
626

N
N

T
:2

0X
X

IP
PA

X
X

X
X

Apprentissage par renforcement profond
pour l’optimisation conjointe de
l’allocation de ressource et de

l’ordonnancement pour les réseaux
ad hoc

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom ParisTech

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Sciences et Technologies de l’information et de la communication

(STIC)

Thèse présentée et soutenue à Palaiseau, le 11 décembre 2025, par

SYLVAIN NÉRONDAT

Composition du Jury :

Inbar Fijalkow
Professeur, ENSEA (ETIS) Président

Olivier Berder
Professeur, IRISA Rapporteur

Didier Le Ruyet
Professeur, CNAM Rapporteur

Philippe Mary
Professeur, INSA Rennes Examinateur

Lila Boukhatem
Professeur, University Paris-Saclay Examinateur

Philippe Ciblat
Professeur, Télécom Paris (LTCI) Directeur de thèse

Christophe Le Martret
Expert, Thales Co-directeur de thèse

Xavier Leturc
Ingénieur, Thales Encadrant



Contents

List of acronyms 6

Résumé en français 9

General introduction 13

1 General context and state of the art on scheduling 17
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 General system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Additional information and precisions on the general system model in the different
chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1.1 Additional information and precisions for Chapter 2 . . . . . . . . . . 20
1.2.1.2 Additional information and precisions for Chapter 3 . . . . . . . . . . 20
1.2.1.3 Additional information and precisions for Chapter 4 . . . . . . . . . . 20
1.2.1.4 Synthesis of the additional information and precisions . . . . . . . . . 20

1.2.2 Mapping with the 5G model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 State of the art of heuristics for scheduling . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Round-robin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2 Earliest deadline first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.3 Proportional fair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.4 MLWDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.5 LOG-rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.6 EXP-rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.7 Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 State of the art of DRL solutions for scheduling . . . . . . . . . . . . . . . . . . . . . 29
1.4.1 Classification of the DRL schedulers . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.1.1 Classification based on the action space . . . . . . . . . . . . . . . . 29
1.4.1.2 Classification based on the state space . . . . . . . . . . . . . . . . . 31
1.4.1.3 Classification based on the reward . . . . . . . . . . . . . . . . . . . 32
1.4.1.4 Classification based on the performance metrics during the inference phase 33

1.4.2 Analysis of the scheduler properties . . . . . . . . . . . . . . . . . . . . . . . . 33
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Slot-based scheduling 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2



2.3.1 MDP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 State space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2.1 State-HoL (S-HoL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2.2 State-xHoL (S-xHoL) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2.3 State-APD (S-APD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Action space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.4 MDP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.5 Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.1 Learning procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Encoder only transformer architecture . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Fully connected architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Adaptation of the heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.4.1 Round-robin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.4.2 Proportional fair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.4.3 MLWDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.4.4 LOG-rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.4.5 EXP-rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.4.6 Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1.1 Evaluated methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.1.2 Training setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.1.3 Inference setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 Training analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6.2 Inference analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.2.1 Tested inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6.2.2 Generalization wrt Λ . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.2.3 Performance per link or traffic for Λ = 1.6 . . . . . . . . . . . . . . . 56
2.6.2.4 Performance wrt nL . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6.2.5 Generalization wrt nL and C . . . . . . . . . . . . . . . . . . . . . . 63

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Frame-based scheduling 68
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 State spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Action space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.3 Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Deep neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Action masking procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.1 Wireless Suite environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3



3.4.2 Communication model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.3 State spaces and reward of WS-TFRA and proposed adaptations . . . . . . . . 74

3.4.3.1 State spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.3.2 Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.4 Heuristics used in wireless suite . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.4.1 Proportional fair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.4.2 Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.4.3 Bosch agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.5 Communication setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.6 Training and inference setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.7 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.1 Inference performance on the training setup . . . . . . . . . . . . . . . . . . . . 79
3.5.2 On the importance of the mask for the proposed architecture . . . . . . . . . . 89
3.5.3 Generalization vs. β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Joint scheduling and MCS selection 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Buffer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.2 Channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2.1 Procedure for the average PER . . . . . . . . . . . . . . . . . . . . . 97
4.3 Problem formulation for JSM and DSM approaches . . . . . . . . . . . . . . . . . . . 98

4.3.1 State spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.2 Action spaces for both JSM and DSM approaches . . . . . . . . . . . . . . . . 99
4.3.3 Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Problem solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.1 Solution approaches for MCS and buffer selections . . . . . . . . . . . . . . . . 100
4.4.2 Adaptation of the heuristics for buffer selection . . . . . . . . . . . . . . . . . . 102

4.4.2.1 Round-robin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.2.2 Proportional fair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.2.3 MLWDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.2.4 LOG-rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.2.5 Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.3 Adaptation of the EOT-AB for JSM and DSM-LBS approaches . . . . . . . . . 103
4.5 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.1.1 Training setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.5.1.2 Inference setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6.1 Training analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6.2 Inference performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Conclusions and perspectives 117

4



A Background on machine learning 119
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2.2 Finite Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.2.3 Finite Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2.4 Optimal control framework and MDP . . . . . . . . . . . . . . . . . . . . . . . 123
A.2.5 Optimal policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.2.6 Value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.2.7 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.3 Deep reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.4 Deep neural network architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.4.1 Fully connected architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.4.2 Transformer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.4.3 Action branching architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B Number of possible states for APD 147

C Figures for Chapter 2 149
C.1 Figure for DC traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.1.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.1.2 Fully connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
C.1.3 EOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.2 Figure for BE traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.2.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.2.2 Fully connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
C.2.3 EOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography 172

5



List of acronyms

5G fifth generation

6G sixth generation

AB action branching

AI artificial intelligence

APD all packet delays

ARQ automatic repeat request

AWGN additive white Gaussian noise

BA Bosch agent

BE best-effort

BERT bidirectional encoder representations from transformer

BET blind equal throughput

BO buffer overflow

BS base station

CA channel-aware

cdf cumulative distribution function

CQI channel quality indicator

CSI channel state information

CU channel-unaware

CV computer vision

CW codeword

DC delay constraint

DDQL double deep Q-Learning

DNN deep neural network

DOT decoder only transformer

DP dynamic programming

DQL deep Q-Learning

DQN deep Q-network

DRB data radio bearer

6



DRL deep reinforcement learning

DSM disjoint scheduling and MCS

DV delay violation

EDF earliest deadline first

EDR expected discounted return

EE energy efficiency

EIRP effective isotropic radiated power

EOT encoder-only transformer

ESM effective SNR mapping

EXP-rule exponential rule

FC fully connected

FFN feed forward network

FIFO first in, first out

FLOPs floating point operations

GAR global arrival rate

GBM global buffer management

GBR guaranteed bit rate

GNN graph neural network

GPF generalized PF

GPT generative pre-trained transformer

GRS global RB scheduling

GRS-I GRS-index

GRS-P GRS-proportion

HARQ hybrid automatic repeat request

HBS heuristic for the buffer selection

HMS heuristic for the MCS selection

HoL head of line

IP internet protocol

JSM joint scheduling and MCS

KP knapsack

LBS learning for buffer selection

LDPC low-density parity check

LLM large language model

LOG-rule logarithmic rule

LSTM long-short term memory

7



LTE long term evolution

LUT look-up table

LWDF largest weighted delay first

MAC medium access control

MCS modulation and coding schemes

MDP Markovian decision process

MHA multi-head attention

ML machine learning

MLWDF modified largest weighted delay first

MSI matrix state input

MT max throughput

NLI number of links independent

NLP natural language processing

NOMA non-orthogonal multiple access

NP number of packets

OSI open systems interconnection

PD packet delay

PDB packet delay budget

PDCP packet data convergence protocol

pdf probability density function

PE permutation equivariant

PER packet error rate

PF proportional fair

PHY PHYsical

PL packet loss

PLR packet loss rate

pmf probability mass function

PPO proximal policy optimization

QA QoS-aware

QFI QoS flow identifier

QoS quality of service

QU QoS-unaware

RAN radio access network

RB resource block

ReLU rectified linear unit

8



RL reinforcement learning

RLC radio link control

RNN recurrent neural network

ROHC robust header compression

RR round-robin

RRM radio resource manager

SAC soft actor critic

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

SotA state of the art

SDAP service data adaptation protocol

SRS sequential RB scheduling

TD temporal difference

TFRA TimeFreqResourceAllocation-v0

TFT traffic flow template

UE user equipment

UPF user plane function

VI value iteration

VSI vector state input

wrt with respect to

WS wireless suite

WT waiting time

xHoL extended HoL

9



Résumé en français

Les réseaux de communication modernes sont confrontés à des défis croissants en raison de la diver-
sité des applications, allant des services ultra-fiables à faible latence aux communications massives de
type machine dans le cadre de l’Internet des objets. Ces applications variées génèrent des types de
trafic hétérogènes qui exigent des stratégies de gestion des ressources, telles que l’ordonnancement ou
l’allocation de ressources, capables de s’adapter à leurs besoins spécifiques. Cette thèse se concentre
principalement sur l’ordonnancement des paquets, l’allocation de ressources n’étant considérée qu’à la
fin de la thèse.

L’ordonnancement étudié dans cette thèse concerne à la fois le domaine temporel et fréquentiel. Il
définit comment les ressources radio dans ces dimensions sont attribuées aux différents dispositifs, appelés
équipements utilisateur (UEs), afin d’atteindre des objectifs de performance tels que le débit, l’équité et
la latence. Il joue un rôle central dans les réseaux sans fil, en garantissant que plusieurs appareils puis-
sent accéder au médium de manière coordonnée et efficace. Les ressources radio élémentaires à attribuer
se composent de créneaux temporels (time slots) dans le domaine temporel et de blocs de ressources
(RBs) dans le domaine fréquentiel. Nous supposons dans cette thèse que l’ordonnancement est géré par
une unité centrale appelée gestionnaire de ressources radio (RRM). Dans les réseaux cellulaires, le RRM
correspond à la station de base (BS). Dans les réseaux ad hoc, les requêtes d’ordonnancement sont cen-
tralisées dans un nœud spécifique, désigné comme RRM. Dans les réseaux cellulaires, la BS sert de nœud
central reliant les différents liens, ce qui permet d’accéder à l’information instantanée de l’état du canal
(CSI). En revanche, dans les réseaux ad hoc, le RRM n’a accès qu’à des informations statistiques du canal.

À mesure que le nombre de types de services augmente, les techniques d’ordonnancement clas-
siques, qui reposent souvent sur des heuristiques ou sur l’optimisation de métriques, deviennent moins
adaptées. Ces méthodes manquent de flexibilité pour équilibrer plusieurs objectifs, souvent contradic-
toires, et ne sont pas conçues pour gérer conjointement différents types de ressources. En revanche,
les méthodes basées sur l’intelligence artificielle (AI) peuvent apprendre à gérer de tels compromis de
manière adaptative. Cette évolution est cohérente avec les principes de conception des systèmes de
cinquième génération (5G) et de sixième génération (6G) à venir, où l’AI jouera un rôle essentiel dans la
conception et l’optimisation des architectures, protocoles et opérations.

Parmi les paradigmes d’AI, l’apprentissage profond a gagné en importance grâce aux avancées des ar-
chitectures de réseaux de neurones profonds (DNN). Lorsqu’il est combiné à l’apprentissage par renforce-
ment (RL), formant ainsi l’apprentissage par renforcement profond (DRL), il a démontré des capacités
remarquables dans les tâches de prise de décision, initialement popularisé par les succès dans les jeux
Atari, puis conforté par son rôle dans l’entrâınement des grands modèles de langage (LLM). Suivant cette
tendance dans de nombreux domaines de recherche, le DRL est naturellement exploré pour l’allocation
de ressources pour les communications sans fil.

10



Cette thèse est consacrée au développement de méthodes basées sur l’AI pour l’ordonnancement dans
les réseaux de communication sans fil. L’objectif est d’explorer comment le DRL peut être utilisé efficace-
ment pour optimiser l’allocation de ressources dans des environnements complexes caractérisés par des
modèles de trafic variés et des conditions de canal dynamiques. Pour atteindre cet objectif, nous com-
mençons par identifier les propriétés essentielles qu’une architecture de DNN pour l’ordonnancement doit
satisfaire. Nous validons d’abord cette architecture dans un environnement simplifié, où l’ordonnancement
est réalisé slot par slot et où le domaine fréquentiel se limite à un seul RB. Nous étendons ensuite l’étude
à un cas plus général avec plusieurs RBs qui sont attribués simultanément. Ces approches sont évaluées
dans deux scénarios : 1) avec CSI instantané, correspondant aux systèmes 5G ; 2) avec CSI statistique,
correspondant aux réseaux ad hoc.

L’organisation du document de thèse est la suivante.

Le chapitre 1 présente le modèle de système général adopté et passe en revue l’état de l’art des
ordonnanceurs heuristiques et basés sur le DRL. Il introduit une classification des ordonnanceurs DRL en
fonction de leurs entrées (caractéristiques des UEs) et de leurs sorties. Le chapitre identifie également
trois propriétés essentielles qu’une architecture NN efficace doit satisfaire pour l’ordonnancement et
l’allocation de ressources :

� L’architecture doit pouvoir gérer un nombre variable de liens.
� L’architecture doit être équivariante par permutation.
� L’architecture doit prendre en compte les buffers de tous les UEs conjointement.

Ce chapitre classe les architectures existantes selon ces critères. Nous identifions que le transformeur
basé uniquement sur l’encodeur (EOT) satisfait ces trois propriétés grâce à son mécanisme d’attention
et l’utilisons ensuite comme base de l’architecture proposée.

Le chapitre 2 formule le problème d’ordonnancement slot par slot pour un seul RB comme un proces-
sus de décision markovien (MDP), en supposant un canal sans erreur et de capacité fixe où des erreurs
peuvent survenir à cause de violation de délai ou de buffer overflow. Il introduit une solution basée sur
l’EOT, respectant les trois propriétés clés identifiées au chapitre 1. Nous avons entrâıné l’EOT pour
un nombre spécifique de liens et pour une valeur spécifique du taux d’arrivée du trafic, puis nous avons
comparé ses performances à celles d’heuristiques et d’un ordonnanceur conventionnel basé sur un réseau
de neurones entièrement connecté (FC DNN). Nous avons ensuite évalué la capacité de généralisation
de l’ordonnanceur EOT par rapport au taux d’arrivée du trafic et au nombre de liens dans des réseaux
non rencontrés lors de l’entrâınement. Les performances ont été évaluées en termes de taux perte de
paquets (PLR), de débit, d’équité et de délai de transmission. Nos résultats ont montré que : 1) l’EOT
surpasse les heuristiques ; 2) l’EOT surpasse également les ordonnanceurs basés sur les FC, bien que ces
derniers aient été entrâınés spécifiquement pour un nombre donné de liens, c’est-à-dire un ordonnanceur
FC distinct pour chaque configuration entrâınée/testée. De plus, l’EOT maintient des performances
robustes même lorsqu’il est testé sur des configurations de liens qu’il n’avait jamais rencontrées lors de
l’entrâınement, ce qui confirme sa scalabilité, son adaptabilité et sa forte capacité de généralisation.

Le chapitre 3 étend le chapitre 2 en considérant l’ordonnancement sur plusieurs RBs (appelé trame),
sous l’hypothèse d’un canal sans erreur à capacité variable dans le temps. Deux approches sont ex-
aminées : 1) une sélection conjointe des UEs pour tous les RBs simultanément, ce qui constitue la prin-
cipale contribution de ce chapitre ; 2) une sélection séquentielle d’un UE par RB, comme au chapitre 2.

11



L’espace d’actions de 1) étant très grand, nous proposons d’utiliser l’architecture de ramification d’actions
(AB) pour réduire la cardinalité de l’espace d’actions grâce à une décomposition. Combinée à l’EOT, cela
conduit à une nouvelle architecture NN appelée EOT-AB. Pour éviter l’allocation de RB à des buffers
vides, nous avons intégré un masquage adaptatif des actions. La solution 1) est évaluée par rapport aux
heuristiques et à la solution 2), mettant en avant l’importance d’une sélection conjointe des UEs. De
plus, nous avons démontré l’efficacité du masquage adaptatif des actions pendant l’inférence, soulignant
son importance pour améliorer les performances pendant les phases d’inférence.

Le chapitre 4 examine le problème de l’ordonnancement avec sélection des schémas de modulation et
de codage (MCS) sur une trame, où des erreurs de transmission peuvent se produire en plus des erreurs
liées à la violation de délai et au buffer overflow, dans un canal à évanouissement plat de Rayleigh,
en supposant un CSI statistique. La probabilité de transmission correcte des paquets dépend du MCS
sélectionné. La solution proposée s’appuie sur l’architecture EOT-AB introduite au chapitre 3. Deux
approches sont comparées : 1) une solution conjointe qui réalise simultanément l’ordonnancement et la
sélection du MCS ; 2) une solution où le DRL est utilisé pour l’ordonnancement tandis qu’une heuris-
tique détermine le MCS. Les résultats expérimentaux ont démontré que la solution conjointe surpasse
systématiquement la solution disjointe en termes de PLR pour différents taux d’arrivée de trafic. Cette
comparaison met en évidence les avantages d’une solution réalisant conjointement l’ordonancement et
la sélection du MCS.

12



General introduction

Problem statement

Modern communication networks face growing challenges due to the increasing diversity of applications,
ranging from ultra-reliable low-latency communications to massive machine type communications in the
context of the Internet of things. These diverse applications generate heterogeneous types of traffic,
which demand efficient resource management strategies capable of adapting to their specific require-
ments, such as scheduling or resource allocation. This thesis primarily focuses on packet scheduling,
with resource allocation considered only at specific points.

The scheduling considered in this thesis involves both the time and frequency domains. It specifies
how radio resources in these dimensions are allocated among devices, called user equipments (UEs), to
meet performance objectives such as throughput, fairness, and latency. It plays a central role in wireless
networks, ensuring that multiple devices can access the medium in a coordinated and efficient manner.
The elementary radio resources to be allocated among UEs consist of time slots in the time domain and
resource blocks (RBs) in the frequency domain.

We assume in this thesis that the scheduling is handled by a central unit, called radio resource
manager (RRM). In cellular networks, such as represented in Figure 1a, the RRM is the base station (BS).
In ad hoc networks, such as illustrated in Figure 1b, scheduling requests are centralized at a specific node,
denoted by RRM. In cellular networks, the BS serves as the central node connecting the different links,
which may allow to access to instantaneous channel state information (CSI). In contrast, in ad hoc
networks, the RRM is assumed to have access only to statistical CSI [1].

13



BS
UE1

UE3

UE2

Link 1

Link 2

Link 3

(a) Cellular network.

Tx2, RM

Tx1

Rx1

Tx3

Rx3

Rx2

Link 1
Link 3

Link 2

(b) Ad hoc network.

Figure 1: Different types of networks. The plain lines represent the links, the dashed lines represent the
CSI feedback and the dotted lines represent the scheduling instruction.

As the number of types of service grows, conventional scheduling techniques, that often rely on
heuristics or metric optimization, become less suitable. These methods lack the flexibility required to
balance multiple and often conflicting objectives, and they are not well adapted to the joint management
of heterogeneous resource types. In contrast, artificial intelligence (AI)-driven methods can learn to
adaptively manage such trade-offs. This development is consistent with the design principles of emerging
fifth generation (5G) and planned sixth generation (6G) systems, where AI is expected to play a critical
role in designing and optimizing 6G architectures, protocols, and operations [2].

Among AI paradigms, deep learning has gained substantial traction due to the advances in deep
neural network (DNN) architectures. When combined with reinforcement learning (RL), leading to deep
reinforcement learning (DRL), it has demonstrated remarkable capabilities in decision-making tasks,
originally popularized through successes in Atari games [3] and more recently strengthened by its role in
training large language model (LLM) [4]. Following this trend across many research domains, the DRL
is then naturally explored for wireless resource allocation.

This thesis is devoted to the development of AI-based methods for scheduling in wireless communica-
tion networks. The objective is to explore how DRL can be effectively employed to optimize scheduling
and resource allocation in complex environments characterized by diverse traffic patterns and dynamic
channel conditions.

To achieve this objective, we begin by identifying the essential properties that a DNN architecture for
scheduling should satisfy. We first validate this architecture in a simplified environment, where scheduling
is performed slot by slot and the frequency domain consists of a single RB. We then extend the study
to a more general case with multiple RBs, which are allocated simultaneously. These approaches are
evaluated under two scenarios:

� With instantaneous CSI, corresponding to 5G systems.
� With statistical CSI, corresponding to ad hoc networks case.

14



Outline and contributions

This thesis is organized as follows.

Chapter 1 presents the general system model adopted throughout this thesis and reviews the state of
the art in heuristic and DRL-based schedulers. It introduces a classification of DRL schedulers according
to their inputs (i.e. UE or link characteristics) and their outputs. Furthermore, the chapter identifies
three essential properties that an effective DNN architecture should satisfy for scheduling and resource
allocation, and classifies existing architectures with respect to these properties. We identify that the
encoder-only transformer (EOT) DNN satisfies these three properties and is then used as the core of our
proposed architecture for the next chapters.

Chapter 2 formulates the scheduling problem slot by slot for a single RB, as an Markovian decision
process (MDP), under the assumption of an error-free channel with fixed capacity, where packet losses
may occur due to delay violation (DV) or buffer overflow (BO). It introduces an EOT-based solution
satisfying the three key properties identified in Chapter 1. This solution is evaluated against heuristics
and alternative DRL methods lacking these three properties, highlighting their critical role in achieving
effective scheduling.

Chapter 3 extends Chapter 2 by considering the scheduling problem over multiple RBs (called frame),
under the assumption of an error-free channel with time varying capacity. Two approaches are examined:
1) a joint selection of UEs for all RBs simultaneously, which constitutes the main contribution of this
chapter, and 2) a sequential selection of one UE per RB, as in Chapter 2. The number of actions for 1) is
very large, thus, we propose leveraging the action branching (AB) architecture to reduce the cardinality
of the action space through action decomposition. Used alongside the EOT architecture, this leads to a
new DNN architecture called EOT-AB. The solution of 1) is evaluated against both heuristic baselines
and the solution of 2), highlighting the importance of performing a joint selection of UEs for all RBs
simultaneously.

Chapter 4 investigates the scheduling problem and modulation and coding schemes (MCS) selection
over a frame, where transmission errors may occur, in addition to packet losses causes by DV and BO,
under a Rayleigh flat fading propagation channel, assuming that statistical CSI is available. The proposed
solution builds on the EOT-AB architecture introduced in Chapter 3. Two approaches are compared: 1)
a joint solution that simultaneously performs scheduling and MCS selection, and 2) a solution where DRL
is used for scheduling while a heuristic determines the MCS. This comparison highlights the benefits of
joint scheduling and MCS allocation.

Appendix A provides the foundations of machine learning (ML) concepts such as MDP, DRL, and
DNN architectures. Reading this appendix is recommended for readers unfamiliar with these concepts.

15



Publications

The work of this thesis has led to the following publications.

International conference

IC1. S. Nérondat, X. Leturc, C. J. Le Martret and P. Ciblat, ”Transformer-Based Packet Schedul-
ing Under Strict Delay and Buffer Constraints,” IEEE Wireless Communications and Networking
Conference (WCNC), Milan (Italy), March 2025.

IC2. S. Nérondat, X. Leturc, P. Ciblat and C. J. Le Martret, ”Efficient 5G Resource Block Scheduling
Using Action Branching and Transformer Networks,” IEEE International Conference on Machine
Learning for Communication and Networking (ICMLCN), Barcelona (Spain), May 2025.

French conference

NC1. S. Nérondat, X. Leturc, C. J. Le Martret and P. Ciblat, ”Deep Q-Learning pour l’ordonnancement
de paquets sous contraintes strictes de latence et de taille de buffer,” Colloque GRETSI, Grenoble
(France), September 2023.

NC2. S. Nérondat, X. Leturc, C. J. Le Martret and P. Ciblat, ”Ordonnancement et ACM conjoint sur
canal aléatoire basé sur un transformer entrainé par apprentissage profond par renforcement,”
Colloque GRETSI, Strasbourg (France), August 2025.

Patent

P1. S. Nérondat, X. Leturc, C. J. Le Martret and P. Ciblat, “Procédé d’ordonnancement dynamique
de communications entre une pluralité d’équipements utilisateurs,” FR 24 11578, October 2024.

16



Chapter 1

General context and state of the art on
scheduling

1.1 Introduction

This chapter introduces both conventional heuristics and DRL-based solutions for scheduling and resource
allocation in wireless communications systems. Packet scheduling is a critical mechanism, determining
how data packets are prioritized and transmitted to ensure efficient resource utilization and/or low latency
and/or high-quality service.

Scheduling and resource allocation are performed centrally by the RRM. In this thesis, we assume that
scheduling prioritizes data flows over the considered dimensions (time and frequency), whereas resource
allocation refers, for instance, to the selection of MCS and transmit power.

Historically, scheduling algorithms have been based on heuristics tailored to specific goals (more
details are provided in the rest of the chapter). These heuristics operate with limited information on
flows and buffers, such as the average or instantaneous data rate, the packet delay, or the number of
packets per buffer for instance.

More recently, approaches utilizing DNN architectures trained with DRL have emerged to tackle the
scheduling challenge. A key advantage of DNN architectures is their flexibility in incorporating numerous
features, offering greater flexibility than conventional heuristics. Additionally, DRL enables defining
customized objective function through the reward.

This chapter is organized as follows. Section 1.2 introduces a general system model and the notations.
Section 1.3 reviews the state of the art (SotA) in the existing heuristic scheduling methods. Section 1.4
provides a SotA review, a classification, and a critical analysis of the existing DRL schedulers. Finally,
Section 1.5 draws concluding remarks.

1.2 General system model

We consider a wireless communication system with nL UEs, each supporting nQoS types of traffic. Data
associated with each type of traffic are stored in the form of packets in first in, first out (FIFO) buffers
of finite capacity of B packets. The total number of buffers is thus nQ = nLnQoS. The index of the tth
buffer of the ℓth link is i = ℓnQoS + t, with t ∈ {0, . . . , nQoS − 1} and ℓ ∈ {0, . . . , nL − 1}. Remark

that ℓ =
⌊

i
nQoS

⌋
and t = i mod nQoS. In the rest of the thesis, we use equivalently the index i or the

pair (ℓi, ti) for the buffer i, where ℓi represents the link associated with buffer i and ti indicates its type

17



of traffic. We assume that the nQoS traffic flows can be categorized into two types:
� nDC delay constraint (DC) traffic flows, which require data transmission within a specified delay

threshold,
� nBE = nQoS − nDC traffic flows that have no strict delay constraint. For simplicity, we refer to the

latter as best-effort (BE) traffic.
Let us note the corresponding indexes of DC traffic ti ∈ {0, . . . , nDC− 1} and the corresponding indexes
of BE traffic ti ∈ {nDC, . . . , nQoS − 1}.

We define the slot as the smallest unit of time. Each packet in each buffer i is characterized by its
waiting time (WT) that is initially set to 0, and which is incremented by one at each slot. This WT
must respect a constraint Dti , which depends on the quality of service (QoS) of buffer i. For DC traffic,
i.e. ti < nDC, Dti < +∞, while for BE traffic, Dti = +∞. Packets from DC traffic must be sent before
reaching Dti . If a packet’s WT exceeds Dti , a DV occurs. In Chapters 2 and 4, this results in the packet
being dropped, whereas in Chapter 3, the packet remains stored in the buffer.

Let du,i ∈ {−1, 0, . . . , Dti} be the WT of the uth packet in the ith buffer with u ∈ {0, . . . , B − 1}
assuming that the packets are ordered in the buffer according to their WT in the decreasing order, i.e.
d0,i ≥ d1,i ≥ · · · ≥ dB−1,i, and by convention −1 represents an empty entry. Let ni be the number of
packets in buffer i for a given slot i.e. the number of entries du,i greater than −1. In the scheduling
literature, the oldest packet is conventionally called the head of line (HoL). As a consequence, d0,i is
identified as the HoL delay of buffer i.

Remark: the value of du,i and ni depends on the slot index, which is omitted to lighten the notations.
Let us note nHoL

i the number of packet with a WT equal to d0,i in the buffer i. Figure 1.1 depicts an
example of a buffer with ni packets.

𝑑0,𝑖 𝑑1,𝑖 𝑑2,𝑖 𝑑𝑛1−1,𝑖 −1 −1…

𝐵 entries 

𝑛𝑖  packets 

…

𝐵 − 𝑛𝑖  empty entries 

Figure 1.1: Representation of buffer i.

The transmission bandwidth of the considered system is denoted by W and is divided into Nf RBs.
A central scheduler called RRM is responsible for allocating these RBs to the various buffers. During
each scheduling interval, Nf buffers are selected, where the same buffer can be allocated multiple RBs.
Then, the bits of the oldest packets from the selected buffers are extracted and transmitted over the
channel on their assigned RBs. The number of extracted bits depends on the channel capacity of the
corresponding UEs on the RBs. After the transmission of the bits, the WT of the remaining packets in
the buffers is incremented by one. Then, new packets arrive in the buffers and their WT is set to 0.
Packets arriving in a given buffer once it is full are discarded and a BO occurs, thus leading to packet
loss.

Figure 1.2 represents a global view of the considered system model. The buffers are shown at the top
of the figure along with their status and corresponding CSI. The CSI is obtained through feedback from
the receiver represented at the center of the figure. These inputs are processed and provided to a scheduler
responsible for assigning buffers to the available RBs. A MCS is selected for each transmission. This
selection can be performed either jointly with buffer scheduling, i.e. using a single module, or separately
by employing two distinct modules, i.e. one for buffer scheduling and another for MCS selection. The

18



frame is then built with the different selected buffers and MCS. To do that, the different RBs for each
slot are allocated to the different UEs, represented at the bottom left of the figure. The corresponding
bits of the selected buffers are transmitted over the propagation channel. The receiver attempts to
decode the received bits, which may or may not result in errors depending on the channel and Rx model,
as illustrated on the right side of the figure. Other losses may occur due to DV and BO. This system
model aligns with the 5G framework described in Section 1.2.2.

Frame construction + PHY

Scheduling and MCS selection

Buffer info processing/state building

Buffer info

Propagation channel Rx

Feedback (CSI, SCSI, CQI,…)

Set of MCSs

Path loss
Shadowing

Decoded packets

∆
Packet 
loss

Error-free or error probability

…

UE #𝑛𝐿 − 1
MCS #1

UE #2
MCS #3

UE #2
MCS #3

UE #4
MCS #1

RB #1 RB #2 RB #3 RB #𝑁𝑓

…Slot 𝑘

Slot 𝑘 + 1
UE #1

MCS #2
UE #5

MCS #1
UE #5

MCS #ℳ
UE #3

MCS #3…

…𝐵

UE #0 UE #1 UE #𝑛𝐿 − 1

… … …

0 𝑛QoS − 1 0 𝑛QoS − 1 0 𝑛QoS − 1

Figure 1.2: Illustration of the general system model.

Additional information and precision of the system model are provided in the dedicated chapters.
These refinements are related to the considered types of traffic, the packet arrival model, and the
channel model.

1.2.1 Additional information and precisions on the general system model in
the different chapters

The proposed scheduling solutions studied in this thesis are discussed across three chapters, Chapter 2
to Chapter 4. The system models used in these chapters differ, which may complicate the reading, as
there is no continuous transition between them. The reasons for this are as follows:

� Chapter 2 presents the first work in the thesis, where the system model is inspired by [5], with
two-class traffic and a single RB.

� Chapter 3 introduces the second work, where we opted for a system model closer to the 5G system.
We used the WS environment designed for this context, which required a system model imposed
by the wireless suite (WS) framework—namely, multiple RBs (Nf > 1) and a four-class traffic
model.

19



� Chapter 4 presents the final work in the thesis, which focuses on joint scheduling and MCS allocation
in a frame-based context. Since we needed to implement a Rayleigh channel model to account
for packet errors at the receiver side, adapting the WS framework to this context would have
required modifications beyond the scope of the thesis. Instead, we used the same traffic model as
in Chapter 2, but with multiple RB (Nf > 1) and a packet-based error model.

Thus, this section is dedicated to explaining the different system models used in these three chapters.

1.2.1.1 Additional information and precisions for Chapter 2

In Chapter 2, we assume that there is a single RB, i.e. Nf = 1. Thus the scheduling is performed only
in the time dimension and is referred to as slot-based model. Two types of traffic are considered, i.e.
nQoS = 2 with one DC and one BE. The packets of the different traffic are of the same size and arrive
in each buffer i according to a Poisson distribution of parameter λi. The considered channel is error-free
and allows to transmit a fixed number of packets, different for each UE.

1.2.1.2 Additional information and precisions for Chapter 3

In Chapter 2, we assume that there are several RBs to be allocated, i.e. Nf > 1. For a given slot,
the set of RBs is called a frame. Thus the scheduling is performed in both time and RB dimensions,
and is referred to as frame-based model. The WS environment [6] is used for the simulations. As a
consequence, four types of traffic are considered, i.e. nQoS = 4: three guaranteed bit rate (GBR) and
one non-GBR. The packets of the different traffic are of different size and the packet arrival depends on
the type of traffic. The considered channel is error-free and the number of bits that can be transmitted
for each RB depends on the channel quality indicator (CQI) of the allocated UE.

1.2.1.3 Additional information and precisions for Chapter 4

In this chapter, we assume a frame-based model, along with the traffic model of Chapter 2, i.e. nQoS = 2
with one DC and one BE. We assume a Rayleigh channel varying from RB to RB, with a fixed average
signal-to-noise ratio (SNR) per UE that is known from the RRM. In this chapter, the scheduler also
performs MCS selection, and packets are subject to errors depending on the channel realizations.

1.2.1.4 Synthesis of the additional information and precisions

Tables 1.1, 1.2 and 1.3 summarize the principal changes of the system model across the different chapters
for the buffer model, the channel model and the bit management model respectively.

Table 1.1: Comparison of the buffer models across the different chapters.

nQoS nQ Packet arrival

Chapter 2 2 2nL λ (Poisson)

Chapter 3 4 4k with k ∈ N Depends on the type of traffic

Chapter 4 2 2nL λ (Poisson)

20



Table 1.2: Comparison of the channel models across the different chapters.

Channel model Errors Variability

Chapter 2 Capacity limited No Fixed

Chapter 3 Capacity limited No Random (shadowing)

Chapter 4 Rayleigh Yes Random (fixed stat.)

Table 1.3: Comparison of the bit management models across the different chapters.

MCS selection Extracted bits

Chapter 2 No Fixed

Chapter 3 No (determined by the CQI) Variable (function of the CQI)

Chapter 4 Yes Variable (function of MCS)

1.2.2 Mapping with the 5G model

In practical communication systems such as 5G, data belongs to different applications. The data, in the
form of packets of bits, originate from the IP layer and are transmitted to layer 2 of the open systems
interconnection (OSI) model.

Figure 1.3 depicts the four sub-layers composing layer 2 in 5G. A complete description of these
layers is provided in [7, Chapter 6] and in [8, 9, 10, 11] for service data adaptation protocol (SDAP),
packet data convergence protocol (PDCP), radio link control (RLC) and medium access control (MAC)
sub-layers respectively.

21



Segm.

ARQ

Multiplexing UE1

Segm.

ARQ
...

HARQ

Multiplexing UEn

HARQ

Scheduling / Priority Handling

Logical Channels

Transport Channels

MAC

RLC
Segm.

ARQ

Segm.

ARQ

PDCP

ROHC ROHC ROHC ROHC

Radio Bearers

Security Security Security Security

...

RLC Channels

SDAP
QoS flow

handling

QoS Flows

QoS flow

handling

Figure 1.3: Downlink Layer 2 structure (from [12, Section 6.1]).

