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†Télécom ParisTech, F-75013 Paris, France
Emails: {apostolos.avranas,marios.kountouris}@huawei.com, philippe.ciblat@telecom-paristech.fr

Abstract—Emerging 5G networks will need to efficiently sup-
port ultra-reliable, low-latency communication (URLLC), which
requires extremely low latency (at msec order) with very high
reliability (99.999%). In this work, we consider a URLLC
system with incremental redundancy hybrid automatic repeat
request (IR-HARQ) and investigate the effect of channel state
information (CSI) at the transmitter on throughput and energy
consumption optimization. For that, we analyze the feasibility
region and the performance in block fading channels for the
cases of full and statistical CSI. Our results show that the full
CSI scheme is less robust and we also reveal a desirable balance
between the trade-off quantities of energy and throughput.

I. INTRODUCTION

Next generation (5G) communication systems are designed
to efficiently support new applications and use cases in areas
such as augmented and virtual reality (AR/VR), industrial
automation, intelligent transportation, and robotics. These
applications lead to a Quality-of-Service (QoS), called ultra-
reliable, low-latency communications (URLLC), which re-
quires end-to-end latency of few milliseconds with a very
large packet delivery success (> 99.999%).

Providing URLLC guarantees even in simple settings leads
to new, unexplored operating regimes. Reducing drastically
the latency imposes the use of very short messages and times-
lots (mini slots), which results in small packet duration and
faster decoding. Communicating with short packets implies in
turn using small blocklength channel codes, which make the
widely used asymptotic information theoretic results not ap-
plicable. Transmission rates with non-zero error probabilities
kick in and relevant bounds quantifying the effect of finite
blocklength are required. An accurate and convenient normal
approximation combining the maximum coding rate with the
packet error probability under a given packet size has recently
been proposed in [1].

Restricting the size of the packets to meet the latency
weakens the power of the coding scheme, so demanding on
top huge reliability pushes the introduction of mechanisms
that will facilitate the communication. In our paper, we
investigate the potential benefits of the mechanism called
incremental redundancy hybrid automatic repeat request (IR-
HARQ). Retransmissions with feedback are used boosting
reliability but under the cost of utilizing more time and energy
when additional redundant information is asked by the user.
So to achieve the reliability the price of higher energy and/or
lower throughput has to be paid. The magnitude of this price

cannot be independent of the channel. Poor channel quality
can definitely render impossible the communication except
if an excessive loss of throughput and energy is allowed.
To leverage the impact of the channel unpredictability and
mitigate the destructive effect of bad channel realizations,
pilots can be send in order to assess the channel’s quality.
Acquiring Channel State Information (CSI) helps to better
tailor the IR-HARQ and operate in a sweeter point of the
trade-off between reliability,energy and throughput.

In this work, we quantify the impact of Channel State
Information on the trade-off relationship between energy and
latency. We investigate how the two common cases of CSI, i.e.
statistical where only the statistics of the channel is known
and full where the exact channel coefficient is available, influ-
ence the optimization of the IR-HARQ scheme. We generalize
and extend significantly our previous works where we either
solely minimized the energy [2] or maximize the throughput
[3] under the simpler AWGN scenario.Throughput maximiza-
tion is considered in [4] by optimizing the blocklength of a
two round IR-HARQ. Imposing as well a reliability constraint,
[5] performs rate maximization. Jointly adjusting power and
blocklength, similarly to our work but with only one trans-
mission, is studied in [6] with the objective of minimizing
the energy of a FIFO scheduler. Throughput maximization
for IR-HARQ problem is considered in [7] assuming infinitely
large blocklength and performing blocklength adaptation. In
[8] for a variable-length stop feedback coding scheme delay
violation and peak-age violation probabilities are analyzed.
Under quality of service and energy efficiency requirements
the authors of [9] use full CSI to optimize the powers that
maximizes the effective capacity.

In this paper we demonstrate that performing purely energy
minimization or throughput maximization leads to a bad
trade-off point and a multi-objective optimization should be
considered. Moreover, we analyze and compute the feasibility
region of the HARQ-IR schemes and surprisingly we get with
statistical CSI a bigger feasibility region than with full CSI.
This fact yields full CSI less robust under URLLC conditions
even without taking into account the shrinking of the latency
constraint due to the training phase of learning the channel.

