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Abstract—We focus on the scheduling algorithm for updating
files from a cloud server to a local server having cache. We
consider that only K out of N files can be updated at each
timeslot. Each file is time-sensitive and the content relevance is
thus measured through the Age of Information. In addition, each
file has its own popularity which is time-varying according to a
Markovian model. In this paper, we offer two contributions: first,
we exhibit Whittle’s index for this scheduling problem when the
popularity is known and fixed over time. Second, we propose
a heuristic based on previous Whittle’s index for the time-
varying popularity case assuming that only the past popularity
is available.

I. INTRODUCTION

Some content such as newspaper websites, live TV pro-
grams, video streams, and data coming from sensors, are time-
sensitive in the sense that they can become obsolete. Such data
are less useful if obtained and/or viewed too late. A way to
measure this obsolescence is the so-called Age of Information
(AoI) proposed in [1].

We here consider the edge cache updating problem. We
consider three levels in the network: i) users requiring time-
sensitive contents; ii) an central distant server contains the
entire fresh contents; iii) a cache, closed to the users and
easy to access, containing the entire contents but at each
timeslot, the cache may be updated only partially. Therefore
the freshness of files will vary over time. In this context, the
goal is to find a relevant cache updating policy that specifies
which contents to update from the server to the cache at a
given timeslot in order to minimize a criterion related to the
AoI.

Several simple updating policies can be developed, for
example: i) the famous Round-Robin (RR) scheduling where
each content is updated according to a cycle; ii) the scheduling
updating the content with the highest age is another well-
known approach. However, these policies assume that the con-
tents are equivalent and that the users’ requests are uniformly
distributed over the contents. In practice, some content items
are more popular than others according to an empirical law,
such as, the Zipf distribution [2]. When popularity is content-
dependent, the updating policy should take this into account
and should provide a relevant trade off between the AoI of
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the content and its popularity. Indeed, a popular content item
should be updated more often than a less popular content but
less popular context should also be updated (certainly with a
smaller rate) in order to keep its AoI with a bounded value.
When the popularity is known and fixed over time, the square-
root law is advocated in [3].

The popularity can be also time-varying since some contents
can be more or less popular over time such as a streamed video
or some online newspapers’ articles [4]. In that context, [4]
proposed to learn the popularity online. In [5], the popularity,
even if time-varying, was known in advance. In contrast, [6]
has developed a policy for the case when the current popularity
is not known in advance. Based on a Markovian model of
the popularity rate, they proposed an approximation of the
optimal policy using standard tools of Constrained Markov
Decision Processes (CMDP). The main drawback of [6] is
the un-interpretability of the obtained policy; they obtained a
look-up table as a black box.

One way to avoid an un-interpretable policy in a CMDP is to
focus on index-based policies. The most common index is the
so-called Whittle’s index (WI) [7]. Some WIs for AoI based
scheduling policies have been proposed but never by taking
into account the popularity [8]–[10]. Actually considering
the popularity in addition to AoI is challenging when the
popularity is time-varying since the underlying Markovian
state per user is then two-dimensional. And expressing WI
in closed-form is not always possible, as mentioned in [11].
Indeed, it was seen in [11] that some rewards have to be
specifically ranked to ensure the existence of the WI. In
our context, we have observed that such conditions were not
fulfilled.

Therefore the contributions of this paper are twofold: first,
we exhibit in closed-form the WI for cache update scheduling
when the popularity is time-invariant Based on the obtained
expression of the WI under time-invariant popularity, we
propose a heuristic when the popularity is time-varying and
not known in advance. We observe that the proposed heuristic
is interpretable and close in performance to the policy offered
in [6].

The paper is organized as follows: in Section II we introduce
the mathematical model. In Section III, we derive analytically
the WI when the popularity is fixed over time. In Section IV,
we extend the WI as a heuristic to the time-varying popularity



case. Numerical results are provided in Section V. Concluding
remarks are drawn in Section VI.

