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Abstract—We present a theoretical analysis of sample com-
plexity for learning the target policy in offline reinforcement
learning (RL) using sequence modeling approaches. Our main
theorem establishes bounds on the minimum required number of
high-return samples. We identify distinct small-data and large-
data regimes, characterized by a critical transition point, and
reveal a potential trade-off between context coverage breadth
and sampling depth. These findings offer insights into efficient
data collection strategies and algorithm design for offline RL.

Index Terms—Offline Reinforcement Learning, Sequence Mod-
elling, Sample Complexity Analysis

I. INTRODUCTION

Offline reinforcement learning (RL) addresses the challenge
of learning effective policies from fixed datasets without online
interaction with the environment [1], [2]. This paradigm is
particularly relevant in domains such as robotics, logistics, and
operations research, where exploration with untrained policies
is impractical or unsafe. The offline RL setting has prompted
the development of various approaches, initially focusing on
adapting classical RL algorithms. These algorithms, such as
off-policy methods [3], [4], were primarily designed for the
online paradigm—a fundamentally different setting where the
agent can interact with and learn from the environment in
real-time. These adaptations typically incorporate mechanisms
to mitigate action distribution shift while pursuing policy im-
provement [1], [5]–[8]. The goal is to learn an optimal policy
that maximizes expected return, leveraging the information
contained in the offline dataset, which often contains data
from multiple policies or training stages. However, off-policy
methods in offline RL settings are known for their sensitivity
to hyperparameters and lack a theoretical basis for selecting
among different distribution shift mitigation strategies [6], [7].

The limitations of classical RL methods in offline settings
have motivated a shift towards framing offline RL as a su-
pervised learning problem [9], [10]. Leveraging the inherently
sequential nature of offline RL datasets, sequence modeling
(SM) approaches have emerged as a promising direction [11],
[12]. These methods offer several advantages over their off-

policy counterparts, including algorithmic simplicity, reduced
sensitivity to hyperparameters, and inherent resilience to action
distribution shift [11]. Unlike off-policy techniques that aim
to directly learn an optimal policy, SM approaches model
the entire conditional distribution of policies present in the
dataset, typically using transformer architectures [13], [14].
This comprehensive modeling approach, while powerful, in-
troduces unique challenges. By capturing the full spectrum
of policies, including suboptimal ones, these methods may be
more susceptible to the influence of poor-quality data. During
inference, the best policy is extracted by conditioning on the
most high return contexts, but the success of this process
heavily depends on the composition of the training dataset. The
presence of suboptimal policies in the data could potentially
hinder the extraction of truly optimal behavior, a challenge that
is less pronounced in off-policy methods that explicitly target
the best possible policy. This characteristic of SM approaches
underscores the critical need for a thorough understanding of
how dataset composition affects the quality of the extracted
policy.

In this work, we address this challenge by providing a
theoretical framework for analyzing the sample complexity of
learning the target policy in offline RL using SM approaches.
The analysis yields a novel bound on the required number
of high-return samples, expressed in terms of the minimum
number of samples and the expected minimum proportion
of high-return data across contexts. This formulation allows
for the characterization of the relationship between sample
complexity and dataset composition, revealing distinct small-
data and large-data regimes. A critical transition point between
these regimes is identified and analyzed, providing insights
into the diminishing returns of increasing dataset size beyond
this point. The theoretical results suggest a fundamental trade-
off between the breadth of context coverage and the depth
of sampling within each context. This analysis may inform
data collection strategies and algorithm design in offline RL,
particularly in scenarios with imbalanced or limited data across
different contexts.



II. RELATED WORK

The study of sample complexity in reinforcement learning
has a rich history, with seminal works establishing bounds
for various settings [15], [16]. In the context of offline RL,
recent research has focused on the challenges of distribution
shift and policy constraint [5], [17]. SM approaches to RL,
while relatively new, have shown promising empirical results
[11], [18]. These methods draw inspiration from advances in
natural language processing, particularly the use of transformer
architectures [13]. Our work bridges the gap between these
empirical advances and theoretical foundations, building on
techniques from statistical learning theory [19].