II. SYSTEM MODEL

We consider a point-to-point communication link, where
the transmitter has to convey B information bits within a



certain predefined latency, expressed by a certain predefined
maximum number of channel uses and denoted by N`. If
no retransmission mechanism is utilized, the packet of B
bits is transmitted only once (one-shot transmission) and its
maximum length is N`. In case of retransmission, we consider
hereafter IR-HARQ with M transmission rounds, i.e., M − 1
retransmissions. By setting M = 1, we recover the no-
HARQ case. We denote nm, m ∈ {1, 2, ...,M}, the number
of channel uses for the m-th transmission.

The IR-HARQ mechanism operates as follows: B infor-
mation bits are encoded into a parent codeword of length∑M
m=1 nm symbols. Then, the parent codeword is split into M

fragments of codeword (sub-codewords), each of length nm.
The receiver requests transmission of the m-th sub-codeword
only if it is unable to correctly decode the message using
the previous (m − 1) fragments of the codeword. In that
case, the receiver concatenates the first m fragments and
attempts to jointly decode it. We assume that the receiver
knows perfectly whether or not the message is correctly
decoded (through CRC) and ACK/NACK is received error-
free. Every channel use (equivalently the symbol) requires a
certain amount of time, therefore we measure time by the
number of symbols contained in a time interval. The latency
constraint is accounted for by translating it into a number of
channel uses as follows: we have

∑M
m=1 nm ≤ N`.1

We consider a block flat fading channel, where the channel
h ∈ C is an independent realization of an underlying random
variable H following a specific distribution and remains
constant in each block. The signal is also subject to additive
white circularly-symmetric complex Gaussian random process
with zero mean and unit variance. The IR-HARQ mechanism
takes place within one block, i.e., there is only one channel
coefficient value h for all retransmissions associated with the
same bits. Consequently, we assume that the block duration
is around N`. This is a relevant model for short-length
packet communication and IoT applications, where point to
point communication is performed. In the m-th round, the
fragment (sub-codeword) cm ∈ Cnm is received with power
gPm = ‖h·cm‖2

nm
, where we defined the channel gain g = |h|2.

III. PROBLEM STATEMENT

The problem we study here is that of optimizing the
IR-HARQ mechanism by tuning the blocklengths and the
powers so as to minimize a multi-objective function, involving
energy consumption and throughput. We require a low error
probability εrel without consuming more than energy Eb and
within a latency N`.

Before going further, we need to characterize the probabil-
ity of error in the m-th round of the IR-HARQ mechanism as
a function of (n1, ...nm, P1, ...Pm, g). To derive this packet er-
ror probability, we resort to the results for the non-asymptotic
(finite-blocklength) regime [1] since URLLC involves short

1Penalty terms D(n1, ...nm) can easily be introduced at each m-th
transmission in order to take into account the delay for the receiver to pro-
cess/decode the m-th packet and send back acknowledgment (ACK/NACK).
In this paper, we focus on the simplified version where D(n1, ...nm) = 0.

packets. In IR-HARQ with m transmissions, the packet error
probability or equivalently the outage probability, denoted
by εm, can be expressed as εm = P (∩mi=1Ωi) where Ωi is
the event corresponding to “the concatenation of the first i
fragments of the parent codeword is not correctly decoded
when optimal coding is employed”.

For infinite blocklength, an error occurs when the mutual
information is below a threshold and for IR-HARQ it can
easily be seen that for i < j we have Ωi ⊆ Ωj [10], [11],
which leads to εm=P(Ωm). In contrast, when a finite block-
length (or a realistic coding scheme) is assumed, the above
statement does not hold anymore and an exact expression for
εm seems intractable. Therefore, in the majority of prior work
(for instance [4], [11], [12]) as well as in this paper, the exact
εm is replaced with the simpler εm defined as εm = P(Ωm),
since εm and εm are numerically close for m > 1 (for m = 1
they coincide). Then, εm can be upper bounded [1, Lemma
14 and Theorem 29] and also lower bounded as in [12] by
employing the κβ-bounds proposed in [1]. Both bounds have
the same first two dominant terms and the error probability
after taking into account the scaling of the power caused by
the block fading, is approximately given by

εm ≈ Q


m∑
i=1

ni log(1 + gPi)−B log 2√√√√ m∑
i=1

ni

(
1− 1

(1 + gPi)2

)
 (1)

where Q(x) is the complementary Gaussian cumulative dis-
tribution function. For the sake of clarity, we may show the
dependency on the variables, i.e., εm(n1, ...nm, P1, ...Pm, g)
instead of εm.