The different sub-layers work as follows:
� The SDAP sub-layer [8] maps the different QoS flows to appropriate data radio bearer (DRB),

ensuring that each flow is handled according to its QoS requirements, as identified by its QoS flow
identifier (QFI). Figure 1.4 provides an illustrative example using real application traffic such as
WhatsApp, Skype, YouTube, and Netflix. It shows how IP flows are classified through traffic flow
template (TFT), associated with specific QFIs, and mapped to corresponding DRBs. The user
plane function (UPF) is a gateway between the radio access network (RAN) and external networks
such as the internet [7]. The SDAP layer was introduced in the 5G. In this thesis, we considered
that the QoS flows are already mapped into radio bearers and by abuse of language we sometimes
refer to the radio bearers as QoS flows or types of traffic.

� The PDCP sub-layer [9] which performs robust header compression (ROHC) and ciphering.
� The RLC sub-layer [10] which performs internet protocol (IP) packets fragmentation and automatic

repeat request (ARQ). In this thesis, we assume that the packets are already fragmented and we
aim to transmit correctly the fragment that we call by abuse of language ”packets”.

� The MAC sub-layer [11] which performs scheduling and resource allocation of the different fragment
and manages hybrid automatic repeat request (HARQ). The multiplexing operation of the MAC
layer in Figure 1.3 corresponds to taking the data from several logical channels (control or user
data) that have been granted resources by the scheduler, and assembling them into one transport
block. A transport block is the basic data unit exchanged between the PHYsical (PHY) and the
MAC layers, according to the definition given in [13]. The power level and MCS are selected at
the MAC layer and are then applied at the PHY layer (layer 1 of the OSI model).

22



Figure 1.4: QoS flows to radio bearers mapping (from https://devopedia.org/

5g-quality-of-service).

1.3 State of the art of heuristics for scheduling

This section reviews existing work on heuristic methods, which will serve as baseline comparisons for
packet scheduling. Several surveys have already been conducted on scheduling algorithms in both long
term evolution (LTE) and 5G networks. For instance, [14] focuses on heuristics only for LTE, while [15]
provides a review for both heuristic and DRL schedulers for 5G. More recently, [16] has introduced a
LLM-based approach that generates scheduling heuristics from natural language intents and offers an
overview of various existing algorithms.

The survey in [14] categorizes scheduling algorithms along the following classification:
� Channel-unaware (CU) or channel-aware (CA),
� QoS-unaware (QU) or QoS-aware (QA),

leading to four groups:
1. CU-QU,
2. CA-QU,
3. CU-QA,
4. CA-QA.

In contrast, [15] classifies scheduling algorithms based on both their parameters and their performance
objectives. The classification proposed in [15] provides a fine level of granularity, but tends to be overly
specific, often resulting in characterizing each algorithm individually. By contrast, the classification
from [14] offers a more coherent grouping, allowing for meaningful comparisons while still capturing the
essential characteristics of each algorithm. This is why we adopt the classification from [14] in this
chapter.

The general buffer selection rule of heuristic based schedulers can be written as [14, Eq. (1)]:

i∗k = argmax
i

hheur(xi,k), (1.1)

23

https://devopedia.org/5g-quality-of-service
https://devopedia.org/5g-quality-of-service


where xi,k are the features of buffer i of the scheduling index k (i.e. combining slot and RB) and hheur

is the function computing the metric of heuristic heur.
Table 1.4 presents a subset of popular heuristics schedulers. Other heuristics can be found in [14],

[15] or [16] for instance.

Table 1.4: Subset of popular heuristics schedulers.

Heuristic Date References Channel-aware QoS-aware

Round-Robin 1964 [17] No No

EDF 1969 [18] No Yes

PF
1999 (presentation in Bell
labs - see [19, ref. 3])

[20] Yes No

LWDF 2001 (submitted in 1999) [21] No Yes

EXP-rule 2000 [22] [23] Yes Yes

MLWDF 2004 (submitted in 2000) [24] Yes Yes

EXP/PF 2003 [25] Yes Yes

GPF 2005 [26] Yes No

LOG-rule 2009 [27] [28] Yes Yes

Knapsack 2013
[29], [30] (and
adapted in [6])

Yes Yes

A criterion to evaluate the performance of a scheduling algorithm (or policy) is the analysis of its
stability region, which characterizes the set of arrival rates for which the scheduling policy keeps all buffers
stable. The definitions of stability region and stable buffer assume that the buffers have infinite capacity,
which does not hold in our case. In the case of an infinite-capacity buffer, the number of packets ni,k+1

at step k + 1 depends on the number of packets the channel allows to transmit, denoted ci,k, at step k,
the number of arriving packets nr

i,k (a random variable), and the number of packets already in the buffer
ni,k at step k:

ni,k+1 = max(ni,k − ci,k, 0) + nr
i,k. (1.2)

Note that in case of finite buffers with length B, (1.2) becomes:

ni,k+1 = min
(
max(ni,k − ci,k, 0) + nr

i,k, B
)
. (1.3)

Remark: We explicitly write the index k for the number of packets ni,k for the sake of clarity, unlike in
Section 1.2 where it was omitted to lighten the notation.

Let us note λi and c̄i the arrival rate, i.e. the number of packets arriving in average at each slot,
and the ”service” rate, i.e. the average number of packets that it is possible to extract at each slot, for
buffer i. Mathematically:

λi = lim
K→∞

1

K + 1

K∑
k=0

E[nr
i,k] (1.4)

and

c̄i = lim
K→∞

1

K + 1

K∑
k=0

E[ci,k] (1.5)

Let us define the notions of stability. The definition of a strongly stable buffer is given in [31, Definition
3.1], and signifies that the number of packets in the buffer does not grow indefinitely.

24



Definition 1 ([31, Definition 3.1]). A buffer i is called strongly stable if:

lim sup
K→∞

1

K + 1

K∑
k=0

E [ni,k] <∞.

According to [31, Lemma 3.6]:
λi ≤ c̄i (1.6)

is a necessary condition for strong stability, and:

λi < c̄i (1.7)

is a sufficient condition for strong stability.
Now, let us define the stability of a network.

Definition 2 ([31, Definition 3.2]). A network is strongly stable if all individual buffer of the network
are strongly stable.

With nQ buffer the condition for the network stability, for a single server (i.e. in our case one RB),
is [32, Section 3.4.2] [33]:

nQ−1∑
i=0

λi

c̄i
< 1. (1.8)

For Nf servers (i.e. Nf RBs), in a time-slotted system, the condition ensuring network stability can be
expressed as [34]:

nQ−1∑
i=0

λi

c̄i
< Nf . (1.9)

In contrast, for non time-slotted systems, where packets remain in service until completion, if there are
multiple servers and different service rates for the different buffers, the analysis becomes quite intractable
[32, Section 3.4.2.3].

Now let us define the stability region.

Definition 3 ([35, Adaptation of Definition 3.2]). The stability region Λπ of policy π is the set of
multiclass arrival rate λ = [λ0, . . . , λnQ−1] for which the system (i.e. a queuing network) is stable under
policy π.

Now, let us define a throughput-optimal policy:

Definition 4 (Adaptation of [24]). A throughput-optimal policy is a policy maximizing the stability
region.

Definition 4 implies that, under a throughput-optimal policy, the number of packets in the buffer
does not grow indefinitely.

Among the different policies from Table 1.4, the modified largest weighted delay first (MLWDF), the
exponential rule (EXP-rule) and the logarithmic rule (LOG-rule) are throughput-optimal [24]. However,
policies such as round-robin (RR) or proportional fair (PF) are not throughput-optimal.

The rest of this section is organized as follows. Section 1.3.1 presents the RR. Section 1.3.2
presents the earliest deadline first (EDF). Section 1.3.3 presents the PF and the generalized PF (GPF).
Section 1.3.4 presents the largest weighted delay first (LWDF) and the MLWDF. Section 1.3.5 presents

25



the LOG-rule. Section 1.3.6 presents the EXP-rule and the EXP/PF. Section 1.3.7 presents the knapsack
(KP).

Remark: In the following, the value of d0,i depends on the index k, which was omitted in Section 1.2
for simplicity of notation but is made explicit here for clarity. Accordingly, we denote d0,i,k the HoL of
buffer i at index k.

1.3.1 Round-robin

The RR is a CU-QU scheduling algorithm aiming to assign equal time or resource shares to buffers in a
cyclic order. The expression of the metric of RR is:

hRR(xi,k) := Ti,k, (1.10)

where Ti,k corresponds to the number of RBs that have elapsed since buffer i was served. It is set to 0
when it is scheduled, yielding:

Ti,k =

{
Ti,k−1 + 1 if buffer i is not scheduled at slot k

0 if buffer i is scheduled.
(1.11)

1.3.2 Earliest deadline first

The EDF is a CU-QA scheduling algorithm aiming to schedule buffers with the shortest deadline. The
expression of the metric of EDF is:

hEDF(xi,k) :=
1

Dti − d0,i,k
. (1.12)

Note that for BE traffic introduced in Section 1.2, Dti = +∞. As a result, hEDF(xi,k) = 0 for all the BE
buffers, meaning that they will never be scheduled. Therefore, the EDF metric is not suitable to handle
both DC and BE traffic flows.

1.3.3 Proportional fair

PF [20] is a CA-QU scheduling algorithm selecting UE with favorable channel conditions while maintaining
fairness between UE/buffers by considering the proportional gain relative to past average achieved rate.
The expression of the metric of PF is:

hPF(xi,k) =
ci,k
c̄i,k−1

, (1.13)

where c̄i,k is the average achieved rate for buffer i during the previous slots. In this thesis, we consider
the empirical average rate:

c̄i,k =
1

k

k∑
k′=1

ci,k′δk′(i), (1.14)

with,

δk(i) =

{
1 if i is selected for the combination RB/slot k

0 otherwise
. (1.15)

26



Note that in the literature, c̄i,k−1 in (1.13) is conventionally replaced by the average rate estimation
c̃i,k−1, which uses a sliding window and can be written as:

c̃i,k = (1− τPF)c̃i,k−1 + δk(i)τPFci,k. (1.16)

Equation (1.16) requires tuning an hyperparameter τPF ∈]0, 1[, which is not necessary in the estimator
(1.14).

In [26], a general version of the PF algorithm is introduced. This version called GPF is given by:

hGPF(xi,k) =
(ci,k)

α

(c̄i,k)β
, (1.17)

where α ≥ 0 and β ≥ 0 are parameters tuning the trade-off between fairness and throughput. With
α = β = 1, conventional PF is achieved. With α > 0 and β = 0, only the achievable throughput
is taken into account, yielding max throughput (MT) (also called ”max rate” or ”max SNR” or ”best
CQI”) scheduling algorithm. With α = 0 and β > 0, only the past average throughput is taken into
account, yielding blind equal throughput (BET) scheduling algorithm [14].

1.3.4 MLWDF

Let us first introduce the LWDF [21] scheduling algorithm, which is a CU-QA scheduling algorithm whose
expression is:

hLWDF(xi,k) := ηid0,i,k, (1.18)

where ηi is a weight which depends on the type of traffic of buffer i.
The MLWDF [24, 36], which is derived from LWDF, takes into account user specific time-varying

channel for wireless communications. Therefore, MLWDF is a CA-QA scheduling algorithm that prioritizes
users based on a weighted metric combining channel quality and the HoL. The expression of the metric
of MLWDF is:

hMLWDF(xi,k) := αi,kηici,kd0,i,k, (1.19)

where αi,k and ηi are hand-tuned parameters. Common choices are αi,k = 1
c̄i,k−1

and ηi =
− log (10−2)

Dti

[14].
Note that for BE traffic introduced in Section 1.2, Dti = +∞ and thus ηi = 0. As a result,

hMLWDF(xi,k) = 0 for all BE buffers, meaning they will never be scheduled. To alleviate this undesirable
behavior, we follow the recommendation from [14] suggesting that MLWDF is used for DC traffic and
PF is used for BE traffic. Since the PF is not throughput-optimal (Definition 4), BE buffers may become
unstable, potentially leading to significant BO.

1.3.5 LOG-rule

LOG-rule [27, 28] is also a CA-QA scheduling algorithm that prioritized user based on the combination
of channel quality metric and a logarithm function of the HoL packet delay. The expression of the metric
of LOG-rule is:

hLOG−rule(xi,k) := αi,kci,k log (βi + ηid0,i,k) , (1.20)

where αi,k, βi and ηi are hand-tuned parameters. Common choices are αi,k = 1
c̄ i,k−1

, βi = 1.1 and

ηi =
5

0.99Dti
such as recommended in [37] and in [14].

27



Note that for BE traffic, ηi = 0 because Dti = +∞. As a result, for BE buffers the LOG-rule
metric is equal to

ci,k
¯ci,k−1

log(1.1), which is the PF metric multiplied by a factor close to 0, meaning that

they would rarely be scheduled. As for MLWDF, the LOG-rule expression is used for DC traffic and PF
expression is used to handle BE traffic.

1.3.6 EXP-rule

EXP-rule [23] is also a CA-QA scheduling algorithm that prioritizes users based on the combination of
channel quality metric and an exponential function of the HoL packet delay. The expression of the metric
of EXP-rule is:

hEXP−rule(xi,k) := αi,kci,k exp

(
ηid0,i,k
1 +
√
χk

)
(1.21)

where αi and ηi are hand-tuned parameters. Common choices are αi,k = 1
c̄i,k−1

, ηi ∈
[

5
0.99Dti

, 10
0.99Dti

]
and χk = 1

nLnDC

∑nL−1
ℓ=0

∑nDC−1
t=0 η(ℓ,t)d0,(ℓ,t),k in [37], corresponding to the average weighted HoL WT of

DC buffers. Thanks to the exponential, the buffers with urgent delay are more prioritized than with the
MLWDF or LOG-rule. The denominator in the exponential tends to smooth the delay, in order not to
give it too much importance compared to the channel condition. Another expression of the metric of
EXP-rule is given in [23]:

hEXP−rule(xi,k) := αi,kci,k exp

(
ηid0,i,k − χk

1 +
√
χk

)
(1.22)

where the parameters αi,k, ηi and χk are the same as for (1.21). It is worth noting that if there are
only DC traffic, χk at the numerator can be dropped without changing the rule as it is common for all
buffers.

Another version of the EXP-rule, called in the literature EXP/PF, handle the DC traffic with (1.22)
and the BE traffic with (1.13). In this case, the χk at the numerator tends to de-prioritize DC traffic to
serve more often BE traffic.

1.3.7 Knapsack

The KP from [29] and [30] is defined as the weighted sum of hyperbolic tangent. The expression of the
metric of KP is:

hKP(xi,k) :=
4∑

j=1

αj tanh (vj(xi,k)), (1.23)

with αj > 0 for j ∈ {1, 2, 3, 4} and

v1(xi,k) :=
d0,i,k
Dti

(1.24)

v2(xi,k) :=
ξi,k

ξtargeti

(1.25)

v3(xi,k) :=
10− ρi

9
(1.26)

v4(xi,k) :=
ni,k

B
, (1.27)

28



where ξi,k is the achieved packet loss rate (PLR) for buffer i at step k, ξtargeti is the acceptable PLR
defined by in the QoS tables [38] and ρi ∈ {1, . . . , 9} is the bearer priority of buffer i with 1 being the
highest priority. If we consider that ξi,k in (1.25) includes the loss due to channel, this version of KP is
a CA-QA scheduling algorithm. Otherwise, this version of KP is a CU-QA scheduling algorithm.

1.4 State of the art of DRL solutions for scheduling

To the best of our knowledge, new approaches based on DNN architectures trained using DRL have been
introduced to tackle the scheduling problem since 2017 with [39]. One advantage of DNN architectures
is their ability to accommodate as many features as desired. This makes it straightforward to increase
the number of features at the input of the DNN compared to heuristics. Moreover, since DRL operates
in a model-free context, it allows for the design of customized objectives through the reward function.

1.4.1 Classification of the DRL schedulers

One can find several surveys on scheduling with DRL in the literature. For example, [15] focuses
primarily on performance objectives, without addressing the design of state and action spaces. Similarly,
[40] provides a more comprehensive review, but is limited to a specific family of RB allocation strategies,
namely the fine-grained approach as defined in [41].

In this thesis, we propose a new classification of the DRL approaches according to their action spaces,
state spaces and rewards. The action space characterizes how the RBs are allocated. The state space
includes the features used for decision-making and can be compared to the channel and QoS awareness
of the heuristics, as it will be discussed later in this section. The reward is defined according to the
performance goal.

1.4.1.1 Classification based on the action space

The outputs of the DNN determine the possible actions, and as a consequence determine how the RBs are
allocated. The action may, for example, correspond to the index of the buffer to be scheduled, the index
of a specific buffer/RB combination, or the proportion of RBs allocated to each UE as determined by a
softmax. Consequently, the classification of RB allocation approaches is essentially a characterization of
the action space used by the different DRL-based schedulers.

In the taxonomy of [41], two families are distinguished: the fine-grained approach, where resource
allocation is performed directly by the DNN architecture, and the coarse-grained approach, where the
DNN architecture selects an heuristic that carries out the allocation.

One of the contributions of this thesis is to extend the classification from [41] by introducing additional
sub-classes, thereby refining the taxonomy while maintaining its overall coherence. Figure 1.5 represent
the proposed new categories:

� We add the sub-category tune heuristic in the coarse-grained category, to include heuristic param-
eters tuning.

� We add two sub-categories in the fine-grained:
– The sequential RB scheduling (SRS) approach, where the agent performs allocation RB per

RB. To fill the whole frequency band, composed by Nf RBs, the agent has to perform Nf

inference steps.
– The global RB scheduling (GRS) approach, where the agent allocates directly the set of RBs

to the different buffers, in one inference step. We identified two possibilities:

29



* The architecture provides a proportion of RBs to be allocated per UEs, which is referred
to as GRS-proportion (GRS-P).

* The architecture selects the UE to be scheduled for each RB, which is referred to as
GRS-index (GRS-I).

It should be noted that the acronyms SRS, GRS-I, and GRS-P along with the corresponding classifi-
cations are newly proposed and were first introduced in our prior work [42].

Scheduling 
with DRL

Fine grainedCoarse 
grained

SRS GRS

GRS-I GRS-P

Select 
heuristics Tune heuristic

Figure 1.5: Classification of the different DRL methods for scheduling. White ovals are from [41], and
blue ones represent our proposed new classification categories.

Let us classifies the different DRL schedulers based on their action space, state space, reward and
studied performances.

Table 1.5 presents the action space of different DRL schedulers from the literature into three main
categories: coarse-grained, fine-grained, and other approaches.

Table 1.5: Classification based on the action space.

Coarse-grained approach Fined grained approach Other
Selection of
heuristic

Heuristic pa-
rameter tun-
ing

SRS GRS-P GRS-I

[39] [43] [44] [45] [46] [47] [48][49]
[50] [41] [51]
[52] [53] [54]

[55] [56] [57]
[58] [59] [60]

[61] [62] [63]
[64] [65] [66]

[67] [68]

In coarse-grained methods, at each time step, the agent either selects a scheduling heuristic from a
predefined set [39, 43, 44] or tunes the parameters of a chosen heuristic [45, 46]. In particular, [46] tunes

30



parameters for each buffer, while [45] tunes the α, β and τPF parameters of the GPF scheduler given
by (1.17). This design reduces the size of the action space, simplifying learning, but may limit flexibility
and optimality.

Fine-grained approaches allow more direct control over the decisions:
� SRS which needs a forward pass for each RB allocation [48, 47, 49, 50, 41, 51, 52, 53].
� GRS-P outputs proportion of RB for each UE [55, 56, 57, 58, 59, 60]. However, an additional

operation is needed to provide an integer number of RB for each UE.
� GRS-I selects UEs for each RB with a single forward pass [61, 62, 63, 64, 54, 65]. Multiple

approaches are possible: [61, 64] output values for each combination UE/RB and select the one
maximizing this value. [62] has Nf outputs and rescales it in [1, nL], and uses the ceiling operator
to select a UE per RB. [63] uses pointer networks to select UE for the different RB. Multiple
works leverage the AB architecture, such as [54, 65, 66], to handle the large number of action. In
particular, [54] leverages AB architecture in a non-orthogonal multiple access (NOMA) framework,
where all the UEs share a band and can be simultaneously scheduled within it. [65] integrates
graph neural network (GNN) and AB to allocate combinations of UEs for each sub-band, where a
sub-band is a node of the GNN.[66] proposes a DRL method combining the AB architecture with
stable matching to jointly select the MCS and UEs for different RBs.

In the other category, [67] aims to deliver packets to dedicated applications. The action is thus the
selected application (it does not consider PHY layer and by extension RB). [68] does not provide clear
information about its action space.

Overall, the literature reveals a trade-off between granularity and complexity: coarse-grained ap-
proach, which may be more predictable since it relies on well-known heuristics but may be suboptimal,
whereas fine-grained designs offer higher adaptability at the expense of larger action spaces and longer
training times.

1.4.1.2 Classification based on the state space

The state space defines the input of the DNN, specifying the features used for optimization. Similar
to heuristic methods, it also determines whether the DNN is CU or CA and QU or QA. Table 1.6
summarizes the used features in the state space in recent DRL-based scheduling approaches for wireless
networks, categorizing them into six main features:

� QA relative features
– HoL delay.
– Number of packets (NP) per buffer.
– All packet delays (APD).

� CA relative features
– CQI (or SNR or instantaneous rate or throughput).
– Average Rate.

� Other features
– Features that do not fall into the previously defined sub-categories. They may belong to CA,

QA, or neither, but still differ from the other sub-categories.
It should be noted that the acronyms NP and APD are newly proposed and were first introduced in

our prior work [69].

31



Table 1.6: Classification based on the state space.

QA features CA features Other
HoL NP APD CQI Average rate Other

[55] [49] [61]
[57] [44] [58]
[64] [68] [46]
[59] [60]

[43] [55] [67] [49]
[50] [61] [62] [63]
[51] [45] [58] [64]
[68] [59] [53] [65]

[51] [54] [39] [43] [47] [55]
[49] [50] [48] [61]
[56] [62] [41] [57]
[63] [44] [51] [45]
[58] [52] [64] [68]
[46] [59] [54] [53]
[65] [66] [60]

[47] [55] [49]
[50] [48] [45]
[46] [53]

[39] [43] [50]
[48] [61] [56]
[41] [44] [52]
[68] [59] [54]
[66] [60]

The HoL delay is one of the most frequently used state features, appearing in numerous works such
as [55, 49, 61, 57, 44, 58, 64, 68, 46, 59, 60]. Its prevalence reflects the importance of tracking the
waiting time of the oldest packet in the buffer, which is directly related to meeting delay constraints.

Similarly, the NP in the buffer is widely used [43, 55, 67, 49, 50, 61, 62, 63, 51, 45, 58, 64, 68, 59,
53, 65] as a measure of buffer occupancy and congestion level.

The APD [51, 54] appears less frequently. Even if it is possible to use all this information thanks to
DNN, the HoL is preferred maybe due to its simplicity.

The CQI is the most represented PHY layer related metric, used extensively [39, 43, 47, 55, 49, 50,
48, 61, 56, 62, 41, 57, 63, 44, 51, 45, 58, 52, 64, 68, 46, 59, 54, 53, 65, 66, 60], confirming its role as
a key indicator for scheduling and resource allocation.

The average rate is less frequent but still present in several works [47, 55, 49, 50, 48, 45, 46, 53],
typically serving as a throughput-oriented performance measure.

Finally, the Other category encompasses additional variables such as fairness metrics, number of
arriving packets, user priorities, or QoS class identifiers [39, 43, 50, 48, 61, 56, 41, 44, 52, 68, 59, 54, 66].

Overall, the table shows a strong emphasis on simple buffer-related features (HoL, NP) combined with
link quality indicators (such as the CQI). This reflects a consensus in the literature that effective DRL
schedulers must jointly capture both buffer dynamics and channel conditions to optimize performance.

1.4.1.3 Classification based on the reward

The reward specifies the objectives optimized by the DRL-based scheduler. These objectives may in-
clude minimizing packet loss and delay, maximizing throughput and fairness, or a combination of these
objectives.

Table 1.7 presents the reward optimized by different DRL schedulers from the literature.

Table 1.7: Classification based on the reward.

Packet loss Throughput Fairness Delay Other

[39] [43] [67]
[49] [64] [53]
[54]

[39] [47] [55]
[49] [50] [48]
[41] [45] [58]
[52] [64] [68]
[59] [53] [65]
[66]

[47] [55] [49]
[48] [41] [52]
[53] [65]

[39] [43] [55]
[61] [57] [44]
[51] [45] [58]
[46] [59]

[56] [62] [63]
[51] [58] [64]
[68] [59] [60]

32



Many studies target packet loss minimization [39, 43, 67, 49, 64, 53, 54]. Throughput maximization
is another widely used reward criterion [39, 47, 55, 49, 50, 48, 41, 45, 58, 52, 64, 68, 59, 53, 65, 66],
reflecting the goal of efficient resource utilization.

To ensure equitable resource distribution, several approaches incorporate fairness metrics in their
rewards [47, 55, 49, 48, 41, 52, 53, 65]. Furthermore, delay-sensitive rewards are integrated in delay-
critical applications to meet stringent latency requirements [39, 43, 55, 61, 57, 44, 51, 45, 58, 46, 59].

Some works extend reward formulation to capture different objectives, the number of remaining
packets in the buffers [62].

Considering multiple objectives (i.e., multiple criteria in the reward function) is common in scheduling
problems. However, optimizing these objectives requires selecting appropriate weights for each criterion,
which requires careful weight tuning. To the best of our knowledge, [53] is the only work proposing a
multi-objective solution that can adaptively handle different weightings for the various objectives.

1.4.1.4 Classification based on the performance metrics during the inference phase

DRL-schedulers are trained to maximize their expected discounted return (EDR) (Section A.2.5). How-
ever, this does not necessarily guarantee good performance during inference: 1) with respect to the
objectives of the reward function, 2) with respect to other relevant telecommunication metrics. It is
therefore essential to evaluate performance against these metrics during the inference phase.

Table 1.8 provides the evaluated performance metric of different DRL schedulers from the literature.

Table 1.8: Classification based on the performance during the inference phase.

Training reward Packet loss Throughput Fairness Delay Other

[43] [49] [41] [57]
[44] [51] [45] [58]
[52] [64] [68] [46]
[65]

[43] [55] [67]
[49] [57] [44]
[45] [58] [64]
[53]

[47] [55] [49]
[50] [48] [61]
[62] [41] [63]
[45] [58] [52]
[64] [46] [59]
[53] [66] [60]

[47] [55] [49]
[48] [56] [62]
[41] [63] [52]
[53]

[43] [55] [61]
[62] [57] [44]
[64] [68] [46]
[59]

[39] [61] [56]
[44] [64] [68]
[59] [54] [66]
[60]

Most works evaluate their methods using the throughput, reflecting spectral efficiency in wireless
networks. Then, the reward is the second most studied performance, reflecting the training of the DNN
and if the reward aligns with other performance goals. The packet loss, the fairness and the delay are
also well-studied. The packet loss reflects the reliability of the trained scheduler. The fairness reflects
how the resource allocation is balanced among users, which is critical in multi-user scenarios.

A subset of works include other performance indicators, such as energy efficiency or buffer stability,
to capture broader system objectives.

Overall, this table highlights the diverse evaluation criteria adopted by existing DRL schedulers,
demonstrating that SotA solutions strive to optimize multiple, sometimes conflicting, performance aspects
to meet complex network demands.

1.4.2 Analysis of the scheduler properties

Based on our experience in scheduling, we argue that a good DNN architecture for a scheduler should
satisfy the following properties:

33



� It should be able to operate with a variable number of links. Since the number of UEs (or links) may
vary over time, the DNN architecture must be sufficiently flexible to accommodate such changes.
We denote this property as number of links independent (NLI).

� It should be permutation equivariant (PE) with regards to the inputs since this property provides
superior performance for both learning and inference phases [70].

� It should jointly consider the buffer information of all UEs (or links) when performing scheduling, in
order to provide a global and thus potentially optimal solution. Indeed, it is reasonable to assume
that maximizing the EDR by taking into account all the buffers yields better performance than
relying on only a subset of the buffers. We denote this property as global buffer management
(GBM).

Remark: The NLI property enables the architecture to handle a varying number of links, but it does not
necessarily guarantee good performance. The performance depends on the training process (algorithm,
hyperparameters, dataset...) and the architecture’s ability to generalize, which shall be evaluated by
simulations.

One important feature to classify the solutions proposed in the literature is the way the state vectors
are fed at the input of the DNN architecture. Let fℓ denote the nS × 1 column state vector of link ℓ
where nS is the number of the state components. We can identify two approaches:

1. The state vectors are defined as single column nLnS × 1 vectors [fT0 , f
T
2 , . . . , f

T
nL−1]

T where T
denotes the transposition operator and nL is the number of links. We refer to this case as vector
state input (VSI).

2. The state vectors are fed in series (one after the other) corresponding to gathering the vectors into
the nS × nL matrix [f0, f2, . . . , fnL−1]. We refer to this case as matrix state input (MSI).

It should be noted that the acronyms NLI, GBM, VSI, and MSI along with the corresponding classi-
fications are newly proposed and were first introduced in our prior work [69].

Table 1.9 classifies the DRL schedulers from the literature according to their properties (NLI, PE,
and GBM) and the form of their input state (VSI or MSI).

Table 1.9: Properties of the DNN used in the SotA.

NLI PE GBM NLI+PE NLI+GBM PE+GBM NLI+PE+GBM

VSI [50] [68]

[39] [47] [51]
[67] [49] [61]
[56] [62] [41]
[57] [44] [51]
[58] [52] [64]
[46] [54] [53]
[65] [66]

[43] None None None

MSI None None None [55] [59] [45] [48] [63] [45] None [60]

The majority of the different works uses a VSI and are GBM. These works are by construction neither
NLI nor PE. Even if [51] mimics the PE property by performing permutation of the buffers at the input
of the DNN, it is not strictly speaking a PE architecture.

To get the NLI property while using a fully connected (FC) DNN, [50] proposes to first select a fixed
number of links using a PF heuristic and then to build a VSI with the selected links as input to the
network. Since a FC is used, the architecture is not PE and since only a subset of the links are used to
perform the scheduling it is not GBM.

34



[68] seems to be NLI according to their simulation. However, the authors do not provide clear
information about their state space and DNN architecture to determine if it is also PE and/or GBM and
if the state input is really a vector or a matrix (by default, we consider that it is a vector).

[45] is not clear on how the characteristics of the UEs are used by the DNN. Depending on how it is
proceeded, it is either NLI and PE, or NLI and GBM.

References [63, 48] use pointer networks [71] that involves internal memory (or hidden states).
These solutions are NLI, by construction, and GBM thanks to the hidden state, but are not PE since the
scheduling decision depends on the input order of the state vectors [72].

[43] and [59] mimic the GBM property by using statistics of the network, such as the average HoL
and its standard deviation for instance, for the state space vector for [39] or in the state vector of each
UE in addition of their individual features at the input of the DNN. However, it is not strictly speaking
GBM. [43] is NLI even if it uses VSI since it selects an heuristics to perform the scheduling.

We propose in this Thesis to resort to the EOT architecture, which is described in Sec-
tion A.4.2, since it satisfies the three previously-listed properties, thanks to its attention
mechanism.

Similar to the approach we develop in the following chapters, the method proposed in [60] satisfies
the NLI, PE, and GBM properties. However, their system model differs from ours. Specifically, they
assume that each UE has only a single packet to transmit, whereas our model accounts for multiple
types of traffic per UE, with packets arrivals, as described in Section 1.2. The key component enabling
their architecture to satisfy the NLI, PE, and GBM properties is the use of Deep Sets [70]. It is worth
noting that the term 1

nL
11T in [60, Equation 10] functions as a uniform attention mechanism, analogous

to that described in Section A.4.2 with (A.86), as it assigns equal importance to all UEs when pooling
their features. Furthermore, the term xΓ in [60, Equation 10] can be interpreted as a learned projection,
analogous to the ‘value’ component in the attention mechanism.

Transformers (Section A.4.2) extend this pooling by replacing the uniform weighting with a learned
attention mechanism that dynamically adjusts the importance of each UE based on its current state. For
example, a UE with a large number of packets nearing their deadlines may be assigned more attention
than one with a single packet and a relaxed delay constraint.

1.5 Conclusion

In this chapter, we presented the general system model underlying our study, detailing both the buffer
and channel configurations used across Chapter 2 to Chapter 4. We introduced a range of heuristic
approaches as well as an overview of existing DRL-based methods for scheduling and resource allocation.
Additionally, we demonstrated how the proposed system model aligns with the 5G framework, establishing
its relevance for current and future wireless communication standards.

We categorized the various DRL-based methods based on their level of scheduling granularity. In
coarse-grained approaches, the DRL agent either selects a scheduling heuristic or tunes its parameters.
In contrast, fine-grained approaches involve the DRL agent directly selecting the buffers to be scheduled.
We proposed to classify these fine-grained methods into three categories:

� SRS: a separate forward pass is executed for each RB, selecting one buffer at a time.
� GRS-P: a single forward pass outputs a proportion of the bandwidth allocated to each buffer.
� GRS-I: a single forward pass determines which buffer is assigned to each RB individually.
We recommended that an effective DNN architecture for scheduling must satisfy three key properties:
� NLI: the ability to handle a variable number of buffers without requiring retraining.

35



� PE: the output should preserve the order of inputs, meaning that permuting the input buffers
results in the same permutation in the output.

� GBM: the architecture must take into account all buffers in the network when making scheduling
decisions.

From the SotA analysis, we observed there is no reference using VSI and having the three properties
GBM, NLI and PE, with the fine-grained approach. Except [60] which uses Deep sets, solutions based
on MSI are NLI by construction but cannot achieve both PE and GBM at the same time. The solutions
proposed in this thesis (Chapter 2, Chapter 3, and Chapter 4) are based on the EOT architecture,
which differentiates itself from the SotA by simultaneously satisfying the three required properties and
enhancing the pooling operation of Deep Sets through its attention mechanism. We also identified the
AB architecture as a suitable approach to handle large action spaces and adopted it in Chapter 3 and
Chapter 4.

36



Chapter 2

Slot-based scheduling

2.1 Introduction

This chapter addresses the problem of slot-based scheduling, which corresponds to a slot-by-slot allocation
considering a single RB (Nf = 1).

In this chapter, a scheduling relying on an EOT architecture trained using a deep Q-Learning (DQL)
algorithm is proposed. We have selected an EOT architecture that possesses the three properties men-
tioned in Section 1.4.2: PE, NLI, and GBM. In DRL, the DNNs take as input vectors belonging to the
state space, which plays a key role in system performance and is defined by the solution designer. Most
of the schedulers proposed in the literature (both heuristics and DNNs) primarily use the HoL or NP in
the buffers, or both. In this Chapter we investigate two new state space models for the DC traffic:

� An extended version of the HoL, denoted extended HoL (xHoL), as the HoL value augmented by
its multiplicity, i.e., the number of packets sharing the same HoL value. The number of entries in
the state vector increase by one for each DC buffer compared to the conventional HoL.

� A state model that considers the WT information of all packets in the buffers, referred to as APD.
This state has higher cardinality than the HoL or xHoL but is expected to improve performance.

The main contributions of this chapter are:
1. The proposal of a DRL scheduling solution that mitigates the PLR due to BO and DV using an

EOT architecture.
2. The performance evaluation and comparison of three different state spaces for DC traffic, i.e. the

conventional HoL, the proposed xHoL and APD.
3. The performance assessment of the proposed architecture in terms of PLR concerning packet arrival

rate and the number of links.
The rest of the chapter is organized as follows. Section 2.2 describes the system model. Section 2.3

introduces the optimization problem. Section 2.4 describes the implementation of the evaluated solutions.
Section 2.5 presents the methodology of evaluation. Section 2.6 presents and analyzes the numerical
results. Finally, Section 2.7 offers concluding remarks.

2.2 System model

We consider a communication network depicted in Section 1.2 with nL active links, each characterized
by two kinds of traffic: DC and BE.

