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Abstract—The paper addresses multiuser power and band-
width allocation in an OFDMA system using HARQ for a
Rayleigh channel. New algorithms for minimizing the total
transmit power under individual rate and delay constraints are
proposed.

I. INTRODUCTION

We consider a Mobile Ad Hoc Network (MANET) for
which pairwise communications are possible. In order to
simplify the network management, a clustering structure is
performed where, for each cluster, a cluster head is selected
and has to assign the resource allocation but not necessarily
to relay the information between two users. In this paper, we
focus on the resource allocation optimization inside a single
cluster (without inter-cluster interference).

As envisaged in the future wireless systems, our commu-
nication scheme is based on i) Orthogonal Frequency Divi-
sion Multiple Access (OFDMA) for managing the frequency-
selectivity of multipath channels and vanishing the multiple ac-
cess interference (as in [1]), and ii) Hybrid Automatic Repeat
reQuest (HARQ) for enforcing the quality of the link thanks
to the packet retransmission. In wireless mobile environment,
the users may not be able to provide instantaneous and perfect
Channel State Information (CSI) at the cluster head due to fast
channel variations. Moreover, the amount of CSI is huge in
an ad hoc network since CSI for each pairwise link must be
reported. Therefore, we will not consider the case of perfect
CSI at the cluster head. As a consequence, each channel has
to be modeled with a random variable assuming here Rayleigh
distribution. As the statistics (mean, variance, etc) of each
channel varies slowly, the cluster head is assumed to only
know the channel statistics (but so not the realizations). In
order to handle the diversity issue induced by the channel
randomness, Frequency Hopping (FH) is performed.

In [1], the authors addressed the power minimization issue at
the cluster head under user rate constraint. Assuming capacity-
achieving coding, the rate was evaluated through the so-
called ergodic capacity. In our paper, practical Modulation and
Coding Schemes (MCS) will be considered. Unfortunately, the
results in [1] cannot be extended to practical MCS since the
notion of SNR gap (see [2] and references therein) cannot
be applied to the ergodic capacity. Furthermore, since HARQ
is used, the so-called goodput will be the relevant metric for
characterizing the information rate.

In the literature [2]–[4], the goodput has moderately
been used in multiuser resource allocation based on

HARQ/OFDMA systems, but neither with statistical CSI at the
transmitter, nor with delay constraints. Although constraining
the packet errors at MAC level enables to roughly control
maximum transmission delay, it is better to consider the
HARQ based delay metric as the true delay constraint.

Therefore our purpose is to minimize the total transmit
power under individual rate and delay constraints, when
only statistical CSI is available at the cluster head. Power
minimization is of great interest to increase the network
lifetime and to mitigate the inter-cluster interference. So, the
main novelty of our paper is to include delay constraints
as well as statistical CSI into a resource allocation issue in
HARQ/OFDMA scheme. Note that similar works in [5], [6]
have been introduced but with different constraints.

II. SYSTEM MODEL AND NOTATIONS

Each link is considered as a (time-varying) frequency-
selective channel, hence OFDM (with N subcarriers) is used
to compensate for the frequency selectivity. It is assumed that
the channel remains constant over one OFDM symbol but may
change between two consecutive OFDM symbols. The channel
corresponds to the link between the transmitting user k and its
corresponding receiving node in the network. We assume that
Fourier Transform of each channel taps for link k is identically
distributed (i.d.) with variance ς2k [1]. Finally, it is assumed the
cluster head only knows the variance ς2k of each active link k.

The mean Gain to Noise Ratio (GNR) between the trans-
mitter and receiver of link k is Gk := ς2k/N0, where N0 is the
background noise power spectral density, and ς2k depends on
the path-loss only characterized by the length of the link Dk

and the chosen model (free-space, for instance).
Assume that K users are active in the considered cluster.

