NOMA-based scheduling and offloading for energy
harvesting devices using Reinforcement Learning

Ibrahim Djemai*, Mireille Sarkiss*, Philippe Ciblat'
*SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
{ibrahim.djemai, mireille.sarkiss } @telecom-sudparis.eu
TLTCI, Télécom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
{philippe.ciblat} @telecom-paris.fr

Abstract—We consider a joint optimization problem of re-
source scheduling and computation offloading in a Mobile-Edge
Computing (MEC) system where User Equipments (UEs) or
devices have energy harvesting functionalities. The UEs can either
execute locally the data packets or offload them to a nearby MEC
server for remote processing. The main objective is to minimize
the overall packet losses of the UEs under strict delay constraints
imposed by applications. Non-Orthogonal Multiple Access is
enabled to allow UEs sending their data packets simultaneously.
The problem is formulated as a Markov Decision Process and is
solved using Proximal Policy Optimization, a Deep Reinforcement
Learning algorithm. The numerical results show the efficiency of
such an algorithm in reducing the packet loss as well as the energy
consumed during testing compared to some naive heuristics.

Index Terms—Scheduling, Offloading, Energy Harvesting,
NOMA, PPO

I. INTRODUCTION

Sequential Decision Making refers to well-established tech-
niques to develop policies that optimize the behavior of a given
agent in a stochastic environment by maximizing rewards (or
minimizing costs). More specifically, Reinforcement Learning
(RL) has shown great promise to resolve complex tasks in
large environments and obtain good approximations of optimal
policies by a trial-and-error approach. The integration of
deep neural networks with RL has produced a suite of Deep
Reinforcement Learning (DRL) algorithms with even more
scalability and a wide range of applications.

In this paper, we focus on using DRL techniques to investi-
gate joint scheduling and offloading in Mobile Edge Comput-
ing (MEC) systems under strict delay constraints. We aim at
finding optimal policies to process users’ data by minimizing
data loss while allowing Non-Orthogonal Multiple Access
(NOMA) technique and Energy Harvesting (EH) capability
at User Equipments (UEs). On one hand, benefiting from the
proximity of MEC servers at the base stations allows users to
offload their heavy tasks to be remotely processed, extending
thus the computational capacity at end-devices. On the other
hand, harvesting energy from external sources promises to
reduce carbon fingerprint of current IoT devices and mobile
networks. The collected energy is stored in batteries and can
serve to power network operations, improving hence devices
lifetime. Moreover, enabling simultaneous access of users to
wireless channels via NOMA provides higher spectral effi-
ciency than Orthogonal Multiple Access (OMA) techniques,

satisfying thus high date-rate and latency requirements of
future networks but participates to the curse of dimensionality
which can reduce the aforementioned advantages.

The goal of our work is then to leverage on RL techniques
to propose efficient policies by solving a Markov Decision
Process (MDP) of the optimization problem. More specifically,
we use one of the best performing policy-gradient DRL algo-
rithms, namely the Proximal Policy Optimization (PPO) [1].
The designed policy is able to determine the processing type
(local or remote), which user(s) to offload, and the number of
packets to process, depending on the channel conditions, the
data buffers and energy buffers states at UEs. Moreover, we
show that NOMA provides some benefits.

Related works were proposed in the literature. In [2], the
authors presented an RL-based approach for computation of-
floading and energy transmission in a MEC-EH based system.
They minimized the energy consumption and execution delay
by decomposing the problem into sub-problems to overcome
the dimensionality curse. Extension to MIMO-MEC has been
done in in [3] by using Deep Q-Network [4] and PPO.
In [5], the authors used PPO in a multi-user environment
with multiple MEC servers. However, unlike our work, the
mentioned works did not consider a strict delay neither a
simultaneous transmission with NOMA. Here, we extend the
previous work in [6] that considers only a single user, or
equivalently an OMA, scenario.

The paper is organized as follows: we introduce the system
model in Section II. We formulate the problem and describe its
solution in Section III. Simulation results are drawn in Section
IV, and we conclude in Section V.

II. SYSTEM MODEL

We consider a MEC server deployed near a BS serving
two UEs with limited battery. UEs have EH ability. They also
have small sized data buffer. The BS is the centralized decision
center that dictates the type of processing for each UE and the
number of packets to be executed at the beginning of every
time slot. In addition, NOMA is enabled whenever the decision
involves both UEs offloading.

A. Energy & Battery Model

We suppose that both EH devices UE() and UE® are
equipped with batteries of finite capacity of N° energy units.