II. PROBLEM DEFINITION

We consider a central distant server with N time-sensitive
files. At each timeslot t ∈ {1, . . . , T}, the cache can update
only K current versions of files from the server due to
a bandwidth constraint. For each file n ∈ {1, . . . , N}, let
{un,t} ∈ {0, 1} be the download decision at time t, i.e.,
un,t = 1, if file n is downloaded at timeslot t, and un,t = 0
otherwise. The bandwidth constraint requires that

N∑
n=1

un,t ≤ K, ∀t. (1)

We denote by Xn,t the AoI of file n at timeslot t, i.e.,
the number of timeslots that have passed since the cache has
downloaded file n. For sake of simplicity, we assume that
Xn,1 = 1,∀n. Afterwards for t > 1, the AoI is modified as
follows:

Xn,t+1 =

{
1, un,t = 1;

Xn,t + 1, un,t = 0.
(2)

In each timeslot t, the number of requests for file n depends
on its current popularity mode mn,t ∈ M := {1, · · · ,M}
as in [5], [6]. The expected number of requests of file n is
determined by a function pn :M→ R+, so that the expected
number of requests for file n at timeslot t is given by pn(mn,t).
It is assumed that for each file n, the sequence {mn,t}Tt=1

evolves according to an M -state Markov chain with transi-
tion probabilities Tnm,m′ := Pr (Mn,t+1 = m′|Mn,t = m) for
(m,m′) ∈ M2. In [3], Tnm,m′ = δm,m′ with δ the Kronecker
index, and pn(mn,t) does not depend on t anymore and
corresponds to the popularity rate directly denoted by pn.

Let Π be a set of cache updating policies, i.e., policies
providing the decisions {un,t} at timeslot t which only de-
pends on the current and past popularity modes {mn,τ}τ≤t
and AoIs {Xn,τ}τ≤t as well as on the statistics {Tnr,r′}. The
future popularity modes {mn,τ}τ>t cannot be used. The goal
is to design such policies π ∈ Π related to the minimization of
the expected total AoI of all requested files averaged over an
infinite-time horizon described by this optimization problem.

Problem 1:

min
π∈Π

lim
T→∞

Eπ

[
1

T

T∑
t=1

N∑
n=1

Xn,tpn(mn,t)

]
, (3a)

s.t.
N∑
n=1

un,t ≤ K, ∀t. (3b)

III. TIME-INVARIANT POPULARITIES

In this section, we consider that the popularity mode is
not time-varying. As a consequence, pn(mn,t) simplifies into
pn(mn) and only depends on n and can be denoted by pn.
Then pn refers to as the popularity rate. Typically, the values
of pn are related to those of a Zipf distribution [2].

Here, we propose to exhibit in closed-form the WI related to
Problem 1 when the popularity is not time-varying. To define
the WI, we first relax Problem 1 having bandwidth constraints
(3b) per timeslot into Problem 2 having average bandwidth
constraints.

Problem 2:

min
π∈Π

lim
T→∞

Eπ

[
T∑
t=1

N∑
n=1

Xn,tpn

]
, (4a)

s.t. lim
T→∞

1

T

T∑
t=1

(
N∑
n=1

un,t −K

)
≤ 0. (4b)

Then Problem 2 can be transformed again into a new Problem
3 thanks to the introduction of a Lagrangian multiplier λ for
the average bandwidth constraints.

Problem 3:

min
π∈Π

lim
T→∞

Eπ

[
1

T

T∑
t=1

N∑
n=1

(Xn,tpn + λun,t)

]
. (5)

One can easily observe that Problem 3 can be decoupled
file by file and we obtain a per-file Problem. This Problem 4
just corresponds to a unconstrained Markov Decision Process
problem. The optimal policy does not directly take into ac-
count the other files but only through the parameter λ. For the
sake of simplicity, we now omit the index n corresponding
to the file. So p is now the time-invariant popularity for any
current file of interest.

Problem 4:

min
π∈Π

lim
T→∞

Eπ

[
1

T

T∑
t=1

(Xtp+ λut)

]
. (6)

Before going further, we want to solve Problem 4. Problem
4 is MDP with the following ingredients per file:
• Action: u(t) is 1 if the file is updated at timeslot t, and

0 otherwise. When u(t) = 1, the file is said to be active.
When u(t) = 0, the file is said to be passive.