OFDMA is used to separate the users. Since the cluster head
only knows statistical CSI through Gk, which does not depend
on n, it cannot allocate which subcarriers user k will use, but
only how many. The bandwidth proportion occupied by user
k is

γk = nk/N,

where nk is the number of subcarriers assigned to user k. As
the variance on each subcarrier is the same for the considered
link k, user k will use the same average power Pk =
E
[
|Xk(i, n)|2

]
on each subcarrier. Let Ek := Pk/(W/N) and

σ2 := N0(W/N) be the energy consumed to send one symbol
on each subcarrier and the corresponding noise variance, re-
spectively. Then, on each subcarrier, user k undergoes average



signal-to-noise ratio (SNR) given by SNRk = ς2kPk/σ
2 =

EkGk. Finally, let Qk be the average energy consumed to
send the part of the OFDM symbol associated with user k.
One can easily show that

Qk =
nkPk
W

= γkEk. (1)

Each user employs Type-I HARQ for which an information
packet can be sent at most L times. The user (successful)
data rate ρk (in bits/s) is related to the HARQ goodput ηk (in
bits/s/Hz) given ρk = ηkW . According to [7], the goodput is

ηk = γkmkRk(1− πk), (2)

where πk is the raw (information) Packet Error Probability
(PEP) without considering the retransmission scheme, mk is
the number of bits per symbol, and Rk is the coding rate
of the considered FEC in the Type-I HARQ scheme. Due
to ARQ mechanism, the (successfully received) information
packets associated with user k are received after δ(πk) packet
transmissions with x 7→ δ(x) = 1/(1 − x) − LxL/

(
1− xL

)
[7]. The term δ(πk) corresponds to the so-called "delay" in
HARQ literature. Actually, as a user does not occupy the entire
bandwidth, the real delay is δ(πk) divided by a factor associ-
ated with the bandwidth occupation rate, namely, γk. Therefore
the delay for each (successfully received) information packet
of user k, denoted by dk, is given by

dk =
1
γk
δ(πk), (3)

Finally, we have πk = gm,R(SNRk), where gm,R is a function
depending on the code (of rate R) and modulation (of size 2m).
Some closed-form expressions for gm,R can be found in [8],
[9] for the uncoded case and in [10] for the coded case.

III. POWER AND BANDWIDTH ALLOCATION

Our objective is to minimize the total energy used for
sending an OFDM symbol, i.e. to minimize QT =

∑K
k=1Qk

with respect to the user energy Qk, the bandwidth γk, and the
MCS (driven by mk and Rk). The choice of the best MCS
can be done as in [9] and therefore it will not be discussed
later. So, mk and Rk are fixed.

Each user has to ensure minimum rate and maximum delay,
i.e. there exist strictly positive constants ρ(0)

k and d(0)
k such that

ρk ≥ ρ(0)
k and dk ≤ d(0)

k , respectively. The rate constraint can
be translated into goodput constraint as ηk ≥ η(0)

k with η(0)
k =

ρ
(0)
k /W . Thus, the optimization problem can be formalized as

in Problem 1.

Problem 1. Let us denote γ = [γ1, · · · , γK ]T and Q =
[Q1, · · · , QK ]T , where T stands for the transposition operator.
The optimization problem boils down to

(γ∗, Q∗) = arg min
(γ,Q)

K∑
k=1

Qk (4)

subject to
(C1) ηk(γk, Qk) ≥ η(0)

k , ∀k,

(C2) dk(γk, Qk) ≤ d(0)
k , ∀k,

(C3)
∑K
k=1 γk ≤ 1,

(C4) γk ≥ 0, Qk ≥ 0, ∀k.

We can easily obtain the following feasibility condition.

Theorem 1. Problem 1 is feasible if, and only if,

K∑
k=1

max
(
η

(0)
k /(mkRk), 1/d(0)

k

)
︸ ︷︷ ︸

ck

< 1 (5)

is satisfied.