IV. OPTIMIZATION

Unlike our previous work [2], [3] for AWGN channels, here
we consider a more realistic channel setting. We first assume
that the transmitter knows the channel coefficient h, which
we refer to as ”full CSI” but the channel is varying block
by block. We then consider that only the channel distribution
H, referred to as ”statistical CSI”. Both configurations are
analyzed for optimizing a weighted sum of the average
throughput and energy consumption.

Throughput is defined as the average ratio of successfully
decoded bits divided by the number of symbols used. Given a
channel realization (and so its gain g), the expected throughput
can be derived using the renewal theory [13] where the
expected value of delay is

∑M
m=1 nmεm−1 and the expected

reward is B(1− εM ) which leads to

Th(0) =
B(1− ε2)

n1 + n2ε1
.

The expected energy spent for transmitting B information bits
(conditioned on the channel realization) is

E(1) = n1P1 + n2P2ε1.



A. Full CSI

Our optimization problem is cast as follows.
Problem 1: Full CSI problem.

min
n1(g),n2(g),P1(g),P2(g)

Eg
[
− Th(a)

Th,max
+
E(a)

Emin

]
(2)

s.t. n1(g) + n2(g) ≤ N`, ∀g (3)
Eg[ε2(n1(g), n2(g), P1(g), P2(g), g)] ≤ εrel (4)
n1(g)P1(g) + n2(g)P2(g) ≤ Eb, ∀g (5)
Pi(g) ≤ Pmax, i ∈ {1, 2} ∀g (6)

where

• Th(a) = (1− a)Th(0),
• E(a) = aE(1). So the variable a is a weight balancing

throughput maximization and energy minimization.
• Eg[·] is the expectation over the channel gain realiza-

tions.
• Th,max = maxEg[Th(0)] s.t. (3), (4), (5), (6) hold and
Emin = minEg[E(1)] s.t. (3), (4), (5), (6) hold.

In the following, we assume

Pmax ≥
Eb
N`

(7)

such that the solutions of the Problem 1 may consume the
maximum energy budget Eb.

As the channel is known, we adapt the blocklengths and
powers accordingly. Therefore the solutions of the optimiza-
tion problem depend on the channel gain realization g. To
simplify the problem, we consider the simple yet intuitive
particular case where transmissions are avoided over deep
fading. Mathematically, the proposed solutions satisfy:

ni =

{
0 g < gth

ni(g) g ≥ gth
, Pi =

{
0 g < gth

Pi(g) g ≥ gth

In addition, we force each transmission (when done)
to achieve the same error probability, s.t. ∀g ≥ gth,
ε2(n1(g), n2(g), P1(g), P2(g)) = εon. The reliability con-
straint (4) leads to

ε2 = P(g < gth) + P(g ≥ gth)εon ≤ εrel. (8)

This simplification enables us to compute gth given εon and
to decouple the problem by treating every g0 with g0 ≥ gth
individually. We just have to solve Problem 1 assuming that
the channel gain takes only the value g0 and replacing εrel by
εon. An additional simplification is applied (similar proof to
Proposition 3 in [3]) that asserts ε2 ≈ εrel. This means that
trying to achieve lower error probability than the required εon
(whenever g ≥ gth) results in waste of energy and blocklength
resources, which also leads to a throughput decrease.

Notice that it is not always possible to meet the constraints
and to get a non-empty feasible set if the average channel
gain average is very low or the available resources are very
scarce. The following lemma characterizes the feasibility set.

Lemma 1: The solution of the problem:

min
n1,...,nM ,P1,...,PM ,M

εM (n1, ...nm, P1, ...Pm, g) (9)

s.t.
M∑
i=1

ni ≤ N` (10)

M∑
i=1

niPi ≤ Eb (11)

is M = 1 with (n1, P1) = (N`,
Eb
N`

). For meaningful/practical
solutions, we restrict to

ni ≥ Q−1(10−9) ≈ 36, and (12)

max{Q(0.45
√
B ln 2), 10−9}<εM<0.5. (13)

Proof: See Appendix A
Lemma 1 tells us that the best blocklength-power allocation of
IR-HARQ within a coherence block for minimizing the outage
probability given a maximum amount of energy and channel
uses is to employ one packet consuming all the available
blocklength and energy. Infeasibility occurs if there is at least
one g0 ≥ gth such that whatever the configuration of ni(g0)
and Pi(g0) for given (N`,Eb), it is ε2 > εon. Otherwise
stated, when min ε2 > εon for given (N`,Eb), we know that
the feasible set is empty. In addition, when M = 1, it is easy
to check that the minimum error probability is decreasing
as the channel gain gets larger. So the infeasibility can be
checked only for the worst channel g0 = gth. Consequently,
if ε2(N`, 0,

Eb
N`
, 0, gth) < εon, the feasible set is not empty.

