy budget.
Therefore, there exists a certain value beyond which the
reliability cannot go. This is the reason why the curve of
Mr = 2 in Fig. 1 saturates at a certain error probability. The
other two curves also saturates after a certain error probability,
which is though much smaller and cannot be depicted in the
figure. Finally, we remark, as in [4], that there is a certain
value of error probability that maximizes the throughput,
which is relatively high though (close to 0.1). So in our case,
higher reliability can be achieved at the expense of throughput
since our operating point does not correspond to the one
maximizing the throughput in this figure.

The impact of the number of symbols used on the through-
put performance is shown in Fig. 2, which is obtained by
imposing equality in the latency constraint (8) of Problem 2.

Fig. 2. Throughput vs. number of symbols used for εrel = 10−5, B = 32
bytes, and Mr = 3.

When the available number of symbols are inadequate,
no feasible solution exists and the throughput vanishes. In-
terestingly, as NMr

grows beyond a certain threshold, only
a slight increase in throughput is achieved, followed by a
slow decrease. This means that it is not always beneficial
from a throughput perspective to use the whole blocklength.
Asymptotically, if NMr →∞, then for some m ∈ {1, · · ·Mr}
it should be nm →∞, which in turn will result in vanishing
throughput. Therefore, all curves in Fig. 2 will asymptotically
converge to zero.

Fig. 3 depicts the throughput versus the energy budget. In
practice, we do not force equality in the energy constraint
(10), since, as stated previously, the optimal solution con-
sumes by default (almost) all the available energy. In our
simulations, we set the minimum possible blocklength for
the first IR-HARQ round to be N1,min ≥ 100 (which is
set likewise so that the approximation (1) remains accurate).
Consequently, the throughput cannot exceed the value B

N1,min
,

which represents the unrealistic case of only one packet sent
with minimum blocklength and achieving perfect reliability.
This upper bound is closely attained as the available energy
grows up to a point where only one transmission may fulfill
the constraints and thus, further increase of the energy is
worthless. Finally, Fig. 3 reconfirms (as in Fig. 2) that past
a certain threshold, any further increase in blocklength is
meaningless.

Finally, in Fig. 4 we depict the throughput (via a contour
plot) versus the available average energy Et and the informa-
tion bits to transmit B. There is an upper left area with no
feasible points. Keeping a constant Et by moving vertically,
we see that the throughput is a unimodal function over B and
there is a specific value of B that achieves optimality. This
also agrees with [4] where a simple ARQ scheme with no
URLLC constraints was employed.



Fig. 3. Throughput vs. energy spent for εrel = 10−5, B = 32 bytes, and
Mr = 3.

Fig. 4. Throughput vs. energy and information bits for εrel = 10−5, N` =
600, and Mr = 3.

VII. CONCLUSION

We have solved the problem of throughput maximization
in URLLC systems with IR-HARQ subject to latency and
reliability constraints and a maximum energy budget. For that,
we have proposed a dynamic programming algorithm, which
takes into account the effect of finite blocklength and allows
us to optimize the IR-HARQ parameters, namely the number
of information bits, the number of transmission rounds, and
the blocklength-power allocation.
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