Let C := {nc
0, · · · , nc

nL−1} be the set of channel capacities for the different links, where nc
ℓ is the

37



number of packets that the channel associated with link ℓ can support for an error-free transmission. We
note nc

max := max C.
A buffer i is selected by the scheduler at each time slot. Then, the nt

i := min(nc
ℓi
, ni) oldest packets

are extracted from this buffer and transmitted through the channel. Let nd
i be the number of packets

with WT equal to Dti after the extraction. A DV occurs and these packets are discarded, thus leading
to packet loss (PL). It is worth noting that nd

i = 0 for BE buffers, since there is no DV for this
traffic. Let ne

i := nt
i + nd

i be the total number of packets leaving buffer i. Then, the WT time of each
remaining packet is incremented by 1, and the number of remaining empty entries in the buffer is equal to
κi = B−ni+ne

i . After that, nr
i packets arrive in buffer i following a Poisson distribution with parameter

λi ∈ [0, λmax]. We note Λ =
∑nQ−1

i=0 λi, the global arrival rate (GAR). There are no
i = max(0, nr

i − κi)
additional discarded packets due to BO. This process is repeated at each slot.

Our objective is to design a scheduler mitigating the PLR due to BO and DV.

2.3 Problem formulation

The objective to mitigate the PLR is translated into minimizing the number of lost packets due to BO
and DV over an infinite horizon by modeling the scheduling problem as an MDP.

2.3.1 MDP formulation

Such as stated in Section A.2.4, an MDP models decision-making problems partly under control and
partly random due to a random perturbation. The random perturbation wk is in our case the number of
packets arriving in the buffers nr

k = {nr
0,k, . . . , n

r
nQ−1,k} at step k (wk ∈ N2nL).

In the following, we define tailored state and action spaces and reward that define an MDP fitting
the scheduling problem.

2.3.2 State space

Let Sℓ be the set of all the possible states for link ℓ, which can be decomposed as Sℓ = SDC
ℓ ×SBE

ℓ ×Scapa
ℓ

with SDC
ℓ , SBE

ℓ and Scapa
ℓ are the set of state for the DC buffer, for BE buffer and for channel capacity

respectively. The number of possible states for each set is:
� |SDC

ℓ | depends on the considered representation. The details for each are given in the dedicated
paragraph.

� |SBE
ℓ | = B + 1, corresponding to the possible number of packets in the BE buffer,

� |Scapa
ℓ | = nc

max.
The set of the states of the whole system is S =

∏nL−1
ℓ=0 Sℓ.

Since the buffer characteristics are identical for all links, the set of states is the same for each link,
i.e. S0 = S1 = · · · = SnL−1. As a consequence, the total number of states is:

|S| =
(
|SDC

ℓ | × (B + 1)× nc
max

)nL . (2.1)

The state of the system at time k is defined by the nfeatures × nL matrix sk := [f0, . . . , fnL−1] where
fℓ is the nfeatures × 1 state vector of the ℓth link with nfeatures its number of elements (for the sake of
notation clarity we drop the k index for fℓ). The value of nfeatures depends on the considered features to
represent the state vector. This state vector can be expressed as:

fℓ =
[
fDC-x
ℓ , fBE

ℓ , f capaℓ

]T
, (2.2)

38



where f capaℓ ∈ Scapa
ℓ is given by

nc
ℓ

nc
max

, and fBE
ℓ ∈ SBE

ℓ is n2ℓ+1

B
, where the normalization in [0, 1] is done to

provide a better training with the DNNs. This kind of normalization is performed systematically for the
other features introduced later.

For the DC traffic we consider three state space representations as introduced at the beginning of
this chapter, i.e. the state-HoL, the state-xHoL and the state-APD, yielding:

fℓ :=

[
fDC-x
ℓ ,

n2ℓ+1

B
,

nc
ℓ

nc
max

]T
, (2.3)

where fDC-x
ℓ is the vector composed of the DC traffic features for the state space of type x. nfeatures is

thus equal to the number of entries of fDC-x
ℓ plus 2. We now define the fDC−x

ℓ vectors for the three state
space representations.

2.3.2.1 State-HoL (S-HoL)

This model considers the features used in the SotA, i.e. the NP and the HoL, yielding:

fDC-S-HoL
ℓ :=

[
d0,2ℓ
D0

,
n2ℓ

B

]
. (2.4)

In that case we have nfeatures = 4 and |SDC
ℓ | = B(D0 + 1).

2.3.2.2 State-xHoL (S-xHoL)

This model slightly improves the S-HoL one by adding the HoL multiplicity, i.e. nHoL
2ℓ the number of

packets having the HoL value:

fDC-S-xHoL
ℓ :=

[
nHoL
2ℓ

B
,
d0,2ℓ
D0

,
n2ℓ

B

]
. (2.5)

In that case we have nfeatures = 5 and |SDC
ℓ | = B2(D0 + 1).

2.3.2.3 State-APD (S-APD)

In this model we consider the full DC buffer information. One possibility is to set the state vector with all
the packet WT values, i.e. [d0,2ℓ, . . . , dB−1,2ℓ] of length B. Another possibility is to set the state vector
with the instantaneous distribution of the packet WT values [p0,2ℓ, p1,2ℓ, . . . , pD0+1,2ℓ], pd,2ℓ ∈ [0, 1],
of length D0 + 2 defined as the WT histogram normalized by B. Both solutions contain the same
information, but we propose to use the second one. Indeed, it is very likely that B ≫ D0 + 2 and
thus the second representation offers a smaller size for the input vectors, easing the implementation and
training. Moreover, the size of the link state is independent of the buffer size. Therefore, we have:

fDC-S-APD
ℓ := [p0,2ℓ, p1,2ℓ, . . . , pD0+1,2ℓ] . (2.6)

In that case we have nfeatures = D0 + 4, and |SDC
ℓ | =

(
B+D0+1
D0+1

)
.

The impact of the size of the state vectors on the complexity with regard to the space state model
is discussed at the end of Section 2.4.2.

39



2.3.3 Action space

Let A = {0, · · · , nQ − 1} be the action space, i.e. the set of available actions for the scheduler. We
note ak := π(sk) the action belonging to A chosen by the scheduler when applying the deterministic
policy π on the state sk. The action ak = i corresponds to selecting the buffer i at slot k triggering the
transmission of nt

i packets over the channel.

2.3.4 MDP model

The transition from a state sk to the next state sk+1 depends on the number of extracted packets and the
number of arriving packets in each buffer. From the state and action space definitions in Section 2.3.2
and Section 2.3.3, and following the same approach as in [57], one can prove that the considered state
spaces hold the Markov property, and thus the scheduling problem is an MDP.

2.3.5 Reward

Let Ro be the reward associated with BO that we define as the opposite of the number of packets
discarded due to BO:

Ro(sk, ak,n
r
k) := −

nQ−1∑
i=0

no
i,k, (2.7)

and Rd be the reward associated with DV that we define as the opposite of the number of packets
discarded due to DV:

Rd(sk, ak,n
r
k) := −

nQ−1∑
i=0

nd
i,k (2.8)

= −
nL−1∑
ℓ=0

nd
2ℓ,k, (2.9)

since DV only occurs for DC traffic.
It is worth noticing that no

i,k and nd
i,k are the number of lost packets due to BO and DV respectively,

such as defined in Section 2.2, at step k.
In order both to penalizes the packets loss and to map the reward in [0, 1], we define the reward rk

at step k as the sum of the exponential of (2.7) and (2.9), yielding:

rk =
1

2

(
eωRd(sk,ak,n

r
k) + eωRo(sk,ak,n

r
k)
)
, (2.10)

where the parameter ω > 0 is an hyperparameter controlling the behavior of the exponential function.

2.4 Problem solution

2.4.1 Learning procedure

Conventional tabular techniques such as value iteration (VI) or Q-Learning cannot be used to opti-
mally solve the MDP described in the previous section due to the high cardinality of the state space.
Consequently, employing function approximation methods, such as DNN, becomes essential for deriving

40



π∗. To achieve this, we implement the DQL algorithm, which utilizes a neural network known as deep
Q-network (DQN) to arrive at the solution.

In this section, we present both used architectures for the DQN:
� The EOT architecture which is the proposed one.
� The FC architecture which corresponds to an architecture from the SotA.

2.4.2 Encoder only transformer architecture

The MSI approach is NLI by construction but neither a FC nor a DNN architecture with hidden states
(such as long-short term memory (LSTM)) allows to achieve both PE and GBM properties at the same
time. This is why we propose to use an EOT architecture [73] that is able to achieve the three properties:

1. First, it is NLI since we are in the MSI case.
2. Second the EOT is GBM by construction thanks to the attention mechanism that combines all the

input vectors through the scale dot product.
3. Third, we render the EOT PE by removing the positional encoding [74].
The output of this architecture for each input fℓ is a 2 × 1 vector Qℓ representing the Q-values for

the DC and BE traffics of link ℓ. Then, the buffer to be scheduled is determined by an argmax over
the nL Q-value vectors. In addition, to avoid choosing an empty buffer, we apply action masking [75]
before selecting an action.

The proposed architecture is depicted in Figure 2.1 and synthesized in Algorithm 1.

𝑾𝑒  ,    𝒃𝑒 𝑾𝑢  ,    𝒃𝑢EOT
𝐬𝑘 = 𝐟𝑛𝐿−1, … , 𝐟1, 𝐟0 ෤𝐬𝑘 = ሚ𝐟𝑛𝐿−1, … , ሚ𝐟1, ሚ𝐟0 ො𝐬𝑘 = መ𝐟𝑛𝐿−1, … , መ𝐟1, መ𝐟0 𝒬 = 𝐐𝑛𝐿−1, … , 𝐐1, 𝐐0

Figure 2.1: The proposed architecture with the EOT (gray boxes are learned).

The input state vectors are first multiplied by a de × nfeatures matrix We yielding as an output
f̃ℓ := Wefℓ + be, ∀ℓ ∈ [0, 1, ..., nL − 1], where We is a weight matrix of size de × nfeatures and be
corresponds to a vector of size de for the bias, corresponding to an affine embedding that is learned
during the training. Note that we assume de > nfeatures. The de × 1 vectors f̃ℓ are then entered in the
EOT block. The EOT is detailed in Section A.4.2. The EOT performs multi-head attention on H heads
and the size for each head is dattn. The FC DNN in the EOT has de inputs, the hidden layer has dmlp

neurons with a rectified linear unit (ReLU) non-linearity, and the number of outputs is equal to de. The
de × 1 output vectors f̂ℓ of the EOT are multiplied by a 2 × de matrix Wu leading to the Qℓ vectors,
Qℓ := Wuf̃ℓ+bu, ∀ℓ ∈ [0, 1, ..., nL−1], Wu is a weight matrix of size 2×de and bu is the bias vector of size
2, since we have two types of traffic per link1. Defining Q := [Q0(0),Q0(1), . . . ,QnL−1(0),QnL−1(1)],
the buffer i∗ to the scheduled is then deduced by i∗ := argmaxiQ.

Note that due to the embedding We, the size of the space vectors nfeatures has a limited impact on the
global complexity. Indeed, the embedding transforms the nfeatures× 1 vectors into de× 1 ones with de >
nfeatures which is a constant regardless of the state model. Thus the complexity is mainly driven by de.

1Another methods is to consider the buffer separately, i.e. performing these operations with nQ vectors instead of nL.
In that case, the Wu should be a 1× de matrix and bu a scalar.

41



Algorithm 1: Forward pass of architecture depicted in Figure 2.1.

Input: {fℓ}nL−1
ℓ=0

Output: i∗

for ℓ ∈ {0, . . . , nL − 1} : f̃ℓ ←Wefℓ + be

{f̂0, . . . , f̂nL−1} ← EOT(f̃0, . . . , f̃nL−1)

for ℓ ∈ {0, . . . , nL − 1} : Qℓ ←Wuf̃ℓ + bu
Q ← {Qℓ, . . . ,QnL−1}
return i∗ = argmaxiQ

The proposed architecture complexity in floating point operations (FLOPs) is detailed in Table 2.1.

Table 2.1: Number of FLOPs of the proposed architecture.

Operation Number of FLOPs

Embedding We 2× de × nfeatures × nL

EOT (from Table A.1) 2nL (de(4de + 2nL + 2dmlp + 9) + 2HnL)− n2
L − nLde

Projection into Q-values Wu 2× 2× de × nL

Total 2nL [de(nfeatures + 4de + 2nL + 2dmlp + 11) + 2HnL]− n2
L − nLde

2.4.3 Fully connected architecture

For the sake of comparison with the SotA, in addition to the heuristics, we also implemented a VSI
scheduler using a FC DNN trained using DQL. The used FC architecture is illustrated in Figure 2.2 and
consists of two hidden layers with ReLU activation function and an output layer, and thus the Q-values
are obtained with the following operations:

Q = W 3ReLU (W 2ReLU (W 1sk + b1) + b2) + b3. (2.11)

𝑾3, 𝒃3𝑾2, 𝒃2𝑾1, 𝒃1 ReLU ReLU𝐬𝑘 𝒬

Figure 2.2: The proposed architecture with the FC (gray boxes are learned).

The trainable weight matrices W 1, W 2 and W 3 are of dimension dfc × nfeaturesnL, dfc × dfc and
nQ × dfc, respectively. The trainable biases b1, b2 and b3 are of dimension dfc, dfc and nQ, respectively.

The FC architecture complexity in FLOPs is detailed in Table 2.2.

42



Table 2.2: Number of FLOPs of the FC architecture.

Operation Number of FLOPs

First layer W1 2× dfc × nfeatures × nL

Second layer W2 2× dfc × dfc
Third layer W3 2× 2nL × dfc

ReLU activations (2 times) 2dfc
Total 2dfc [nfeaturesnL + dfc + nL + 2nL + 1]

2.4.4 Adaptation of the heuristics

In this section, we present the proposed adaptations to the heuristics introduced in Section 1.3 in order
to account for the slot-based context:

1. The channel capacities, expressed as the maximum number of packets that can be transmitted
over the different links, are incorporated into PF, MLWDF, LOG-rule, and EXP-rule.

2. According to Sections 1.3.4, 1.3.5 and 1.3.6, we must distinguish between DC and BE traffic.
Therefore, MLWDF, LOG-rule and EXP-rule should be modified accordingly.

3. The KP presented in Section 1.3.7 requires a PLR target and a bearer priority, which are not
defined in this chapter. Consequently, this method also requires adaptation.

Accordingly, the achievable rate ci,k for buffer i in slot k, defined in Section 1.3, corresponds to nc
i .

Therefore, for all the heuristics, we set:
ci,k = nc

i . (2.12)

2.4.4.1 Round-robin

The RR does not depend on the channel and thus does not require adaptation.

2.4.4.2 Proportional fair

The PF uses the instantaneous rate information for each buffer i, noted ci,k (for link ℓi). The PF
expression is thus obtained using (1.13) as:

hPF(xi,k) =
nc
i

c̄i,k−1

, (2.13)

where c̄i,k is given by (1.14).

2.4.4.3 MLWDF

Using (2.12) in (1.19), and based on the discussion in Section 1.3.4, which indicates that the metric for
BE buffers is equal to zero and that the PF metric must be used to handle this type of traffic, we obtain:

hMLWDF(xi,k) :=

{
αi,kηin

c
id0,i,k if i mod 2 = 0 (if i is a DC buffer)

hPF(xi,k) if i mod 2 = 1 (if i is a BE buffer)
, (2.14)

where αi,k is set as in Section 1.3.

43



2.4.4.4 LOG-rule

Using (2.12) in (1.20), and based on the discussion in Section 1.3.5, which indicates that the metric for
BE buffers is multiplied by a factor close to zero and that the PF metric must be used to handle this
type of traffic, we obtain:

hLOG−rule(xi,k) :=

{
αi,kn

c
i log (βi + ηid0,i,k) if i mod 2 = 0 (if i is a DC buffer)

hPF(xi,k) if i mod 2 = 1 (if i is a BE buffer)
, (2.15)

where αi,k, βi and ηi are set as in Section 1.3.

2.4.4.5 EXP-rule

Using (2.12) in (1.22), and based on the discussion in Section 1.3.6, which indicates that the DC buffers
are handled using the EXP-rule metric defined in (1.22) and the BE buffers are handled using the PF
metric defined (2.13), we obtain:

hEXP−rule(xi,k) :=

αi,kn
c
i exp

(
ηid0,i,k−χk

1+
√

χk

)
if i mod 2 = 0 (if i is a DC buffer)

hPF(xi,k) if i mod 2 = 1 (if i is a BE buffer)
, (2.16)

where αi,k, χk and ηi are set as in Section 1.3.

2.4.4.6 Knapsack

The adaptation of the KP is a little bit more tricky.
Since a PLR target is not defined for the different traffic types, and because it may represent a

channel metric as discussed in Section 1.3.7, we adapt (1.25) using the channel capacity, normalized by
nc
max:

v2(xi,k) :=
nc
i

nc
max

. (2.17)

Second, since we do not consider bearer priority, we instead use a measure of allocation fairness, such as
the KP expression in [6], and accordingly, we adapt (1.26) as follows:

v3(xi,k) :=
1

1 + zi,k
, (2.18)

where zi,k is the number of times that buffer i is selected since the beginning of the simulation until k.
The new expression of KP adapted to our context is given by (1.23) along with (1.24), (2.17), (2.18),

and (1.27), with αj = 1 for j ∈ {1, 2, 3, 4}.
It is worth noting that for BE buffers, (1.24) is equal to 0. Because KP expression is a sum (1.23),

it does not imply that hKP(xi,k) = 0, conversely to the MLWDF expression (1.19) when ηi = 0. Thus,
there is no need to differentiate between DC and BE traffic, as is the case with MLWDF.

44



2.5 Performance evaluation

2.5.1 Simulation settings

2.5.1.1 Evaluated methods

We evaluate the performance of the proposed EOT, such as specified in Section 2.4.2, associated with
the three types of states defined in Section 2.3.2: S-HoL, S-xHOL, S-APD that are denoted “EOT-HoL”,
“EOT-xHoL”, and “EOT-APD”, respectively in the sequel.

The FC architecture, from Section 2.4.3, is also evaluated with the three proposed state spaces, and
we denote the resulting schedulers as “FC-HoL”, “FC-xHoL”, and “FC-APD”. The input dimension is
4nL for “FC-HoL”, 5nL for “FC-xHoL” and nL(D0 + 2) for “FC-APD”. It is worth noting that the FC
uses a VSI whereas the EOT uses a MSI.

The DRL schedulers are then compared with the following heuristics defined in Section 2.4.4.

2.5.1.2 Training setup

We train the EOT with a fixed value of the number of links by setting nL = 6, yielding thus nQ = 12
buffers. Since the EOT is NLI, we further investigate its generalization capability to different values of
nL by simulations. We assume that the different buffers have identical arrival rate λ = 0.15, resulting
into a GAR Λ = 1.8, defined in Section 2.2. We fix the value of C = [1, 1, 2, 2, 3, 3]. Since the FC is not
NLI, we train a dedicated FC for each value of nL.

We set the arrival rate for each buffer as λ = 1.8/(2nL), as for the training of the EOT. We train the
specific FCs using the configurations specified in Table 2.3. In each vector nc

b, the ith entry corresponds
to the number of links with capacity i. These capacities are then arranged in ascending order to form
the set C, with the links at the input of the FC being sorted in the same way.

Table 2.3: nc
b values used for the training.

nL 4 6 8 10 12
nc
b [1, 2, 1] [2, 2, 2] [3, 2, 3] [3, 4, 3] [4, 4, 4]

An ϵ-greedy approach is used where the exploration parameter ϵm, for episode m, is set to ϵmax = 1
at the first episode and decayed by a factor ϵdecay at each episode until reaching the value ϵmin = 0.01,
i.e.:

ϵm = max(ϵm−1ϵdecay, ϵmin) (2.19)

Table 2.4 provides the other parameters used for the training.

45



Table 2.4: Training parameters.

Parameters Values

System model
parameters

D0 20

B 40

Training parameters

γ 0.99

Target network update period 50 steps

Batch size 64

ϵdecay 0.99

EOT parameters

Learning rate 5× 10−4

Number of heads H 4

Number of EOT layer 1

de = dmlp = Hdattn 256

Number of episodes 2000

Number of steps per episode 7000

FC parameters

dfc 512

Learning rate 5× 10−5

Number of episodes 4000

Number of steps per episode 15 000

To optimize weight selection, validation episodes are performed every 100 training episodes using a
fixed seed to ensure the same randomness. During validation, the exploration factor is set to 0 and the
weights are frozen. If the sum of the rewards exceeds the previous ones, the weights are saved.

2.5.1.3 Inference setup

Three types of inference are conducted:
1. Inference with respect to arrival rates: this evaluates the generalization capabilities of the trained

schedulers across different traffic regimes. A single episode of K = 106 steps is performed for each
value of Λ.

2. Inference with respect to the number of links: this assesses the generalization ability of the trained
EOT across varying numbers of links, as well as the performance of different FCs under their
respective training configurations.

3. Inference with respect to both the number of links and channel capacities: this examines the
generalization of the schedulers across both nL and C for the EOT, and across C for the FC. To
achieve this, 100 episodes of 106 steps are performed, totaling K = 108 steps. At the beginning
of each episode, the channel capacities are randomly assigned for each number of links.

Table 2.5 summarizes the training and inference setup.

46



Table 2.5: Summary of the training and inference setup.

EOT FC

nL Λ C nL Λ C

Training 6
Λ = 1.8 and
λ = 1.8

12
= 0.15

[1, 1, 2, 2, 3, 3] 4:2:12
Λ = 1.8 and
λ = Λ

2nL

Specified in
Table 2.3,
sorted in
increasing
order

Inference
wrt Λ

6 Λ ∈ [1.5, 1.85] [1, 1, 2, 2, 3, 3] 6 Λ ∈ [1.5, 1.85] [1, 1, 2, 2, 3, 3]

Inference
wrt nL

4:2:12 Λ = 1.8
Same as for
FC training

4:2:12 Λ = 1.8
Same as for
FC training

Inference
wrt nL

and C
4:2:12 Λ = 1.5

100 draws
with median
above 1.5

4:2:12 Λ = 1.5
100 draws
with median
above 1.5

Table 2.6 provides the number of FLOPs corresponding to each value of nL for the different ar-
chitectures considered. One can observe that the EOT requires over ten times more FLOPs than the
FC.

Table 2.6: Number of FLOPs of the different architectures for each number of links.

nL 4 6 8 10 12

EOT-HoL 3 192 256 4 800 688 6 417 408 8 042 416 9 675 712

EOT-xHoL 3 194 304 4 803 760 6 421 504 8 047 536 9 681 856

EOT-APD 3 233 216 4 862 128 6 499 328 8 144 816 9 798 592

FC-HoL 549 888 562 176 574 464 586 752 599 040

FC-xHoL 553 984 568 320 582 656 596 992 611 328

FC-APD 631 808 685 056 738 304 791 552 844 800

2.5.2 Performance metrics

We study the reward defined in (2.10) as well as the following metrics:
� The PLR ξ which is the number of lost packets divided by the total number of packet arriving in

the buffers:

ξ :=

∑K
k=1

∑nQ−1
i=0

(
nd
i,k + no

i,k

)∑K
k=1

∑nQ−1
i=0 nr

i,k

. (2.20)

In the same way, we define the PLR for each buffer as:

ξi :=

∑K
k=1

(
nd
i,k + no

i,k

)∑K
k=1 n

r
i,k

. (2.21)

47



We assume that a PLR below 10−2 is acceptable, corresponding for instance to the suitable PLR
for conversational voice [38].

� The throughput η which is here defined as the average number of packets sent per unit of time:

η :=

∑K
k=1

∑nQ−1
i=0 nt

i,k

K
. (2.22)

Because the buffers are of limited size, when the simulation is long enough, η can be approximated
by η̃, defined as the difference between the number of packets arriving in the buffers and the
number of lost packets, normalized by the overall duration of the simulation i.e.:

lim
K→∞

∑K
k=1

∑nQ−1
i=0

(
nr
i,k − nd

i,k − no
i,k

)
K

= η̃. (2.23)

It is worth noting that when the simulation time is infinite, we have:

lim
K→∞

∑K
k=1

∑nQ−1
i=0 nr

i,k

K
= Λ. (2.24)

From (2.23) to (2.24), we can rewrite η̃ as:

η̃ = lim
K→∞

∑K
k=1

∑nQ−1
i=0 nr

i,k

K
−
∑K

k=1

∑nQ−1
i=0

(
nd
i,k + no

i,k

)
K

= Λ− δ, (2.25)

where δ ≥ 0. Therefore, we deduce that:

η̃ ≤ Λ, (2.26)

indicating that the throughput of the whole network is upper bounded by Λ. Let us also define the
throughput per buffer:

ηi :=

∑K
k=1 n

t
i,k

K
. (2.27)

� The fairness in terms of throughput. For a collection of metric x = [x0, ..., xnQ−1] where xi is e.g.
ηi, the Jain’s fairness [76] is defined as:

F :=

(∑nQ−1
i=0 xi

)2
nQ

∑nQ−1
i=0 x2

i

. (2.28)

� The average delay D̄i, is defined for each buffer i as the average WT of the packets at the moment
they are sent. We define in the same way the average delay for a traffic D̄DC and D̄BE the average
delay for respectively DC traffic and BE traffic.

2.6 Performance analysis

2.6.1 Training analysis

Figure 2.3 represents the average training reward per episode for nL = 6 for the different studied methods.

48



0 250 500 750 1000 1250 1500 1750 2000
Training episodes

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ai

ni
ng

 re
wa

rd

EOT-HoL
EOT-xHoL
EOT-APD

(a) EOT.

0 250 500 750 1000 1250 1500 1750 2000
Training episodes

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ai

ni
ng

 re
wa

rd

FC-HoL
FC-xHoL
FC-APD

(b) FC.2

Figure 2.3: Training reward of the different architectures for nL = 6.

One can observe that:
1. EOTs and FCs architectures have converged.
2. The EOT-based methods converge faster than the FC based methods. Moreover, the training

rewards once convergence is reached for the EOT are better than the training reward of the FC,
with EOT converging around 0.96 whereas FC converges to about 0.94.

3. For both EOT and FC, the APD state space offers a slightly better reward compared to the two
other state spaces.

Figure 2.4 plots the validation reward for nL = 6 3. The markers indicate the highest validation
reward and, consequently, the weights applied during inference.

0 5 10 15 20
Validation episodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n 
re

wa
rd

EOT-HoL
EOT-xHoL
EOT-APD

(a) EOT.

0 20 40 60 80
Validation episodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n 
re

wa
rd

FC-HoL
FC-xHoL
FC-APD

(b) FC.

Figure 2.4: Validation reward of the different architectures for nL = 6.

It can be noted that the EOTs converge more rapidly than the FCs. Additionally, the EOTs outperform
all FCs, as there exists at least one episode for each EOT in which the validation reward exceeds 0.95,
which is superior of any FC reward.

2The FCs are trained during 4000 episodes, such as specified in Table 2.4, but for the sake of comparison, we decide
to present the first 2000 episodes of the training.

3For the EOT, validation episodes are conducted every 100 training episodes. In contrast, for the FC, validation episodes
are also performed whenever the current training reward surpasses the best obtained so far. Additionally,we perform more
training episodes for the FC than for the EOT, as it requires more time to converge.

49



Regarding the EOT, which is trained with a specific value of nL, it is of interest to explore whether it
can be generalized to different values of nL. In addition, we compare the proposed EOTs with different
FC trained for specific number of links.

For the sake of comparison with FC that is not NLI, we train a dedicated FC for each value of nL.
Figure 2.5 provides the training reward of the FC for nL ∈ {4, 8, 10, 12}.

0 500 1000 1500 2000 2500 3000 3500 4000
Training episodes

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Tr
ai

ni
ng

 re
wa

rd

FC-HoL
FC-xHoL
FC-APD

(a) nL = 4.

0 500 1000 1500 2000 2500 3000 3500 4000
Training episodes

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Tr
ai

ni
ng

 re
wa

rd

FC-HoL
FC-xHoL
FC-APD

(b) nL = 8.

0 500 1000 1500 2000 2500 3000 3500 4000
Training episodes

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Tr
ai

ni
ng

 re
wa

rd

FC-HoL
FC-xHoL
FC-APD

(c) nL = 10.

0 500 1000 1500 2000 2500 3000 3500 4000
Training episodes

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Tr
ai

ni
ng

 re
wa

rd

FC-HoL
FC-xHoL
FC-APD

(d) nL = 12.

Figure 2.5: FC training rewards.

One can see that all the trained FC have converged. As the number of links increases, the architecture
exhibits a slower rate of convergence, regardless of the state space employed.

Figure 2.6 plots the validation reward for the FCs for nL ∈ {4, 8, 10, 12}.

50



0 10 20 30 40 50 60 70 80
Validation episodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n 
re

wa
rd

FC-HoL
FC-xHoL
FC-APD

(a) nL = 4.

0 10 20 30 40 50 60 70 80
Validation episodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n 
re

wa
rd

FC-HoL
FC-xHoL
FC-APD

(b) nL = 8.

0 20 40 60 80
Validation episodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n 
re

wa
rd

FC-HoL
FC-xHoL
FC-APD

(c) nL = 10.

0 20 40 60 80
Validation episodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n 
re

wa
rd

FC-HoL
FC-xHoL
FC-APD

(d) nL = 12.

Figure 2.6: FC validation rewards.

As for the training, as the number of links increases, the FC exhibits a slower rate of convergence,
regardless of the state space employed. Furthermore, the maximum reward value diminishes as the
number of links increases. The markers indicate the highest validation reward and, consequently, the
weights applied during inference.

2.6.2 Inference analysis

2.6.2.1 Tested inferences

In this section, we study the generalization capabilities of the different solutions in terms of 1) arrival
rates and 2) number of links and channel capacities. Furthermore, a high reward does not necessarily
indicate that the other metrics are performing well, indeed. Thus, we compare the performance of the
schedulers in terms of PLR, fairness, throughput and delay.

The rest of this section is organized as follows:
� Section 2.6.2.2 studies the generalization with respect to (wrt) the GAR Λ.
� Section 2.6.2.3 emphasizes the performance associated with each link and traffic for Λ = 1.6, when

the DRL methods achieve a PLR below 10−2.
� Section 2.6.2.4 examines the generalization performance of the EOTs wrt nL. The channel and

arrival rates are set as for the training of the FC.
� Section 2.6.2.5 examines the generalization performance of the EOTs wrt nL and C. The channels

are drawn at the beginning of each inference episode, for each value of nL.

51



Table 2.7 summarizes the realized inferences.

Table 2.7: Summary of the inferences.

Section 2.6.2.2

PLR in function of Λ

PLR due to DV in function of Λ

PLR due to BO in function of Λ

Throughput in function of Λ

Fairness in function of Λ

Section 2.6.2.3

PLR due to DV for each link

PLR due to BO for each link

Average delay for DC and BE buffers

Section 2.6.2.4

PLR in function of nL

PLR due to DV in function of nL

PLR due to BO in function of nL

Throughput in function of nL

Fairness in function of nL

Section 2.6.2.5

PLR in function of nL and C
PLR due to DV in function of nL and C
PLR due to BO in function of nL and C

Throughput in function of nL and C
Fairness in function of nL and C

2.6.2.2 Generalization wrt Λ

In this section, we conduct inference to assess the generalization capabilities of the proposed schedulers
across Λ and with C = [1, 1, 2, 2, 3, 3]. The inference is done over one episode of 106 steps for each value
of Λ. The metrics being evaluated include PLR, throughput, and fairness.

Before analyzing the inference results, we first verify if a single inference (i.e., one seed) yields reliable
outcomes. Figure 2.7 presents the inference results obtained using 50 different seeds for the EOT-xHoL.
Specifically, Figure 2.7a illustrates the evolution of the PLR over the course of the steps. It shows that
after 106 steps, the PLR stabilizes around an average value, in contrast to the beginning where it is
widely dispersed, highlighting the importance of performing long training episodes. Figure 2.7b displays
the final average PLR (green) along with three times the standard deviation (represented by red vertical
bars around the mean), providing an estimate of the range within which 99% of the results are expected
to fall. The standard deviation tends to increase when Λ decreases. This shows that for high values of
Λ, a single inference gives a good estimate of the average PLR, while for lower Λ, the result can vary
more, making it less reliable.

52



0.0 0.2 0.4 0.6 0.8 1.0
step index 1e6

10 5

10 4

10 3

10 2

PL
R

=  1.5

=  1.55

=  1.6

=  1.65
=  1.7
=  1.75

(a) Evolution of the PLR.

1.50 1.55 1.60 1.65 1.70 1.75 1.80

10 4

10 3

10 2

PL
R

tr
ai

n
=

1.
8

(b) Mean and standard deviation.

Figure 2.7: Evaluation of the PLR with 50 seeds for the EOT-xHoL.

Figs. 2.8 depicts the PLR achieved for the different schedulers versus the GAR Λ when nL = 6.
The channels’ capacities are those used during the training, i.e., the values of C used for Figure 2.7 and
provided in Table 2.3. The aim here is to test the generalization capability of the simulated schedulers
across Λ, given that they were trained for Λ = 1.8.

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85

10 4

10 3

10 2

10 1

PL
R

tr
ai

n
=

1.
8

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

Figure 2.8: Evaluation of the generalization capability in terms of PLR over Λ, for a training with
Λ = 1.8.

One can observe that:
1. The different heuristics have a PLR close to 10−1, except the KP scheduler, defined in Section 1.3,

that achieves better performance.

53



2. The DRL-based methods outperform the heuristic schedulers in terms of PLR.
3. The performance of EOT-APD and EOT-xHoL are very close regardless of Λ.
4. For Λ ∈ [1.5, 1.65], the EOT-xHoL and EOT-APD schedulers provide better performance than

their FC counterparts. For instance at Λ = 1.55, the PLR of EOT-xHoL is about 2×10−4 whereas
the PLR of FC-APD (which is the best FC-based scheduler at Λ = 1.55) is about 10−3.

5. The EOT-xHoL performs much better than the EOT-HoL when Λ < 1.6 and it is very close to the
EOT-APD. This confirms the benefit of considering the multiplicity of the HoL in the state space.

Figure 2.9 depicts the PLR for both DV (Figure 2.9a) and BO (Figure 2.9b).

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90

10 4

10 3

10 2

10 1

PL
R

tr
ai

n
=

1.
8

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(a) PLR due to DV vs Λ.

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90

10 4

10 3

10 2

10 1

PL
R

tr
ai

n
=

1.
8

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(b) PLR due to BO vs. Λ.

Figure 2.9: Evaluation of the generalization capability in terms of PLR due to DV and BO over Λ, for a
training with Λ = 1.8.

One can observe that:
1. The MLWDF scheduler provides the lowest PLR due to DV among the simulated methods. Then,

the FC-xHoL and the FC-APD are the schedulers that lose the fewest packets due to DV, followed
by the EOT-HoL and the EOT-xHoL for Λ ≥ 1.65. All of these schedulers obtain a PLR due to
DV less than 10−2. However, the FC-HoL has a high PLR due to DV, at the same level as for the
LOG-rule, for Λ ≥ 1.65 whereas the EOT-APD is slightly above, with a PLR between 10−2 and
10−1.

2. Concerning the PLR due to BO, the EXP-rule, the LOG-rule and the MLWDF are the worst
scheduler with a PLR close to 10−1. They are followed by the RR. Among the heuristics, only the
KP has a PLR below 10−2 for Λ ≤ 1.5. Concerning the DRL-based schedulers, all of them have
a PLR below 10−2 for Λ ≤ 1.6 (so below the PLR of the heuristics), then above 10−2 for higher
values of Λ, except for the EOT-APD.

Figure 2.10 depicts the throughput wrt Λ for the different methods.

54



1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85
1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

Th
ro

ug
hp

ut
 (P

ac
ke

t/s
lo

t)

tr
ai

n
=

1.
8

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

Figure 2.10: Evaluation of the throughput wrt Λ for nL = 6, C = [1, 1, 2, 2, 3, 3] for a training with
Λ = 1.8.