B. Statistical CSI

We now assume that only the distribution of the channel H
is known. As the channel realization is not known in advance
and changes independently every coherence block, we cannot
adapt the blocklengths and powers at each time. Therefore,
we find a blocklength-power configuration independent of the
channel gain g.

Problem 2: Statistical CSI problem.

min
n1,n2,P1,P2

Eg
[
− Th(a)

Th,max
+
E(a)

Emin

]
(14)

s.t. n1 + n2 ≤ N` (15)
Eg[ε2(n1, n2, P1, P2, g)] ≤ εrel (16)
n1P1 + n2P2 ≤ Eb, (17)
Pi ≤ Pmax, i ∈ {1, 2} (18)

where
• Th,max= maxEg[Th(0)] s.t. (15), (16), (17), (18) hold,
Emin= minEg[E(1)] s.t. (15), (16), (17), (18) hold.

Again Lemma 1 can be employed to check easily the
feasibility given the resources (N`,Eb). Since the config-
uration (n1, n2, P1, P2) = (N`, 0,

Eb
N`
, 0) does not depend

on g and minimizes the error probability, we can see that
Eg[ε2(N`, 0,

Eb
N`
, 0, g)] ≤ εrel leads to a non-empty feasi-

ble set. Finally, we can again assert (Proposition 3 in [3])
Eg[ε2(N`, 0,

Eb
N`
, 0, g)] ≈ εrel.



V. NUMERICAL RESULTS AND DISCUSSION

We assume B = 256 information bits (32 bytes) has to
be transmitted through a Ricean fading channel with K-
factor and unit-variance, i.e. |h| ∼ Rice(K, 1). The K-factor
represents the ratio between the direct path (Line Of Sight)
and the other paths. K = 0 corresponds to the Rayleigh fading
while K → ∞ corresponds to the AWGN. We also assume
that n1 ≥ 100 such that Polyanskiy’s formula approximation
(1) is accurate and also that εrel, εon ∈ [10−9, 0.5] to satisfy
Eq. (13). Due to space limitations, we omit the details on how
the solutions are found; we just mention that for the full CSI
case, it ends up to a 4D grid search, while for the statistical
CSI to a 3D grid search.

In Figure 1, we depict the feasibility regions in (Eb,K) for
different CSI configurations and different N`. For the same
constraints in latency N` and reliability ε, surprisingly the
feasibility region for full CSI is smaller than the one with only
statistical CSI. We remind that for full CSI, the transmitter
policy is to remain idle when g < gth, so additional resources
are needed when it is active to achieve a pre-fixed outage
probability εon smaller than εrel to compensate for. The full
CSI policy is more constrained. The threshold gth cannot be
tuned to zero since we force for every g ≥ gth an error
probability εon ≤ εrel to be achieved and this requires an
infinite amount of resources when g→0. We also observe
that the reliability constraint ε strongly affects the feasibility
region, while this is not the case for the latency constraint
N`. We emphasize that, as we will see later, when both CSI
setups are feasible, the full CSI outperforms the statistical
one. In Figure 2, we plot the relative throughput Th(a)

Th,max (left

Fig. 1: Feasibility region for different channel, B = 32Bytes, maximum
energy budget Eb = PmaxN` with Pmax = 30dB.

scale) and relative energy E(a)
Emin (right scale) versus a after

solving Problem 1 (full CSI) and Problem 2 (statistical CSI).
Performing either throughput maximization (a = 0) or energy
minimization (a = 1) is not a good strategy since by allowing
a small decrease of throughput (in the first case) or a small
increase of energy (in the second case), the other metric in
the objective function significantly improves. A good tradeoff

for full and statistical CSI is around a = 0.3 in the employed
here.

Fig. 2: Throughput and energy relative to their optimal value for Rician
channel with K = 7dB, B = 32Bytes, εrel = 10−5 and maximum energy
Eb = PmaxN` with Pmax = 30dB and N` = 4000.

In Figure 3, we display the throughput and energy obtained
as a function of a for different setups. We remark that the
K factor as well as the target reliability play the important
role. On the contrary, the constraints on latency Nl, energy Eb

and power Pmax seem to have a minor impact except when
they are so stringent that we go close to the boundary of the
feasibility area.

Fig. 3: Throughput versus energy for a ∈ [0, 1], with Eb = PmaxN`,
Pmax = 30dB, and N` = 4000.