Each energy unit corresponds to S¢ Joules. The arrival of
energy packets is modeled as an independent and identically
distributed (i.i.d.) random Poisson process with mean ub At
each time step ¢, the captured energy, e;, is stored in the
battery while the excess energy is discarded. The battery level
is denoted by b¢ € [0,N?). The probability distribution is
given by:

(D

B. Data Buffer Model

The data buffer at each UE(Y) and UE(®) stores the packets
awaiting their execution. It is modeled as a vector d of size
S where each component d*, k € [0,S?), represents a data
packet by its age (—1 is for an empty buffer slot). The data
packets are ordered in a descending order w.r.t their age. The
number of packets in the buffer at a given time step ¢ is denoted
by N& < 8% The arrival of data packets is also following an
i.i.d. random Poisson process with mean p¢. The probability
distribution is given by:

(=ph)P
D!
where a; is the number of arrived packets at time step ¢. If
a; exceeds the available S¢ — N¢ slots in the buffer, buffer
overflow occurs and the excess will be dropped. If the packets
present in the buffer reach a maximum pre-fixed delay, V, due
to strict delay constraint, delay violation occurs and these

packets will be dropped as well.

=1D) — o H".

play 2

C. Channel Model and Multiple Access

We consider a Rayleigh fading channel for data transmission
at UEs, with W* and W% denoting the uplink and downlink
bandwidths respectively. The channel gain is denoted by
xy = |h|? with hy its complex amplitude. It is assumed
constant during a time slot and varies independently through
time following the exponential distribution with mean p°:

1 -c

p(zy =C) = Ee e 3)
The noise is a Additive White Gaussian Noise (AWGN) with
spectral density N,. In addition, we assume that channel
estimation is performed at the UEs and only a quantized
version x, = F(z;) is transmitted to the BS, F being the
quantization function. We use x, and Z; as the respective lower
and upper values of the discrete set of channel gains X" at BS.
When both UEs can offload to the MEC server, power
domain NOMA is considered to share time and frequency
resources between users. It consists in allocating different
power levels to UEs for transmission and using Successive
Interference Cancellation (SIC) at the reception. Without loss
§enerahty, let UE() has a better channel gain than UE(),
> xf at time step ¢. (In simulations any UE can have a

better channel). The received signal at the BS y?* is

(bS) Z,/ ,(9) h(] St ,(9) (4)

where 529 and p?") are the transmitted signal and its cor-

responding offload power at UE), The SIC decoder first pro-
ceeds into decoding UE(")’s signal while considering UE(?)’s
signal as interference. Then, it subtracts the decoded signal
from the received one to decode interference-free UE(?)s
signal. The resulting optimal rates using quantized channel
gains are as follows:

?7(1)) lgl)

p
_ 5)
(2) ng) + Wl ,N())

Riiomas = W - log <1+

w(2) z p° 0,(2) (2)
Rn(;ma,t =Ww. IOg 1+ W . (6)
Note that the interference term p?’@) §) in uplink rate

considers the upper value of the quantization interval to
account for worst case scenario in decoding UE) signal.

In the downlink, the BS controls the power allocation at
time step ¢, by allocating 5p?’(bs) to UEM and (1 — 5)p?’(bs)
to UE®), where pP"*) is the total power and § is the power

correlation coefficient. The received signals at UEs are

YD =y bi0s))
Y@ = @ . bi0s))
where 5P (bs) §pf’(bs) . 8:”(1) +4/(1 = §)p?’(bs)s:"’(2) is

the broadcasted signal from the BS to UEs. Then we perform
SIC decoding at the strongest UE, namely UE(!). Therefore,
UE(®)s signal is first decoded subject to interference from
UE®, the decoded signal is subtracted, and then UE(M)’s
signal is decoded. Meanwhile, UE(®) directly performs decod-
ing with interference from UE("). The resulting optimal rate
expressions are as follows:
(1) ul P?’(bs) _7§1)
Rnoma =W log [1+ W 9

(1—8)py " - 2
P 3 LW,

RILE — W oy (1 +
(10)
III. PROBLEM FORMULATION AND RESOLUTION

We firstly describe the decisions that can be made at the
UEs and their resulting cost in terms of consumed energy. At
the beginning of each time slot ¢ of duration 7" ms, the UE()
with j € {1,2} can decide between three actions: staying idle,
local processing or offloading with a given number of packets
m,E]) to be processed.

o Idle: UEY) does not consume any energy,

) — . (11)

e Local Processing: UE\Y) has the computational capacr[y
to execute locally m§ 7) < M! packets with power p, L)
per processed packet. It consumes then

£80))

pi’(j) -T. (12)