One can see that:
1. The DRL methods outperform the heuristics. This aligns with previous observations where the

DRL-based methods demonstrated a lower PLR compared to the heuristics. According to the
throughput approximation in (2.25), a reduction in PL, and consequently in PLR, leads to an
increase in throughput.

2. The EOT-based methods are slightly better than the FC-based methods. This still aligns with the
previous observations.

Figure 2.11 depicts the throughput fairness wrt Λ.

55



1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.850.90

0.92

0.94

0.96

0.98

1.00

Th
ro

ug
hp

ut
 fa

irn
es

s

tr
ai

n
=

1.
8

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

Figure 2.11: Evaluation of the fairness wrt Λ for nL = 6, C = [1, 1, 2, 2, 3, 3], for a training with Λ = 1.8.

One can see that:
1. The DRL-based methods outperform the heuristics.
2. The EOT-based methods outperform the FC-based ones.
3. The MLWDF is the worst one. This is attributable to the fact that it effectively serves the DC

buffers frequently, resulting in minimal loss associated with DV. However, it does not adequately
address the BE buffers, which leads to a significant amount of BO.

4. The fairness decreases with increasing Λ due to the difficulty to obtain the same throughput on
all the buffers, because the PL is in majority produced by buffers with a bad channel condition.

Conclusion of Section 2.6.2.2. We observed in this section that EOT shows strong generalization
capabilities wrt to Λ, providing better performance in terms of PLR, throughput and fairness as compared
with the heuristics. Among the various DRL-based schedulers, the EOT-based ones demonstrate the best
performance, highlighting the significance of the DNN architecture in the scheduling process. Since the
metrics are averaged over all the buffers, i.e. including the different traffic and different links in one
single metric, they provide a global view of the system behavior. However, these global metrics may
mask some failures of the schedulers for certain buffers and links, and thus we study in the next section
the per link and per traffic performance.

2.6.2.3 Performance per link or traffic for Λ = 1.6

We assess in this section the inference performance of individual links with Λ = 1.6 and C = [1, 1, 2, 2, 3, 3].
We analyze the PLR for the various links and the average delay for both the different links and the various
types of traffic.

56



Let us examine the PLR and the delay associated with the different buffers and traffic types, with
a specific focus on fixing the value of Λ = 1.6. This value represents the last instance at which DRL
schedulers achieved a PLR below 10−2, as illustrated in Figure 2.8.

In Figure 2.12, the PLR for the different links are plotted:
1. The PLR due to DC in Figure. 2.12a. It is worth noting that only DC buffers can have this kind

of loss.
2. The PLR due to BO in Figure. 2.12b. Looking in details each buffer PL (not shown in the figure),

we remarked that the PL due to BO only occurs for some BE buffers. For example, for Link 4 and
Link 5, there is no PL due to BO for heuristics (absence of markers).

The links are sorted based on their channel capacity.

0 1 2 3 4 5
link index

10 5

10 4

10 3

10 2

10 1

PL
R

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(a) PLR due to DV.

0 1 2 3 4 5
link index

10 5

10 4

10 3

10 2

10 1

PL
R

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(b) PLR due to BO.

Figure 2.12: Evaluation of the PLR per link due to DV and BO for Λ = 1.6, nL = 6, C = [1, 1, 2, 2, 3, 3]
and for a training with Λ = 1.8.

One can observe that:
1. For two different links with the same channel capacity, the PLR is roughly the same when a heuristic

or an EOT-based scheduler is used, which is not the case when a FC-based scheduler is used. This
could be attributed to the PE property of both the heuristics and EOT.

2. The PLR is a decreasing function of the channel capacity for all the heuristics, while it is not
systematically the case for the DRL scheduler, for instance the EOT-HoL loses more packets due
to DV for links with a channel capacity equal to 3 than for links with a channel capacity equal to
1.

3. The PLR due to DV for each link is below 10−2 for the DRL based scheduler (except for the first
link with the FC-HoL), thus respecting a QoS of 10−2 for DC traffic.

4. The PLR for BE traffic is above 10−2 for links with a channel capacity equal to 1 for all the
scheduler except the EOT-APD which has a PLR below 10−2 for all the links.

Figures 2.13a and 2.13b depict the average delay wrt the different links when Λ = 1.6.

57



0 1 2 3 4 5
link index

2

4

6

8

10

12

14

16

18

Av
er

ag
e 

de
la

y

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(a) Average delay for DC buffers.

0 1 2 3 4 5
link index

0

100

200

300

400

500

Av
er

ag
e 

de
la

y

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(b) Average delay for BE buffers.

Figure 2.13: Evaluation of the average delay per link for Λ = 1.6, nL = 6, C = [1, 1, 2, 2, 3, 3] and for a
training with Λ = 1.8.

One can observe that:
1. For the heuristics, there is an inverse relationship between channel capacity and average delay:

when the channel capacity increases, the average delay tends to decrease. This is the case for both
BE and DC traffics. This may be due to that more packets can be sent for the links with a higher
channel capacity, avoiding congestion and therefore large delays.

2. For DC traffic one can observe that the average delay for FC-based methods is very different even
though the channel capacity and the arrival rate are the same. For instance, for the links 0 and 1,
the channel capacity is equal to 1, and the FC-xHoL obtains different average: 11 for link 0 and
1.5 for link 1. This may be due to the non-PE property of the FC architecture.

3. The average delay of the DC traffic is a decreasing function of the channel capacity for EOT-HoL
and EOT-xHoL but not for the EOT-APD scheduler. Therefore, the trained EOT-APD may serve
more often the buffers with a bad channel capacity to avoid congestion, leading to better average
delay than the buffers with a good channel capacity which can be emptied faster.

4. For BE traffic, the average delay for the heuristic-based schedulers increases significantly, partic-
ularly for buffers experiencing poor channel quality. In contrast, DRL-based methods maintain
a stable average delay regardless of the channel capacity. According to Little’s law, the average
number of packets in a buffer, denoted by B̄, is given by the product of the average arrival rate λ
and the average delay D̄ experienced by the packets:

B̄ = λD̄. (2.29)

This relationship can be used to estimate an upper bound on the average delay that ensures minimal
PL due to BO. For BE traffic, where each buffer has a maximum capacity of 40 packets and the
average arrival rate is λ = 1.6

12
, Little’s law gives:

D̄ =
B̄

λ
=

40
1.6
12

= 300. (2.30)

Thus, to avoid significant loss due to BO, the average delay should remain below 300 time units.
This bound is constantly respected by all DRL-based scheduling methods. The DRL-based sched-
ulers have D̄ closer to 250. This signifies that the average number of packets in the buffers is 34,
allowing these schedulers to keep a margin preventing from buffer overflow.

To enable a more detailed analysis of the packet delay (PD), we study its distribution for each method
and each buffer. In order not to overload this chapter with figures, plots are provided in Appendix C.

58



Figs C.1 to C.11 represent the distribution of the PD and provide the PLR for each link for DC traffic, for
the different methods. The red vertical bar indicates the average PD for the corresponding buffer, while
the corresponding PLR value is shown on the right of each plot. Notice that the distribution support is
[0, D0], with D0 = 20. One can observe that:

1. For the heuristics: 1) for links with the same channel capacity, the distributions and the PLR
are very close, 2) the distributions are more concentrated and left-shifted as the channel capacity
increases, 3) the average values decrease as the channel capacity increases, 4) the LOG-rule and
MLWDF distributions are more localized, whereas the distributions for the others are more spread.

2. For the FC-based: 1) for links with the same channel capacity, the distributions and the PLR
are very different (average, shape and standard deviation), which explains the previously observed
differences in PLR caused by DV and average PD, shown in Figures 2.12a and 2.13a. For instance,
for the FC-HoL in Figure C.6, Link 0 exhibits a high PLR due to DV and a lot of packets are sent
close to their deadline, while for Link 1, which has the same channel capacity as Link 0, exhibits a
lower PLR and a distribution further from the deadline than for Link 0.

3. For the EOT-based: 1) for links with the same channel capacity, the distributions and the PLR are
very close, which can be attributed to the PE property of the EOT, 2) the average values decrease
as the channel capacity increases for EOT-HoL and EOT-xHoL, 3) the average values increase
as the channel capacity increases for EOT-APD although the PLR tends to decrease at the same
time.

Figs C.12 to C.22 represent the repartition of the PD and provide the PLR for each link for BE traffic,
for the different methods. The red bar indicates the mean PD for the corresponding buffer, while the
PLR is shown to the right of each plot. Notice that, conversely to the DC traffic, the distribution support
is theoretically [0,+∞[, however to plot the histograms, we have set up the maximum value to fit the
data, i.e. [0, 650]. One can observe that:

1. For the heuristics: 1) for links with the same channel capacity, the distributions and the PLR
are very close, 2) the distributions are more concentrated and left-shifted as the channel capacity
increases, 3) the average values decrease as the channel capacity increases, 4) except for KP, for
channel capacity equal to 1, the average values are quite high whereas for channel capacities equal
to 2 and 3, the average values are close to each other and close to 0. Notably, for a capacity equal
to 3, about 20% of packets are sent with a PD of 0. This is because higher capacity allows both
newly arrived and older packets to be transmitted simultaneously.

2. For the FC-based: 1) for links with the same channel capacity, the distributions slightly differ,
resulting in slight difference in average. However, although the average are quite close, one can
notice large difference in terms of PLR, 2) the average delays are approximately constant regardless
of the channel capacity, 3) most of the packets are sent with a delay greater or equal to 100,
indicating that these schedulers tend to delay serving BE buffers until they are more heavily loaded.

3. For the EOT-based: 1) for the links with the same channel capacity, the distributions and the
PLR are very close, 2) the average delays are approximately constant across all links, regardless
of channel capacity, 3) EOT-HoL appears to prioritize early packet transmission when the channel
capacity is equal to 1 or 2, 4) the average delay for EOT-APD is lower than the others.

Conclusion of Section 2.6.2.3. We evaluated in this section the individual link metrics in terms of
PLR and average delay. The use of DRL-based schedulers (particularly EOT-based) demonstrates lower
variance in PLR and average delay compared to heuristics. Heuristic methods generally perform better
on links with high channel capacities than on those with low channel capacities, whereas DRL-based
schedulers are more effective at achieving balanced results across links with different capacities. The

59



FC-based schedulers struggle to deliver constant performance across two links with the same channel
capacity, unlike the EOT-based schedulers, which do not face this issue.

2.6.2.4 Performance wrt nL

We evaluate in this section the performance of different schedulers under the training conditions of the
FC-based schedulers, i.e. using the values of C used for the training of these schedulers. The goal of this
analysis is to determine whether the EOT-based schedulers can generalize across different values of nL.
Given that these conditions match those used during the training of the FC-based scheduler, we expect
it to perform well.

Figure 2.14 shows the PLR as a function of the number of links.

4 5 6 7 8 9 10 11 12
Number of links

10 2

10 1

PL
R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

Figure 2.14: Evaluation of the PLR wrt nL with the training channel capacities of the FC.

The following observations can be made:
� The DRL-based methods outperform the various heuristic approaches.
� The PLR for all methods remains above 3× 10−2 across all values of nL, indicating an overloaded

regime.
� The curves for the DRL-based methods are nearly identical, suggesting that all the trained archi-

tectures result in a comparable policy in terms of total PL.
� Among the heuristics, the RR provides the worst performance, while the KP method performs the

best. The MLWDF, LOG-rule, and EXP-rule methods show equivalent performance.
Figure 2.15 displays both the PLR due to DV (Figure 2.15a) and BO (Figure 2.15b).

60



4 5 6 7 8 9 10 11 12
Number of links

10 6

10 5

10 4

10 3

10 2

10 1

PL
R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(a) PLR DV.

4 5 6 7 8 9 10 11 12
Number of links

10 3

10 2

10 1

PL
R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(b) PLR BO.

Figure 2.15: PLR due to DV and BO wrt nL in the training set up of the FC

The following observations can be made regarding PL due to DV:
1. PLR due to DV:

� The MLWDF method results in the smallest PLR.
� The RR method leads to the highest PL.
� The KP, LOG-rule, and EXP-rule methods exhibit comparable performance.
� The EOT-APD method loses more packets due to DV than all other methods, except for RR.
� Other EOT-based schedulers begin to lose more packets than the FC-based scheduler when
nL ≥ 10, with similar performance between the two methods for nL < 10.

2. PLR due to BO:
� The EOT-APD method incurs the least PL due to BO, compensating for its higher PL due

to DV.
� Other EOT-based methods outperform the rest for nL ≥ 8, while showing similar performance

to the FC-based schedulers for lower values of nL.
� The FC-based schedulers outperform the heuristics for nL = 4, achieving equivalent perfor-

mance to them for nL ≥ 6.
� Among the heuristics, MLWDF results in the highest PLR, as it favors DC buffers over BE

buffers. The remaining heuristics yield comparable performance, with a PLR around 10−1.
Figure 2.16 presents the throughput as a function of the number of links.

61



4 5 6 7 8 9 10 11 12
Number of links

1.45

1.50

1.55

1.60

1.65

1.70

1.75

Th
ro

ug
ht

pu
t

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

Figure 2.16: Evaluation of the throughput wrt nL in the training set up of the FC.

The following observations can be made:
� Throughput generally decreases as the number of links increases across all methods.
� DRL-based methods achieve higher throughput compared to heuristic approaches, with no signifi-

cant performance differences among the DRL methods.
� Among the heuristic methods, KP performs the best, while RR yields the lowest throughput.
Figure 2.17 illustrates throughput fairness as a function of the number of links.

62



4 5 6 7 8 9 10 11 12
Number of links

0.90

0.92

0.94

0.96

0.98

1.00

Th
ro

ug
hp

ut
 fa

irn
es

s

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

Figure 2.17: Evaluation of the fairness wrt nL in the training set up of the FC.

The following observations can be made:
� The fairness of the EOT-based schedulers remains stable with respect to the number of links,

constantly ranging between 0.98 and 1, outperforming all other methods.
� The fairness of the FC-based schedulers declines sharply as the number of links increases, ranking

as the second worst when nL = 12.
� Most heuristic methods, except MLWDF, converge to similar fairness levels as the number of links

increases. The MLWDF may prioritize serving DC buffers while leaving BE buffers underserved.

Conclusion of Section 2.6.2.4. We compared the performance of the different schedulers under the
training conditions of the FC-based schedulers, meaning identical arrival rates, channel capacities, and
channel capacity ordering. The DRL methods achieve comparable performance, all outperforming the
heuristics. Despite being trained with nL = 6, the EOTs generalize well to other values of nL.

To better distinguish the performance differences among the schedulers, we must conduct inference
with different values of C for each nL.. The results for this scenario are presented in the next section.

2.6.2.5 Generalization wrt nL and C

We assess the generalization capabilities of the EOT-based schedulers across both nL and C, while
evaluating the FC-based schedulers across C only, as they are trained on a fixed nL value. The analysis
focuses on PLR, throughput, and fairness. All inferences are conducted with Λ = 1.5.

The channel capacities C are chosen such that each episode uses a distinct value. Additionally, an
episode is conducted only if the median of C is at least 2, ensuring compliance with stability conditions

63



(
∑nQ−1

i=0
λi

nc
i
< 1[32]). Specifically, for nL = 4, all 54 possible configurations of C are covered, while for

other values of nL, 100 distinct configurations are randomly sampled.
Additionally, we evaluate the FC-based schedulers both with and without sorting links by channel

capacity. In the unsorted case, channel capacities are drawn at the beginning of each episode and remain
unordered, meaning the states of different links appear in arbitrary order in the FC input. In contrast,
with sorting, links are arranged in ascending order based on their respective channel capacities before
being fed into the FC, to circumvent the absence of PE property of the FC.

Figure 2.18 presents the PLR as a function of the number of links, without channel ordering in
Figure 2.18a and with channel ordering in Figure 2.18b.

4 5 6 7 8 9 10 11 12
Number of links

10 2

10 1

PL
R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(a) Without sorted link capacities.

4 5 6 7 8 9 10 11 12
Number of links

10 2

10 1

PL
R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(b) With sorted link capacities.

Figure 2.18: Evaluation of the PLR wrt nL.

The following observations can be made:
� Generally, as the number of links increases, the PLR also increases.
� The EOT-based schedulers constantly outperform all other methods. It is worth noting that the

results with and without permutation are the same for EOT-schedulers since they are PE.
� Without sorting, the KP scheduler generally outperforms the FC-based schedulers. However, with

channel ordering, the FC-based schedulers achieve better performance, indicating their sensitivity
to the order of buffers in their VSI. Additionally, when inputs are not sorted, the performance of
the FC-based schedulers is slightly better than the performance of the heuristics, except KP.

Figure 2.19 presents the PLR contributions from both DV and BO.

64



4 5 6 7 8 9 10 11 12
Number of links

10 7

10 6

10 5

10 4

10 3

10 2

10 1

PL
R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(a) PLR DV without sorted link capacities.

4 5 6 7 8 9 10 11 12
Number of links

10 7

10 6

10 5

10 4

10 3

10 2

10 1

PL
R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(b) PLR DV with sorted link capacities.

4 5 6 7 8 9 10 11 12
Number of links

10 3

10 2

PL
R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(c) PLR BO without sorted link capacities..

4 5 6 7 8 9 10 11 12
Number of links

10 3

10 2
PL

R

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(d) PLR BO with sorted link capacities.

Figure 2.19: PLR due to DV and BO wrt nL

The following observations can be made:
1. Regarding PLR due to DV:

� The MLWDF outperforms all other methods.
� The EOT-based schedulers generally surpass KP, except for EOT-APD when nL = 4. Their

performance approaches that of the LOG-rule as the number of links increases.
� The FC-based schedulers exhibit erratic behavior, likely due to the use of distinct architectures

for different numbers of links. Notably, their performance improves when the input is sorted
in increasing order of link capacities.

2. Regarding PLR due to BO:
� The EOT-based methods outperform all heuristic approaches, regardless of the number of

links. They drop three times fewer packets than KP and achieve more than an order of
magnitude improvement over other heuristics.

� The FC-based methods benefit significantly from sorting inputs in increasing order of link
capacities. In Figure 2.19c, they perform worse than KP and struggle to surpass RR. However,
in Figure 2.19d, the FC-HoL achieves substantial gains over KP for nL ≤ 8, demonstrating
improved performance in certain cases.

Figure 2.20 depicts throughput as a function of the number of links.

65



4 5 6 7 8 9 10 11 12
Number of links

1.325

1.350

1.375

1.400

1.425

1.450

1.475

1.500

Th
ro

ug
ht

pu
t

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(a) Without sorted link capacities.

4 5 6 7 8 9 10 11 12
Number of links

1.325

1.350

1.375

1.400

1.425

1.450

1.475

1.500

Th
ro

ug
ht

pu
t

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(b) With sorted link capacities.

Figure 2.20: Evaluation of the throughput wrt nL.

The following observations can be made:
� The EOT-based schedulers outperform all other scheduling methods.
� The FC-based schedulers, when using unsorted input (i.e., link capacities not arranged in increasing

order), perform worse than the KP scheduler. However, when the input is sorted, they achieve
significant gains and even surpass the KP scheduler in certain cases.

� Unlike other methods, both sorted and unsorted FC-based schedulers exhibit erratic behavior. This
may be attributed to the fact that each FC is trained for a specific number of links, leading to
significantly different learned policies.

Figure 2.21 illustrates fairness as a function of the number of links.

4 5 6 7 8 9 10 11 12
Number of links

0.90

0.92

0.94

0.96

0.98

1.00

Th
ro

ug
hp

ut
 fa

irn
es

s

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(a) Without sorted link capacities.

4 5 6 7 8 9 10 11 12
Number of links

0.90

0.92

0.94

0.96

0.98

1.00

Th
ro

ug
hp

ut
 fa

irn
es

s

n L
tr

ai
n

=
6

RR
LOG
MLWDF
EXP
KP
FC-HoL
FC-xHoL
FC-APD
EOT-HoL
EOT-xHoL
EOT-APD

(b) With sorted link capacities.

Figure 2.21: Evaluation of the fairness wrt nL.

The following observations can be made:
� All methods achieve high fairness, exceeding 0.95, indicating that all buffers are served equitably,

with none experiencing starvation. This is due to the moderate traffic load, which allows the
schedulers to serve all buffers effectively.

� The FCs exhibit improved fairness when links are sorted compared to when they are not.

Conclusion of Section 2.6.2.5. We evaluated in this section various methods across different numbers
of links and channel capacity values, with Λ = 1.5. The FC-based schedulers were assessed both with

66



and without sorting the links based on their channel capacities, emphasizing the significance of input
order for this architecture.

Our results demonstrate that the proposed EOT-based scheduler outperforms all other methods in
terms of PLR, throughput, and fairness. Notably, despite being trained on a fixed configuration (i.e., a
specific number of links, channel capacities, and arrival rates), the EOT-based schedulers exhibit strong
generalization capabilities, adapting effectively to varying conditions.

2.7 Conclusion

In this chapter, we addressed a slot-based scheduling problem with the objective of minimizing the PL
that may come from DV and BO. We considered two types of traffic: packets with strict DC, and
BE packets. The scheduling decision is performed at each slot where only one buffer can be served.
The packet transmission is done on deterministic and error-free channels, with each link having different
channel capacity.

As alternatives to the conventional HoL state space, we proposed the xHoL, which adds the multiplic-
ity of the oldest packet in the buffer, and the APD, which takes into account the WT of all packets in the
buffer. We proposed a DQL-based scheduler using an EOT architecture for the DNN. This architecture
is NLI, meaning that it can handle variable number of links, GBM, meaning that it considers the entire
buffer information, and is permutation equivariant.

Our simulations demonstrate that the proposed EOT scheduler surpasses both FC-based schedulers
and heuristics from the SotA. This holds true even when the EOT is evaluated with a different number
of links compared to those used in its training, alongside an FC specifically optimized for that particular
number of links. This observation is promising, and suggests that the EOT could achieve even better
performance if trained on varying numbers of links. Additionally, we observed that xHoL state space
improves upon the standard HoL one, while getting close to the performance of the APD. In addition,
the EOT-schedulers achieve better results on metrics other than the one used for training (throughput,
fairness, and average delay). This suggests that these metrics are interrelated. For instance, minimizing
the PL helps keep the average delay for all traffic types bounded, regardless of the channel conditions.
Further investigation is required to fully understand the relationship between these two metrics.

Part of material of this chapter has been published in [69].

67



Chapter 3

Frame-based scheduling

3.1 Introduction

This chapter addresses the scheduling and resource allocation problem over a frame, i.e. over a set of
RBs for a given slot as depicted in Section 1.2

We remind that two approaches can be used for the scheduling operation over a frame:
� RBs are assigned sequentially, one by one, which is refereed to as an approach SRS. This approach

can be seen as a local optimization and one can use for instance the slot-based approach developed
in Chapter 2.

� RBs are assigned all at once, which is refereed to as GRS. This approach can be seen as a global
optimization.

The solution proposed in this chapter follows the GRS-I approach (Section 1.4.2), by introducing a novel
DNN architecture trained with double deep Q-Learning (DDQL). The GRS approach suffers from the
curse of dimensionality, as the number of possible actions grows exponentially with the number UEs,
rendering this approach inapplicable with conventional DNN architectures. To mitigate this issue, we
propose to use the AB module [77], described in Section A.4.3. The AB is composed of two different
parts:

� The first part is a DNN producing a latent representation of the state.
� The second part is built of parallel branches which use the latent state representation as inputs.

Each branch corresponds to a RB and allows selecting a UE for the corresponding RB.
The DNN producing a shared representation is an EOT because we have previously identified that it
possesses the three properties described in Section 1.4.2: NLI, PE and GBM. The resulting architecture
is called EOT-AB.

The EOT-AB solution is evaluated using Nokia’s WS environment that is available online [6] and
which implements a simplified version of the 5G downlink scheduling mechanism.

The main contributions of this chapter are:
1. The proposal of a GRS-DRL solution, based on an AB architecture, and using an EOT for the first

DNN.
2. The development of a masking procedure adapted to the AB architecture.
3. The performance evaluation and comparison of the proposed architecture, along with three heuris-

tics implemented, in the WS environment.
The rest of this chapter is organized as follows. Section 3.2 formulates the scheduling problem as

an MDP. Section 3.3 describes the proposed solution. Section 3.4 presents the training and evaluation
setup, in particular the WS environment and the proposed adaptations. Section 3.5 provides numerical

68



results and analyses them. Section 3.6 concludes the chapter.

3.2 Problem formulation

The GRS approach can be still cast into a MDP where the state space, the action space and the reward
as described below.

3.2.1 State spaces

The features related to buffer i for RB j at time slot k is denoted by the vector f ji,k of dimensions

nfeatures × 1. Then the state sjk of all the buffers for RB j during time slot k is denoted by the
nfeatures × nLnQoS matrix:

sjk := [f j0,k, . . . , f
j
nLnQoS−1,k]. (3.1)

Since we propose an allocation for all the RBs for the GRS approach, the input state sk provided to
the DNN corresponds to j = 1, i.e.:

sk = s1k. (3.2)

3.2.2 Action space

For the GRS-I approach, the joint RB allocation is written as:

ak :=
(
i1k, . . . , i

Nf

k

)
, (3.3)

where ijk corresponds to the buffer to be scheduled during the jth RB of slot k. It is worth noting that
the resulting action space has a dimension of (nLnQoS)

Nf . For instance, if Nf = 25 and nLnQoS = 32,
we obtain (nLnQoS)

Nf > 1037, illustrating the curse of dimensionality discussed previously, and thus
justifying the need for the AB architecture to mitigate it.

3.2.3 Reward

In the GRS approach, a single reward rk is received after all Nf RBs are allocated.

3.3 Problem solution

We first expose in what follows the proposed DNN architecture, and then detail the implementation of
the masking mechanism.

3.3.1 Deep neural network architecture

The proposed architecture follows the AB architecture philosophy as described in Section A.4.3 along
with the use of an EOT DNN, referred to as EOT-AB, and is illustrated in Figure 3.1. First, the state
space, sk undergoes a linear embedding using the de×nfeatures matrix We. The result of this embedding is
s̃k := Wesk+be1

T
nLnQoS

, with dimensions de×nLnQoS, where be is an additional bias vector of dimension

de×1 and 1T
nLnQoS

is a vector of one of dimension nLnQoS×1. Next, s̃k is processed by an EOT module.

69



The output of the EOT is a de × nL matrix, denoted by õE. To integrate the sequence of an EOT with
the AB architecture, we propose to distribute the latent representation of the state across each branch.
For the jth branch, the projection into advantages is performed by the 1×de vector wj

u, with the output
denoted as: αj := wj

uõE + bju1
T
nLnQoS

, which has dimensions 1 × nLnQoS. bju is the additional bias,
which is here a scalar, on the jth branch. The ith entry of αj represents the advantage function of
action i for RB j. Additionally, following [77], dueling is applied to estimate the value function. Here,
õE is multiplied by a 1× de vector, g and a vector b1T

nLnQoS
corresponding to the bias is added, yielding

a 1× nLnQoS vector v, where the ith entry of v represents the estimated state value of the ith buffer.
This vector v is then added on each branch j to produce the vector Qj, where each entry is an estimate
of the Q-value for each action. To prevent suboptimal decisions due to selection of an empty buffer,
action masking [75] is applied on each branch. Section 3.3.2 provides the detailed implementation of the
mask. Finally, the action ajk is selected by taking the argmax on the masked vector Qj. As highlighted
in gray in Figure 3.1, We, EOT, wj

u, and g are learned during the training phase.

A
rg

m
ax

𝑎𝑘
1

𝐬𝑘
A

rg
m

ax

𝑎𝑘
𝑁𝑓

𝒂𝑘A
rg

m
ax

𝑎𝑘
2

… …

…

෤𝐬𝑘 ෥𝒐𝐸

𝒗

𝜶1

𝜶2

𝜶𝑁𝑓

𝑾𝑒 , 𝒃𝑒 EOT

𝒘𝑢
1 , 𝑏𝑢

1

𝒘𝑢
2 , 𝑏𝑢

2

𝒘𝑢

𝑁𝑓 , 𝑏𝑢
𝑁𝑓

𝒈, 𝑏

𝒗

𝒗

𝒗

M
as

k 
𝒎

0
M

as
k 
𝒎
1

M
as

k 
𝒎

𝑁
𝑓
−
1

𝑸1

𝑸2

𝑸𝑁𝑓

Figure 3.1: EOT-AB architecture combining an EOT and an AB structure. Gray blocks are learned.

Table 3.1 details the complexity of the proposed architecture.

70



Table 3.1: Number of FLOPs of the proposed architecture, EOT-AB.

Operation Number of FLOPs

Embedding We 2× de × nfeatures × nLnQoS

EOT (from Table A.1)
2nQoSnL (de(4de + 2nLnQoS + 2dmlp + 9) + 2HnLnQoS)
−(nLnQoS)

2 − nLnQoSde
Dueling 2× de × nLnQoS

Projection into advantages 2×Nf × de × nLnQoS

Q-values (advantage plus value) nLnQoS ×Nf

Total
nLnQoS [2de(nfeatures + 4de + 2nL + 2dmlp + 10 +Nf ) + 4HnLnQoS]
−(nLnQoS)

2 − nLnQoSde

3.3.2 Action masking procedure

The action masking procedure [75] aims to prevent the selection of ”invalid” actions, i.e. actions that
are not possible or allowed. In [75], authors:

1. Theoretically validate this approach.
2. Demonstrate that action masking improves training convergence and inference performance com-

pared to more conventional methods, such as invalid action penalty that consists into attributing
a bad reward to invalid action.

In the scheduling problem, there is no invalid actions, but rather suboptimal ones when an empty buffer
is selected. Here, we propose using action masking for empty buffers.

Once the actions ak have been determined, the RBs are filled with the bits taken from the selected
buffers. Note that during this process, no new bit arrives, the buffer contents evolve only due to bits
extraction. The RBs are filled sequentially, and for each RB, the bits are extracted from the buffer
(the selection order of the RBs is not significant). As a result, a buffer may be selected multiple times,
reflected by multiple occurrences of the same index in ak.

Two situations can lead to the selection of an empty buffer:
1. The first time a buffer is selected when it is already empty.
2. A buffer is selected multiple times, eventually emptying the buffer.

Therefore, we need to track each buffer’s status (empty or not) after each RB allocation, and, when an
empty buffer is detected, set its mask to empty. To do that, knowing the channel quality, with the CQI
for instance, and therefore the quantity of data bits that can be transmitted per RB and the quantity of
packets in the buffer, it is possible to determine the number of RBs, z1i , required to empty the buffer i.
At each RB allocation, the remaining number of RBs required to empty the buffer is updated as follows:

zji =

{
zj−1
i − 1, if buffer i is selected

zj−1
i , otherwise.

(3.4)

The mask mj−1
i associated with buffer i for the jth RB is:

mj−1
i =

{
1, if zji > 0

0, otherwise.
(3.5)

The mask vector used for the jth RB is denoted as mj−1 = [mj−1
0 , . . . ,mj−1

nLnQoS−1]. This sequential
adaptive masking procedure, to the best of our knowledge, is not covered in the literature and is illustrated
in Figure 3.1 .

71



In this figure, the RBs are selected sequentially from RB #1 to RB #Nf (top to bottom). The initial
mask, m0, is set based on the buffer statuses at the beginning of the slot. For RB #1, the buffer a1k
is selected among the non-empty buffers, thanks to the mask m0, which is applied to the Q-values in
Q1. After bits are extracted from buffer a1k, we update the mask if the buffer becomes empty. This
corresponds to the curved arrow pointing from a1k. We then update the mask, resulting into m1, apply
m1 to the second branch, and repeat the process until the last branch.

3.4 Performance evaluation

We implement our architecture within the Nokia’s WS environment that is suited for RL algorithms
evaluation since its implementation follows the conventional state, action, reward of the RL scheme [80].
We focus in this chapter on the TimeFreqResourceAllocation-v0 (TFRA) challenge presented in [6], and
referred to as WS-TFRA in the sequel. In the following sections, we describe the WS-TFRA environment
and the corresponding communication model, followed by the implemented RL model.

3.4.1 Wireless Suite environment

WS-TFRA implements a BS designed to send traffic to nL UEs, which are uniformly distributed within
a 1000-meter square around it. The BS transmits with effective isotropic radiated power (EIRP) P (in
dB), using carrier frequency fc. The total bandwidth W is divided into Nf RBs, which are allocated
by the scheduler to UEs at each slot. The UEs move according to a random walk at constant speeds,
which is independently sampled from a normal distribution, with mean 1.36 and standard deviation 0.19
in meter per second [81]. Free space propagation is assumed along with shadowing. The communication
model is detailed in Section 3.4.2.

The data to be scheduled to the different UEs are stored in finite length FIFO buffers at the BS, each
buffer containing at most B packets.

There are two kinds of QoS classes: GBR and non-GBR, and four types of traffic: voice, video,
delay-critical, and web, each with a specific QoS. Voice, video, and delay-critical are GBR, while web is
non-GBR. Let us note nQoS the number of services and Q := {1, . . . , nQoS}. In the WS framework, we
have nQoS = 4 and the mapping between q ∈ Q, services and QoS class is given in Table 3.2.

Table 3.2: Mapping between q, services and QoS class.

q Service QoS class

1 Voice GBR
2 Video GBR
3 Delay-critical GBR
4 Web non-GBR

WS-TFRA ensures that the traffic types are equally represented, which requires that the number of
UEs is a multiple integer of four, i.e. nL = 4p, with p ∈ N∗. In the following, our developments are
presented in a more general manner for possible future extensions keeping the constraint nL = pnQoS.
The traffic characteristics are defined by the inter-arrival time τq, i.e. the time between the arrival of two
consecutive packets in the buffer, and the incoming packet size Bq, where q ∈ Q.

The scheduling sequence is depicted as follows. At each slot k, the scheduler selects the different
UEs to be served on the Nf RBs of the slot. To do so, the BS selects one UE per RB, with the possibility

72



of allocating multiple RBs to the same UE. The number of bits delivered by the BS to each selected UE
depends on the CQI index nCQI

ℓ ∈ {0, . . . , nCQI} with nCQI = 15, where 0 represents the worst channel
quality, and 15 represents the best. Depending on the number of allocated RBs, the CQI and the packet
sizes, a packet may not be completely transmitted, resulting in partial packet transmission. The age of
a packet continues to increase as long as it is not fully transmitted. Once the bits have been extracted
from the buffers, the age of the packets is incremented.

Remark: unlike in Chapter 2, the packets exceeding the packet delay budget (PDB) are not discarded.
New packets arrive in the buffers according to τqℓ and Bqℓ , which depends on the traffic type of UE ℓ. If
a new packet arrives while the corresponding buffer is full, a BO occurs, and the packet is lost. Finally,
the UEs move, and the sequence is repeated at each slot.

Notice that in this chapter:
� A packet may not be completely transmitted in one slot, resulting in partial packet transmission,

whereas in Chapter 2, the packets are always transmitted in one slot.
� The WT of the packets continues to increase even if it exceeds their PDB (corresponding to the

DC), while in Chapter 2, these packets are deleted.
� The channel quality changes at each slot as users travel and shadowing is considered, whereas in

Chapter 2, it is fixed.
� Packets arrive individually, with each arrival depends on an inter-arrival time in slot, whereas in

Chapter 2 multiple packets may arrive simultaneously, according to a Poisson distribution.

3.4.2 Communication model

Let δℓ represent the distance between UE ℓ and the BS. WS assumes free-space propagation and
implements the path loss for UE ℓ in dB as:

PLℓ := 20 log10

(
4πδℓW

c

)
+ νℓ, (3.6)

where c is the speed of light in vacuum and νℓ corresponds to the shadowing, which is modeled as a
gaussian random variable with zero mean and standard deviation σ which is set to 6 dB in WS.