Proof: If Problem 1 is feasible, then there exists (γ,Q) ∈
(0, 1)K × RK+ such that for all k ∈ K,
η

(0)
k < γkmkRk(1− πk(GkQk/γk))
d

(0)
k > 1

γk
δ(πk(GkQk/γk))∑

k γk ≤ 1

⇒

{
η

(0)
k < γkmkRk

d
(0)
k > 1

γk

since 1 − πk(GkQk/γk) < 1 and δ(πk(GkQk/γk)) > 1. So
we have γk > max(η(0)

k /(mkRk), 1/d(0)
k ) which concludes

the first part of the proof.
Conversely, let us define the open set

O =

{
(η, d) ∈ R2K

+∗ |
K∑
k=1

max(ηk/(mkRk), 1/dk) < 1

}
,

and thus t0 = (η(0)
k , d

(0)
k ) ∈ O. Therefore, there exists ε > 0

such that the ball

B(t0, ε) = {t ∈ R2K
+∗ | ||t− t0|| < ε} ⊂ O.

where ‖.‖ is the L∞-norm.
In particular, we have {(η, d) ∈ R2K

+∗ | ∀k ∈
{1, · · · ,K}, |ηk − η(0)

k | < ε and |dk − d(0)
k | < ε} ⊂ B(t0, ε).

Now let us consider, ∀k ∈ {1, · · · ,K},

γk = max

(
η

(0)
k + ε/2
mkRk

,
1

d
(0)
k − ε/2

)
.

Since (η(0)
k +ε/2, d(0)

k −ε/2) ∈ B(t0, ε), we have
∑K
k=1 γk <

1.
Furthermore let ηk = mkRkγk(1 − πk(GkQk/γk)) and

dk = δ(πk(GkQk/γk))/γk. When Qk →∞, we obtain

ηk −→ mkRk max

(
η

(0)
k + ε

2

mkRk
,

1

d
(0)
k −

ε
2

)
≥ η(0)

k +
ε

2
> η

(0)
k

and

dk −→ min

(
mkRk

η
(0)
k + ε

2

, d
(0)
k −

ε

2

)
≤ d(0)

k −
ε

2
< d

(0)
k ,

which concludes the proof.
Let us go back to the analysis of Problem 1. Whereas con-

straints (C1), (C3), and (C4) are convex, the delay constraint
(C3) is not convex. Problem 1 is thus not convex and seems



difficult to solve efficiently. Hence we developed two (sub-
optimal) algorithms to solve Problem 1. We hereafter carefully
describe them and this corresponds to the main contributions
of the paper.

A. Algorithm 1
By looking numerically, the bivariate function (x, y) 7→

dk(x, y) seems very close to be a quasi-convex function. As a
consequence, using the KKT conditions seem to be a relevant
way even if we are not able to guarantee their optimality [11].
Therefore, after tedious algebraic manipulations (given below),
we deduce a simple algorithm from the KKT conditions.

We denote by x = [γ,Q]T any solution of the allocation
problem. Let µ, θ, λ,α, β be the Lagrange multipliers associ-
ated with the 4K+1 constraints (C1)-(C4), respectively. Then,
a KKT point (x,µ, θ, λ,α, β) is given by the conditions1

∇Q(x)−
K∑
k=1

µk∇ηk(x) +
K∑
k=1

θk∇dk(x)

+λ∇

(
K∑
k=1

γk

)
−

K∑
k=1

αk∇γk −
K∑
k=1

βk∇Qk = 0, (6a)

ηk(x) ≥ η(0)
k , dk(x) ≤ d(0)

k ,

K∑
k=1

γk ≤ 1, x � 0, (6b)

µ � 0, θ � 0, λ ≥ 0, α � 0, , β � 0, (6c)

−µk(ηk(x)− η(0)
k ) = 0, θk(dk(x)− d(0)

k ) = 0,

λ

(
K∑
k=1

γk − 1

)
= 0, αkγk = 0, βkQk = 0. (6d)

Before working on the KKT equations, we compute the
gradients:

∂πk
∂Qk

= Gk
1
γk
π′k(GkQk/γk),

∂πk
∂γk

= −Gk
Qk
γ2
k

π′k(GkQk/γk).