. Oﬁ%adlng UE®@ can offload m{”) < M® packets with
power p; () < po_qf only one UE is offloading, the
consumed energy at UEY) for either j = 1 or 2 is

o.(i . Eul . ’(.7)
gt’(J) :mgj) (pt‘ +7'pr+

R
ﬁdl ,pr n ﬁdl 'pd> (13)
RA R&

where £% and £ are the lengths in bits of the transmit-
ted data packets in uplink and downlink, respectively. 7"
is the waiting time at UEs for receiving the results. p%,
p* and pd are the consumed powers for waiting, reception
and decoding. p is a scaling factor for efficient decoding.
The optimal rates for such a single-user offloading are
expressed as follows:

ul(5)) pt7(3) §J)
Rsu P =W" log |1+ 7Wul N, (14)
(bs) - (4)
p "X
Rgi tJ)_Wdl log <1 + M)) . (15)

On the other hand, when both UEs offload at the same
time slot, NOMA is used to allow simultaneous trans-
mission. The expressions at both UEs of the consumed

energy are
ul 07(1)
o,(1 1 LY - p w
g =m{". (uL&) TP
noma,t
Ldl_pr N ([:dl.pd+£dl-pd)
p.
dl,(2 dl,(1 dl,(2
mln{Rnoma t Rnognt)z,t an(nzz,t an(n()z,t
(16)
° Lul . 07(2)
e = (R e T
noma,t
Edl' r [:dl .nd
T e e) (17
Rnéma,t an;ma,t

Notice that offloading decisions only occur when the
transmission, waiting, reception and decoding are com-
pleted within the time slot duration 7. Forcing equality
yields the maximal offloading power for each UE()
P with the maximal number of packets to offload. In
addition in Eq. (16), the reception time is tuned according
to the slowest communication and the decoding time has
two terms since SIC is applied.

A. Markov Decision Processes

As the data buffer, channel and energy buffer dynamics
satisfy Markov property, we can formulate the problem as a
Markov Decision Process. Any MDP can be described with a
state space S, an action space A, a transition model T, and a
reward model R. We describe these elements for our system.

o State space: It is defined as a vector of data buffer states,

channels states and energy states at both users.

_ {d (1) d2) (2 Ne ,(1) Ne (2)} (18)

This state space is of size:

2

si< a1 (V25w a9
However, imposing ordering on the packets in the data
buffer, the state space can be reduced.

o Action space: It is an ordered list that contains all the
possible actions (a combination of the decisions and the
number of packets to execute). The size of the space is
defined by |A| = M° + M! + 1.

e Reward model: It is defined as the negative sum of the
number of dropped packets during a time slot for both

UEs. Therefore we have
S+

je{1,2}

(20)

ry = —

where c¢; is the number of packets dropped due to delay
violation, while cs is the number of packets dropped due
to a buffer overflow.

Moreover, we setup our problem as an Infinite Discounted
Horizon problem, with « being the discount factor that
determines how relevant future rewards are compared to
the present one. The overall reward function following a
policy 7 is defined as follows.

R™ = lim E7

T—oc0

2
t=0

T
Z('Y)trt‘| .

From this, we define an optimal policy, named 7° as the
set of actions that maximizes the overall reward function:

7% = argmax R™. (22)

Finding the exact solution to this optimization problem
is hard due to the dimensionality of our problem. That is
the goal of next Subsection.

B. Proximal Policy Optimization

RL techniques, which are model-free, are aimed at produc-
ing policies without knowledge of the environment transition
and reward models (only instantaneous reward r;). Algorithms
based on RL to obtain a relevant policy closed to 7° rely on
trial-and-error to built an understanding of the environment,
with a balance between exploration and exploitation.

Policy Gradient algorithms are a family of RL methods,
that attempt to find the policy directly by optimizing an
iterative algorithm. In order to win the curse of dimensionality,
this policy is a parametrized function with parameters w.
Therefore, the output of the kind of approaches is an policy
7% (als). Using an objective function £V, we can measure
the quality of the current policy, and update the parameters
w of the policy with Gradient Ascent, in the direction of the
gradient VLV,

In addition to the policy update stage, we can also analyze
the value function to give us more insights into finding a good
policy. Value functions V7 (s) assesses the quality of being in a
certain state s by playing the policy 7. This function is helpful
for knowing which states are good in the environment, and

which are not. More precisely, this function is the expectation
of the sum of rewards R? following a policy 7 during an
episode where RY is the reward after being in state s and
taking an action a. The function has to satisfy the so-called
Bellman equation as follows:

) (23)

> w(als (R“%—vZPg V(s
acA s'eS

where 7 is the discount factor and P¢, the probability to go

from state s to state s’ by acting a.