In Figure 4, we display the throughput and energy obtained
by moving a from 0 to 1 when HARQ is carried out or when
one shot transmission is employed. With full CSI a constant
37% percent, according to the figure, of energy can be saved
for the same throughput by using HARQ instead of one-shot.
This gain for statistical CSI scheme depends substantially
on the channel quality K and it can become huge for poor
channel conditions.

To explain this behavior we first discuss the optimal config-
uration of (n1, n2, P1, P2). The first packet is of significant
importance since we measure average performance and the



first packet is always sent whereas the second only ε1 times.
For throughput maximization n1 should be kept as small as
possible at the expense of power P1. However, as we move
to energy minimization, the situation is reversed, as larger n1
with smaller P1 reduces required energy [2]. The role of the
second packet is mainly to successfully meet the constraints
of the optimization problem and not to improve the objective.
This behavior is similar for both full and statistical CSI.

For statistical CSI, where the channel coefficient is un-
known, we see the mechanism of the optimized HARQ
rendering the first packet responsible for achieving a good
value of the objective function when the channel is good and
employing the second only when the channel is bad and nec-
essarily a lot of resources must be spent. In one-shot there is
not this option of differentiating the good and bad realizations
of the channel and the bad channel realizations determine the
amount of resources needed to spend for all cases. Reasonably,
as channel statistics deteriorate (K decreases) the waste of
resources in one-shot scheme becomes more profound since
the bad channel realizations determining the expenditure of
resources get worse. On the contrary, in the case of full CSI
the surprising savings do not happen as the channel is known
also for the one-shot scheme. Now there can be a distinction
between good and bad channel realizations. Moreover, this
results to an almost constant save of energy given a specific
throughput, independently of channel quality.

Fig. 4: Throughput versus energy for a ∈ [0, 1] when HARQ or one shot
transmission is used, with Eb = PmaxN`, Pmax = 1000(30dB), and N` =
4000.

VI. CONCLUSION

In this paper, we have investigated the problem of IR-
HARQ optimization for URLLC in fading channels assuming
both statistical and full CSI. Considering a weighted sum of
throughput and energy consumption as our objective function,
we have analytically characterized the feasibility region in
both CSI cases and solved the optimization problems. A key
implication of our results is that the full CSI case turns out
to be less robust than the statistical CSI one. Furthermore,
the primary factor affecting the throughput-energy trade-off

is not the latency constraint but the target reliability and the
channel quality. Finally, we showed that employing an IR-
HARQ mechanism can yield considerable gains especially
with statistical CSI.

APPENDIX A
PROOF OF LEMMA 1

We first consider M = N` and ni = 1, ∀i so each symbol
chooses its own power Pi and we want to prove that Pi =
Eb
N`
, ∀i is the solution of the optimization problem. If it is

true, these Pi can get out of the sums of the error formula
(1), leaving

∑N`
i 1=N`. Then the optimal error probability

can be expressed versus N` and Eb
N`

which is equivalent to
choose one block of size N` with identical power Eb

N`
.

Like [2], it is straightforward to prove that using full
resources (which means forcing the constraints to be equali-
ties) is beneficial for reliability. Moreover since Q-function is
decreasing and the logarithm is increasing, we can alter the
objective function and we end up to

max
x1,...,xN`

log
( N∑̀
i=1

log(
1

xi
)−B log 2

)
−1

2
log
( N∑̀
i=1

(1−x2i )
)

(19)

s.t.

N∑̀
i=1

1

xi
= Ẽ (20)

where xi = 1
1+h2Pi

and Ẽ = N`+h
2Eb. So xi ∈ [1/Ẽ, 1]. The

domain on which we maximize is a compact set, thus a global
maximum should exist. Additionally, the interval boundary,
i.e. xi ∈ {1/Ẽ, 1} represents the cases where some symbols
vanish (xi = 1 ⇔ Pi = 0 and xi = 1/Ẽ

(20)⇔ xj = 0 ∀j 6=
i) which yield suboptimal error probabilities [2] and so the
global maximum cannot be on the interval boundary. We use
KKT conditions to prove that there is only one stationary point
for the above problem and this point is when all xi are equal
to each other, and so these xi are optimal.

Applying the KKT conditions with λ the Lagrangien mul-
tiplier associated with (20), we get the set of equations

−x
3
i

V
+
xi
A

= λ, ∀i ∈ {1, 2, ...,N`} (21)

with A = −
∑N`
i=1 log(xi)−B log 2 and V =

∑N`
i=1(1− x2i ).