We remark that the gradients of ηk and dk can be expressed
as:

∇ηk = −mkRkγk∇πk +
[
0 mkRk(1− πk)

]T
, (7)

∇dk =
δ′(πk)
γk
∇πk +

[
0 −dk

γk

]T
, (8)

with the function δ′ : x 7→ 1/(1 − x)2 − L2xL−1/(1 − xL)2

for x ∈ [0, 1].
As a consequence, Eq. (6a) leads to the following 2K scalar

equalities:

1 +
(
mkRkγkµk +

δ′(πk)
γk

θk

)
∂πk
∂Qk

− βk = 0, (9)

and (
mkRkγkµk +

δ′(πk)
γk

θk

)
∂πk
∂γk

− mkRk(1− πk)µk −
dk
γk
θk + λ− αk = 0. (10)

1In all the paper, a vector x � 0 is equivalent to x` > 0,∀`.

It is easy to prove the following result:

Lemma 1. The optimal solution x∗ is such that γ∗ � 0 and
Q∗ � 0.

Proof: If ∃k such that γk = 0, then this user would
have no way to satisfy his rate nor its delay requirements
(ηk = 0 whereas dk →∞), and such a point would be primal
infeasible. Thus ∀k ∈ {1, · · · ,K}, γk > 0.

Now, since Qk = γkEk, we have Qk = 0 ⇒ Ek = 0 and
hence πk = 1. Once again, this leads to a primal infeasible
solution.

Hence, by complementarity slackness (cf. Eq. (6d)), the
associated Lagrange multipliers α and β vanish, and the set of
2K equalities in Eqs. (9)-(10) are equivalent to the following
K independent 2-by-2 matrix linear equalities on (µk, θk),

S

[
µk
θk

]
+
[

1
λ

]
= 0, (11)

where

S =

 mkRkγk
∂πk

∂Qk

δ′(πk)
γk

∂πk

∂Qk

mkRk

(
γk

∂πk

∂γk
− (1− πk)

)
δ′(πk)
γk

∂πk

∂γk
− dk

γk

 .
These matrix equalities can be easily solved iff detS 6= 0.
Such a property is ensured by the next result.

Lemma 2. detS > 0.

Proof: By direct computation:

detS = −mkRkdk
∂πk
∂Qk

+mkRk(1− πk)
δ′(πk)
γk

∂πk
∂Qk

=
−mkRkGkπ

′
k(GkQk/γk)
γ2
k

(δ(πk)− (1− πk)δ′(πk)) .

Since the packet error rate is a decreasing function of SNR,
π′k(GkQk/γk) ≤ 0. Thus detS has the same sign than δ(πk)−
(1− πk)δ′(πk):

δ(x)− (1− x)δ′(x) =
−LxL

1− xL
+ (1− x)L2 xL−1

(1− xL)2

=
L2(1− x)xL−1 − LxL(1− xL)

(1− xL)2

=
LxL−1

(1− xL)2

(
x2 − (L+ 1)x+ L

)
.

Finally, since the polynomial x2 − (L + 1)x + L = (x −
1)(x − L) > 0 for 0 < x < 1 (remind that πk < 1 from
Lemma 1), then detS > 0.

After some simple algebra, we obtain the following solu-
tions for Eq. (11): [

µk
θk

]
= − S′

detS

with

S′ =


−1
γk

2

(
δ′(πk)π′k(GkQk/γk)Gk

(
Qk

γk
+ λ
)

+ δ(πk)
)

mkRkπ
′
k(GkQk/γk)Gk

(
Qk

γk
+ λ
)

+mkRk(1− πk)

 .



Hence, the complementary slackness equations (cf. Eq. (6d))
are now equivalent to

(M(GkQk/γk)− λGk)

×
(
η

(0)
k − γkmkRk

(
1− πk(GkQk/γk)

))
= 0 (12)

(Θ(GkQk/γk)− λGk)

×

(
δ
(
πk(GkQk/γk)

)
γk

− d(0)
k

)
= 0, (13)

λ

(
K∑
k=1

γk − 1

)
= 0 (14)

where, ∀x ∈ R+
∗ ,

M(x) = −xδ
′(πk(x))π′k(x) + δ(πk(x))

δ′(πk(x))π′k(x)
(15)

Θ(x) = −xπ
′
k(x) + 1− πk(x)

π′k(x)
. (16)

We will denote by f (−1) the inverse function of any function
f with respect to the composition.