The received power at UE ℓ in dB is:

PRx
ℓ = P − PLℓ. (3.7)

The instantaneous signal-to-interference-plus-noise ratio (SINR) at UE ℓ is computed as:

Γℓ =
10

PRx
ℓ
10

Nth + I
, (3.8)

where Nth represents the constant thermal noise, set to 2×10−11, and I is a constant interference term,
set to 10−

105
10 .

The spectral efficiency for UE k is determined as:

SEℓ = log2

(
1 +

Γℓ

Γmap

)
, (3.9)

where Γmap is a mapping coefficient from SINR to spectral efficiency, as defined in [82].
Finally, the CQI is determined using the look-up table (LUT) provided in [83, Table 5.2.2.1-2] and

drives the number of bits that are extracted from the buffers.

73



3.4.3 State spaces and reward of WS-TFRA and proposed adaptations

In this section, we describe the state and reward used in our architecture, which are derived from those of
WS-TFRA. Several adaptations are required to convert the outputs of WS-TFRA to fit our architecture:

� Going from sequential to joint RB allocation.
� Adapting the state vector format to the MSI format.
Next, for the state and reward, we first review the outputs of WS-TFRA, followed by a description

of the proposed adaptations.

3.4.3.1 State spaces

State space from WS-TFRA. The state space implemented in WS is the concatenation of the
features related to each buffer and the RB index in the slot. The features related to buffer ℓ for RB j
during time slot k is denoted by f jℓ,k and is defined as the vector of dimensions (2B + nQoS + 1)× 1:

f jℓ,k := [bℓ,dℓ, n
CQI
ℓ ,hℓ]

T , (3.10)

where bℓ := [b1,ℓ, . . . , bB,ℓ] and dℓ := [d1,ℓ, . . . , dB,ℓ] are the vectors containing the number of bits and

the WT of each packet, respectively (the indexes of the slot and the RB are omitted), nCQI
ℓ is the CQI,

and hℓ is the one-hot encoded vector of the QoS, where all entries equal to zero except the qℓth entry,
which is equal to one, qℓ ∈ Q. The resulting state provided by the WS-TFRA at RB j of slot k can thus
be written as the (nL(2B + nQoS + 1) + 1)× 1 vector:

sjk,WS := [f j0,k
T
, . . . , f jnL−1,k

T
, j]T . (3.11)

Naive adaptation. Since we propose a joint UE allocation for all the RBs in the slot, we only need the
state at the beginning of the slot, and the RB index is thus useless in the state. Moreover, we propose
an architecture that can handle a variable number of UEs that takes as an input a stacked version of the
buffer information. The state space is therefore adapted as follows:

f̃1ℓ,k :=

[
bℓ

Bqℓ,th
,
dℓ

Dqℓ

,
nCQI
ℓ

15
,hℓ

]T
. (3.12)

In (3.12), the data pertaining to the different types of traffic are normalized, by Bqℓ,th for the number of

bits of the different packets and by Dqℓ for the PDB, according to their type of traffic and the CQI nCQI
ℓ

is normalized by its maximum value 15. It is worth noting that the values of dℓ/Dqℓ may exceed 1 if the
according packets exceed their PDB since they are not deleted. Then, the whole state is the matrix of
dimension (2B + nQoS + 1)× nL:

sk,Naive := [f̃10,k, . . . , f̃
1
nL−1,k]. (3.13)

The resulting scheduler is denoted by EOT-AB-N (EOT-AB-Naive).

Proposed adaptation. In the naive adaptation, an entry in (3.12) can correspond to different traffic
types, while the DNN applies the same weight to this entry regardless of the traffic type. As a result,
the network must rely heavily on the one-hot encoded vector hℓ to differentiate between traffic types.
To address this issue, we propose an alternative adaptation of the state space.

74



To allow the architecture to better distinguish the different traffic types, we propose a new state space
by shifting traffic features in a larger dimension according to the traffic type by applying a Kronecker
product between the one-hot vector hℓ and the normalized features, except the CQI that is common to
all services. The resulting state space can be written as a vector of dimensions (2BnQoS + 1)× 1:

f1,propℓ,k =

[
hℓ ⊗

[
bℓ

Bqℓ,th
,
dℓ

Dqℓ

]
,
nCQI
ℓ

15

]T
, (3.14)

where ⊗ represents the Kronecker product. For instance, with the four types of traffic of the WS
environment, (3.14) yields:

f1,propℓ,k =



[ bℓ

B1,th
, dℓ

D1
, 0, . . . , 0︸ ︷︷ ︸
3×2B times

,
nCQI
ℓ

15
]T , if hℓ = [1, 0, 0, 0]

[ 0, . . . , 0︸ ︷︷ ︸
1×2B times

, bℓ

B2,th
, dℓ

D2
, 0, . . . , 0︸ ︷︷ ︸
2×2B times

,
nCQI
ℓ

15
]T , if hℓ = [0, 1, 0, 0]

[ 0, . . . , 0︸ ︷︷ ︸
2×2B times

, bℓ

B3,th
, dℓ

D3
, 0, . . . , 0︸ ︷︷ ︸
1×2B times

,
nCQI
ℓ

15
]T , if hℓ = [0, 0, 1, 0]

[ 0, . . . , 0︸ ︷︷ ︸
3×2B times

, bℓ

B4,th
, dℓ

D4
,
nCQI
ℓ

15
]T , if hℓ = [0, 0, 0, 1].

(3.15)

In the proposed architecture described in Section 3.3, the features from the various buffers are pro-
jected linearly using a weight matrix We. Since the offset depends on the traffic type, only a specific parts
of We is dedicated to a specific type of traffic, allowing the EOT to apply distinct weights accordingly.
Indeed, for a given type of traffic q ∈ Q, only the columns of We from 2B(q−1)+1 to 2qB and the last
one (for the CQI) are used. Unlike the other features, the CQI is not shifted, as it consistently represents
the same amount of bits that can be transmitted, regardless of the QoS.

Subsequently, the overall state of the network sk,Prop is defined by staking the state of all the buffers
defined in (3.14), which is a matrix with dimensions (2BnQoS + 1)× nL:

sk,Prop := [f1,prop0,k , . . . , f1,propnL−1,k]. (3.16)

The resulting scheduler is denoted by EOT-AB-P (EOT-AB-Proposed).

3.4.3.2 Reward

The reward implemented in WS is given by:

rk,WS = −nd,k − nb,k, (3.17)

where nd,t and nb,t denote the total number of bits subject to DV in the buffers and the number of bits
in the non-GBR buffers, respectively, during the frame duration. The reward is computed after the RB
allocation and before new packets arrive. The objective of this reward is thus to minimize the number
of bits present in the non-GBR buffers and the number of bits exceeding the PDB for both GBR and
non-GBR ones.

Proposed adaptation. For the GRS approach, we propose to use the reward (3.17), mapped to the
range [0, 1] using the exponential function:

rk,a = exp (rk,WS) . (3.18)

75



3.4.4 Heuristics used in wireless suite

We use three heuristics from the WS environment as baselines for comparing the proposed DRL sched-
ulers. Notice that the heuristics work in an SRS fashion, i.e., the state of the selected buffer for each
RB is updated when it is chosen, while the WT of the packets in the different buffers remains constant
within the frame duration.

Remark: In this section, to simplify the notation, the index k denotes the current combination of
slot and RB, instead of using separate indices for slots and RBs.

3.4.4.1 Proportional fair

The implemented expression of the PF algorithm differs from that of [20], as it accounts for the HoL
and the buffer load, but not for the average achieved rate. This expression of PF uses the spectral
efficiency, which can be determined thanks to the CQI and tables of conversion [83]. Because the
spectral efficiency is directly related to capacity, we continue to use the notation cℓ to denote spectral
efficiency, rather than the transmission rate as in the previous chapters. The used PF algorithm is named
proportionalFairChannelAware in WS, and its expression is:

hPF(xℓ,k) :=
1 + d0,ℓ,k

Dqℓ

bℓ,kcℓ,k (3.19)

where bℓ,k is the total number of bits in buffer of UE ℓ at time k.

3.4.4.2 Knapsack

The KP from the WS environment [6] is defined as the weighted sum of hyperbolic tangents. Its
expression is given by (1.23), with αj = 1 for j ∈ 1, 2, 3, 4.

First, the expression in (1.24) remains unchanged.
Second, since no PLR targets are defined for the different traffic types, and because it may represent

a channel metric as discussed in Section 1.3.7, (1.25) is adapted using the CQI, normalized by 15, the
maximum CQI value:

v2(xℓ,k) :=
nCQI
ℓ,k

15
. (3.20)

Third, since bearer priority is not considered, a measure of allocation fairness is used instead, following
the KP expression in [6]. Accordingly, (1.26) is adapted as:

v3(xℓ,k) :=
1

1 + zℓ,k
(3.21)

where zi,k is the number of times that UE ℓ is selected since the beginning of the simulation until k.
Finally, (1.27) takes into account a quantity of data in the buffer. It is adapted in [6] as follows:

v4(xi,k) :=
bi,k

1 + b̄i,k
(3.22)

where bℓ,k is the total number of bits in buffer of UE ℓ at k, b̄ℓ,k is the sliding window average number
of bits in buffer of UE ℓ and zℓ,k is the number of times that the buffer ℓ is selected since the beginning
of the simulation until k. Variable b̄ℓ,k is computed as follows:

b̄ℓ,k =

{
(1− Nf

τwin
)b̄ℓ,k−1 + bℓ,k−1

Nf

τwin
if k mod τwin ̸= 0

0 if k mod τwin = 0
, (3.23)

76



where τwin = 15Nf [6].

3.4.4.3 Bosch agent

The Bosch agent (BA) was specifically designed for the WS-TFRA environment and is therefore not
presented in Section 1.3. It was introduced in [84], with the following expression:

hBA(xℓ,k) :=
4∑

j=1

αjvj(xℓ,k), (3.24)

where αj, with j ∈ {1, 2, 3, 4}, are the weights of the different features, determined by the optimization
methods of [84], v1, v2 and v3 are given by (1.24), (3.20) and (3.21) respectively and:

v4(xℓ,k) :=
bℓ,k

BBmax

, (3.25)

where Bmax = maxq Bq,th is the maximum number of bits per packet.
Remark: (3.25) prioritizes buffers with more packets, such as (3.22).
According to the value of αj in [6], the BA gives more importance to the number of bits in the buffers

and to the CQI. In contrast, the WT and the fairness are less important according to their weights. As a
result, it may prioritize non-GBR buffers and those with favorable channel conditions, potentially at the
expense of GBR buffers whose WT values are approaching Dqℓ .

3.4.5 Communication setup

We use the default parameters of the WS-TFRA: a bandwidth of W = 5 MHz, Nf = 25 RBs, and
B = 8. The parameters of the four types of traffic and QoS parameter Dq are reported in Table 3.3.
For GBR traffic, both bq and τq are fixed, while for the non-GBR traffic, they are drawn according to
a geometric distribution G. The probability mass function (pmf) of the geometric distribution G, with
mean 1

p
where 1

p
∈, ]0, 1[, is defined as:

P (X = k) =

(
1− 1

p

)k−1
1

p
, for k = 1, 2, 3, . . . , (3.26)

and,

b4 = min

(
max

(
1,G

(
1

20 000

))
,Bth

)
, (3.27)

τ4 ∼ G
(
1

β

)
(3.28)

with Bth = 41 250 and β = 10, the default parameters in WS-TFRA.

Table 3.3: QoS and traffic parameters.

Service QoS class q Dq bq τq

Voice GBR 1 100 584 20
Video GBR 2 150 41 250 33

Delay-critical GBR 3 30 200 20
Web non-GBR 4 300 Eq. (3.27) Eq. (3.28)

77



Table 3.4 details the training parameters of both EOT-AB.
An ϵ-greedy approach is used where the exploration parameter ϵ is set to ϵmax = 1 at the beginning

of the training and decayed by a factor ϵdecay at each episode until reaching the value ϵmin = 0.01.

Table 3.4: Training parameters.

Parameter Value

System model parameters

K 1000

P 13 dBm

fcarrier 2655 MHz

W 5 MHz

Nf 25

B 8

Both EOT-AB
Number of transformer layer 1

Number of heads 4

DQL parameters

γ 0.99

Learning rate 5× 10−4

Batch size 64

ϵdecay 0.99

Number of training episodes 2000

Number of steps per episodes ⌈65 536/25⌉ = 2622

Target network update period 20

3.4.6 Training and inference setup

The proposed scheduler is trained over 2000 episodes of 65 536 RBs (default value of the environment for
one episode), which corresponds to 2622 steps, with a fixed β = 10. During the training, the number of
UEs varies between each episode, with nL ∈ N := {32, 36, 40}. Our objective is to train a single DNN
achieving good performance across different values of nL, avoiding the need to implement a dedicated
DNN for each possible nL.

For the inferences, 1000 episodes are performed for each nL ∈ N , for each scheduler. Each episode
consists on K = 2622 steps of 25 RBs.

Two kinds of inference are performed:
1. With the training setup, i.e. with β = 10 (all the environment parameters are the same).
2. With different values of β to evaluate the generalization capabilities of the EOT-AB-P.
We compare the different state spaces with three of the implemented heuristics in WS: the PF, BA

and KP, such as described in Section 3.4.4.

3.4.7 Performance metrics

We compare the solutions in terms of the following performance metrics, collected at the end of the
inference episodes:

78



� The average cumulative WS’s reward, which is defined as:

R =
1

(K + 1)Nf

K∑
k=0

rk,WS. (3.29)

� The number of packets exceeding their PDB.
� The number of packets lost due to BO.
� The time spent by a packet in the buffer between arrival and departure in slot, referred to as PD

in the sequel.
Since the age of a packet is determined by the age of the last transmitted bit:
� A packet is said to exceed its PDB as soon as, at least one bit of the packet exceeds the PDB.
� The PD is evaluated as the number of slots between the arrival of the packet in the buffer and the

departure of the last bit of this packet from the buffer.

3.5 Performance analysis

This section is dedicated to the performance evaluation of both EOT-AB along with various other
schedulers outlined in Section 3.4.4 that are already integrated into the WS-TFRA environment. We
remind that the different heuristics follows the SRS approach. Notice that the less effective heuristics
present in the environment are not included in this analysis.

We select the best values of de (assuming dmlp = de) for the two state spaces. Table 3.5 reports the
best values, noted d̃e.

Table 3.5 gives the number of FLOPs of the different architectures for nL ∈ {32, 36, 40}, using the
expression of Table 3.1 for both EOT-AB.

Table 3.5 shows that the proposed architecture (EOT-AB-P) is about ten times less complex than
the EOT-AB-N since the latter requires a higher-dimensional input.

Table 3.5: Number of FLOPs of the different architecture with H = 4 heads for MHA and to allocate
Nf = 25 RBs.

nfeatures d̃e nL = 32 nL = 36 nL = 40
EOT-AB-P 65 64 2 254 937 2 575 385 2 904 409
EOT-AB-N 21 256 27 136 281 30 677 465 34 251 801

3.5.1 Inference performance on the training setup

In this section, we set as during the training β = 10, and we evaluate the inference performance of the
learned DNN for nL ∈ N .

Table 3.6 provides the average cumulative rewards, defined in (3.29), obtained by the different
schedulers. The median, the standard deviation, the mean value, the minimum and the maximum of the
reward obtained during the 1000 episodes are detailed in Tables 3.6a, 3.6b and 3.6c for 32, 36 and 40
UEs respectively. One can observe that:

� Both EOT-AB provide the best reward. The mean reward of both EOT-AB are at least twice
better than the one of the other heuristics.

� The proposed architecture achieves a standard deviation twice less than the one of the other
methods.

79



� Both EOT-AB achieve a minimum for 32 UEs that is superior to the maximum of the PF for the
same number of UEs. In general, the minimum of the EOT-AB is approximately twice less than
the minimum of the other methods.

� Concerning the maximum, both EOT-AB are approximately four times better than the other
methods.

These results show that the EOT-AB architecture learns a policy that is more efficient than the heuristics
in terms of the implemented reward.

Table 3.6: Reward for the different methods.

(a) Reward for the different methods for 32 UEs.

Method median mean std min max

PF −1797 −1814 243 −2852 −1057
Bosch −1512 −1522 226 −2414 −754

Knapsack −1412 −1427 224 −2362 −773
EOT-AB-P −446 −457 98 −870 −162
EOT-AB-N −432 −441 94 −852 −162

(b) Reward for the different methods for 36 UEs.

Method median mean std min max

PF −2829 −2886 451 −4761 −1640
Bosch −2195 −2228 366 −3650 −1198

Knapsack −2378 −2427 449 −4297 −1323
EOT-AB-P −722 −747 209 −1692 −284
EOT-AB-N −666 −697 195 −1574 −280

(c) Reward for the different methods for 40 UEs.

Method median mean std min max

PF −5032 −5209 1106 −10 596 −2649
Bosch −3709 −3916 1051 −11 888 −1723

Knapsack −4837 −5073 1343 −13009 −2041
EOT-AB-P −1788 −1899 689 −5513 −400
EOT-AB-N −1516 −1815 2326 −51 588 −317

Table 3.7 compares the number of packets lost due to buffer overflow and PDB violations for nL ∈
{32, 36, 40} UEs. PF and BA show substantial degradation, particularly at higher loads. In contrast,
EOT-AB-P and EOT-AB-N achieve significantly lower packet loss. Notably, EOT-AB-P achieves zero
loss at 32 UEs and remains below 50 lost packets even at 40 UEs. EOT-AB-N shows similar trends, with
an increase to 6983 packets at the highest load, still below the baseline methods, except KP.

80



Table 3.7: Number of lost packets due to BO and exceeding the PDB for 32, 36 et 40 UEs.

32 UEs 36 UEs 40 UEs

PF 1813 18 650 143 048
Bosch 19 751 90 955 493 521

KP 3 5 200
EOT-AB-P 0 3 42
EOT-AB-N 0 2 6983

It is important to distinguish and analyze packet losses due to BO and PDB violations, as they reflect
different network limitations (congestion handling and delay compliance) that directly impact QoS in 5G.

Table 3.8 provides the number of packets lost due to BO wrt nL. The BA has the worst performance
in terms of BO. The PF loses few packets due to BO. The KP loses more packets due to BO than
the proposed solution. EOT-AB-P achieves the best performance in terms of BO. In contrast, while
EOT-AB-N performs well for scenarios with 32 and 36 UEs, its performance significantly degrades for
40 UEs, with a loss exceeding 4000 in BO. All the packets lost by the KP is due to BO.

Table 3.8: Number of lost packets due to BO for 32, 36 et 40 UEs.

32 UEs 36 UEs 40 UEs

PF 0 0 9
Bosch 0 275 50 796

KP 3 5 200
EOT-AB-P 0 0 0
EOT-AB-N 0 2 4107

Table 3.9 provides the number of packets exceeding the PDB. The BA has the worst performance in
terms of both BO and PDB violations. The PF loses few packets due to BO but thousands exceed the
PDB, and thus does not satisfy well the QoS. The KP has no packet exceeding the PDB. The proposed
approach yields the best performance in terms of BO and is very close to the KP which has no packet
lost in terms of PDB violation, outperforming the PF and KP.

Table 3.9: Number of transmitted packets exceeding the PDB for 32, 36 et 40 UEs.

32 UEs 36 UEs 40 UEs

PF 1816 18 650 143 039
Bosch 19 751 90 680 442 725

KP 0 0 0
EOT-AB-P 0 3 42
EOT-AB-N 0 0 2876

We analyse in what follows the number of packets lost due to BO for each traffic type. Table 3.10
details the number of packets lost due to BO for each traffic type with the different values of nL.

� Table 3.10a provides results with 32 UEs. One can observe that nearly all algorithms maintain zero
packet loss across all traffic types.

81



� Table 3.10b provides results with 36 UEs. BA begins to show losses for voice and delay-critical
traffic, algorithms such as PF, KP, and both EOT-AB variants still maintain a near loss-free
operation.

� Table 3.10c provides results with 40 UEs. One can observe that only EOT-AB-P continues to
have zero loss across all traffic types. BA suffers from considerable losses, particularly in voice and
delay-critical traffic. EOT-AB-N obtains few losses for GBR traffic at the cost of the web traffic.

� One can remark that the KP loses packets only for web traffic, whatever the number of tested UE.

Table 3.10: Number of packets lost due to BO for each traffic for 32, 36 et 40 UEs.

(a) 32 UEs.

Voice Video Delay-critical Web

PF 0 0 0 0
Bosch 0 0 0 0

KP 0 0 0 3
EOT-AB-P 0 0 0 0
EOT-AB-N 0 0 0 0

(b) 36 UEs.

Voice Video Delay-critical Web

PF 0 0 0 0
Bosch 248 0 27 0

KP 0 0 0 5
EOT-AB-P 0 0 0 0
EOT-AB-N 0 0 0 2

(c) 40 UEs.

Voice Video Delay-critical Web

PF 1 0 0 8

Bosch 37 182 0 13 522 92

KP 0 0 0 200

EOT-AB-P 0 0 0 0
EOT-AB-N 40 104 0 3963

In Table 3.11, the number of packets exceeding the PDB for each traffic as well as the corresponding
proportion, i.e. the number of transmitted packets exceeding the PDB over the total number of trans-
mitted packets for the corresponding traffic, are provided for 32, 36 and 40 UEs in Tables 3.11a, 3.11b
and 3.11c respectively. One can observe that:

� All schedulers have no packets exceeding the PDB for all the tested number of UEs for video and
web traffic, except the EOT-AB-N for 40 UEs.

� The PF exceeds the PDB principally for the delay-critical traffic. It also exceeds the PDB for voice
traffic with 40 UEs.

� The BA is the worst one in terms of number of packets exceeding the PDB.

82



� The EOT-AB-P has packets exceeding the PDB for voice and delay-critical traffic for 36 and 40
UEs.

� As seen in Table 3.9, the KP has no packets exceeding the PDB whatever the traffic.
The 5G specifications [38, Section 5.7.3.4] states that 98% of the packets from the GBR traffic shall
not experience a delay exceeding its PDB. Therefore, only the KP and EOT-AB respects this QoS for
all the tested number of UEs.

Table 3.11: Number of transmitted packets exceeding the PDB for each traffic for 32, 36 et 40 UE.

(a) 32 UEs.

Voice Video Delay-critical Web

Count Prop. Count Prop. Count Prop. Count Prop.
PF 0 0 0 0 1816 1.7× 10−3 0 0

Bosch 44 4.2× 10−5 0 0 19 707 1.9× 10−2 0 0
KP 0 0 0 0 0 0 0 0

EOT-AB-P 0 0 0 0 0 0 0 0
EOT-AB-N 0 0 0 0 0 0 0 0

(b) 36 UEs.

Voice Video Delay-critical Web

Count Prop. Count Prop. Count Prop. Count Prop.
PF 0 0 0 0 18 650 1.6× 10−2 0 0

Bosch 3268 2.8× 10−3 0 0 87 412 7.4× 10−2 0 0
KP 0 0 0 0 0 0 0 0

EOT-AB-P 2 1.7× 10−6 0 0 1 8.5× 10−7 0 0
EOT-AB-N 0 0 0 0 0 0 0 0

(c) 40 UEs.

Voice Video Delay-critical Web

Count Prop. Count Prop. Count Prop. Count Prop.

PF 1029 8× 10−4 0 0 142 010 1.1× 10−1 0 0
Bosch 94 109 7.5× 10−2 0 0 348 616 2.7× 10−1 0 0
KP 0 0 0 0 0 0 0 0

EOT-AB-P 11 8.4× 10−6 0 0 31 2.4× 10−5 0 0
EOT-AB-N 148 1.1× 10−1 1595 2.0× 10−3 915 7.0× 10−4 218 8.3× 10−5

The PD is measured for each transmitted packets during all the inference episodes. Figures 3.2
and 3.3 depict the histograms and the cumulative distribution function (cdf) respectively of the PD for
the voice, delay-critical, video and web traffic, for KP and both EOT-AB with 32 UEs. The red line
represents the PDB and thus the bars at the right of this line represent the packets exceeding their PDB.
The histograms are plotted in the log10 scale because of the high dynamic range of the PD values. The
other heuristics are not displayed since they yield significantly worse performance.

83



0 10 20 30 40 50

102

105

Oc
cu

rre
nc

es

KP

0 10 20 30 40 50

102

105

Oc
cu

rre
nc

es

EOT-AB-P

0 10 20 30 40 50
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(a) Voice.

0 5 10 15 20 25

102

105

Oc
cu

rre
nc

es

KP

0 5 10 15 20 25

102

105

Oc
cu

rre
nc

es

EOT-AB-P

0 5 10 15 20 25
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(b) Delay critical.

0 10 20 30 40 50

101

103

105

Oc
cu

rre
nc

es

KP

0 10 20 30 40 50

101

103

105

Oc
cu

rre
nc

es

EOT-AB-P

0 10 20 30 40 50
Delay

101

103

105

Oc
cu

rre
nc

es

EOT-AB-N

(c) Video.

0 10 20 30 40 50

102

105

Oc
cu

rre
nc

es

KP

0 10 20 30 40 50

102

105
Oc

cu
rre

nc
es

EOT-AB-P

0 10 20 30 40 50
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(d) Web.

Figure 3.2: Histograms of the packet delays for 32 UEs.

84



0 20 40 60 80 100
Delay

100

7 × 10 1

8 × 10 1

9 × 10 1

cd
f KP

EOT-AB-P
EOT-AB-N

(a) Voice.

0 5 10 15 20 25
Delay

100

7 × 10 1

8 × 10 1

9 × 10 1

cd
f KP

EOT-AB-P
EOT-AB-N

(b) Delay critical.

0 20 40 60 80 100 120 140
Delay

10 2

10 1

100

cd
f KP

EOT-AB-P
EOT-AB-N

(c) Video.

0 10 20 30 40 50 60 70 80
Delay

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1
cd

f KP
EOT-AB-P
EOT-AB-N

(d) Web.

Figure 3.3: CDF of the packet delays for 32 UEs.

One can observe that:
1. The EOT-AB-P spreads more the packet transmissions for voice and delay-critical traffic than the

KP and tends to serve the web packets faster. This behavior can be explained by the reward
expression (3.18), which encourages the scheduler to prioritize non-GBR buffers by penalizing any
residual bits left in them.

2. The majority of the packets for voice and delay-critical traffic are sent within few slots for both
KP and EOT-AB-N. The voice and delay-critical packets are short and thus can be transmitted
within few RBs.

3. To send more than 80% of video packets, both schedulers needs at least 15 slots. This can be
explain by the size of the video packets which are more than 20 times larger than the delay-critical
packets. Therefore they need more RBs to be fully sent, leading to larger transmission delay.

4. Concerning the web traffic, both EOT-AB send 90% of packets within less than 5 slots whereas the
KP scheduler needs more than 10 slots for the same proportion. For the same number of slots, the
KP sends 50% of the packets. This can be explained by the reward formulation that encourages
both EOT-AB to serve the non-GBR buffers.

Figures. 3.4 and 3.5 depict the histograms and the cdf respectively of the PD for the voice, delay-
critical, video and web traffic, for KP and both EOT-AB for a scenario with 36 UEs.

85



0 20 40 60 80 100 120 140

102

105

Oc
cu

rre
nc

es

KP

0 20 40 60 80 100 120 140

102

105

Oc
cu

rre
nc

es

EOT-AB-P

0 20 40 60 80 100 120 140
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(a) Voice.

0 5 10 15 20 25 30

102

105

Oc
cu

rre
nc

es

KP

0 5 10 15 20 25 30

102

105

Oc
cu

rre
nc

es

EOT-AB-P

0 5 10 15 20 25 30
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(b) Delay critical.

0 10 20 30 40 50 60 70

101

103

105

Oc
cu

rre
nc

es

KP

0 10 20 30 40 50 60 70

101

103

105

Oc
cu

rre
nc

es

EOT-AB-P

0 10 20 30 40 50 60 70
Delay

101

103

105

Oc
cu

rre
nc

es

EOT-AB-N

(c) Video.

0 10 20 30 40 50 60 70

102

105

Oc
cu

rre
nc

es

KP

0 10 20 30 40 50 60 70

102

105
Oc

cu
rre

nc
es

EOT-AB-P

0 10 20 30 40 50 60 70
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(d) Web.

Figure 3.4: Histograms of the packet delays for 36 UEs.

86



0 20 40 60 80 100 120 140
Delay

100

7 × 10 1

8 × 10 1

9 × 10 1

cd
f KP

EOT-AB-P
EOT-AB-N

(a) Voice.

0 5 10 15 20 25 30
Delay

100

7 × 10 1

8 × 10 1

9 × 10 1

cd
f KP

EOT-AB-P
EOT-AB-N

(b) Delay critical.

0 20 40 60 80 100 120 140
Delay

10 2

10 1

100

cd
f KP

EOT-AB-P
EOT-AB-N

(c) Video.

0 10 20 30 40 50 60 70 80
Delay

100

cd
f KP

EOT-AB-P
EOT-AB-N

(d) Web.

Figure 3.5: CDF of the packet delays for 36 UEs.

The same observations can be made as for 32 UEs, with the following differences:
1. The EOT-AB-P spreads more the transmission of packets for voice and delay-critical traffic than

the KP and EOT-AB-N. However, this time, the EOT-AB-P has packets exceeding the PDB for
these two traffic types.

2. The EOT-AB-P sends 90% of web packets within 5 slots whereas the KP does it within 15 slots.
Figures. 3.6 and 3.7 depict the histograms and the cdf respectively of the PD for the voice, delay-

critical, video and web traffic, for KP and both EOT-AB for a scenario with 40 UEs.

87



0 20 40 60 80 100 120

102

105

Oc
cu

rre
nc

es

KP

0 20 40 60 80 100 120

102

105

Oc
cu

rre
nc

es

EOT-AB-P

0 20 40 60 80 100 120
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(a) Voice.

0 20 40 60 80 100 120 140 160

102

105

Oc
cu

rre
nc

es

KP

0 20 40 60 80 100 120 140 160

102

104

106

Oc
cu

rre
nc

es

EOT-AB-P

0 20 40 60 80 100 120 140 160
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(b) Delay critical.

0 100 200 300 400 500 600

101

103

105

Oc
cu

rre
nc

es

KP

0 100 200 300 400 500 600

101

103

105

Oc
cu

rre
nc

es

EOT-AB-P

0 100 200 300 400 500 600
Delay

101

103

105

Oc
cu

rre
nc

es

EOT-AB-N

(c) Video.

0 100 200 300 400 500

102

105

Oc
cu

rre
nc

es

KP

0 100 200 300 400 500

102

105
Oc

cu
rre

nc
es

EOT-AB-P

0 100 200 300 400 500
Delay

102

105

Oc
cu

rre
nc

es

EOT-AB-N

(d) Web.

Figure 3.6: Histograms of the packet delays for 40 UEs.

88



0 20 40 60 80 100 120
Delay

100

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

cd
f KP

EOT-AB-P
EOT-AB-N

(a) Voice.

0 20 40 60 80 100 120 140 160
Delay

100

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

cd
f KP

EOT-AB-P
EOT-AB-N

(b) Delay critical.

0 20 40 60 80 100 120 140
Delay

10 3

10 2

10 1

100

cd
f KP

EOT-AB-P
EOT-AB-N

(c) Video.

0 10 20 30 40 50 60 70 80
Delay

10 1

100

cd
f KP

EOT-AB-P
EOT-AB-N

(d) Web.

Figure 3.7: CDF of the packet delays for 40 UEs.

The same observations can be made as for 32 and 36 UEs, with the following differences:
1. The EOT-AB spreads more the PD for video traffic compared to 32 and 36 UEs. The maximum

PD has doubled.
2. The EOT-AB sends 90% of web packets within 10 slots whereas the KP does it within 25 slots.

Synthesis of the inference on the training setup. We have observed through simulations that the
proposed solution outperforms heuristic schedulers in terms of reward and achieves lower total packet loss.
Additionally, it enhances PD for non-GBR traffic at the cost of a degradation of those of delay-critical
GBR and voice traffic, due to the reward formulation (3.18).

Furthermore, we have shown that the chosen state representation improves both generalization and
computational efficiency compared to the ”naive” representation described in (3.12).

We will focus in the next section on the EOT-AB-P architecture using the state representation defined
in (3.14).

3.5.2 On the importance of the mask for the proposed architecture

The training and inference in Section 3.5.1 were performed using adaptive action masking. In this section,
we assess the benefits of adaptive masking during the inference phase by comparing performance with
and without adaptive action masking.

89



The number (resp. the proportion of packets) exceeding the PDB for each traffic obtained during
the inference of the EOT-AB-P with and without mask is reported in Table 3.12a (resp. 3.12b).

One can remark that, without the action masking, there is a lot of packets exceeding the PDB for
all the GBR traffic. No packets have exceeded the PDB for the web traffic. This can be explained by
the reward that encourages the agent to serve the non-GBR traffic and by the PDB of this traffic which
is much larger than the other PDB.

Table 3.12: Number of packets exceeding the PDB for the EOT-AB-P with and without mask.

(a) Number of packets.

32 UEs 36 UEs 40 UEs

Voice without mask 5398 120 276 357 499
with mask 0 2 11

Video without mask 8762 56 768 116 794
with mask 0 0 0

Delay-critical without mask 45 359 249 102 231 963
with mask 0 1 31

Web without mask 10 0 0
with mask 0 0 0

Total without mask 59 529 426 146 706 256
with mask 0 3 42

(b) Proportion of packets.

32 UEs 36 UEs 40 UEs

Voice without mask 5.1× 10−3 1.0× 10−1 2.7× 10−1

with mask 0 1.7× 10−6 8.4× 10−6

Video without mask 1.4× 10−2 7.9× 10−2 1.5× 10−1

with mask 0 0 0
Delay-critical without mask 4.3× 10−2 2.1× 10−1 1.8× 10−1

with mask 0 8.5× 10−7 2.4× 10−5

Web without mask 4.8× 10−6 0 0
with mask 0 0 0

Total without mask 1.2× 10−2 7.8× 10−2 1.2× 10−1

with mask 0 5.5× 10−7 6.9× 10−6

Table 3.13 shows the number of packets packets lost due to BO. Even if the number of packets
exceeding the PDB for the delay critical is important, the trained EOT-AB-P does not loss packets for
this QoS due to BO.

90



Table 3.13: Number of lost packet due to BO for the EOT-AB with and without mask.

32 UEs 36 UEs 40 UEs

Voice without mask 1277 50 448 229 758
with mask 0 0 0

Video without mask 3 51 531
with mask 0 0 0

Delay-critical without mask 0 0 0
with mask 0 0 0

Web without mask 9511 112 472 394 330
with mask 0 0 0

Total without mask 10 791 162 971 624 619
with mask 0 0 0

Table 3.14 shows the number and proportion of RBs where an empty buffer is selected while there
were packets in other buffers. For more than a quarter (resp. more than ten percent) of the RB, the
EOT-AB-P selects an empty buffer for the setup with 32 UEs (resp. 36 and 40 UEs). When the number
of UEs increases, it is easier to select a UE with packets, leading to a lower proportion for 36 and 40
UEs. Without adaptive mask, the EOT-AB-P selects therefore non-optimal action, causing packet loss
and packet exceeding the PDB. This shows the importance of the adaptive masking during the inference
in addition of the training.

Table 3.14: Empty buffer selection for the EOT-AB-P without mask.

Count Proportion

32 UEs 17 027 151 26%
36 UEs 7 507 960 11.4%
40 UEs 7 347 526 11.2%

3.5.3 Generalization vs. β

The proposed architecture was trained with the mean inter-arrival time for non-GBR β = 10. We
evaluate here the generalization capability of the proposed architecture vs. 1

β
. To do so, we saturate

the traffic by reducing β (or increasing 1
β

). The metric considered here is the sum of the number of
packets lost due to BO and the ones exceeding the PDB for the DC. These packets are included in the
packet error rate (PER) in the 5G specifications [38, Section 5.7.3.5] and are thus referred to as ”lost
packets” in the sequel. 1000 inference episodes are performed for each value of β. The range of β values
is adjusted based on the number of UEs to prevent over-saturation. After running all inference episodes,
we observed that the trained architecture performed poorly in few cases, leading to unsatisfactory overall
results. Notably, two particular runs significantly degraded the overall performance of the proposed
architecture. We suspect that during these episodes the architecture encountered states that were far
from those seen during training, causing it to deviate from its expected behavior. Further investigation
should focus on detecting such deviations as they occur and therefore switch on a heuristic such as KP.
The two least effective episodes for each scheduler are eliminated (a total of four episodes) to prevent
the substantial distortions in the overall results. This approach retains the majority of the results while
ensuring that no single scheduler’s performance is unduly favored.