III. SYSTEM MODEL

We cast offline RL as a sequence modeling problem within
a Markov Decision Process (MDP) M = (S,A,P, R, γ),
where S, A, P , R, and γ denote the state space, action
space, transition probability function, reward function, and
discount factor, respectively. We assume discrete data, noting
that continuous spaces can be addressed through discretization
techniques [18]

The core of our analysis revolves around a fixed-size static
training dataset T , comprising trajectories generated by K
distinct unknown policies {πk}Kk=1. We transform T into a
sequence modeling dataset D = {(xl, yl)}Nl=1, where xl ∈ X
represents the context (e.g., previous states, actions, returns)
and yl ∈ Y represents the next token (typically an action).
The vocabulary size V = |Y| corresponds to the number
of possible actions, while C = |X | denotes the number of
possible contexts. To enhance interpretability, our approach
prioritizes actions as tokens, though the methodology gener-
alizes to vocabularies that incorporate state and return tokens.
Additionally, we adopt returns —defined as the cumulative
sum of future rewards— as our primary reward metric. This
choice is made without loss of generality, as alternative
metrics, such as Monte Carlo value estimates [18], are also
applicable.

To characterize the dataset composition, we define αk as the
expected proportion of samples in D generated by policy πk,
ensuring

∑K
k=1 αk = 1. We distinguish between high-return

and low-return contexts, denoting X h ⊂ X as the set of high-
return contexts and X l = X \ X h as the set of low-return
contexts, with Ch = |X h|. For each policy πk, we decompose
αk = αh

k + αl
k, where αh

k and αl
k represent the proportions

of high-return and low-return data, respectively. The overall
expected proportions of high-return and low-return data are
denoted as αh :=

∑K
k=1 α

h
k and αl :=

∑K
k=1 α

l
k.

For a context c ∈ X h, let Nc = Nh
c +N l

c denote the number
of samples in D containing c, where Nh

c and N l
c represent the

numbers of high-return and low-return samples, respectively.
For c ∈ X l, we have that Nc = N l

c. This decomposition is
crucial, as even if a context c is in X h, not all of its occurrences
in the dataset are necessarily optimal. This is particularly
evident in episodic environments where trajectories near the
end timesteps may have the same return, but the chosen actions

might be sub-optimal depending on the policy. The illustrative
example below provides further clarification on this point.

Illustrative Example: Consider a 5x5 grid world where
an agent must navigate from a start position to a goal. We
define high-return trajectories as those reaching the goal in 10
steps or fewer. Let context A represent the agent’s position one
step away from the goal, and context B represent the starting
position. Context A is classified as a high-return context (A ∈
X h) due to its proximity to the goal. Consider a dataset T
which contains the following two trajectories:

• τ1: B → · · · → A → Goal (10 steps, high-return)
• τ2: B → · · · → A → [suboptimal actions] → Goal (20

steps, low-return)
In this example, NA = 2 (total occurrences of context A),
while Nh

A = 1 (occurrences of A in high-return trajectories).
Thus, NA ̸= Nh

A despite A ∈ X h. This discrepancy arises
because context A’s classification as high-return is based on
its potential for high returns, but the actual returns depend on
subsequent actions in the trajectory. □

Finally, we use βh
c =

Nh
c

N to denote the estimated proportion
of high-return samples in which context c appeared. By design,
we have that E

[∑
c∈Xh βh

c

]
= αh.