It is worth to emphasize that if user k satisfies d
(0)
k ≥

(mkRk)/η(0)
k , then its delay constraint is inactive. As a

consequence, the right term in the LHS of Eq. (12) is equal
to zero while the left term in the LHS of Eq. (13) is equal to
zero. These both equalities finally perfectly characterize the
associated γk and Qk (see Item 1. in Algorithm 1).

Otherwise (i.e., d(0)
k < (mkRk)/η(0)

k ), we have two cases:
Let us assume that the rate constraint is inactive, i.e., η(0)

k <
γkmkRk(1 − πk(GkQk/γk)). Then, by Eq. (12), we have
M(GkQk/γk) = λGk which leads to Qk = γk

Gk
M (−1)(λGk).

Then two cases are possible: the delay constraint is active or
not.
• if the delay constraint is active, then γk =

δ(πk(M(−1)(λGk))

d
(0)
k

.

• if the delay constraint is inactive, then Θ(GkQk/γk) =
λGk which implies that M (−1)(λGk)) = Θ(−1)(λGk).
This is impossible.

Let us assume that the rate constraint is active, i.e., η(0)
k =

γkmkRk(1 − πk(GkQk/γk)). Once again, two cases are
possible: the delay constraint is active or not.
• if the delay constraint is active, then δ(πk(GkQk/γk)) =
γkd

(0)
k which implies that it exists πk such that (due to

the active rate constraint)

mkRk(1− πk)δ(πk) = η
(0)
k d

(0)
k .

According to the closed-form expression of δ, the cor-
responding πk (in (0, 1)) is a root of the polynomial
equation:

LxL+1−(L+1−d(0)
k η

(0)
k /mk)xL+1−d(0)

k η
(0)
k /mk = 0.

(17)
• if the delay constraint is inactive, then Θ(GkQk/γk) =
λGk. As a consequence, γk(λ) = η

(0)
k /(mkRk(1 −

πk(Θ(−1)(λGk)))) (thanks to the active rate constraint)

and Qk(λ) = γk(λ)
Gk

Θ(−1)(λGk) (thanks to the inactive
delay constraint).

Notice that when the rate constraint is inactive and the delay
constraint is active, we have

δ(πk(M (−1)(λGk)))(1− πk(M (−1)(λGk))) >
η

(0)
k d

(0)
k

mkRk
.

Similarly, when the rate constraint is active and the delay
constraint is inactive, we have

δ(πk(Θ(−1)(λGk)))(1− πk(Θ(−1)(λGk))) <
η

(0)
k d

(0)
k

mkRk
.

Quite arbitrarly, the algorithm is initialized with λ = 0
and assuming that only the rate constraint is active. If the
delay constraint is not satisfied, we choose a higher γk for
satisfying this constraint even if the constraint (C3) does not
hold anymore. Then we will increase λ until a feasible solution
is found, especially, to satisfy (C3). We summarize the above-
mentioned steps in Algorithm 1.

Algorithm 1: Type-I HARQ-based resource allocation.
Set λ = 0,

γk(0) = max
{

η
(0)
k

mkRk(1−πk(Θ(−1)(0)))
, δ(πk(Θ(−1)(0)))

d
(0)
k

}
,

Qk(0) = γk

Gk
Θ(−1)(0), ∀k,

if
∑K
k=1 γk(0) < 1 then

exit
else

KM = {k ∈ {1, . . . ,K} | d(0)
k ≥ 1/η(0)

k } and
KΘ = {1, . . . ,K}\KM

while
∑K
k=1 γk(λ) > 1 do

1. ∀k ∈ KM , compute

γk(λ) = η
(0)
k

mkRk(1−πk(Θ(−1)(λGk)))
, and

Qk(λ) = γk(λ)
Gk

Θ(−1)(λGk).
2. ∀k ∈ KΘ, compute

mλ = M (−1)(λGk), θλ = Θ(−1)(λGk)

if δ(πk(mλ))(1− πk(mλ)) > η
(0)
k d

(0)
k

mkRk
then

γk(λ) = δ(πk(mλ))/d(0)
k , and

Qk(λ) = γk(λ)
Gk

mλ.