In the following, by a small abuse of notations, we will
denote V™" by V¥,

The Proximal Policy Optimization (PPO) [1] is related to
an Actor-Critic scenario where the actor part is the policy
estimation with parameters w, and the critic part is the value
function with other parameters w’. More precisely, PPO uses
a policy gradient method where Neural Networks approximate
the policy and the value function with weights w and w’
respectively. This algorithm is built upon a previous work
called Trust Region Policy Optimization (TRPO) [7] which
goal was to limit the update for the policy and so to improve
the training stability by forcing the Kullback-Leibler (KL)
divergence between the old and the new policies to be smaller
than a pre-defined threshold. PPO takes this concept but
simplifies it, by replacing the constraint on KL divergence
with a clipping.

Mathematically speaking, the TRPO objective function is
defined as follows:

W,Wl R
Lrrpo = Er [

V7Ti(s) =

™ (ai|st)
ﬂ-Wold(at‘St)

A:”’} (24)
w1th E, being the expectation over batch of samples, and
AW being the advantage function derived from the value
function calculating with weights w’. This advantage function

is defined as
T-1

>N (B VY (s740) =V (1)) @9)

T=t

P
wo_
AV =

where A\ is the so-called generalized advantage estimation
factor. The last term in brackets is related to Bellman equation
where s’ = s,11. Then the TRPO update works as follows

£W7W
maXw,w’ TRPO

- 26
subject to I, [KL (7Werd (ay|se), 77 (ag|st))] < 6. (26)
The PPO update works as follows
max L}, 27)
with
o = E [min (qZ"A;"’ olip (¢, 1 —€e,1+¢€) AY)}
LY 28)

’/Tw"ld(at|$t) ’

The PPO compared to the TRPO integrates the constraint
into the objective function by clipping the ratio between both
policies up to e.

Based on the idea, the PPO algorithm works as follows: we

first fill up a memory buffer with data from the transitions
of the agent when navigating the environment for a certain
number of timesteps. This means that we start with an state
s¢, based upon which we sample an action a; ~ w4 using
the actor network, obtain a next state s;4; and a corresponding
reward 74 . Calculating the value function V' (s;), and store
the tuple (st, Aty Ta1, Stil, 78 (st)) in the memory buffer.
The next timestep will have s;;; as the current state, and
we repeat the operation. When the determined number of
timesteps is reached, the obtained sequence corresponds to
an episode. And we start with a new randomly chosen initial
state. Once the memory buffer is filled with tuples, it plays
the role of batch for training the actor and the critic networks.
Given this batch, we build non-overlapping mini-batchs of a
given size by picking up tuples randomly.
Looping through all the mini-batches, we estimate the advan-
tage functions AW for a certain mini-batch b;, as well as the
ratios between the old policy and the new one g;’. Then we
can calculate our objective function Eggvo/’bi associated with
the mini-batch b; (actually this function is obtained as in (28)
where the expectation has been replaced with the expectation
over the tuples in the considered mini-batch b;) and use it to
update the weights of both networks using gradient ascent :

w W+ aVy Lo, (29)

w W+ aVe L%, (30)

where « is the learning rate and Lppo, is the augmented
objective function defined as:
b; _ pw,w' b;

Lrpoa = EPPO +HLy

P BSYh (3D

with E‘{/V}bi a squared error term for the value function, and
SW: the entropy loss that encourages exploration. 3; and 3
are some hyperparameters to tune.

After visiting all the mini-batches b;, we repeat the training
operation on the same batch and the same mini-batchs for 7
iterations, and afterwards we wipe out the memory buffer and
start the process filling up the memory buffer, and training
the agent again (this corresponds to a new epoch), with the
obtained policy becoming the old one. After a certain number
of epochs, the algorithm converges to a policy 7% (a|s) which
will be applied during the test phase.

IV. SIMULATION RESULTS

We first describe the simulation setup. The duration of the
timeslot is 7 = Ims. The data buffer size is S = 6. The
maximum delay is V = 3ms. The energy unit is S¢ = 250nJ,
and the battery can accumulate N'¢ = 4 energy units. The
energy unit arrival rate for EH device is ¢ = 0.5. The channel
from UEs to MEC server is quantized into 5 discrete states
X = [-20,—4.437,—1.487,0.253,1.492]dB. The bandwidth
in the uplink is W = 1IMHz and in the downlink W% =
5MHz. The AWGN spectral density is Ny = —87dBm/Hz.
The power allocation coefficient for downlink NOMA is set
to 0 = 0.5. The decoding efficiency factor is p = 1. The

maximum number of offloaded packets is M®° 4, and of
local-processed packets is M! = 2. The packets sizes are
£* = 1000bits for the uplink and £% = 100bits for the
downlink. The maximum offloading power is P° = 2mW,
and the power used for local operations is p' 150mW,
waiting power is p% 0.ImW with 7% = 0.1lms, base
station transmit power is pP(*¥) = 50W, reception power is
p* = 3mW, and decoding power is p4 = 5mW. This setup
leads to a number of states approximately equal to 27 x 10°.