IV. STATISTICAL TRAJECTORY MODEL

We define each policy πk as a conditional probability
distribution over actions given contexts. Specifically, πk(v|c)
represents the probability of taking action v given context
c under policy k. For each context c ∈ X , πk(·|c) forms
a probability distribution over the action vocabulary [V ],
satisfying

∑V
v=1 πk(v|c) = 1. Subsequently, we define the

behavior policy π as a mixture of πk and the target policy π∗

for offline RL as follows:

π =

K∑
k=1

αkπk; π∗ =
1

αh

K∑
k=1

αh
kπk

Note that π∗ uses αh
k as coefficients, distinguishing it from the

behavior policy π. An effective offline RL algorithm should
aim to approximate π∗. Off-policy methods attempt this by
directly modeling the policy with the maximum Q-value,
effectively targeting π∗. In contrast, SM approaches model
π, but attempt to recover π∗ during inference by conditioning
on contexts c ∈ X h at each timestep. This approach implicitly
assumes that high-return contexts are predominantly generated
by π∗, theoretically allowing its recovery.

We define our learned model p as an estimate of the
behavior policy, where p(v|c) = 1

Nc

∑Nc

l=1 X
c,v
l , and Xc,v

l

are indicators of the occurrence of the pair (c, v) given c
for the l-th sample in D. We assume that p is an unbiased
estimator of the true underlying distribution π, i.e. E[p] = π.
Consequently, Xc,v

l can be interpreted as a Bernoulli random
variable, with the probability of Xc,v

l = 1 given by the
conditional probability π(v|c). Additionally, to simplify our
theoretical analysis, we assume that the Xc,v

l ’s are independent
across different samples. It can be shown that the empirical
conditional distribution p is obtained by minimizing the known



categorical cross-entropy loss [20]. For theoretical analysis,
we assume a simplified model where the canonical vectors of
context-action pairs are directly used. In practice, these would
be derived from a transformer model [13].

V. PROBLEM STATEMENT

Given a dataset with a minimum number of samples gen-
erated by the behavior policy for any high-return context, our
goal is to find a lower bound on the minimum number of high-
return samples needed so that our learned model approximates
the target policy in offline RL.

Formally, let νhmin := βh
minNmin be the minimum number

of samples generated by π for any c ∈ X h in D, where βh
min =

minc∈Xh E[βh
c ], and Nmin = minc∈Xh Nc. Our goal is to find

a lower bound on νhmin such that our learned conditional model
p approximates π∗ on all c ∈ X h. To achieve this, we consider
the matrix representations of p and π∗:

p = (p(v|c))c∈X ,v∈[V ] ∈ [0, 1]C×V (1)

π∗ = (π∗(v|c))c∈X ,v∈[V ] ∈ [0, 1]C×V (2)

In order to measure the approximation error, we use the 1-
norm:

∥p− π∗∥1 =
∑
c∈Xh

∑
v∈Y

|p(v|c)− π∗(v|c)| (3)

Throughout the rest of the paper, we use
∑

c,v to denote this
double summation for brevity. It is worth noting that the 1-
norm is twice the total variation distance ∥p−π∗∥TV, another
commonly used metric for probability distributions [20], [21].
Additionally, we compare π∗ and p only on contexts from X h,
which delineates a key flexibility of offline RL compared to
scenarios of offline imitation learning (i.e., BC) [22] where
we would require the model to approximate π∗ on all c ∈ X .

VI. MAIN RESULTS

This section presents our main theoretical results, estab-
lishing sample complexity bounds for learning near-optimal
policies in offline RL using SM approaches, and analyzes the
implications of these bounds across different data regimes.

Theorem (Sample Complexity Bound). For any ϵ > 0, if νhmin

satisfies:

νhmin ≥ max

{
βh
min

(
ChV

ϵ

)2

, Nmin

(
1− ϵ

4Ch

)}
, (4)

then, we have that:

E[∥p− π∗∥1] < ϵ (5)

Proof. We begin by decomposing the error into variance and
bias terms using the triangle inequality:

E[∥p− π∗∥1] ≤ E[∥p− E[p]∥1] + ∥E[p]− π∗∥1 (6)

Step 1: Bounding the variance term E[||p− E[p]||1].
We begin by expressing the 1-norm and applying linearity of
expectation:

E[||p− E[p]||1] =
∑
c,v

E[|p(v|c)− E[p(v|c)]|] (7)