91



Figure 3.8 shows the lost packets as a function of 1
β

for the KP and EOT-AB-P schedulers for
nL = 32. Figure 3.8a provides the results over the 1000 inference episodes. Figure 3.8b represents the
results over the 996 inference episodes where the four episodes are withdrawn, corresponding to the two
worst for EOT-AB-P and for KP.

0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135
1

0

25

50

75

100

125

150

175

Nu
m

be
r o

f l
os

t p
ac

ke
ts

tr
ai

n
=

10 KP
EOT-AB-P

(a) With all the 1000 episodes.

0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135
1

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f l
os

t p
ac

ke
ts

tr
ai

n
=

10 KP
EOT-AB-P

(b) Without the worst episodes.

Figure 3.8: Number of lost packets vs. 1
β

for nL = 32.

One can observe a good generalization capability of the proposed approach, which loses less packets
than the KP for all the simulated values of β. The two figures show no significant differences, indicating
that packet loss is not concentrated in just four episodes. Therefore, there is no instance in which the
trained scheduler exhibits underperformance, demonstrating robust generalization capabilities across all
inference episodes.

Figure 3.9 plots the lost packets as a function of 1
β

for the KP and EOT-AB-P schedulers for nL = 36.

0.1000 0.1025 0.1050 0.1075 0.1100 0.1125 0.1150 0.1175
1

0

100

200

300

400

500

Nu
m

be
r o

f l
os

t p
ac

ke
ts

tr
ai

n
=

10 KP
EOT-AB-P

(a) With all the 1000 episodes.

0.1000 0.1025 0.1050 0.1075 0.1100 0.1125 0.1150 0.1175
1

0

50

100

150

200

250

300

Nu
m

be
r o

f l
os

t p
ac

ke
ts

tr
ai

n
=

10 KP
EOT-AB-P

(b) Without the worst episodes.

Figure 3.9: Number of lost packets vs. 1
β

for nL = 36.

One can remark that for all the 1000 episodes, in Figure 3.9a, the EOT-AB-P performs poorly for
β = 8.5, 8.6 and 8.8, corresponding to 1

β
≈ 0.118, 0.116 and 0.114, with more than 400 lost packets.

When the worst episodes are withdrawn, in Figure 3.9b, the EOT-AB-P outperforms the KP scheduler
for all the values of β, with less than 50 lost packets. Moreover, KP’s performance varies little with the
removal of its worst episodes. This suggests that:

92



� Losses of the KP schedulers appear evenly distributed among between episodes. Consequently,
eliminating the least effective episodes has no apparent effect on its overall performance.

� Packet loss is mainly observed in a limited number of episodes for the EOT-AB-P, indicating that
it has made poor decisions only in those instances. Further investigation is required to determine
the factors that may have contributed to these choices.

Figure 3.10 plots the lost packets as a function of β for the KP and EOT-AB-P schedulers for
nL = 40.

0.096 0.098 0.100 0.102 0.104
1

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f l
os

t p
ac

ke
ts

tr
ai

n
=

10KP
EOT-AB-P

(a) With all the 1000 episodes.

0.096 0.098 0.100 0.102 0.104
1

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f l
os

t p
ac

ke
ts

tr
ai

n
=

10KP
EOT-AB-P

(b) Without the worst episodes.

Figure 3.10: Number of lost packets vs. 1
β

for nL = 40.

One can remark that for all the 1000 episodes, in Figure 3.10a, the EOT-AB-P performs poorly for
β = 9.6, 9.7 and 9.8, corresponding to 1

beta
≈ 0.104, 0.103 and 0.102. When the worst episodes are

withdrawn, in Figure 3.10b, the EOT-AB-P outperforms the KP scheduler for all the values of β except
β = 9.6. One can still remark that KP’s performance varies little.

Synthesis of the inference over different values of β. The EOT-AB-P sometimes struggles to
generalize under heavy traffic conditions, i.e. when β decreases. This can be explained by the current
reward formulation, which is ineffective for reducing packet loss during periods of high traffic load.
As outlined in (3.17), the agent tends to prioritize scheduling non-GBR traffic. Consequently, when
the packet inter-arrival rate decreases, more packets accumulate in the non-GBR buffers, inciting the
trained scheduler to focus on emptying these buffers at the expense of other traffic types, leading to
their starvation. Therefore, the delay-critical traffic may be starving, leading to delay-critical packets
exceeding their PDB. In future work, it would be useful to detect when the method begins to diverge
and switch to a heuristic like KP, which offers more consistent performance.

3.6 Conclusion

We addressed in this chapter the problem of the packet scheduling over a frame composed of RBs, as
in the 5G context. We proposed solutions based on an architecture which is a combination of EOT and
AB. This architecture is NLI thanks to the EOT and is capable to handle the very large action space
induced by the joint RB allocation thanks to the AB.

We observed through simulations using the WS-TFRA environment that the proposed scheduler
outperforms the heuristics implemented in WS in terms of number of lost packets, although the reward
provided in WS is not perfectly suited to this task.

93



We have also shown the importance of the adaptive action masking during the inference phase to
prevent the scheduler from selecting empty buffers and thus non-optimal action.

Finally we have observed that the trained architecture generalizes over different inter arrival rates for
non-GBR traffic.

There are few issues concerning the generalization over the inter-arrival rate, where the proposed
EOT-AB scheduler performs poorly for some rare episodes. Additionally, the reward design in WS-
TFRA is questionable, as similar average rewards can correspond to significantly different results in
communication metrics like BO and PDB violations. A high reward does not necessarily reflect better
performance for these metrics.

In future work, it could be of interest to improve the proposed architecture, for instance, by replacing
the linear embedding and projections of Q-values with a DNN. Moreover, it would be valuable to
train with variable arrival rates to enhance the architecture’s reliability. In addition, detecting when the
architecture begins to deviate and switching to an heuristic could further improve robustness.

Part of the material developed in this chapter had been patented in [85] and published in [42].

94



Chapter 4

Joint scheduling and MCS selection

4.1 Introduction

This chapter addresses the problem of joint frame-based scheduling and MCS selection. Specifically, we
assume that scheduling decisions are made at the beginning of each frame, and we aim to jointly allocate
each RB of the frame to a transmission buffer, and to select an appropriate MCS for packet transmission.

In Chapter 2 and in Chapter 3, we assumed an ideal error-free channel for which the capacity is
perfectly known, which does not reflect real-world conditions. This chapter considers a more realistic
setup where transmission errors at the receiver may occur and where only statistical CSI is known by the
scheduler. We assume that the packets are transmitted over a Rayleigh flat fading channel.

The main contributions of this chapter are the proposal and comparison of three different solutions
elaborated along two approaches: 1) one involving joint selection of the buffer and the MCS, referred to
as joint scheduling and MCS (JSM), 2) the other one involving separately selections of the buffer and
the MCS referred to as disjoint scheduling and MCS (DSM).

The three solutions can be synthesized as follows:
� The JSM solution, based on DRL, adapting the EOT-AB proposed in Chapter 3.
� A fully heuristic-based DSM solution, where scheduling and MCS selection are performed using

heuristics. Introducing the acronym heuristic for the buffer selection (HBS), this approach is
denoted as DSM-HBS.

� A hybrid DSM solution, using the EOT-AB proposed in Chapter 3 for buffer selection and a heuristic
for the MCS selection. Introducing the acronym learning for buffer selection (LBS), this approach
is denoted as DSM-LBS.

This chapter is organized as follows. Section 4.2 introduces the system model. Section 4.3 provides
the MDP formulation of this problem. Section 4.4 presents the proposed solutions to solve this MDP.
Section 4.5 details the training and evaluation setups. Section 4.6 provides the simulation results. Finally,
Section 4.7 draws concluding remarks.

4.2 System model

We consider the same communication model as in Section 2.2, with nL active links and two types of
traffic, a DC and a BE traffic.

In this chapter, each link is characterized by its average SNR denoted by Γ̄. We assume that the
average SNR in dB is uniformly distributed among the links, in the range [Γ̄dB

min, Γ̄
dB
max]. The channel

95



may induce transmission errors depending on Γ̄ and the selected MCS. The available MCSs are noted
MCS-µ, where µ ∈ {1, . . .M} and M is the total number of available MCSs. Each MCS enables
the extraction of a different integer number of packets, noted ρµ, from the buffer. We assume that
ρ1 < ρ2 < · · · < ρM. The channel model is detailed in Section 4.2.2.

The joint scheduling and MCS selection is performed at each frame over a total bandwidth W divided
into Nf RBs. Each RB and each link experiences different channel realizations.

4.2.1 Buffer model

The buffer model is described in Section 1.2 for the general model and in Section 2.2 for the DC and
BE buffer model. We remind that ni,k,1 is the number of packets in buffer i at the beginning of frame
k i.e. the number of entries du,i (index of the frame is omitted) whose value is greater than −1.

For each frame k, Nf buffers are selected for transmission and a MCS is assigned to the selected

buffers. Let ik = {i1k, . . . , i
Nf

k } be the selected buffers and µk = {µ1
k, . . . , µ

Nf

k } the corresponding MCS
assignment. Note that a given buffer may be selected multiple times (i.e., ij1k = ij2k with j1 ̸= j2), and
that different MCSs may be applied to the same buffer if selected multiple times. The scheduling and

MCS selection at frame k yields a set of pairs {(i1k, µ1
k), . . . , (i

Nf

k , µ
Nf

k )}, where MCS-µj
k determines the

number of packets pjk = ρµj
k

that can be extracted from buffer ijk for the jth RB.

Then, the nt
i,k,j := min(pjk, ni,k,j) oldest packets are extracted from this buffer and transmitted

through the channel, using MCS-µj
k, where ni,k,j is the number of packets in the ith buffer before the

transmission of the jth RB. The value of ni,k,j is updated at each RB as ni,k,j+1 = ni,k,j − nt
i,k,j. The

bits of the nt
i,k,j packets are jointly interleaved, encoded and modulated producing a codeword (CW).

This CW is then modulated using MCS-µj
k, producing a constant number of modulated symbols, denoted

by BS , which are transmitted over the channel. The channel may induce errors at the receiver side. Let
nTx
i,k,j be the number of packets lost due to transmission errors for RB j of frame k from buffer i, which

is equal to nt
i,k,j in case of decoding failure and 0 otherwise.

We remind that at the end of the frame (i.e. j = Nf ) the WT of all the packets is incremented and
may lead to DV. Then, new packets arrive in the buffers according to a Poisson distribution and BO
may occur.

Note that all the packets can be sent without using all the RBs. Let nu
k be the number of unused

RBs for the frame k.

4.2.2 Channel model

We assume that the transmitted modulated CW x experiments a flat-fading Rayleigh channel hℓ(k, j) ∼
CN (0, 2σ2

ℓ ).
The channel varies between each RB, and the received signal is corrupted by an additive white

Gaussian noise (AWGN) with variance 2σ2
n at the receiver level. The received signal on the ℓth link at

the jth RB of frame k can be expressed as:

yℓ(k, j) = hℓ(k, j)x+ νℓ(k, j), (4.1)

where νℓ(k, j) is the realization of the complex AWGN. We assume that the channel varies independently
between successive RBs and frames.

96



Let Γℓ(k, j) be the instantaneous SNR experimented for link ℓ at frame k on RB j which can be
written as:

Γℓ(k, j) =
|hℓ(k, j)|2

2σ2
n

. (4.2)

The corresponding instantaneous PER is derived from a LUT, which maps each selected MCS and
instantaneous SNR value to a PER estimate, based on AWGN performance. This mapping is denoted by
qµ(Γℓ(k, j)), where µ is the index of the selected MCS.

We assume in this Chapter that Γℓ is not available at the scheduler, instead, MCS selection is
performed based on the average SNR which is defined as:

Γ̄ℓ = E [Γℓ(k, j)] . (4.3)

In this context, computing the average PER is essential to enable a suitable MCS selection.

4.2.2.1 Procedure for the average PER

The average PER can be written as:

q̄µ(Γ̄ℓ) := Eh[qµ(Γℓ)], (4.4)

where the expectation is taken over the channel realizations.
Eq. (4.4) can be rewritten as:

q̄µ(Γ̄ℓ) =

∫ +∞

0

qµ(u)pΓℓ
(u)du, (4.5)

where pΓℓ
corresponds to the probability density function (pdf) of the SNR on link ℓ. The LUT curve is

often provided in a dB scale rather than in a linear one. In this case, we have qdBµ (v) where u = 10v/10

instead of qµ(u). Therefore, we aim to rewrite (4.5) using qdBµ (v) . Since du = log(10)
10

10v/10dv, (4.5)
becomes:

q̄µ(Γ̄ℓ) =
log(10)

10

∫ +∞

−∞
qdBµ (v)pΓℓ

(10v/10)10v/10dv. (4.6)

As noticed in [86], previous expression is computed over a restricted range of SNR, corresponding to the
SNR of the LUT, denoted by [SNRdB,LUT

min ; SNRdB,LUT
max ] and (4.6) is approached by:

q̄µ(Γ̄ℓ) ≈
log(10)

10

∫ SNRdB,LUT
max

SNRdB,LUT
min

qdBµ (v)pΓℓ
(10v/10)10v/10dv. (4.7)

Since the LUT is discrete, the integral in (4.6) is approximated by a sum, as in [86]. Specifically, the
SNR values are uniformly sampled in dB as v = [v0, v1, . . . , vNsample−1], with a constant step size ∆v

between consecutive samples, where v0 = SNRdB
min and vNsample−1 = SNRdB,LUT

max .

q̄µ(Γ̄ℓ) ≈
log(10)

10
∆v

Nsample−1∑
i=0

qdBµ (vi)10
vi/10pΓℓ

(10vi/10), (4.8)

where ∆v is the discretization step in the dB domain. Equation (4.8) holds for any channel model, i.e.,
for any distribution pΓℓ

.

97



For Rayleigh flat-fading channel, the probability to have a given instantaneous SNR Γℓ(k) is:

pΓℓ
(u) =

1

Γ̄ℓ

exp
(
−u/Γ̄ℓ

)
. (4.9)

Inserting (4.9) in (4.8) gives us:

q̄µ(Γ̄ℓ) ≈
log(10)

10

1

Γ̄ℓ

∆v

Nsample−1∑
i=0

qdBµ (vi)10
vi/10 exp(−10vi/10/Γ̄ℓ). (4.10)

This approach can be extended to frequency selective channel by using effective SNR mapping (ESM)
approach such as in [86].

4.3 Problem formulation for JSM and DSM approaches

Three types of packet loss can occur in the system described in Section 4.2: 1) BO losses, 2) DV losses
for DC traffic, and 3) losses due to the propagation channel.

In Section 2.3, we showed that under system model with only losses due to BO and DV, the problem
can be formulated as an MDP. In Section 3.2, we showed that frame-based scheduling can be also cast
as an MDP, where the action is the simultaneous allocation of all the RBs. In this chapter, the losses
due to channel and the selection of a proper MCS are also considered. One can prove that the Markov
property is preserved in both cases: the selected MCS influences the number of packets extracted, and
losses due to the propagation channel depend on the average SNR and the chosen MCS, i.e. the current
state and action.

We propose an MDP formulation of the packet loss minimization problem for such system, introducing
the state spaces, the action spaces and the reward.

4.3.1 State spaces

As for Section 2.3.2, let us note Sℓ the set of all the possible states for link ℓ. Since the state of each link
ℓ is composed of the state of the DC buffer SDC

ℓ , the state of the BE buffer SBE
ℓ and the state related to

the channel information SPER
ℓ , then Sℓ = SDC

ℓ × SBE
ℓ × SPER

ℓ . The considered sets SDC
ℓ and SBE

ℓ are the
same as in Section 2.3.2, whereas the set SPER

ℓ is different from the set Scapa
ℓ defined in Section 2.3.2.

The state vector fℓ ∈ Sℓ can be expressed as:

fℓ =
[
fDC-x
ℓ , fBE

ℓ , fPERℓ

]
, (4.11)

where:
� fDC-x

ℓ ∈ SDC
ℓ can be represented with the three different representations (HoL, xHoL and APD)

defined in Sections 2.3.2.1, 2.3.2.2 and 2.3.2.3 respectively.
� fBE

ℓ ∈ SBE
ℓ is the number of packets in the BE buffer, normalized by the buffer size such as in

Section 2.3.2.
� fPERℓ ∈ SPER

ℓ is defined as:

fPERℓ =

[
log (q̄1(Γ̄ℓ))

log (q̄min)
, . . . ,

log(q̄M(Γ̄ℓ))

log(q̄min)

]
, (4.12)

98



where q̄min is the lowest average PER achievable in the system, according to the available MCS and the
SNR range. q̄min is thus defined as:

q̄min := min
µ∈{1,...,M}

q̄µ(Γ̄max), (4.13)

where Γ̄max = 10Γ̄
dB
max/10 is the highest average SNR in linear considered in the system model in Section 4.2.

The logarithm in (4.12) helps the DNN to differentiate between orders of magnitude in the PER. The
entries of fPERℓ are in [0, 1]. We consider that fPERℓ remains constant over the time. Hence, the considered
state spaces follow the Markovian property.

Let us note nfeature the number of features characterizing the different state spaces, where:
� nfeature = 3 +M for HoL representation.
� nfeature = 4 +M for xHoL representation.
� nfeature = D0 + 3 +M for APD representation.
Notice that the PER information per link is required at the input of both JSM and DSM-LBS

architectures. Therefore, one might guess that:
� In the JSM solution, the PER information should be fully used by the architecture to jointly select

a buffer along with a suitable MCS.
� In the DSM-LBS solution, although the MCS is selected by an heuristic, the architecture may use

this information to guess the selected MCS, thanks to the training, and thus adapt the buffer
selection accordingly.

It is worth noting that other state representations could be considered instead of SPER
ℓ for the DSM

approach. For example, one may include the MCS chosen by the heuristic for the MCS selection (HMS)
along with its associated PER.

4.3.2 Action spaces for both JSM and DSM approaches

The proposed scheduler aims to jointly select the buffer to be served and the associated MCS for each

RB. For the JSM approach, the action can be written as ak := {a1k, . . . , a
Nf

k }, where ajk corresponds to

a pair (ijk, µ
j
k). For the DSM-LBS the action can be written as ak := {i1k, . . . , i

Nf

k }.

4.3.3 Reward

The proposed scheduler aims to mitigate the total number of lost packets. The reward is computed at
the end of the frame and is defined by:

rk := eω(α1Rd,k+α2Ro,k+α3Rc,k), (4.14)

where

Rd,k := −
nL−1∑
ℓ=0

nd
2ℓ,k (4.15)

Ro,k := −
nQ−1∑
i=0

no
i,k (4.16)

Rc,k := −
Nf∑
j=1

nQ−1∑
i=0

nTx
i,k,j. (4.17)

99



correspond to the opposite of the number of lost packets due to DV, to BO and to the propagation
channel, respectively, for frame k. ω > 0 is a hyperparameter controlling the behavior of the exponential
function, and α1, α2 and α3 are positive hyperparameters controlling the importance of the different
losses, with

∑3
j=1 αj = 1. The exponential maps the reward in ]0, 1].

4.4 Problem solutions

4.4.1 Solution approaches for MCS and buffer selections

The three different approaches proposed in this chapter are the following ones:
1. The JSM solution, performing joint scheduling and MCS selection with statistical CSI, leveraging

also the EOT-AB architecture.
2. The DSM-HBS solution, fully based on heuristics. Both the MCSs and the buffers are selected by

two different heuristics.
3. The DSM-LBS solution, where the MCSs are selected by a heuristic and the buffers are selected

according to a DRL-scheduler, leveraging the EOT-AB architecture proposed in Section 3.3.
Table 4.1 classifies the different scheduling and MCS selection solutions considered in this thesis.

Table 4.1: Considered scheduling and MCS selection solutions.

Scheduling
Heuristic DRL

MCS selection
Heuristic DSM-HBS DSM-LBS

DRL Not addressed JSM

One can notice that in Table 4.1, the combination of HBS with DRL-based MCS selection has not
been addressed. We were unable to evaluate this configuration within the timeframe available for this
thesis.

The different solutions listed in Table 4.1 are illustrated in Figure 4.1.

100



Average PER 
computation

Joint 
Scheduler and 
MCS selection

(proposed EOT-AB)

Selected
MCS

Selected
Buffers

Average SNR 
state

Buffers 
state

(a) Joint scheduling and MCS selection (JSM).

Average PER 
computation

Scheduler
(proposed
heuristic)

Selected
MCS

Selected
Buffers

Average SNR 
state

Buffers 
state

MCS selection

(b) Disjoint scheduling and MCS selection (DSM-HBS).

Average PER 
computation

Scheduler
(proposed EOT-AB)

Selected
MCS

Selected
Buffers

MCS selection
Average SNR 

state

Buffers 
state

(c) Disjoint scheduling and MCS selection (DSM-LBS).

Figure 4.1: Scheduling and MCS selection with different methods. Yellow boxes represent operations
that are done once per average SNR trial.

These different solutions can be explained as follows:
� The method in Figure 4.1a illustrates the JSM solution, where DRL is employed for both scheduling

and MCS selection. The average PER is computed and is fed into the EOT-AB that outputs the
Q-value for each buffer-MCS pairs.

� The method in Figure 4.1b illustrates the DSM-HBS solution, where the average SNR is used for
both the average PER computation and the scheduler.

� The method in Figure 4.1c illustrates the DSM-LBS solution, where the average SNR is used to
compute the average PER only. The average PER is used as state space, such as in Section 4.3.1,
for DRL scheduler which is in our case an EOT-AB. The EOT-AB outputs the Q-value for each
buffer.

One can note that the EOT-AB used in JSM and DSM-LBS are slightly different since they do not
have the same number of outputs.

The HMS used for the DSM solutions is as follows: 1) we compute the average PER (4.4) q̄µ(Γ̄ℓ) for
µ ∈ {1, . . . ,M}. 2) we select µHMS = argmaxµ∈{1,...,M}{ρµ | q̄µ(Γ̄ℓ) ≤ q̄th}. This corresponds to the
MCS that allows to transmit the largest number of packets while satisfying a PER threshold condition.

101



4.4.2 Adaptation of the heuristics for buffer selection

In this section, we present the proposed adaptations for the different HBSs, introduced in Section 1.3 in
order to account for the frame-based and MCS selection context:

1. PF, MLWDF, and LOG-rule require the instantaneous rate. Since this information is not available,
for the sake of simplicity, we propose to replace it using this expression:

ci = log2
(
1 + Γ̄ℓi

)
. (4.18)

2. According to Sections 1.3.4 and 1.3.5, we must distinguish between DC and BE traffic; therefore,
MLWDF and LOG-rule should be modified accordingly.

3. The KP presented in Section 1.3.7 requires a PLR target and a bearer priority, which are not
defined in this chapter. Consequently, this method also requires adaptation.

Remark: In this section, as for Section 3.4.4, to simplify the notation, the index k denotes the
current combination of slot/RB, instead of using separate indices for slots and RBs.

4.4.2.1 Round-robin

The RR does not depend on the channel and thus does not require adaptation.

4.4.2.2 Proportional fair

The PF uses the instantaneous rate information for each buffer i, noted ci (for link ℓi).
The PF expression is thus given by (1.13):

hPF(xi) =
ci
c̄i

=
log2

(
1 + Γ̄ℓi

)
c̄i

, (4.19)

where xi is the feature vectors of buffer i, and as a reminder

c̄i =
1

KNf

K∑
k=1

Nf∑
j=1

ciδj,k(i), (4.20)

with

δj,k(i) =

{
1 if i is selected for RB j of frame k

0 otherwise
. (4.21)

4.4.2.3 MLWDF

The MLWDF uses also ci.Thus, we propose the same approach as for PF and to use (4.18) for ci. The
MLWDF expression given by (2.14) is transformed as:

hMLWDF(xi) :=

{
αicid0,i if i mod 2 = 0 (if i is a DC buffer)

hPF(xi) if i mod 2 = 1 (i is a BE buffer)
, (4.22)

where αi is set as in Section 1.3.

102



4.4.2.4 LOG-rule

The LOG-rule uses also ci.Thus, we propose the same approach as for PF and to use (4.18) for ci. The
LOG-rule expression given by (2.15) is transformed as:

hLOG−rule(xi) :=

{
αici log (βi + ηid0,i) if i mod 2 = 0 (if i is a DC buffer)

hPF(xi) if i mod 2 = 1 (i is a BE buffer)
, (4.23)

where αi, βi and ηi are set as in Section 1.3.

4.4.2.5 Knapsack

Since a PLR target is not defined for the different traffic types and the CQI is unavailable, and because
it may represent a channel metric as discussed in Section 1.3.7, we adapt (1.25) using the average SNR,
normalized by Γ̄dB

max

v2(xi,k) :=
Γ̄dB
i

Γ̄dB
max

. (4.24)

The new expression of KP adapted to the statistical CSI context is given by (1.23) along with (1.24),
(4.24), (2.18), and (1.27).

It is worth noting that for BE buffers, (1.24) is equal to 0. Because KP expression is a sum (1.23),
it does not imply that hKP(xi,k) = 0, conversely to the MLWDF expression (1.19) when ηi = 0. Thus,
there is no need to differentiate between DC and BE traffic, as is the case with MLWDF.

4.4.3 Adaptation of the EOT-AB for JSM and DSM-LBS approaches

As in Chapter 3, we use the EOT-AB architecture that is adapted to the JSM and DSM-LBS approaches.
It is illustrated in Figure 4.2.

103



A
rg

m
ax

𝑎𝑘
1

𝐬𝑘

A
rg

m
ax

𝑎
𝑘

𝑁𝑓

𝒂𝑘A
rg

m
ax

𝑎𝑘
2

… …

…

෤𝐬𝑘 ෥𝒐𝐸

𝒗

𝑨1

𝑨2

𝑨𝑁𝑓

𝑾𝑒 , 𝒃𝑒 EOT

𝑾𝑢
1 , 𝒃𝑢

1

𝑾𝑢
2 , 𝒃𝑢

2

𝑾𝑢

𝑁𝑓 , 𝒃𝑢
𝑁𝑓

𝒈, 𝑏𝑣

𝒗

𝒗

𝒗

M
as

k 
𝒎

0
M

as
k 
𝒎

1
M

as
k 
𝒎

𝑁
𝑓
−
1

V
ec

t.
 

V
ec

t.
 

V
ec

t.
 

𝑸1

𝑸2

𝑸𝑁𝑓

Figure 4.2: EOT-AB architecture adapted to JSM and DSM-LBS approaches. Gray boxes are learn.

The EOT-AB works as follows:
1. First, the state space, sk undergoes a linear embedding using the de × nfeature matrix We. The

resulting embedded state is s̃k := Wesk+be1
T
nL

, with dimensions de×nL, where be is the additional
bias vector of dimension de × 1, and 1nL

is a vector of ones of dimensions nL × 1.
2. Next, s̃k is processed by an EOT module which outputs a de × nL matrix, denoted by õE.
3. Then õE is projected into advantages on all the branches and into value for the dueling.

� The 1× nL value vector is obtained by v := gõE + b1T
de

where the ℓth entry of v represents
the estimated state value of the ℓth link, g is a 1 × de weights vector and bv is a scalar
corresponding to the bias.

� For the jth branch, the projection into advantages is performed:
– For JSM approach with the 2M × de matrix W j

u, where the output is denoted as:
Aj := W j

uõE + bju1
T
nL

, which has dimensions 2M×nL. bju is the additional bias on the
jth branch.

– For DSM approach with the 2× de matrix W j
u,where the output is denoted as: Aj :=

W j
uõE + bju1

T
nL

, which has dimensions 2 × nL. bju is the additional bias on the jth
branch.

4. The vector v is then added to the advantage on each branch j to produce the matrix Qj, i.e.
Qj := Aj + 12Mv, where the ℓth column is an estimate of the Q-value for the different possible
actions for the ℓth link.

� For JSM approach, the ℓth column contains 2M entries where the first (resp. last)M entries
are the estimated Q-values corresponding to each MCS for the DC (resp. BE) buffer. The
corresponding MCS is given by the modulo.

� For DSM approach, the ℓth column contains 2 entries where the first (resp. second) entry is
the estimated Q-values for the DC (resp. BE) buffer.

104



To prevent from selecting an empty buffer, adaptive action masking is applied on each branch.
5. Finally, the action ajk is selected by taking the argmax on the masked flattened matrix Qj.

� For JSM approach, the selected buffer and associated MCS are retrieved as ijk =
⌊

ajk
M

⌋
and

µj
k = ajk modM respectively.

� For the DSM-LBS approach, the action corresponds to the scheduling, i.e. ijk = ajk and the
MCS is chosen according to the procedure discussed in Section 4.3.2.

The differences between this architecture and the one from Section 3.3 reside in the outputs. In
Section 3.3, only buffer selection is performed whereas in this chapter, a MCS is also selected.

Notice that there exist cases where a selected buffer ijk and its corresponding MCS, MCS-µj
k, verify

nijk
< ρµj

k
. Hence, the MCS is over-dimensioned compared to the number of packets to be transmitted,

and the RB is not fully used. In that case, it would be more convenient to use a MCS-µ̂, with µ̂ < µj
k,

verifying ρµ̂ = nijk
, ensuring that the average PER is smaller than the one achieved using MCS-µj

k. One

may consider such a trick in future works to improve performance.
Table 4.2 gives the complexity of this architecture.

Table 4.2: Number of FLOPs of the EOT-AB for JSM.

Operation Number of FLOPs

Embedding We 2× de × nfeature × nL

EOT (from Table A.1) nL(2de(4de + 2nL + 2dmlp + 11) + 4HnL + 2dmlp)
Dueling 2× de × nL

Projection into advantages 2× 2M× de × nL ×Nf

Q-values (advantage plus value) 2MnL ×Nf

Total
2nL [de (nfeature + 4de + 2nL + 2dmlp + 10 + 2MNf )

2HnL +MNf ]− n2
L − nLde

4.5 Performance evaluation

In this section, we compare the performance of the different solutions referenced in Table 4.1.
For the DSM-HBS solutions, we use the heuristics presented in Section 4.4.2. We note ”DSM-HBS

h” the DSM-HBS solution using heuristic ”h”∈ {RR,MLWDF, LOG-rule,KP}.
For the DRL solutions (JSM and DSM-LBS), we use the three state space representations depicted

in Section 4.3.1: HoL, xHoL and APD. We note ”JSM s” and ”DSM-LBS s” the JSM and DSM-LBS
solutions using state space representation ”s”∈ {HoL, xHoL,APD}.

The MCS used for the DSM methods is chosen according to the procedure described in Section 4.4.1.

4.5.1 Simulation settings

At the beginning of each episode, in both training and inference, the average SNR of each link is drawn
uniformly at random from the interval [Γ̄dB

min, Γ̄
dB
max], and is considered to be constant for the episode

duration. Then the average PER is computed for each link thanks to (4.8). Table 4.3 details the
simulation parameters.

105



Table 4.3: Simulation system model parameters.

D 20

B 40

Nf 5

qth 10−2

Γ̄dB
min 20 dB

Γ̄dB
max 40 dB

B 1000 data bits per packet

BS 1000 symbols per RB

Table 4.4 details the available MCSs which are implemented along with a low-density parity check
(LDPC) code.

Table 4.4: Available MCSs.

MCS index µ 1 2 3
Modulation QPSK 16QAM 64QAM
Coding rate 1/2 1/2 2/3

Number of encoded bits 1000 2000 3000
Number of transmitted packets per RB (ρµ) 1 2 3

Figure 4.3 illustrates the average PER over a Rayleigh flat fading channel for the considered MCSs.
For q̄th = 10−2, which corresponds to the threshold for both HBS and DSM-LBS methods, the following
MCSs are applied based on the average SNR:

� QPSK 1/2 is selected from 20 dB up to approximately 27 dB.
� 16QAM 1/2 is then used from 27 dB to around 34 dB.
� 64QAM 2/3 is applied from 34 dB to 40 dB.

For q̄th = 10−1, the MCS selection changes:
� QPSK 1/2 is never used.
� 16QAM 1/2 is used between 20 dB and about 23.5 dB.
� 64QAM 2/3 is employed from 23.5 dB to 40 dB.

As stated in Table 4.3, all the DSM-HBS solutions have been evaluated with qth = 10−2. We observed
that DSM-HBS KP outperforms all other heuristics. Therefore, we tried the DSM-HBS KP with qth =
10−1. Indeed, in that case, we select more often MCSs with higher ρµ, thus draining faster the buffers.
Thus, we can expect better performance in terms of total PLR for high value of Λ. Let us note KP1
(resp. KP2) the DSM-HBS KP using the PER threshold equal to 10−1 (resp. 10−2).

106



0 10 20 30 40
SNR (dB)

10 4

10 3

10 2

10 1

100

Av
er

ag
e 

PE
R

PER = 10 2

dB m
in

dB m
ax

QPSK 1/2
16QAM 1/2
64QAM 2/3

Figure 4.3: Average PER for the considered MCSs on Rayleigh flat-fading channel (red vertical bars
represent the lower and upper bounds for the average SNR trials).

Table 4.5 details the EOT-AB hyperparameters.

Table 4.5: EOT-AB hyperparameters.

Parameter Numerical value

γ 0.95
τ (soft update parameter) 0.005

Target network update period 20 steps
Batch size 512

Learning rate 5× 10−4

ϵstart 1
ϵend 0.01
ϵdecay 0.99

Number of heads H 4
Number of EOT layer 1
de = dmlp = Hdattn 256

Table 4.6 shows the complexity in FLOPs computed for the JSM and DSM-LBS solutions along with
the EOT used in Chapter 2.

107



Table 4.6: EOT-AB complexity for nL = 6.

State space FLOPs JSM FLOPs DSM-LBS FLOPs EOT (Chapter 2)

HoL 4 895 925 4 834,485 4 800 688
xHoL 4 898 997 4 837 557 4 803 760
APD 4 957 365 4 895 925 4 862 128

One can see that the complexity of the JSM solution is approximately 1% higher than the DSM-LBS
solution, even if it also performs MCS selection. It is also less than 2% higher than the architecture used
for the slot-based scheduling in Chapter 2, even if the architecture used for the JSM is used for a frame
with Nf RBs instead of a single slot.

4.5.1.1 Training setup

The different architectures are trained during 4000 episodes of 7000 steps. The arrival rate for each buffer
is set to λ = Λ

nQ
Nf = 1.6

12
× 5. Every 100 episodes, a validation episode of 70 000 steps is performed. A

validation episode is also performed when the current average training reward is higher than the previous
average training rewards. This may lead to different number of validation episodes among the trained
architectures. The weights used for the inference are the ones for which the highest validation reward has
been obtained. This may lead to a selection bias since only one validation episode is performed, i.e. only
one seed, and by extension one average SNR configuration is used for the weights selection. The used
average SNR in dB for the validation are: [Γ̄dB

0 , . . . , Γ̄dB
5 ] = [27.49, 39.01, 34.64, 31.97, 23.12, 23.12]. In

future works, multiple validation episodes, i.e. multiple seeds with distinct average SNR configuration,
should be used to reduce the selection bias.

We also implemented the following trick for the training: when the total number of packet in the
buffers is lower than Nf at the beginning of the frame, we fill the RBs using the most robust MCS.
This trick enhances transmission reliability since it implements deterministic optimal actions according
to our problem, thus minimizing the number of lost packets for the current frame. We suppose that such
transitions are not valuable for training since the actions can be directly performed without using a DNN
and therefore exclude them from the replay buffer.