• State: X(t) the age of the file at timeslot t. We force
X(1) = 1. The update law is as follows{

Pr(X(t+ 1) = 1|X(t) = x, u(t) = 1) = 1
Pr(X(t+ 1) = x+ 1|X(t) = x, u(t) = 0) = 1

.

(7)
• Cost: the instantaneous reward in Eq. (6) at timeslot t

with age x and action u can be written as

c(x, u) = (x+ 1− xu)p+ λu

where λ plays the role of the weight for doing an update.
According to [12], we know the optimal value C of the

criterion given in Eq. (6) satisfies the following Bellman’s
equation

C + f(x) = min

(
(x+ 1)p+

∫
f(y)Pr(y|x, 0)dy,

p+ λ+

∫
f(y)Pr(y|x, 1)dy

)
(8)



where f is the so-called value function and Pr(y|x, u) is
provided by Eq. (7). In addition, Problem 4 admits an optimal
stationary deterministic policy denoted by π?λ : N+ → {0, 1}
and given by

π∗λ(x) = arg min
u
c(x, u) +

∫
f(y)Pr(y|x, u)dy.

Let us now define an index-based policy. Let us consider a
real-valued function depending on some information state s of
an agent (in this paper, the agent corresponds to a content/file),
denoted by s 7→ I(s) and entitled “index”. When K agents
out of N have to be selected to make their action, an index-
based policy selects the K agents with the highest indices.
Mathematically speaking, we have

K = argK max
n∈{1,...,N}

I(sn)

where sn is the current state of agent n, argK max stands for
the operator selecting the K agents with the highest values,
and K is the set of selected agents. When s is based on the Age
of the agent (the age may correspond to the AoI, the delay,
· · · ), the index policy may be called the Schedule Ordered by
Age-based Priority (SOAP) and is well described in [13]. Let
us now focus on the WI. This index is the λ in Eq. (8) such that
the first term in the minimum operator is equal to its second
term, i.e., both actions are equivalent. Such a λ only depends
on the parameter p and the AoI x. This index will be denoted
by x 7→ IW (x). To find this index in our specific problem, we
will proceed as in [9] where two steps are necessary:

Step S1- proof of optimality of a threshold policy for
Problem 4. To do that, we need to show that by choosing
appropriately the threshold of the considered threshold
policy, such a policy satisfies the Bellman’s equation. As
a byproduct, we obtain the optimal long-term age C. The
threshold is denoted by µ?(λ).
Step S2- exhibition of λ such that x + 1 = µ∗(λ), since
the age µ∗(λ) corresponds to the age where the previous
policy equilikely decides the file to be active or passive.
Then we obtain λ with respect to (wrt) x and identify it
to the WI denoted by IW .

Let us consider a threshold policy on the age with the
threshold µ. We have{

x ≥ µ leads to active file
x < µ leads to passive file .

Let us begin with Step S1. The goal is to prove that a
threshold policy with a well-tuned threshold is optimal. We
assume that f(1) = 0. When x < µ, the Bellman’s equation
(8) simplifies to

C + f(x) = (x+ 1)p+ f(x+ 1) (9)

and this occurs when

xp+ f(x+ 1) ≤ λ. (10)

When x ≥ µ, the Bellman’s equation becomes

C + f(x) = p+ λ

and this occurs when

xp+ f(x+ 1) > λ. (11)

Finally, by iterating Eq. (9) wrt x from 1 until x < µ, we get

f(x) =
(µ− x)(µ− x+ 1)p

2
+(µ−x)(xp−C)+f(µ). (12)

In contrast, when x ≥ µ, we have

f(x) = p+ λ− C, (13)

and we remark that this function f is constant as soon as
x ≥ µ.

Our objective now is to prove that such a value function
f with an appropriate µ satisfies the Bellman’s equation. If
so, we prove the threshold policy with the above-mentioned
appropriate µ is optimal. To do that, we need to check that
we can connect the function at point µ since f(µ) is used and
defined in both intervals (when x < µ and when x ≥ µ).