Let us assume that the solution of (21) is ~x? = (x?1, ..., x
?
N`

)
and denote A? = A(~x?), V ? = V (~x?). A? and B? are the
same for each equation in (21). If we can find more than three
different elements of ~x?, then the cubic polynomial − x3

V ? +
x
A? − λ = 0 has more than three roots which is impossible.
Additionally as A?, B?, and x?i are positive by construction,
we can show that x?i can at most take two different values. Let
us denote them by (x̃1, x̃2). The value x̃1 is taken by n1 out of
N` xi-variables while the value x̃2 is taken by n2 = N`−n1
xi-variables. Then (20) and (21) can be transformed into

n1 + n2 = N` (22)
n1
x̃1

+
n2
x̃2

= Ẽ (23)



− x̃
3
1

V
+
x̃1
A

= − x̃
3
2

V
+
x̃2
A

(24)

For instance, the case x̃1 = x̃2 = Ẽ
N`

is a solution. Actually,
it corresponds to our desired stationary point. It just remains
to prove that this is the only solution.

For x̃1 6= x̃2:

(24)⇔ A(x̃21 + x̃1x̃2 + x̃22) = V. (25)

We will show that (25) and the assumptions (12) and (13)
cannot all hold at the same time. Using (13) we get:

A > 0⇔ n1 log(x̃1) + n2 log(x̃2) < −B log 2 (26)
A√
V
<F

(25)⇔
√
n1(1−x̃21)+n2(1−x̃22)<F (x̃21+x̃1x̃2+x̃22) (27)

with F= min{0.45
√
B log 2, Q−1(10−9)} and the change

from max of (12) to min is due to the decreasing monotonicity
of Q(·)−1.

In Figure 5, we display the area where (26) holds in blue,
and the area where (27) holds in grey. We want to prove that

Fig. 5: Inequalities description for x̃1 and x̃2.

both blue and black areas are disjoint in order to have no
solution satisfying both inequalities. It is easy to prove that
the boundary-curve C1 (resp. C2) is convex (resp. concave).
So to avoid common points between both areas, the points
K2 and K3 (intersection point of curve C2 with x̃2 = 1 and
x̃1 = 1 respectively) have not to belong in the blue area.

The point K2 = (e−
B log 2
n1 , 1) does not belong in the blue

area if it does not satisfy (27), i.e. for n1 log(x̃1) = −B log 2
we want either (28) or (29) to hold:√

n1(1− x̃21) > 0.45
√
B log 2(x̃21 + x̃1 + 1), (28)√

n1(1− x̃21) > Q−1(10−9)(x̃21 + x̃1 + 1). (29)

First we concentrate on (28). After substitution we want to
show that: √

x̃21 − 1

log x̃1
> 0.45(x̃21 + x̃1 + 1). (30)

A known inequality is log(x) ≥ x−1√
x
, for x ≤ 1. By di-

viding with 1−x2(> 0) we can get
√

x2−1
log x ≥

√√
x(1 + x).

Furthermore for 0 < x ≤ 1, we have 2x+ 1 ≥ x2 + x+ 1. If√√
x̃1(1 + x̃1) ≥ 0.45(2x̃1 + 1) (31)

holds, then (30) holds. Proving (31) is equivalent to show√
x̃1

4 − 1.2346
√
x̃1

3
+
√
x̃1

2 − 1.2346
√
x̃1 + 0.25 ≤ 0. The

roots of this fourth-order polynomial can analytically be found
and the inequality is satisfied when x̃1 ≥ ρ2 = 0.0563.
So (30) is satisfied for x̃1 ≥ ρ2. For x̃1 < ρ, one can
see it is equivalent to 0.45

x̃2
1+x̃1+1√
1−x̃2

1

< 0.45ρ
2+ρ+1√
1−ρ2

. If x̃1 >

e
− 1−ρ2

0.452(ρ2+ρ+1)2 (≈ 0.0125), then 0.45ρ
2+ρ+1√
1−ρ2

<
√

−1
log x̃1

and

again (30) holds. To sum up, when x̃1 > 0.0125 the point K2

is outside the blue area.
Now we will concentrate on (29) to treat the case of x̃1 ≤

0.0125. From (29), we have:

n1 > Q−1(10−9)
(x̃1

2 + x̃1 + 1)2

1− x̃21
≈ Q−1(10−9)

which holds according to the assumption done in the Lemma.
Similar procedure can be applied for the point K3 which
concludes the proof.
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