4.5.1.2 Inference setup

We perform nepisode = 25 inference episodes. Each episode, corresponding to different average SNR
draws, is composed of K = 1000 000 steps, each step corresponding to a frame of Nf = 5 RBs. We
consider two types of inferences:

1. Inferences with the implementation trick used during the training: if there are less than Nf packets
in total at the beginning of the frame, we fill directly the RB using the most robust MCS. This
may decrease the energy efficiency (EE) but decrease the PER.

2. Inferences without the implementation trick used during the training: if there are fewer than Nf

packets in total at the beginning of the frame, the selected MCS still depends on the scheduler
and may not be the most robust one.

4.5.2 Performance Metrics

We evaluate the following metrics:
� The training and validation rewards.

108



� The PLR defined as the total number of lost packets divided by the total number of arrived packets
in the buffers. The loss may come from DV, BO and channel error transmission i.e.:

ξ :=

∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0

(
no
i,k(nep) + nd

i,k(nep) +
∑Nf

j=1 n
Tx
i,k,j(nep)

)
∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0 nr

i,k(nep)
. (4.25)

� The PLR due to DV and BO only defined as the total number of lost packets due to DV and BO
divided by the total number of arrived packets:

ξDV+BO :=

∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0

(
no
i,k(nep) + nd

i,k(nep)
)∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0 nr

i,k(nep)
. (4.26)

� The PLR due to DV only defined as the total number of lost packets due to DV divided by the
total number of arrived packets:

ξDV :=

∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0 nd

i,k(nep)∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0 nr

i,k(nep)
. (4.27)

� The PLR due to BO only defined as the total number of lost packets due to BO divided by the
total number of arrived packets:

ξBO :=

∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0 no

i,k(nep)∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0 nr

i,k(nep)
. (4.28)

� The PLR due to channel which is here defined as the number of lost packets due to channel error
transmission divided by the total number of transmitted packets, i.e.:

ζCH :=

∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0

∑Nf

j=1 n
Tx
i,k,j(nep)∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0

∑Nf

j=1 n
t
i,k,j(nep)

. (4.29)

� The throughput, defined as the number of correctly transmitted packets divided by the total number
of frame, over all the episodes:

η :=

∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0

∑Nf

j=1

(
nt
i,k,j(nep)− nTx

i,k,j(nep)
)

nepisodeK
. (4.30)

It is worth noting that the number of packets sent cannot exceed the limit imposed by the highest
MCS, which allows a maximum of 3 packets per RB. As a result, the throughput is capped at
3Nf = 15.

� The proportion of unused RB in total, which might occur w when the selected MCSs empty all the
buffers with a number of RBs strickly less than Nf , and which is defined by:

U :=

∑nepisode

nep=1

∑K
k=1 n

u
k(nep)

nepisodeKNf

. (4.31)

� The EE, which is defined as the number of correctly transmitted packets divided by the number of
effective RBs:

E :=

∑nepisode

nep=1

∑K
k=1

∑nQ−1
i=0

∑Nf

j=1

(
nt
ijk
(nep)− nTx

i,k,j(nep)
)

P
(
nepisodeKNf −

∑nepisode

nep=1

∑K
k=1 n

u
k(nep)

) , (4.32)

109



where P is the transmit power, which is assumed to be equal to one. It is important to note that, in
general, EE formulations include circuit power consumption, particularly in EE maximization problems
[1]. However, this is not considered here. In our case, excluding the power of circuitry allows for simpler
interpretation: if E > Λ, then not all available RBs are utilized, resulting in power saving and nearly
all packets are transmitted. Otherwise, if E ≤ Λ, either nearly all RBs are used, not all packets are
transmitted correctly, or both. If all the RBs are used for all the episodes, then the EE is proportional to
the throughput.

4.6 Performance analysis

4.6.1 Training analysis

In this section, we analyze the evolution of the reward during the training and validation reward.
Figure 4.4 plots the training rewards for JSM and DSM architectures.

0 500 1000 1500 2000 2500 3000 3500 4000
Training episodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 re
wa

rd

HoL
xHoL
APD

(a) Training rewards for JSM architectures.

0 500 1000 1500 2000 2500 3000 3500 4000
Training episodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Tr

ai
ni

ng
 re

wa
rd

HoL
xHoL
APD

(b) Training rewards for DSM architectures.

Figure 4.4: Training rewards for JSM and DSM architectures.

One can observe in Figure 4.4a that the JSM architectures have converged, and the training rewards
have a low variance. In Figure 4.4b, one can observes that the DSM architectures have a training reward
with higher variance than the JSM architectures. Due to the high variance of the DSM architectures, it
seems difficult to conclude if they have converged or not. The difference in variance can be attributed to
the following: when the average SNR is high, both the JSM and DSM approaches succeed in emptying
the buffers with low packet loss, resulting in high reward values for both. However, when the average
SNR is low, the JSM approach adapts the MCS for each RB to optimize buffer draining, thereby reducing
the overall packet loss, yielding high reward values. In contrast, the DSM approach, which uses a fixed
MCS for all the RBs, struggles to efficiently empty the buffers, leading to high packet losses due to DV
and BO, and consequently lower reward values.

The validation reward is plotted in Figure 4.5 for both methods, as a function of the training
episodes.A validation episode is performed every 100 training episodes, or whenever the average re-
ward obtained at the current episode surpasses all previously observed training rewards. The markers
indicate the episodes at which validation occurs.

110



0 500 1000 1500 2000 2500 3000 3500 4000
Training episodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
re

wa
rd

HoL
xHoL
APD

(a) Validation rewards for JSM architectures.

0 500 1000 1500 2000 2500 3000 3500 4000
Training episodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
re

wa
rd

HoL
xHoL
APD

(b) Validation rewards for DSM architectures.

Figure 4.5: Validation rewards for JSM and DSM architectures.

One can observe that for both methods, the validation rewards converge in less than 500 training
episodes, to the average value of about 0.96. The two different methods seem to converge at the same
speed despite the fact that the action space in Fig. 4.5a is larger than in Fig. 4.5b.

4.6.2 Inference performance analysis

Figure 4.6 plots the PLR (noted ξ) vs. Λ. Figure 4.6a plots the PLR from the first inference setup,
which includes the implementation trick, while Figure 4.6b plots the PLR from the second setup, without
the implementation trick.

1 2 3 4 510 3

10 2

10 1

100

PL
R

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(a) With the implementation trick.

1 2 3 4 510 3

10 2

10 1

100

PL
R

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(b) Without the implementation trick.

Figure 4.6: PLR vs. Λ.

One can observe that:
� The two figures are nearly identical, except for Λ < 1.2, where the setup including the implemen-

tation trick achieves better PLR performance.
� Regardless of the value of arrival rates, the KP2 yields similar results as the DSM-LBS.
� When Λ < 1, the JSM architectures have a higher PLR than the DSM methods, which obtain

approximately the same PLR. In this regime, the PLR is mostly due to channel transmission errors,
see e.g. Figure 4.9 and Figure 4.7.

111



� For 1 ≤ Λ ≤ 2, the proposed JSM solutions yield significant lower PLR compared to the DSM-HBS
and the DSM-LBS solutions. It is noteworthy that a gain of approximately one order of magnitude
is achieved compared to RR, MLWDF, and LOG-rule from Λ = 1.5, and relative to KP2 and the
DSM-LBS from Λ = 1.7. This highlights the importance of performing MCS selection to adapt to
varying traffic loads.

� KP1 has the higher PLR for Λ ≤ 1.2. For 2 ≤ Λ ≤ 3.1, it obtains better performance than the
JSM architecture. A possible explanation is that this range of arrival rate is far from the training
arrival rate, producing generalization issues. For Λ ≥ 3.1, KP1 and JSM APD obtain similar
results and beat the other methods. This confirms what was anticipated when defining KP1 in
Section 4.5.1.

� For Λ ≥ 3.1, all the methods have a PLR greater than 10−1. For these arrival rates, the average
number of arriving packets exceeds the maximum that can be transmitted using the highest MCS.

The above figures aggregate the losses due to DV, BO and channel providing a global view of the
performance of the different methods. To better understand the underlying strategy of the different
methods, let us study the loss from the different sources separately, that is, ξDV+BO, ξDV, ξBO, and ζCH.

Figure 4.7 represents the PLR due to DV plus BO (ξDV+BO) vs. Λ.

1 2 3 4 510 5

10 4

10 3

10 2

10 1

100

PL
R 

du
e 

to
 D

V 
an

d 
BO

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(a) With the implementation trick.

1 2 3 4 510 5

10 4

10 3

10 2

10 1

100

PL
R 

du
e 

to
 D

V 
an

d 
BO

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(b) Without the implementation trick.

Figure 4.7: PLR due to DV plus BO vs. Λ.

One can observe that:
� There is almost no difference between the two figures, with and without the implementation trick,

meaning that it prevents only from packet loss due to the channel.
� For low arrival rates, i.e. Λ < 1, there is few packet loss due to DV and BO.
� For Λ ≥ 1.1, the proposed architecture obtains lower PLR due to DV and BO, with a factor 10.
� Concerning the different state space input for the JSM approach, for Λ ≤ 0.7, the different

methods are closed. Concerning the JSM xHoL, it has a higher PLR than the other methods for
Λ ∈ [0.8, 1.1], is better than JSM APD for Λ ≥ 1.2 and better than JSM HoL for Λ ≥ 1.3. The
JSM HoL has a lower PLR than the JSM APD for Λ ∈ [0.5, 1.4].

� KP1 achieves low PLR due to DV and BO for Λ < 2.5, then its PLR increases drastically until
reaches the PLR of JSM APD for Λ ≥ 3. This implies that for Λ < 3, the majority of the packet
loss of KP1 comes from the channel.

Figures 4.8a and 4.8b plot the PLR due to DV (ξDV) and BO (ξBO) vs. Λ respectively. Since
there is no great difference for the sum of the PLR due to DV and BO, only the results without the
implementation tricks are plotted.

112



1 2 3 4 510 5

10 4

10 3

10 2

10 1

100

PL
R 

du
e 

to
 D

V

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(a) PLR due to DV without the implementation trick.

1 2 3 4 510 5

10 4

10 3

10 2

10 1

100

PL
R 

du
e 

to
 B

O

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(b) PLR due to BO without the implementation trick.

Figure 4.8: PLR due to DV (a) and PLR due to BO (b) vs. Λ.

One can observe that:
� There is little packet loss due to DV and BO for all methods when Λ < 1.
� The KP1 obtains little packet loss due to DV regardless the value of Λ and little packet loss due

to BO for Λ < 2.7.
� Except for RR, DSM-HBS methods lose fewer packets due to DV than DRL-based methods.

However, they lose more packets due to BO.
� There is at least one order of magnitude difference between one of the JSM methods and all

DSM-LBS methods for 1.1 < Λ < 2.1, across the different types of loss. For 2.1 < Λ < 2.9,
both JSM-APD and JSM-xHoL exhibit an order of magnitude difference in packet loss due to BO,
whereas only JSM-APD shows such a difference in packet loss due to DV.

� There is a magnitude order of difference between at least one JSM and all the DSM-LBS ones, for
1.1 < Λ < 2.1 for the different types of loss. For 2.1 < Λ < 2.9, JSM APD and JSM xHoL have
one order of magnitude for packet loss due to BO, whereas only the JSM APD has one order of
magnitude for packet loss due to DV.

Figure 4.9 plots the PLR due to channel (ζCH) vs. Λ.

1 2 3 4 5

10 2

10 1

PL
R 

du
e 

to
 c

ha
nn

el

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(a) With the implementation trick.

1 2 3 4 5

10 2

10 1

PL
R 

du
e 

to
 c

ha
nn

el

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(b) Without the implementation trick.

Figure 4.9: PLR due to channel vs. Λ.

One can observe that:

113



� The first setup with the implementation trick offers better performance for Λ < 1.2. For Λ ≥ 1.2,
the two setups are nearly identical.

� For Λ ≥ 1.2, the PLR due to channel of the DSM methods is almost constant for both setups.
� The PLR due to channel of DSM methods remains below the PER target, as expected, since the

chosen MCS guarantees a PLR due to channel under the specified threshold.
� The PLR due to channel for the JSM architectures increases as Λ increases. Additionally, the PLR

due to channel for these architectures is higher than the PLR due to channel of the DSM methods,
except for the JSM HoL which have the same PER than the DSM methods for Λ ≤ 0.6.

� The PLR due to channel of the JSM APD exceeds the one of the KP1 for Λ ≥ 2.7. This signifies
that this architecture selects less robust MCS to empty faster the buffer for high arrival rates.

Figure 4.10 plots the throughput (η) vs. Λ.

1 2 3 4 52

4

6

8

10

12

14

Th
ro

ug
hp

ut

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(a) With the implementation trick.

1 2 3 4 5
2

4

6

8

10

12

14

Th
ro

ug
hp

ut

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(b) Without the implementation trick.

Figure 4.10: Throughput vs. Λ.

One can observe that:
� All the curves are superimposed for Λ ≤ 1.2. It is worth noting that the implementation trick does

not affect the performance of the throughput.
� For 1.2 ≤ Λ ≤ 2.2, the JSM methods and KP1 offer the same throughput, surpassing the other

DSM-LBS methods with q̄th = 10−2.
� For Λ ≥ 2.2, JSM APD and KP1 remain close in performance and outperform the other methods,

with 14 packets per frame, which is close to the bound of 15 packets. JSM HoL saturates at 11
packets per frame, while JSM xHoL reaches 10. DSM-LBS HoL and DSM-LBS APD also achieve
10 packets per frame, outperforming DSM-HBS using HMS with q̄th = 10−2, which are limited to
9 packets per frame.

Figure 4.11 plots the proportion of unused RBs (U) vs. Λ.

114



1 2 3 4 5
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Pr
op

or
tio

n 
of

 u
nu

se
d 

RB

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(a) With the implementation trick.

1 2 3 4 5
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
op

or
tio

n 
of

 u
nu

se
d 

RB

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(b) Without the implementation trick.

Figure 4.11: Proportion of unused RB vs. Λ.

One can observe that:
� In the first setup, the implementation trick leads the methods to use more RBs when arrival rates

are low (i.e., Λ < 1). Without this trick, nearly 50% of the RBs remain unused at Λ = 0.5,
with usage gradually decreasing as Λ rises, except for JSM APD. As Λ increases beyond 1, the
proportion of used RBs decreases, since the buffers are filling up and more RBs are needed to
empty them .

� The JSM methods lead to higher unused RBs than the other methods, whereas the DSM-LBS
methods and KP2 lead to lower unused RBs than the other methods.

� The JSM APD continues to leave some RBs unused regardless of the value of Λ. This may be due
to its frequent selection of the highest MCS to empty the buffers when Λ is high.

Figure 4.12 plots the EE (E), where the power is considered unitary, vs. Λ.

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

EE

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(a) With the implementation trick.

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

EE

tr
ai

n
=

1.
6

RR
log
MLWDF
KP1
KP2
JSM HoL
JSM xHoL
JSM APD
DSM HoL
DSM xHoL
DSM APD

(b) Without the implementation trick.

Figure 4.12: Energy efficiency vs. Λ.

One can observe that:
� The setup with the implementation trick results in lower EE for small values of Λ, while for Λ > 1.5,

both setups yield nearly the same EE.
� The proposed JSM methods, in particular APD, lead to better EE in general, than the other

methods. This highlights the gain to use a joint optimization.

115



4.7 Conclusion

We addressed in this chapter the joint scheduling and MCS selection problem over a frame, considering
statistical CSI. The objective was to minimize the packet loss due to DV, BO and channel effect.

We have proposed and evaluated two different approaches for the DRL-based methods: the first one,
referred to as JSM, uses an EOT-AB architecture that jointly selects the buffer and the MCS. The
second one, referred to as DSM-LBS, uses an EOT-AB architecture that selects only the buffers for each
RB of the frame, while relying on an heuristic for MCS selection. One of the main difference between
both approaches is that for the DSM, the MCS is selected once for all transmissions based on the average
SNR value, whereas for the JSM, the MCS is selected for each RB. These approaches are compared
along with DSM-HBS, where heuristics are used for both MCS and buffer selections.

Simulation results show that JSM solutions (in particular JSM APD) outperforms the DSM ones.
This can explained as follows:

� Both DSM solution have difficulties to maintain low PLR under different traffic loads due to its
lack of flexibility. Indeed, these methods are constrained by the fixed MCS selection, which may be
either insufficiently robust, resulting in a high PLR due to channel errors, or not efficient enough
to empty the buffer, leading to high PLR due by DV and BO.

� The JSM solution offers better performance in terms of total PLR, throughput and EE at the
expense of a higher PLR due to the channel. Specifically, it demonstrates an adaptation in the
MCS selection strategy based on the traffic load, accepting a higher PLR due to the channel
conditions in order to mitigate the total PLR. In contrast, the DSM approach yields lower PLR
due to the channel conditions but results in a higher total PLR, reduced throughput, and lower EE.
This is due to its reliance on heuristic-based MCS selection, which lacks the flexibility to adjust to
varying traffic loads. These observations highlight the benefit of jointly performing scheduling and
MCS selection to dynamically adapt decisions based on the state of the buffers.

Since the average PER is used in the state space, it would be interesting in future works to study if the
proposed architecture succeeds to generalize over different channel conditions (e.g. multipath Rayleigh
channel, Rician channel). Moreover, the average SNR remained constant throughout each episode, which
differs from real-world scenarios where link mobility causes variations in average SNR. Future works could
explore integrating mobile links to better reflect these dynamics such as in Chapter 3. In addition, they
could integrate repetition mechanism to mitigate the PER.

Part of the material presented in this chapter has been published in [87] and patented in [85].

116



Conclusions and perspectives

The main objective of this thesis was to propose DRL solutions for a central joint optimization of
scheduling and resource allocation in multi-user wireless communication systems.

In Chapter 1, we presented the general system model along with a SotA of both heuristics and
DRL-based solutions for scheduling and resource allocation. We recommended that an effective DNN
architecture for scheduling should satisfy the following three key properties: NLI, PE and GBM. We then
proposed an original classification of the DRL schedulers based on these three properties. We identified
that the EOT architecture possesses these three properties thanks to its attention mechanism, and we
thus proposed to use it as a basis for the scheduling solutions developed throughout this thesis.

In Chapter 2, we considered a slot-based scheduling problem with two types of traffic, DC and BE,
and assuming error-free propagation channel. We trained the EOT using DQL for a specific number
of links and for a specific value for the traffic arrival rate, and we compared its performance against
heuristics, and a conventional FC DNN scheduler. We evaluated the generalization capability of the
EOT scheduler with respect to traffic arrival rate and the number of links in the networks not seen
during the training. The performance are evaluated in terms of packet loss, throughput, fairness, and
packet delay. Our results showed that 1) EOT outperforms the heuristics, which are NLI and 2) EOT also
outperforms the FC-based schedulers, although the latter were trained specifically for a given number
of links, i.e., one FC-based scheduler per trained/tested number of links. Remarkably, EOT maintains
robust performance even when tested under link configurations it had not encountered during training,
confirming its scalability, adaptability, and good generalization capability.

In Chapter 3, we considered a frame-based scheduling problem with four types of traffic and assuming
error free propagation channel. We introduced the EOT-AB architecture trained with DDQL to jointly
perform RB allocation over a frame. This model combines the benefits of the EOT, which is NLI, PE, and
GBM, with the AB architecture, which enables managing large discrete action space through a structured
action decomposition, where each branch handles the selection of a specific RB. To prevent the allocation
of RBs to empty buffers, we incorporated adaptive action masking. Experimental results showed that
jointly allocating RBs across the frame outperforms heuristics that operate on an RB-by-RB basis. Our
solution shows also better results than the heuristics. Additionally, we demonstrated the effectiveness of
adaptive action masking during inference, highlighting its importance for improved performance during
inference phases.

In Chapter 4, we also considered a frame-based scheduling problem with two types of traffic, DC
and BE, and assuming Rayleigh flat fading propagation channel. We extended the scheduling problem
by incorporating MCS selection alongside buffer scheduling over a frame. We introduced the packet
loss due to the channel. The probability of correctly transmitting the packets depends on the selected
MCS. Two approaches were evaluated: 1) a joint solution, where both buffer and MCS selections

117



are made simultaneously by a single EOT-AB architecture; and 2) a disjoint solution, where the EOT-
AB architecture performs buffer selection, and the MCS is determined heuristically based on average
PER conditions. Experimental results demonstrated that the joint solution consistently outperforms the
disjoint one in terms of PLR across various traffic arrival rates, highlighting the benefit of learning both
tasks in a unified framework.

Perspectives

The following challenges are identified as perspectives for future research.

System design

� In this thesis, we assumed either perfect packet transmission or transmission with errors. In the
latter case, retransmission mechanisms such as HARQ, which are commonly used in practical
communication systems, were not considered. Future work should therefore incorporate HARQ
alongside the scheduling process to better reflect real-world conditions and improve performance.

� We assumed fixed transmit power in this thesis. It should be of interest to allow dynamic transmit
power adaptation to improve the EE of the system [1].

� We assumed frequency flat Rayleigh fading channel. It should be of interest to consider more
realistic multipath channel models such as the ones from [88].

DRL improvement

� We trained the EOT-AB using DDQL. It should be of interest to implement other DRL algorithms
such as soft actor critic (SAC) [89] or proximal policy optimization (PPO) [90] for performance
comparisons.

� As the system model evolves, the associated DRL methods must also be adapted accordingly.
For example, incorporating transmit power control, which can be modeled as a continuous action,
requires modifying the AB architecture to handle a mixed discrete-continuous action space. One
possible approach is to leverage methods such as those proposed in [91], which are specifically
designed to address this type of hybrid action setting.

� Both Chapters 2 and 4 focus on packet loss minimization. However, in practical situations, it
is often important to manage multiple objectives simultaneously, such as fairness, delay, or EE.
Addressing these potentially conflicting goals with a single architecture, without retraining for each
new set of objective weights, would be highly beneficial. One promising approach is the method
proposed in [53], which enables multi-objective optimization within a unified learning framework.

� Throughout this thesis, training was performed with a specific GAR. It would be interesting to
investigate whether training over a range of arrival rates could improve performance. Additionally,
enriching the state representation, by including features such as the current arrival rate or histor-
ical buffer states, could help the model better adapt to dynamic traffic conditions and improve
generalization.

118



Appendix A

Background on machine learning

A.1 Introduction

This Appendix introduces the concept of ML as applied throughout this thesis. It begins with an overview
of RL in Section A.2, which first explores fundamental concepts like Markov chains and MDPs. Next,
we discuss various methods for solving an MDP, typically by computing the optimal policy that specifies
the best action to take in each state to maximize the expected return. Specifically, Section A.2.6
focuses on the VI algorithm and Section A.2.7 on the Q-Learning algorithm. Section A.3 addresses the
DRL approach, that leverages DNNs to solve an MDP with high-dimensional state spaces, and more
particularly the DQL algorithm. Finally, Section A.4 presents the specific architectures utilized in this
thesis.

A.2 Reinforcement learning

A.2.1 Introduction

In the RL paradigm [80], an agent interacts with an environment such as illustrated in Figure A.1.

Agent
Environment

Interpreter

Action 𝑎𝑘

State 𝐬𝑘

State 𝐬𝑘+1

Reward 𝑟𝑘

Figure A.1: RL interaction with the environment.

The agent selects at each step k an action Ak, based on the state Sk, which is an observation of the

119



environment. After taking action Ak, the environment is abstracted by an interpreter, which outputs the
reward Rk+1 and the next state Sk+1.

We think it is of interest to incorporate an interpreter in Sutton’s RL schemes [80, Figure 3.1]. This
interpreter can be seen as a way to elaborate an observation state Sk from the environment from which
it may be difficult to define the true state. The way the observation state is built is left to the solution
designer who makes technical choices to take into account some constraints, such as metrics availability
or agent internal status. For instance, let us assume a wireless packet scheduler acting as the agent and
interacting with an environment made up of several links, each characterized by a transmission quality.
The transmission quality can, for instance, be represented by a SNR, a CQI or a PER. The state can
then be complemented by the agent’s internal status information, such as buffer occupancy.

A common assumption in RL is that the environment is Markovian. When 1) the underlying Markovian
model is known i.e. when the transition probabilities are known, and 2) both the action and the state
space are of relatively low dimension, the MDP can be solved using dynamic programming algorithm
such as VI, detailed in Section A.2.6. This approach is referred to as model-based since the transition
probabilities are assumed to be known. Otherwise, RL algorithms need to be used. If 2) is fulfilled but 1)
is not, then the Q-Learning detailed in Section A.2.7 can be applied. If neither 1) nor 2) are fulfilled, then
one can resort to DQL, as detailed in Section A.3. The RL approach does not rely on prior knowledge of
the model. Instead, the RL algorithm learns the unknown transition probabilities and is therefore referred
to as model-free.

Note that in the remainder of Section A.2, we consider two complementary approaches to represent
MDPs:

1. The conventional approach, which represents the MDP using transition probabilities and rewards,
as in the book by Sutton and Barton [80].

2. The optimal control approach, which incorporates a stochastic perturbation model, as in the book
by Bertsekas [92]. This approach provides a theoretical framework for the scheduling problem,
where perturbations represent the packet arrivals.

We present both approaches and show that they are equivalent in the sense that they lead to the
same MDP model. All the material presented hereafter can be found in either [80] or [92].

A.2.2 Finite Markov chain

A discrete-time stochastic process {Sk}k≥0 with finite state space S = {s1, s2, . . . , sn}, i.e. |S| < +∞, is
called a finite Markov chain if and only if it satisfies, for all integers k ≥ 0 and all states sik+1 , sik , . . . , si0

belonging to S:

Pr(Sk+1 = sik+1 | Sk = sik , Sk−1 = sik−1 , . . . , S0 = si0) = Pr(Sk+1 = sik+1 | Sk = sik). (A.1)

We assume that all Markov chains considered in this thesis are finite and homogeneous, meaning that
the right-hand side of (A.1) is independent of k.

A Markov chain can be thus defined by the set of transition probabilities pik+1,ik := Pr(Sk+1 = sik+1 |
Sk = sik) with sik ∈ S and sik+1 ∈ S. Let us take the example of a Markov chain with three states,
i.e. S = {s1, s2, s3}. It can be represented by the graph in Figure A.2 which shows the states and the
associated transition probabilities.

120



𝐬1

𝐬3𝐬2

𝑝3,1

𝑝1,3

𝑝3,3

𝑝2,3

𝑝3,2

𝑝1,1

𝑝2,2

𝑝2,1

𝑝1,2

Figure A.2: Graph of transition probabilities of a Markov chain with n = 3 states.

A.2.3 Finite Markov Decision Process

A finite MDP extends the finite Markov chain framework by introducing actions and rewards. Recall from
the RL context in Section A.2.1 that, in a given state Sk ∈ S, the agent takes an action Ak and receives
a reward Rk+1. The actions are chosen from a finite set A with |A| < +∞. Then, the system transitions
to a new state Sk+1. This process is repeated over time. The sequence of successive states, actions,
rewards, starting from k = 0, i.e. S0, A0, R1, S1, A1, R2, S2, A2, R3, S3, . . . , is called a trajectory.

The rewards are in general real-valued and bounded, taking values in a set R ⊆ R, which is typically
assumed to be uncountable. In [80], however, authors assume that the rewards take values in a finite set
to simplify notation and derivations. In our scheduling application, the reward depends on the number
of lost packets through a bounded function. Because the number of lost packets due to buffer overflow
can, in theory, be arbitrarily large, R is countably infinite.

A finite MDP can be defined by the tuple (S,A, p(·, · | s, a)), where p(·, · | s, a) is the four-argument
function [80, (3.2)]

p(s′, r | s, a) := Pr{Sk = s′, Rk = r | Sk−1 = s, Ak−1 = a}, (A.2)

where we use as in [80] the convention s′ = sk and s = sk−1. Notice that (A.2) defines both the next
state and the corresponding reward at the same time.

The function p(s′, r | s, a) defines the dynamics of the MDP and verifies∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1, ∀s ∈ S, a ∈ A. (A.3)

121



We now derive other expressions for the transition probabilities and expected rewards from function
(A.2), leading to a different MDP definition.

An alternative way to define a finite MDP (equivalent to the one generated by (A.2)) is to define the
three-argument transition probability p(s′ | s, a) along with the corresponding three-argument expected
reward r(s, a, s′):

p(s′ | s, a) := Pr{Sk = s′ | Sk−1 = s, Ak−1 = a}, (A.4)

r(s, a, s′) := E [Rk | Sk−1 = s, Ak = a, Sk = s′] . (A.5)

The tuple (S,A, p(· | s, a), r(s, a, s′)) defines an MDP that is the same as the one defined by the tuple
(S,A, p(·, · | s, a)). This can be proved by showing that (A.4) and (A.5) can be expressed using (A.2).

To do so, one can first express p(s′ | s, a) as a function of the four-argument transition probability
(A.2) using the identity:

p(s′ | s, a) =
∑
r∈R

p(s′, r | s, a). (A.6)

Then, applying the expectation definition to (A.5), we get r(s, a, s′) =
∑

r∈R rp(r | s, a, s′), which after
some calculations (proof is omitted) can be rewritten [80, (3.6)] as a function of the four-argument
transition probability:

r(s, a, s′) =
∑
r∈R

r
p(s′, r | s, a)
p(s′ | s, a)

. (A.7)

Last, one can also define the two-argument expected reward r(s, a) that is often used in the optimal
policy algorithm development (e.g. Section A.2.6 and subsequent sections) as [80, 3.5]:

r(s, a) := E [Rk | Sk−1 = s, Ak = a] . (A.8)

Applying the expectation definition to (A.8), we get r(s, a) =
∑

r∈R rp(r | s, a). Using the following
identity: p(r | s, a) =

∑
s′∈S p(s

′, r | s, a), we find [80, 3.5]:

r(s, a) =
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a). (A.9)

For a given (s, a), if taking action a in state s always leads to a specific next state s′, i.e. p(s′ | s, a) =
1, the corresponding MDP is called deterministic MDP. On the other hand, if taking action a in state
s can lead to multiple possible next steps s′ with p(s′ | s, a) ̸= 0, the MDP is called stochastic MDP.
This occurs when random perturbations affect the state transition. The scheduling problem considered
in this thesis is modeled as a stochastic MDP.

As an example, Figure A.3 shows a graph representing the three-argument transition probabilities of
an MDP with two states, S = {s1, s2}, and two actions, A = {a1, a2}.

122



𝐬1

𝑎1

𝑎2

𝐬2

𝑎1

𝑎2

𝑝(𝐬2|𝐬2, 𝑎1)

𝑝(𝐬1|𝐬2, 𝑎1)

𝑝(𝐬1|𝐬2, 𝑎2)

𝑝(𝐬2|𝐬2, 𝑎2)

𝑝(𝐬2|𝐬1, 𝑎2)
𝑝(𝐬1|𝐬1, 𝑎2)

𝑝(𝐬1|𝐬1, 𝑎1) 𝑝(𝐬2|𝐬1, 𝑎1)

Figure A.3: Graph representing the three-argument transition probabilities of an MDP with two states,
S = {s1, s2}, and two actions, A = {a1, a2}.

A.2.4 Optimal control framework and MDP

The optimal control framework for stochastic discrete-time dynamic systems, as developed for instance
by Bertsekas [92], explicitly accounts for random perturbations occurring in the state transitions and is
therefore well suited to the scheduling process with random packet arrivals considered in this thesis.

Following Bertsekas’ framework and our notation conventions, a dynamic stochastic system is modeled
by the equation:

Sk+1 := f(Sk, Ak, wk) (A.10)

where f is the state transition function, or the system function, and wk ∈W is the stochastic perturbation
at time k with probability distribution pW (·). As in [92], we assume that the disturbance set W is
countable.

A cost is associated to each transition, and is defined through the cost function g, referred to as cost
per stage in [92], as:

Ck := g(Sk, Ak, wk) (A.11)

which is used to derive optimal policies that minimize the cumulative cost.
Given (A.10) and (A.11), the trajectory S0, A0, C1, S1, A1, C2, S2 . . . is an MDP, which is defined by

the tuple {S,A,W, pW , f, g}.
In the following, for the sake of clear comparison, we refer to {S,A,W, pW , f, g} as MDP-OC (OC for

optimal control) to distinguish it from the MDP defined in Section A.2.3, namely (S,A, p(· | s, a), r(s, a, s′)),
which we refer to as MDP-C (C for conventional).

123



We now prove that, under simple conditions, the MDP-OC is equivalent to the MDP-C, as the latter
can be deduced from the former. In the MDP-C, randomness is captured by transition probabilities rather
than by explicit disturbances. This result is important because it enables the application of reinforcement
learning frameworks developed for the MDP-C to scheduling problems modeled using the optimal control
formulation.

In what follows, we show that all the rewards and transition probabilities defined in Section A.2.3 can
be expressed as a function of f , g, and w. To do so, we switch to the Sutton and Barto notation, as
in the previous section, for clarity. In addition, to simplify notation, and without loss of generality, we
omit the random variable names, e.g., we write Pr{Sk = s′ | Sk−1 = s, Ak−1 = a} = Pr{s′ | s, a}, or
E [Rk | Sk−1 = s, Ak = a, Sk = s′] = E [R | s, a, s′].

We identify the state transition (A.10) and cost (A.11) as:

s′ = f (s, a, w) , (A.12)

c = g(s, a, w). (A.13)

We notice that in the MDP-C, each transition is associated to a reward, whereas in the MDP-OC,
each transition is associated to a cost. Thus, to make the two MDPs equivalent, we need to define the
cost as the opposite of the reward, i.e.:

r = −g(s, a, w). (A.14)

Regarding the four-argument transition probability, one can re-express (A.2) as:

p(s′, r | s, a) = Pr{f (s, a, w) = s′, g(s, a, w) = −r | s, a}. (A.15)

Introducing the set
Ws′,r

s,a := {w : f(s, a, w) = s′, g(s, a, w) = −r | s, a} (A.16)

the right-hand side of (A.15) is computed as:

Pr{f (s, a, w) = s′, g(s, a, w) = −r | s, a} =
∑

w∈Ws′,r
s,a

pW (w) (A.17)

thus leading to:

p(s′, r | s, a) =
∑

w∈Ws′,r
s,a

pW (w). (A.18)

Regarding the three-argument transition probabilities (A.4), we can write:

p(s′ | s, a) = Pr{f(s, a, w) = s′ | s, a}. (A.19)

Introducing the set
Ws′

s,a := {w : f(s, a, w) = s′ | s, a} (A.20)

the right-hand side of (A.19) is computed as:

Pr{f(s, a, w) = s′ | s, a} =
∑

w∈Ws′
s,a

pW (w) (A.21)

124



thus leading to

p(s′ | s, a) =
∑

w∈Ws′
s,a

pW (w). (A.22)

Posing:
R (s, a, w) := −g (s, a, w) , (A.23)

the three-argument expected reward (A.5) is computed as:

r(s, a, s′) = E [R (s, a, w) | s, a, s′]

=
∑
r∈R

rPr{g(s, a, w) = −r | f(s, a, w) = s′, s, a}. (A.24)

To compute the probability in (A.24), we apply the Bayes rule to take f(s, a, w) = s′ out of the
conditioning:

Pr{g(s, a, w) = −r | f(s, a, w) = s′, s, a} = Pr{g(s, a, w) = −r, f(s, a, w) = s′ | s, a}
Pr{f(s, a, w) = s′ | s, a}

. (A.25)

The numerator in (A.25) is given by (A.17), and the denominator by (A.22), yielding:

Pr{g(s, a, w) = −r | f(s, a, w) = s′, s, a} =

∑
w∈Ws′,r

s,a
pW (w | s, a)∑

w∈Ws′
s,a

pW (w | s, a)
. (A.26)

Plugging (A.26) into (A.24) finally leads to:

r(s, a, s′) =
∑
r∈R

r

∑
w∈Ws′,r

s,a
pW (w | s, a)∑

w∈Ws′
s,a

pW (w | s, a)
. (A.27)

One can notice that (A.27) is consistent with (A.7) using (A.18) and (A.22).
The two-argument expected reward (A.8) is computed as:

r(s, a) = E [R (s, a, w) | s, a] (A.28)

=
∑
r∈R

rPr{g(s, a, w) = −r | s, a}. (A.29)

Introducing
Wr

s,a := {w : g(s, a, w) = −r | s, a} (A.30)

we have:
Pr{g(s, a, w) = −r | s, a} =

∑
w∈Wr

s,a

pW (w) (A.31)

leading to:

r(s, a) =
∑
r∈R

r
∑

w∈Wr
s,a

pW (w). (A.32)

125



An equivalent way of expressing r(s, a) with the MDP-OC parameters is obtained using (A.9) along
with (A.18):

r(s, a) =
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a) (A.33)

=
∑
r∈R

r
∑
s′∈S

∑
w∈Ws′,r

s,a

pW (w). (A.34)

In the following sections, we use equivalently both MDP modelings, MDP-OC or MDP-C depending
on the context.