By applying x = 1 in Eq. (12), we obtain

f(µ) = (C − p)(µ− 1)− (µ− 1)µp

2
. (14)

In addition, based on Eq. (13), we also obtain

f(µ) = p+ λ− C. (15)

Consequently, if Bellman’s equation works for this policy, we
need at least gather both Eqs. (14)-(15) which means that

λ = (C − p)µ− (µ− 1)µp

2
. (16)

We also have constraints on λ according to Eqs. (10)-(11).
Around the threshold, we need at least satisfy

(µ− 1)p+ f(µ) ≤ λ < µp+ f(µ+ 1), (17)

which leads to

µp+ λ− C ≤ λ < (µ+ 1)p+ λ− C. (18)

Eq. (18) is always true if

C
p
− 1 < µ ≤ C

p
. (19)

This holds when there exists ε ∈ [0, 1) such that

µ+ ε =
C
p
. (20)

Combining Eqs. (16) and (20) by removing the optimal cost
C leads to

p

2
µ2 + (pε− p

2
)µ− λ = 0

This leads to an unique positive threshold given by

µε = −(ε− 1/2) +
√

(ε− 1/2)2 + 2λ/p.

We have µ0 = 1/2 +
√

1/4 + 2λ/p and µ1 = −1/2 +√
1/4 + 2λ/p. So µ0 = µ1+1. It is easy to prove that ε 7→ µε

is a non-increasing function. As a consequence, there exists



an unique ε∗ such that µε∗ is an integer equal to bµ0c. So we
obtain

µ∗(λ) =

⌊
1

2
+

√
1

4
+ 2

λ

p

⌋
. (21)

For completing step S1, we need to prove that the value
function f described above satisfies Eqs. (10)-(11). According
to Eq. (17), we know that

λ < µp+ f(µ+ 1).

As f(x) = f(µ+ 1) for any x > µ and x 7→ xp is increasing,
Eq. (11) holds. According to Eq. (17), we know that

(µ− 1)p+ f(µ) ≤ λ

and we want prove that xp + f(x + 1) ≤ λ for any x ∈ N
such that x < µ. Let g(y) = yp + f(y + 1) on the interval
y ∈ [1, µ− 1]. Due to Eq. (12), we have

g(y) = (µ− y − 1)
[yp

2
+
µp

2
+ p− C

]
+ yp+ f(µ),

which has derivative

g′(y) = −yp+
p

2
+ C.

This derivative is positive iff

y ≤ 1

2
+
C
p
,

which holds via Eq. (19). Consequently g(y) ≤ g(µ−1) ≤ λ,
and Eq. (10) holds. Therefore the threshold policy with the
threshold given by Eq. (21) is optimal.

Let us move on Step S2. The WI IW (x) is equal to the λ
such that the following equation holds:

x+ 1 = µ∗(λ) =
1

2
+

√
1

4
+ 2

λ

p
. (22)

Solving Eq. (22) for the index λ leads to

IW (x) =
1

2
px (x+ 1) . (23)

We advocate for a simplified index relying on Eq. (23). We
propose to neglect the +1. In addition, as index policy is based
on index comparison, the factor 1/2 in Eq. (23) is useless
and comparing the index or its square-root leads to the same
algorithm. Therefore we obtain Proposition 1.

Proposition 1: Based on the WI given on Eq. (23) and
associated with Problem 2, we propose the following index
policy at timeslot t

K̂(t) = argK max
n∈{1,··· ,N}

√
pnXn(t)

where K̂(t) corresponds to the set of K users out of N offering
the K minimum values of the corresponding index.

IV. TIME-VARYING POPULARITIES

With time-varying popularities, the state of the related MDP
is bidimensional and defined by S(t) = [X(t), p(mt)] (once
again, the file index is omitted). Deriving the WI for this new
MDP is often not feasible, as mentioned in [11]. We can prove
that the conditions given in [11] for the existence of the WI are
not satisfied here. Therefore we just propose a heuristic based
on the WI obtained in the time-invariant popularity case. We
propose to replace in Proposition 1 the fixed popularity pn
by the predicted popularity at time t+ 1 given the popularity
at time t. According to Markov chain property of popularity
model, the predicted popularity is actually the conditional
mean at time t+ 1 given the value of the popularity at time t
and can be expressed as follows:

p̃n(t+ 1) =

M∑
m=1

Tnmn,t,mpn(m).