else if δ(πk(θλ))(1− πk(θλ)) < η
(0)
k d

(0)
k

mkRk
then

γk(λ) = η
(0)
k /(mkRk(1− πk(θλ))), and

Qk(λ) = γk(λ)
Gk

θλ.
else

Compute x∗ the root in (0, 1) of Eq. (17).
γk(λ) = δ(x∗)/d(0)

k , and
Qk = γk(λ)

Gk
π

(−1)
k (x∗)

end
3. Increase λ

end
end



B. Algorithm 2

The second algorithm consists in rewriting Problem 1 versus
(γk, Ek) instead of (γk, Qk). Then, the function to minimize
becomes biconvex but the constraints are much simpler.

Problem 2. Problem 1 is equivalent to

(γ∗,E∗) = arg min
(γ,E)

K∑
k=1

γkEk (18)

subject to (C3) and
(C1’) γk ≥ η(0)

k /
(
mkRk

(
1− πk(GkEk)

))
,∀k,

(C2’) Ek ≥ π(−1)
k (δ(−1)(γkd

(0)
k ))/Gk,∀k,

(C4’) γk ≥ 0, Ek ≥ 0, ∀k.

Indeed, assuming γ fixed, then the Problem in E =
[E1, · · · , EK ]T is linear and vice-versa. Consequently, we
propose to start by optimizing E given γk = ck/(

∑K
k′=1 ck′),

and then to optimizing γ given the value of E obtained in the
previous step, and so on. Obviously, we are once again not
able to guarantee the optimality.

To be more precise, we split Problem 2 into two subprob-
lems which will be solved alternately.

Problem 2.a (on E). For fixed γ, the subproblem is

E∗ = arg min
E

K∑
k=1

γkEk

subject to (C1’, C2’, C4’).

Problem 2.b (on γ). For fixed E, the subproblem is

γ∗ = arg min
γ

K∑
k=1

γkEk

subject to (C1’, C2’, C3, C4’).

The solution of the i-th iteration of Problem 2.a (with γ(i−1)
k

the solution of the (i− 1)-th iteration) is given by

E
(i)
k = max

(
π

(−1)
k (1− η(0)

k /(mkRkγ
(i−1)
k ))/Gk,

π
(−1)
k (δ(−1)(γ(i−1)

k d
(0)
k ))/Gk

)
, ∀k.

The solution of Problem 2.b can be efficiently obtained
by using linear programming tool, for instance, the Simplex
method [12].

IV. NUMERICAL RESULTS

An uncoded ARQ scheme with L = 3 is considered for
K = 4 links. Each user sends a data packet consisted of 32
uncoded bits within a bandwidth W = 1 MHz. BPSK is used,
and the path-loss follows a free-space model. The distance Dk

between both users associated with the k-th link is randomly
chosen from a uniform distribution in [Dm, DM ], with Dm =
50 m and DM = 1 km. For the sake of simplicity, each link
has the same target efficiency and delay constraints.

As a benchmark, we will also compute the following
straightforward algorithm: γk = ck/(

∑K
k′=1 ck′), and Qk =

P/K, ∀k, where P is chosen such that (C1)-(C2) are satisfied.

In Fig. 1, we display the total transmit power versus the
sum rate for two different delay constraints (d(0) = 8, and
d(0) = 20). Both proposed algorithms outperform the straight-
forward one. Notice that when η

(0)
k /(mkRk) ≥ 1/d(0)

k ,∀k,
one can prove that the delay constraint is never active, and
so (C2) can be deleted in Problem 1. Consequently Problem
1 is convex and KKT becomes optimal. When d(0) = 8,
the KKT is optimal as soon as the sum rate is larger than
KW/8 = 500 kbps as observed in Fig. 1. When d(0) = 20,
the optimality of the KKT is ensured if the sum rate is
larger than 200 kbps. When the sum rate is small enough,
the other proposed algorithm may become better as observed
for d(0) = 8.
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Figure 1. Total Transmit Power (in dBm) versus the sum rate.
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