To train the PPO, we use a shared layer architecture for
both neural networks, where the first two layers are shared
between the actor and critic networks, while two other layers
are independent for each network. We used 128 nodes for
each layer in the network with ReLU activation function in
the hidden layers. We train the agent for 10° epochs. For each
epoch, we have 128 episodes of 128 timesteps, leading to a
batch of 16384 tuples. The mini-batch size was set to 128.
The number of iterations per batch is set to Z = 10. A fixed
learning rate v = 5x 1075 was used. The clip factor is € = 0.2,
the discount factor is v = 0.99 and the generalized advantage
estimation factor was set to A = 0.97.

We compare the PPO to some naive heuristics, namely
the Naive Offload (NO) that chooses only offloading actions,
Naive Local (NL) that chooses only local operations, Im-
mediate scheduler (IMM) that chooses the operation (local
or offload) enabling the instantaneous maximum number of
processed packets, and Naive Random (NR) that follows a
random process for choosing its actions.

In Fig. 1, we plot the average percentage of dropped packets
versus the packet arrival rate. The test has been done over
1000 episodes of 1000 timesteps. In the top figure (numbered
(1)), NOMA has been considered while on the bottom figure
(numbered (2)), only OMA/TDMA is considered. In any
case, PPO approach outperforms all the naive methods. The
comparison between NOMA and TDMA shows that NOMA
is much better which means that the added complexity of
using NOMA compared to TDMA due to the state space size
(and possible loss in performance due to this complexity) is
completely compensated for the better transmission speed with
NOMA due to simultaneous users scheduling.

In Fig. 2, we plot the average energy consumption (through
the number of consumed energy units) per episode vs the
packet arrival rates. The PPO approach is also better than the
naive methods. So the proposed method consumes less energy
and loses less packets.

V. CONCLUSION

We propose a joint scheduling and offloading optimization
problem when NOMA transmission is allowed. Despite of the
added complexity which requires to use Deep Reinforcement
Learning (via the PPO approach), we show that NOMA is
much better than OMA in terms of packet error rate.

REFERENCES
[1] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. Preprint
arXiv:1707.06347, 2017.

@)

40
-%- PPO
35 |-
30
3
-
g 251
(=%
B
& 20
<]
S
= 15
IS
10 -
5 |-
0
0.25 0.5 0.75
u?: Average Packet Arrival Rate
2
40
-%- PPO
35 |-» IMM
- NO
" 30 |-« NL
E —%— NR
S 251
(=%
B
2 20
e
=
5 15
IS
10 -
51
0 Z

- |
0.25 0.5
ud: Average Packet Arrival Rate

Fig. 1. Percentage of dropped packets vs pu® for NOMA (1) and TDMA (2)

[2

3

[4

[5

[6

[7

—

—

—

—

]

[

1
OoppolniMMInNO BaNLEENR

900 | 1

800

700

600

Average Number of Energy Units consumed

T
0.75

0.25 0.5

u: average packet arrival rate

Fig. 2. Number of consumed energy units vs ¢ with NOMA

Zheyuan Hu, Jianwei Niu, Tao Ren, Bin Dai, Qingfeng Li, Mingliang Xu,
and Sajal K Das. An efficient online computation offloading approach
for large-scale mobile edge computing via deep reinforcement learning.
IEEE Transactions on Services Computing, 15(2):669-683, 2021.
Abdeladim Sadiki, Jamal Bentahar, Rachida Dssouli, Abdeslam En-
Nouaary, and Hadi Otrok. Deep reinforcement learning for the com-
putation offloading in MIMO-based edge computing. Ad Hoc Networks,
page 103080, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 2015.

Lingling An, Zhuo Wang, Jiahao Yue, and Xiaoliang Ma. Joint task
offloading and resource allocation via proximal policy optimization for
mobile edge computing network. In IEEE International Conference on
Networking and Network Applications (NaNA), pages 466471, 2021.
Ibrahim Fawaz, Mireille Sarkiss, and Philippe Ciblat. Delay-optimal re-
source scheduling of energy harvesting-based devices. IEEE Transactions
on Green Communications and Networking, 3(4):1023-1034, 2019.
John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
Conference on Machine Learning, pages 1889-1897, 2015.