Now, we apply Jensen’s inequality to each term:∑
c,v

E[|p(v|c)− E[p(v|c)]|] ≤
∑
c,v

√
E[(p(v|c)− E[p(v|c)])2]

=
∑
c,v

√
Var(p(v|c)) (8)

For each p(v|c), we have that:

Var(p(v|c)) = π(v|c)(1− π(v|c))
Nc

≤ 1

4Nc
≤ 1

4minc∈Xh Nc
(9)

Therefore,

E[||p− E[p]||1] ≤
ChV

2
√
Nmin

(10)

Now, to ensure that E[||p− E[p]||1] ≤ ϵ/2, we need:

νhmin ≥ βh
min

(
ChV

ϵ

)2

(11)

Step 2: Bounding the bias term ∥E[p]− π∗∥1.
Since E[p] = π =

∑K
i=1 αiπi, where π is the matrix

representation of π, we have that:

∥E[p]− π∗∥1 = ∥
K∑
i=1

αiπi −
1

αh

K∑
i=1

αh
i πi∥1 (12)

= ∥
K∑
i=1

(αl
i + αh

i − αh
i

αh
)πi∥1 (13)

≤ Ch

(
K∑
i=1

αl
i + |(1− 1

αh
)|

K∑
i=1

αh
i

)
(14)

= 2Ch(1− αh) = 2Ch

1− E[
∑
c∈Xh

βh
c ]


(15)

≤ 2Ch(1− βh
min) (16)

The key step is recognizing that ∥πi∥1 = Ch for all i. To
ensure that this is at most equal to ϵ/2, the following inequality
must be satisfied:

νhmin ≥ Nmin

(
1− ϵ

4Ch

)
(17)

Combining the two bounds completes the proof.

Proposition 1 (Sample Complexity Regimes). The sample
complexity νhmin exhibits distinct regimes as a function of the
minimum number of samples Nmin:

1) For Nmin ≪ N∗
min: νhmin ≈ βh

min

(
ChV
ϵ

)2
(small-data

regime)



2) For Nmin ≫ N∗
min: νhmin ≈ Nmin

(
1− ϵ

4Ch

)
(large-

data regime)
where the transition point N∗

min is given by:

N∗
min =

4βh
minC

h3V 2

ϵ2(4Ch − ϵ)
(18)

The analysis highlights key factors influencing sample com-
plexity in offline RL, particularly emphasizing the role of
worst-case context coverage. In data-scarce scenarios, reduc-
ing action space complexity and carefully selecting high-return
contexts become critical. As data increases, the focus shifts
to improving the minimum sample count for any high-return
context, with diminishing returns from increasing overall
dataset size. This suggests a fundamental trade-off between
ensuring a good proportion of high-return samples across
contexts (breadth) and sufficient samples per context (depth).
These findings have significant implications for data collection
strategies in offline RL, suggesting adaptive sampling methods
that balance exploration of diverse contexts with exploitation
of known high-return areas, particularly focusing on underrep-
resented high-return contexts in larger datasets.

Proposition 2 (Approximated Critical Minimum Sample
Size). Let N∗

min be the critical minimum sample size at which
the two terms in the bound of the main theorem are equal. For
ϵ ≪ Ch, N∗

min can be approximated as:

N∗
min ≈ βh

minC
h2V 2

ϵ2
+

βh
minC

hV 2

4ϵ
(19)

Proof. To express N∗
min in a more analytically tractable form,

we consider the typical case where ϵ ≪ Ch. Under this
assumption, we use a Taylor series expansion:

1

4Ch − ϵ
=

1

4Ch
· 1

1− ϵ
4Ch

(20)

≈ 1

4Ch

(
1 +

ϵ

4Ch
+
( ϵ

4Ch

)2
+ · · ·

)
(21)

≈ 1

4Ch

(
1 +

ϵ

4Ch

)
(keeping only first-order terms)

(22)

Substituting this back into our expression for N∗
min from (18)

yields the result in (19).