We recall that the update done at timeslot t, will be requested
at timeslot t + 1, therefore the expected popularity at time
(t+1) is a relevant information when updating at time t. This
leads to Proposition 2

Proposition 2: Based on Proposition 1, we propose the
following index policy at timeslot t

K̂(t) = argK max
n∈{1,··· ,N}

√
p̃n(t+ 1)Xn(t).

V. NUMERICAL RESULTS

In this Section, we numerically evaluate the performance
of the proposed policy. Except when otherwise stated, we
consider two popularity modes M = {1, 2}, the transition
matrix between both popularity modes is independent of file
n, and is given by

Tn =

[
q 1− q

1− q q

]
, ∀n ∈ {1, . . . , N}, (24)

with q ∈ (0, 1). So q corresponds to the probability to stay in
the same mode. We consider N = 64 files.

In Fig. 1, we consider the special case of no-time-varying
popularity with K = 1. We consider for the popularity rate a
Zipf distribution (pn ∝ 1/nα) with coefficient α = 1.5. We
plot the probability update rate per file when the policy given
in Proposition 1 is applied and the square-root probability
distribution (distribution suggested in [3] for updating the
file). We observe that the WI based policy offers the same
distribution of update as the square-root law and that it is a
way for mimicking the algorithm proposed in [3], and will
finally offer remarkable performance as in [3].

From now, we consider time-varying popularities. We con-
strain the system to update only K = 8 files at a time. We first
consider the expected number of requests of file n in the two
states is pn(1) = 0.2pn and pn(2) = 1.8pn, where pn ∝ 1/nα

follows a Zipf distribution with coefficient α = 1.5. According
to Eq. (24), the steady-state probability for both popularities
are identical, so pn corresponds to the average number of
requests for file n. In Fig. 2, we plot the average AoI versus
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q for four algorithms: i) the policy proposed in [6], ii) the
proposed algorithm given in Proposition 1, iii) the WI of
Proposition 1 with the current popularity pnmn,t, and iv)
the WI of Proposition 1 with the average popularity pn. We
remark that the proposed policy is close to the one given by
[6] in terms of performance. But the proposed policy is much
simpler to implement and interpretable while in [6], the policy
is obtained after an optimization phase and the resulting policy
has no interpretation since it has no closed-form expression.
We also remark that the policy based on the current popularity
fails even for middle value of q. In contrast, the policy based
on the average popularity is insensitive to q and so offers good
performance when q is one half, i.e., when the knowledge of
the current popularity is not informative.
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Fig. 2. Average AoI vs q for two specific popularity modes.

In Fig. 3, we plot the average AoI versus q but for different
popularity modes: here, pn(1) = pn where n follows a Zipf
distribution with coefficient α = 1.5, and pn(2) = 1/N for
n ∈ {1, · · · , N}. We consider the three last policies of Fig. 2.
We can do the same remarks. The proposed policy offers the
best performance and so is adapted to many types of modes.
Actually, we also tested the following modes (not reported
here): pn(1) = pn and pn(2) = pN−n, where pn ∝ 1/nα

follows a Zipf distribution with coefficient α = 1.5. So the
main advantage due to the closed-form expression given in

Proposition 2 is that no additional computation has to be run
for applying the proposed policy.
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Fig. 3. Average AoI vs q for two other popularity modes.

VI. CONCLUSION

In this paper, we proposed an heuristic based on Whittle’s
index derivations for cache update scheduling when the Age
of Information and the popularity of the content to update has
to be taken into account. We have seen the proposed policy
offers nice performance compared to simpler heuristic as well
as a quasi-optimal solution provided in [6]. As a future work,
such policies should be applied in a real context where the
popularity variation does not follow the considered model.
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