The formula for the critical minimum sample size N∗
min

highlights key factors driving the transition between small-
data and large-data regimes in offline RL. The dominant term,
βh
minC

h2
V 2

ϵ2 , shows that N∗
min scales quadratically with the

number of high-return contexts (Ch) and the action space size
(V ), and inversely with the accuracy (ϵ). This indicates that
larger datasets are required for problems with complex action
spaces or many high-return contexts to transition into the large-
data regime.

The secondary term, βh
minC

hV 2

4ϵ , becomes more significant
as ϵ increases, suggesting that lower accuracy thresholds
require more data to balance growth. The linear dependence
on βh

min across the formula emphasizes that datasets with

more evenly distributed high-return samples across contexts
will require proportionally larger sizes to reach the transition
point.

VII. NUMERICAL RESULTS

We empirically validate our theoretical findings through
controlled experiments.

Experimental Setup: We designed a synthetic, controlled
environment with |S| = 10 states and |A| = 5 actions, using
an optimal policy (favoring first action with 0.7 probability),
a uniform random policy, and a suboptimal policy. The be-
havior policy weights follow αh

k ≤ αk with controlled βh
min

and Nmin to ensure consistent coverage across high-return
contexts.

Results and Analysis: For values of ϵ ∈
{0.2, 0.3, 0.4, 0.5}, we calculated the theoretical minimum
sample size νhmin and tested whether the resulting empirical
error remained below the theoretical threshold. As shown in

2× 10−1 3× 10−1 4× 10−1

ε

2× 10−1

3× 10−1

4× 10−1
‖p
−
π
∗ ‖

1

0.190

0.280

0.364

0.471

Target Error (ε)

Empirical Error

Fig. 1. Empirical approximation error versus theoretical thresholds for varying
ϵ values. Error bars represent standard deviation across 10 random seeds.

Figure 1, the empirical error ∥p − π∗∥1 consistently remains
below the theoretical threshold ϵ across all tested values.

We then varied high-return samples as a fraction
{0.1, 0.75, 1.0, 1.5, 2.0} of the theoretical minimum to test
bound tightness. For ϵ = 0.2 (Figure 2), using 0.75× the theo-
retical sample size yields errors above threshold, while the full
theoretical size maintains error below threshold, confirming
our bound’s tightness. With the more stringent ϵ = 0.1 (Figure
3), the required samples increase significantly, and using fewer
samples than predicted consistently fails to achieve the target
error.

Discussion: Our experiments confirm that using the min-
imum number of high-return samples prescribed by our theory
ensures the empirical error remains below the target threshold,
while using fewer samples results in higher errors. This
simultaneously validates both the effectiveness and tightness
of our bounds, providing theoretically grounded guidance for
minimum data requirements in offline RL.
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Fig. 2. Approximation error as a function of high-return samples for ϵ = 0.2.
Vertical line indicates theoretical minimum sample size.
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Fig. 3. Sample complexity analysis for ϵ = 0.1, showing increased sample
requirements for lower error tolerance.

VIII. CONCLUSION AND FUTURE DIRECTIONS

This theoretical analysis of sample complexity in offline
RL using SM approaches reveals critical insights into the
relationship between dataset composition and learning ef-
fectiveness. By identifying distinct small-data and large-data
regimes separated by a critical transition point, the study
challenges the notion that simply increasing dataset size is
sufficient for improved performance. Instead, it emphasizes
the importance of balanced data collection strategies that
ensure adequate coverage of high-return contexts. The revealed
trade-off between context coverage breadth and sampling
depth suggests that adaptive sampling methods may be more
effective than uniform strategies. These findings provide a
foundation for developing more efficient offline RL algorithms
and data collection strategies, potentially leading to improved
performance in real-world applications where data collection is
costly or constrained. Future work should focus on validating
these theoretical results using realistic transformer architec-

tures on standard offline RL benchmarks, while exploring
their practical implications for algorithm design, particularly
in developing efficient data selection and weighting strategies
that bridge the gap between theoretical insights and real-world
applications.
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