A.2.5 Optimal policy

In the previous sections, we defined and characterized an MDP without specifying how actions Ak

are selected, thereby leaving the decision aspect of the MDP—that is, how actions should be cho-
sen—unaddressed.

One of the main goal of modeling a problem with an MDP is to find the best way to select actions
according to a given criterion. To formalize how actions are selected, we introduce the notion of policy
π, which is a function that specifies the action to take in state Sk.

A policy can be classified as:
� Deterministic: π(Sk) := Ak, i.e., π is a function,
� Stochastic: the action Ak is drawn according to π(Ak | Sk), i.e., π is a distribution.
In finite discounted MDPs, deterministic policies are sufficient for optimality [80, Section 4.2, p. 79],

[92, Section 1.1.4, p. 13]. Stochastic policies are primarily useful for exploration or in settings with
constraints, average-reward criteria, or multi-objective settings.

Therefore, unless otherwise specified, in the remainder of this document:
� We consider deterministic policies, thus Ak = π(Sk).
� For the sake of notational simplicity, we may use Ak instead of π(Sk) when convenient.
� We assume that the policies considered are stationary, i.e., independent of the time index k.

In that context, for the MDP-C case, the trajectories take the form: S0, π(S0), R1, S1, π(S1), R2, S2,
π(S2), R3, S3 . . .

In an MDP, where the reward reflects the benefit of taking an action, a common performance criterion
is the discounted return. The discounted return at time t is defined as the discounted sum of future
rewards [80, (3.8)]:

Gt := Rt+1 + γRt+2 + γ2Rt+3 + · · · =
+∞∑
k=0

γkRt+k+1 (A.35)

where γ ∈ [0, 1] is the discount rate or discount factor. Notice that in this thesis we always consider
γ ∈ (0, 1), see discussion in [80] for singular cases γ = 0 and γ = 1.

The discounted return corresponds to the outcome of a single trajectory generated by following a
policy, and is therefore a random variable. To account for the variability across trajectories, we define
the EDR as [80, (3.12)]:

Jπ(s) : = E [Gt | St = s] (A.36)

= E

[
+∞∑
k=0

γkRt+k+1 | St = s

]
. (A.37)

126



This quantity evaluates the average discounted return obtained when starting from state s and following
policy π. The expectation is taken with respect to the stochastic transitions and rewards defined by
the MDP dynamics which depends on the MDP model. In the case of an MDP-OC, the dynamics are
driven by the random perturbation wk, so the expectation is taken with respect to wk. In contrast, for
an MDP-C, the dynamics are governed by the transition probabilities, and the expectation is taken over
the resulting state sequence Sk.

Bertsekas [92, (1.2)] provides a slightly more general definition of (A.37):

Jπ(s) := lim
N→∞

E

[
N∑
k=0

γkRt+k+1 | St = s

]
. (A.38)

As discussed in the footnote on p. 4 of [92], this expression is equivalent to the infinite-series definition
(A.37) under mild assumptions, namely that the discount factor satisfies γ < 1 and the rewards are
bounded (or at least bounded in expectation). These conditions ensure convergence of the discounted
return, which holds in our context. For the remainder of this Appendix, we use (A.37).

Notice that the EDR is also referred to as the state-value function and noted V π(s) or vπ(s) depending
on the authors. In the following, we note

V π(s) := Jπ(s). (A.39)

This function plays a key role in the value iteration algorithm, described in Section A.2.6.
In what follows, we set t = 0 to simplify the notation, without loss of generality. Depending on the

underlying MDP formulation, the EDR can be written as:

Jπ(s) = Ew0,w1,...

[
+∞∑
k=0

γkR(Sk, Ak, wk) | S0 = s

]
(A.40)

in the case of an MDP-OC, or as:

Jπ(s) = ES1,S2,...

[
+∞∑
k=0

γkr(Sk, Ak) | S0 = s

]
(A.41)

in the case of an MDP-C.
Solving an MDP consists in finding the optimal policy π∗ that maximizes the EDR:

π∗ := argmax
π

Jπ(s). (A.42)

By defining the reward of the MDP-OC as in (A.23), the two MDPs become equivalent. Consequently,
solving (A.42) with either expression (A.40) or (A.41) yields the same optimal policy.

The following derivations adopt the MDP-OC framework, consistent with the approach in [92], to
establish the subsequent results.

Solving (A.42) directly is intractable, since the number of possible policies grows exponentially. An
alternative is to solve (A.42) iteratively by formulating it as a dynamic programming (DP) problem,
which can be solved using the Bellman operator T (also called mapping DP in [92, (1.5)]):

(T J)(s) := max
a∈A

Ew [R(s, a, w) + γJ(f(s, a, w))] . (A.43)

127



Notice that f(s, a, w) = s′, so (A.43) explicitly shows the dependence of the next state on the current
state.

For a deterministic policy π, we also define the operator Tπ as:

(TπJ)(s) := Ew [R(s, π(s), w) + γJ(f(s, π(s), w))] . (A.44)

The Bellman operator has some interesting properties that ensure the convergence to the optimal
EDR and allow the characterization of the optimal policies. These properties are recalled below.

Let us denote J∗(s) the optimal state value function (or EDR) when starting in state s, and

T k := T ◦ · · · ◦ T︸ ︷︷ ︸
k times

(A.45)

the k-fold composition of T .
The main results, with proofs given in [92], are the following ones.

Proposition 1. [92, Proposition 1.2.1]

For any bounded function J : S 7→ R, we have for all s ∈ S,

J∗(s) = lim
k→+∞

(T kJ)(s). (A.46)

This proposition states that applying the Bellman operator T infinitely many times to a function J
converges to the optimal EDR function J∗, regardless of the initial state s.

Proposition 2. [92, Proposition 1.2.3 (Bellman’s Equation)]

The optimal cost function J∗ satisfies for all s ∈ S:

J∗(s) = max
a∈A

Ew [R(s, a, w) + γ [J∗(f(s, a, w))]] . (A.47)

or equivalently
J∗ = T J∗. (A.48)

Furthermore, J∗ is the unique solution of this equation within the class of bounded functions. Moreover,
for any bounded function J with J ≥ T J (or J ≤ T J), we have J ≥ J∗ (or J ≤ J∗, respectively).

This proposition states that J∗ is the unique fixed point of the Bellman operator T . This uniqueness
guarantees that iterative application of T converges to J∗, providing the foundation for computing
optimal policies, for example, via the value iteration algorithm addressed in Section A.2.6. Equation
(A.47) is called the Bellman equation.

Proposition 3. [92, Proposition 1.2.2] For any bounded function J : S 7→ R and for any stationary and
deterministic policy π, we have for all s ∈ S,

Jπ(s) = lim
k→+∞

(T k
π J)(s). (A.49)

This proposition states that for any stationary policy π, applying the Bellman operator Tπ infinitely
many times to a function J will converge to the optimal EDR function Jπ, regardless of the initial state
s.

128



Proposition 4. [92, Proposition 1.2.4]

For every stationary policy π, the associated cost function satisfies for all s ∈ S,

Jπ(s) = Ew [R(s, π(s), w) + γJπ(f(s, π(s), w))] (A.50)

or, equivalently
Jπ = TπJπ. (A.51)

Furthermore, Jπ is the unique solution of this equation within the class of bounded functions. Moreover,
for any bounded function J with J ≥ TπJ (or J ≤ TπJ), we have J ≥ Jπ (or J ≤ Jπ, respectively).

This proposition states that Jπ is the unique fixed point of Tπ.

Proposition 5. [92, Proposition 1.2.5 (Necessary and Sufficient Condition for Optimality)]

A stationary policy π is optimal if and only if π(s) attains the maximum in Bellman’s equation (A.47)
for each s ∈ S; i.e.,

T J∗ = TπJ∗. (A.52)

This proposition states that a stationary policy π is optimal, i.e. π = π∗, if and only if its value
function Jπ which is the fixed point of the operator Tπ, is equal to the optimal value function J∗, the
fixed point of the Bellman operator T , is equal to the optimal, for all s ∈ S.

As a synthesis, we can summarize the different results as follows:
� Proposition 1 defines the optimal state value J∗, as the limit of the value function obtained by

applying the Bellman operator T an infinite number of times, and Proposition 2 establishes that
J∗ is the unique fixed point of T .

� Proposition 3 defines the state value Jπ for a stationary policy π as the limit of the value function
when repeatedly applying the operator Tπ, and Proposition 4 shows that Jπ is the unique fixed
point of Tπ.

� Proposition 5 characterizes the optimal policy, with Jπ∗ = J∗. It also states that achieving the
optimal value J∗ using the Bellman operator leads the optimal policy. This latter statement forms
the basis of the value iteration algorithm discussed in the next Section.

A.2.6 Value iteration

This section addresses the VI algorithm, a common method for solving finite MDPs, i.e., for finding
the optimal policy π∗ and its associated value function that maximizes the EDR. Another well-known
algorithm is policy iteration, see e.g., [80], which is not covered here.

We use the MDP-C notation where V π(s) is defined as (A.39) with Jπ given by (A.41):

V π(s) := ES1,S2,...

[
+∞∑
k=0

γkr(Sk, Ak) | S0 = s

]
(A.53)

where V π(s) is interpreted as the EDR when starting from state s and following the policy π.
As stated in the previous section, the VI consists of applying the Bellman operator iteratively until

convergence. Let Vk(s) denote the value function at the kth iteration. At the beginning of the VI

129



algorithm, i.e. k = 0, the value function V0(s) is initialized for each s ∈ S. At the kth iteration the
update rule is given by:

Vk(s) = (T Vk−1)(s), (A.54)

which can be written explicitly as

Vk(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)Vk−1(s
′)

]
. (A.55)

(A.56)

From Proposition 1, we have:
V ∗(s) = lim

k→+∞
(T kV0)(s). (A.57)

This guarantees that repeated application of the Bellman operator converges to the optimal value func-
tion, which, by Proposition 5, yields to the optimal policy. Since convergence is guaranteed regardless
of initialization, the choice of V0(s) does not affect correctness but only the speed of convergence. In
practice, the initial values are commonly set to zero, though random initialization is also possible.

Since the Bellman operator cannot be applied infinitely many times in practice, a stopping criterion
is required to assess convergence. A typical choice in the VI algorithm is:

max
s∈S
|Vk(s)− Vk−1(s)| ≤ ϵ, (A.58)

where ϵ is predefined threshold.
When the optimal state-value function V ∗ is reached, thus equal to J∗, the optimal policy is given

by:

π∗(s) = argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V ∗(s′)

]
. (A.59)

A pseudo-code for the VI algorithm is given in Algorithm 2.

Algorithm 2: VI algorithm

Input: State space S, action space A, transitions p(s′|s, a), rewards r(s, a), discount γ ∈ (0, 1),
tolerance ε > 0

Output: Approximate optimal value function V ∗ and optimal policy π∗

Initialize V (s)← 0 for all s ∈ S;
repeat

∆← 0;
foreach s ∈ S do

v ← V (s);

V (s)← maxa∈A

(
r(s, a) + γ

∑
s′ p(s

′|s, a)V (s′)
)

;

∆← max{∆, |v − V (s)|};
end

until ∆ < ε;

Define π∗(s) ∈ argmaxa∈A

(
r(s, a) + γ

∑
s′ p(s

′|s, a)V (s′)
)

;

return V, π∗;

The VI algorithm has the following limitations:

130



1. It requires complete knowledge of the transition probabilities.
2. Storing these probabilities requires significant memory, thus VI is feasible only for problems with

relatively few states and actions, and becomes impractical for larger ones.
To overcome the first point, one can use the Q-Learning algorithm detailed in Section A.2.7.

A.2.7 Q-Learning

To overcome the limitation of VI that requires the complete knowledge of the transition probabilities, it is
possible to use RL algorithms, such as the Q-Learning [93]. This section is dedicated to the presentation
of the Q-Learning algorithm. Since the transition probabilities are unknown, Q-Learning is considered as
a model-free RL algorithm.

Instead of computing the state-value function as for the VI, the Q-Learning estimates the state-action
value function Q : S× A→ ℜ, which is also called the Q-function and is defined as:

Q(s, a) := ES1,S2,...

[
+∞∑
k=0

γkr(Sk, Ak) | S0 = s, A0 = a

]
, (A.60)

which corresponds to the EDR starting from state s by taking action a.
When the actions are taken according to a deterministic policy π, we define:

Qπ(s, a) := ES1,S2,...

[
+∞∑
k=0

γkr(Sk, Ak) | S0 = s, A0 = a

]
,

= ES1,S2,...

[
r(s, a) +

+∞∑
k=1

γkr(Sk, Ak) | S0 = s, A0 = a

]
(A.61)

which evaluates the long-term state-action value of choosing the action a under policy π.
Expression (A.61) can be further developed as:

Qπ(s, a) = r(s, a) + ES1,S2,...

[
+∞∑
k=1

γkr(Sk, Ak) | S1 = s′

]

= r(s, a) + γES1

[
ES2,...

[
+∞∑
k=0

γkr(Sk+1, ak+1) | S1 = s′

]]
= r(s, a) + γEs′ [Q

π(s′, π(s′))] .

The optimal state value function V ∗ is linked to the optimal Q-value function Q∗, through the
following relation:

V ∗(s) = max
a∈A

Q∗(s, a). (A.62)

The Q-Learning estimates the optimal Q-value by iteratively solving the following equation:

Q∗(Sk, Ak)−
[
r(Sk, Ak) + γESk+1

[Qπ(Sk+1, a
′)]
]
= 0, (A.63)

where a′ = argmaxa∈Ad
Q∗(Sk+1, a).

The objective is thus to learn Q∗, the optimal policy being obtained by:

π∗(s) := argmax
a∈A

Q∗(s, a). (A.64)

131



The Q-function is learned through interaction with the environment. The Q-function is represented
as a table, called Q-table, whose entries (s, a) correspond to the estimated Q-value for a specific state-
action pair. To handle such a table, both the state space S and the action space A must be discrete and
of relatively small cardinality, to keep memory requirements manageable.

The entries of the Q-table are initialized with random values. At each step k, the agent observes a
state Sk and selects an action Ak based for instance on an ϵ-greedy exploration strategy. This strategy
chooses a random action with probability ϵ, or the action that maximizes the Q-value, i.e. Ak =
argmaxa′∈A Q(sk, a

′), with a probability 1 − ϵ. The ϵ-greedy strategy balances exploitation (choosing
the current optimal action) with exploration (trying a random action), allowing the agent to escape from
suboptimal policies.

The agent observes a reward Rk+1, observes the next state Sk+1 and updates the Q-table as follows
[80, (6.8)]:

Q(Sk, Ak)← Q(Sk, Ak) + α

Rk+1 + γmax
a∈A

Q(Sk+1, a)−Q(Sk, Ak)︸ ︷︷ ︸
temporal difference

 , (A.65)

where α is the learning rate. It is worth noting that the Q-Learning algorithm minimizes the temporal
difference (TD), therefore the TD is null when the algorithm has converged, and thus (A.63) is verified.
The theoretical convergence of the Q-Learning is guaranteed [93]. A pseudo-code of the Q-Learning
algorithm is given in Algorithm 3.

Algorithm 3: Q-Learning algorithm

Input: Learning rate α, discount factor γ, exploration rate ϵ
Initialize the Q-table arbitrarily;
while not converged do

Initialize state S0;
for k = 0 to K do

Choose action ak using exploration policy:

Ak ←

{
random action with probability ϵ

argmaxa Q(Sk, a) with probability 1− ϵ

Take action Ak, observe reward Rk+1 and next state Sk+1;
Update Q-value:
Q(Sk, Ak)← Q(Sk, Ak) + α (Rk+1 + γmaxa∈A Q(Sk+1, a)−Q(Sk, Ak));

Set Sk ← Sk+1;

end

end

During inference, once the Q-function has converged, exploration is not longer used, and the agent
selects the actions that maximize the Q-values.

In the training phase, Q-Learning can suffer from overestimation bias when updating the Q-values,
because the estimates are learned from finite data are noisy.

To tackle this issue, double Q-Learning [94] extends the Q-Learning algorithm by maintaining two
separate Q-tables, Q1 and Q2, which mitigates the overestimation problem. The Q-tables are randomly

132



selected and updated as follows:

Qi(Sk, Ak)← Qi(Sk, Ak) + α

Rk + γQj(Sk+1, Ak+1)−Qi(Sk, Ak)︸ ︷︷ ︸
temporal difference

 , (A.66)

where i, j ∈ {1, 2} with j ̸= i, and Ak+1 = argmaxa∈AQi(Sk+1, a). When both Q-tables have
converged, they both should verify (A.63).

A pseudo-code of the double Q-Learning algorithm is given in Algorithm 4.

Algorithm 4: Double Q-Learning Algorithm

Input: Learning rate α, discount factor γ, exploration rate ϵ
Initialize two Q-value functions Q1(s, a) and Q2(s, a) arbitrarily;
while not converged do

Initialize state S0;
for k = 0 to K do

Choose action ak using exploration policy:

ak ←

{
random action with probability ϵ

argmaxa Q1(Sk, a) +Q2(Sk, a) with probability 1− ϵ
;

Take action Ak, observe reward Rk+1 and next state Sk+1;
Select i randomly in {1, 2};
Update the value of the corresponding Q-function:
Qi(Sk, Ak)← Qi(Sk, Ak) + α (Rk + γQj(Sk+1, Ak+1)−Qi(Sk, Ak));

where Ak+1 = argmaxa∈AQi(Sk+1, a), and j ̸= i;
Set Sk ← Sk+1;

end

end

Note that the following identity holds:

max
a

Q(Sk+1, a) = Q(Sk+1, argmax
a∈A

Q(Sk+1, a)). (A.67)

Using this property, both Q-Learning and double Q-Learning can be expressed in the same update form:

Qi ← Qi(Sk, Ak) + α (Rk+1 + γQj(Sk+1, a
′)−Qi(Sk, Ak)) , (A.68)

where a′ = argmaxa Qi (Sk+1, a) and:{
i = j for Q-Learning

i ̸= j for double Q-Learning.
(A.69)

A.3 Deep reinforcement learning

When the number of states is large, it is not practically possible to store a table with the Q-values related
to all the different states. This phenomenon is known as the curse of dimensionality. This problem can
be handled through the use of function approximator such as DNN, yielding to DRL. There exists a lot of

133



DRL algorithms, see for instance [95]. This thesis focuses on the DQL algorithm and DDQL, which are
extensions of Q-Learning and double Q-Learning respectively, using DNN. Different DNN architectures
can be envisioned. Some of them are reviewed in Section A.4. The DNN are trained by minimizing a
loss function.

In the DQL, the Q-function is approximated by a DNN called DQN. The DQN can be represented
by a function parametrized by θ, which takes state s ∈ S as inputs and outputs the Q-values for the
different actions. Let Q(s, a; θ) be the Q-values of state s, action a obtained by the DNN of parameters
θ. As seen in (A.65), the Q-function aims to minimize the TD. Hence, the loss used to train the DQN
is:

L̃(θ) =
(
rk + γmax

a
Q(sk+1, a; θ)−Q(sk, ak; θ)

)2
. (A.70)

Then, this loss is used to update the weights of the DQN:

θ ← θ − α∇θL̃(θ), (A.71)

where α is the learning rate.
In practice, using (A.70) may lead to unstable results because of:

1. Correlations present in the sequence of states (updating the weights of the DQN at each time step
in the same way as for a Q-table).

2. Correlation presents between the state-action value Q(sk, ak) and the target value, defined as:

rk + γmax
a∈A

Q(sk+1, a, θ). (A.72)

This signifies that when the Q-value is updated to get closer of the target, the target also moves,
leading to instabilities.

To address these issues, [3] introduces:
1. Experience replay is used to reduce the correlation between consecutive observations. It involves

leveraging past transitions, known as experiences, to update the DNN. A transition at step k is
represented by the tuple (sk, ak, rk, sk+1) (also written as (s, a, r, s′)). These transitions are stored
in a buffer B, called replay buffer, which accumulates experiences collected during training.

2. A target network, parameterized by θ−, is used as a delayed copy of θ. It is updated periodically or
gradually (via soft updates), which helps reducing the correlation between the predicted Q-values
and the target values, thereby stabilizing the learning process.

The DQN is trained by minimizing the TD, which serves as loss function:

L(θ) = E(s,a,r,s′)∼B
[
(y −Q(s, a; θ))2

]
, (A.73)

where y := r + γmaxa Q(s, a; θ−) is the target value.
In practice, the DQN is trained as stated in Algorithm 5 and summarized as follows:
� The agent explores the state and action spaces using an ϵ-greedy exploration policy. It receives, as

for the Q-Learning, a reward and the next state. However, instead of using the current state sk,
the taken action ak, the reward rk and the next state sk+1 to update directly the DQN (as for the
Q-Learning), this information is stored in the replay buffer B. The set (sk, ak, rk, sk+1) is referred
to as an experience.

� Once the replay buffer contains enough experiences, a batch of b experiences is randomly sampled
to approximate (A.73) to train the DQN.
Let j ∈ {1, . . . , b} index the sampled experiences. The TD is the difference between the evaluated
Q-value Q(sj, aj) and the target value yj which is defined as:

yj := rj + γmax
a

Q(sj+1, a; θ
−), (A.74)

134



and the approximated loss by:

L̂(θ) = 1

b

b∑
j=1

(yj −Q(sj, aj; θ))
2 . (A.75)

It is worth noting that (A.70) corresponds to a loss with a single sample and without a target
network, whereas (A.75) and (A.73) both include multiple samples, thanks to the replay buffer, as
well as the target network.

� Then this loss is used to update the weights θ,

θ ← θ − α∇θL̂(θ). (A.76)

� The target network is updated every C steps: θ− ← θ. With the soft-update approach, the target
weights are updated as θ− ← τθ + (1− τ)θ−.

Algorithm 5: Deep Q-Learning (DQL)

Initialize replay memory B;
Initialize Q-network with random weights θ;
Initialize target Q-network with weights θ− = θ;
for each episode do

Initialize state s0;
for k = 0 to K do

Choose action ak using ϵ-greedy policy based on Q-network;
Execute action ak and observe reward rk and next state sk+1;
Store experience (sk, ak, rk, sk+1) in B;
Sample random minibatch of experiences (sj, aj, rj, sj+1) from B;
yj = rj + γmaxaQ(sj+1, a, θ

−);
Compute the loss with (A.75) ;

θ ← θ − α∇θL̂(θ);
Update target Q-network every C steps;

end
Update ϵ according to schedule;

end

The DQL has been successfully used in [3] to play Atari games. However, the DQL produces overes-
timation for the same reasons as the Q-Learning does, and therefore, the DDQL was introduced in [96]
to mitigate this phenomenum. In that case, the target value yk becomes:

yk = rk + γQ

(
sk+1, argmax

a
Q(sk+1, a, θ), θ

−
)
. (A.77)

The rest remains the same as for the DQL algorithm.
One can remark that the general form of the target value can be written as:

yk = rk + γQ
(
sk+1, a, θ

−) , (A.78)

where

a =

{
argmaxa′ Q (sk+1, a

′, θ−) for deep Q-Learning

argmaxa′ Q (sk+1, a
′, θ) for double deep Q-Learning

(A.79)

135



Algorithm 6: Double Deep Q-Learning (DDQL)

Initialize replay memory B;
Initialize Q-network with random weights θ;
Initialize target Q-network with weights θ− = θ;
for each episode do

Initialize state s0;
for k = 0 to K do

Choose action ak using ϵ-greedy policy based on Q-network;
Execute action ak and observe reward rk and next state sk+1;
Store experience (sk, ak, rk, sk+1) in B;
Sample random minibatch of experiences (sj, aj, rj, sj+1) from B;
a← argmaxa′ Q(sj+1, a

′, θ) ;
yj ← rj + γQ(sj+1, a, θ

−) ;
Compute the loss ;
θ ← θ − α∇θL(θ);
Update target Q-network every C steps;

end
Update ϵ according to schedule;

end

A.4 Deep neural network architectures

This section introduces the different DNN architectures used throughout this thesis.
DNNs work as function approximator that seek to predict an output y based on a given input x. The

context with known (labeled) outputs y is referred to as ”supervised learning” [97]. When y is unknown,
the DNN can be trained either with unsupervised learning, or DRL, which is the focus of this thesis. The
DNN architectures presented in this section are:

� The FC in Section A.4.1.
� The transformer in Section A.4.2.
� The AB in Section A.4.3.

A.4.1 Fully connected architecture

A FC DNN consists of multiple layers where each neuron in one layer is connected to each neuron in the
subsequent layer.

For a given neuron j in the lth layer, the output y
(l)
j is computed as:

y
(l)
j := σ(l)

(∑
i

w
(l)
ij y

(l−1)
i + b

(l)
j

)
, (A.80)

where:
� w

(l)
ij are the weights connecting neuron i from the previous layer to neuron j in the current layer l.

� b
(l)
j is the bias term for neuron j in the current layer l.

� σ(l) is the activation function applied to introduce non-linearity for the layer l.

136



Equation (A.80) can be re-expressed in matrix form as:

y(l) := Φl

(
y(l−1)

)
(A.81)

where
� Φl(x) := σ(l)

(
W (l)x+ b(l)

)
, Φl : ℜdl−1 → ℜdl .

� W (l) :=
(
w

(l)
ij

)
, W (l) ∈ ℜdl×dl−1 .

� y(l) :=
(
y
(l)
j

)
, y(l) ∈ ℜdl . It is worth noting that y(0) = x where x is the input vector.

� b(l) :=
(
b
(l)
j

)
, b(l) ∈ ℜdl .

The output of the neural network can be represented as:

y = Φ(x), (A.82)

Φ(x) := ΦN ◦ ΦN−1 ◦ · · · ◦ Φ1(x). (A.83)

For example, considering the DNN illustrated in Figure A.4, we identify:

y = Φ(x) = W (2)σ(1)
(
W (1)x+ b(1)

)
+ b(2), (A.84)

where y = [y1, y2]
T , x = [x1, x2]

T , b(1) = [b
(1)
1 , b

(1)
2 , b

(1)
3 ]T , b(2) = [b

(2)
1 , b

(2)
2 ]T , W (1) =

(
w

(1)
ij

)
i∈{1,2,3}
j∈{1,2}

and W (2) =
(
w

(2)
ij

)
i∈{1,2}
j∈{1,2,3}

. In this figure, the obtained vector after the first layer is y(1) = W (1)x =

[y
(1)
1 , y

(1)
2 ].

𝑥1

𝑥2

𝜎(1)

𝜎(1)

𝜎(1)

𝑤11
(1)

𝑤21
(1)

𝑤31
(1)

𝑤12
(1)

𝑤22
(1)

𝑤32
(1)

𝑤11
(2)

𝑤21
(2)

𝑤12
(2)

𝑤22
(2)

𝑤13
(2)

𝑤23
(2)

𝑦1

𝑦2

𝑏1
(1)

𝑏2
(1)

𝑏3
(1)

𝑏1
(2)

𝑏2
(2)

𝑦1
(1)

𝑦2
(1)

𝑦3
(1)

+

+

+

+

+

Figure A.4: Example of neural network.

A.4.2 Transformer architecture

The transformer architecture, introduced in [73], relies on the attention mechanism. The original trans-
former is composed by two different parts: an encoder and a decoder. An encoder and a decoder,

137



that can be used either jointly or separately, meaning that it is possible to use EOT or decoder only
transformer (DOT). The transformer architecture has shown powerful performance:

� In natural language processing (NLP) field for:
– Text translation [73].
– Text classification and masked word prediction [98] with the bidirectional encoder represen-

tations from transformer (BERT) architecture, which is an EOT.
– Text generation [99] with the generative pre-trained transformer (GPT) architecture, which

is a DOT.
� In the computer vision (CV) field for image recognition, object detection, segmentation, image

generation, image synthesis [100].
� In DRL field for a sequence modeling problem [101], [102], [103]. A survey for DRL application of

transformer can be found in [104].
The attention mechanism helps the architecture to focus on certain elements of the set which are

relevant for the prediction.
It is worth noting that the attention mechanism was introduced before the transformer architecture,

originally in the NLP field for text translation using recurrent neural network (RNN)s such as LSTMs.
The first instance, known as content-based attention, was proposed in [105], while additive attention,
which involves a concatenation operation, was introduced in [106].

Then, [107] proposed another form of the attention mechanism, called dot-product attention, which
was improved in [73] that proposed scaled-dot-product attention yielding transformer. The authors also
introduced the multi-head attention reducing the training time, the inference time and improving the
generalization. A review of the different attention mechanisms can be found in [108].

Let us describe the attention mechanism. For that, let us consider a matrix X of dimension de× nL

where each column xℓ represents an element of the input set, containing nL elements each represented
by a vector of dimension de × 1. For instance, in NLP, xℓ can be a word or a token of the input
sentence that belongs to a vocabulary set, which is the input set, and, to be more general, xℓ belongs
to a vocabulary set. The attention mechanism is illustrated in Figure A.5 and works as follows: first the
xℓ are projected into:

� keys: kℓ := Wkxℓ + bk for each ℓ, where kℓ is a vector of dimension dattn, Wk is of dimension
dattn × de and bk is a vector of dimension dattn. The elements projected into keys represent the
context.

� queries: qℓ := Wqxℓ + bq for each ℓ, where kℓ is a vector of dimension dattn, Wq is of dimension
dattn × de and bq is a vector of dimension dattn. This allows to find the relevant elements of the
set, for example in translation task to find the relevant word in a language to translate it correctly.

� values: vℓ := Wvxℓ + bv for each ℓ, where kℓ is a vector of dimension dv, Wv is of dimension
dv × de and bv is a vector of dimension dv. This holds the actual information that corresponds to
each element.

Wk, Wq and Wv are trainable weights matrices and bk, bq and bv are trainable biases. Let us note
Q := [q1, . . . , qnL

], K := [k1, . . . ,knL
] and V := [v1, . . . ,vnL

] the matrix of queries, keys and values
respectively. Q and K are of dimension dattn × nL and V is dv × nL.

The keys are compared with the queries thanks to the scale dot-product attention to determine how
relevant each element is, i.e. what elements of the context are relevant for the different queries. Then,
the inner-product between the queries and the keys is performed, producing a nL-squared matrix S,
called score matrix :

S = KTQ. (A.85)

Each entry Sij represents the score between the key i and the query j. The higher this score, the most

138



relevant the information of xi with respect to xj.
After that, the softmax function is applied producing the attention matrix A:

A := softmax (S) . (A.86)

The softmax function is defined column-wise (Aij =
exp (Sij)∑
j′ exp (Sij′)

), producing weights between 0 and 1.

The softmax function can lead to very small gradients due to the potential high magnitude of the scores
[73].

To mitigate this effect, the inner product is divided by dattn:

S̃ =
S√
dattn

. (A.87)

Therefore, the softmax is applied on S̃ instead of S.
Finally, the values are summed for each element of the set according to their weights:

Ṽ = V A. (A.88)

Ṽ is of dimension dv×nL and is the result of the scaled dot-product attention. For single head-attention,
dv = de. These operations are illustrated in Figure A.5 and are summed up in the Algorithm 7. We
consider that the attention is performed in one set only, such as described in the equation above.

Scale dot-product attention

𝑾𝐾

𝑾𝑄

𝑾𝑉

transpose

Matmul

Matmul

Scale Softmax

𝑲

𝑸

𝑽

𝑨𝑺 ෩𝑺

𝑲𝑇
𝑿

෩𝑽

Figure A.5: Scale dot-product attention (gray boxes are trainable weights).

In Algorithm 7, 1 denotes a column vector of size nL with all entries equal to one. Therefore, the
product b1T , where b is a vector bias of size d, is a matrix of size d× nL, where each column is equal
to b.

139



Algorithm 7: Ṽ ← Attention(X |Wqkv)

/* Computes a single self-attention head. */

Input: X ∈ ℜde×nL , representations of a set.
Output: Ṽ ∈ ℜdout×ℓx2 , updated representations of the input set X.
Parameters: Wqkv consisting of: Wq ∈ ℜdattn×de , bq ∈ ℜdattn Wk ∈ ℜdattn×de , bk ∈ ℜdattn

Wv ∈ ℜdv×de , bv ∈ ℜdout .
Q←WqX + bq1

T [[Query ∈ ℜdattn×ℓx]]
K ←WkX + bk1

T [[Key ∈ ℜdattn×ℓx]]
V ←WvX + bv1

T [[V alue ∈ ℜdout×ℓx]]

S ←KTQ [[Score ∈ ℜℓx×ℓx]]

A← softmax
(

S√
dattn

)
return Ṽ = V A

For multi-head attention, which is illustrated in Figure A.6 and summarized in Algorithm 8, the
elements of the input set are projected into keys, queries and values on H heads, and the scaled-dot

product is performed on each of these H heads, resulting on Ṽ
h

on head h.
The results on the different heads are combined by concatenated them:

V = [Ṽ
1
, . . . , Ṽ

H
], (A.89)

and by applying a final projection:

Ṽ = WoV + bo1
T , (A.90)

where Wo is a de×Hdv trainable matrix and Ṽ is a de× nL matrix representing the different elements
with their context, i.e. with the information of the other elements.

Let us note W the entire set of parameters (query, key, value and output linear projections) required
by a multi-head attention layer:

W :=


W h

q ∈ ℜdattn×de , bhq ∈ ℜdattn , h ∈ [H]

W h
k ∈ ℜdattn×de , bhk ∈ ℜdattn , h ∈ [H]

W h
v ∈ ℜdv×de , bhv ∈ ℜdv , h ∈ [H]

Wo ∈ ℜde×Hdv , bo ∈ ℜde

 (A.91)

140



Scale
dot-

product
attention

Scale
dot-

product
attention

Concat. 𝑾𝑜
𝑿

…

෩𝑽1

෩𝑽𝐻

𝑽 ෩𝑽

Multi-head attention (MHA)

Figure A.6: Multi-head attention (gray boxes contain trainable weights).

Algorithm 8: Ṽ ← MHAttention(X |W)

/* Computes Multi-Head self-attention layer. */

Input: X ∈ ℜde×nL , representation of a set.
Output: Ṽ ∈ ℜdv×nL , updated representations of the input set X.
Hyperparameters: H, number of attention heads
Parameters: W consisting of
∀h ∈ [H], Wh

qkv consisting of:

| W h
q ∈ ℜdattn×de , bhq ∈ ℜdattn ,

| W h
k ∈ ℜdattn×de , bhk ∈ ℜdattn ,

| W h
v ∈ ℜdv×de , bhv ∈ ℜdv .

Wo ∈ ℜde×Hdv , bo ∈ ℜde .
for h ∈ [H] do

Ṽ
h
← Attention(X |Wh

qkv)

end

V ← [Ṽ
1
; Ṽ

2
; . . . ; Ṽ

H
]

return Ṽ = WoV + bo1
T

There exist multiple manners to use the attention, depending on the task:
� Bi-directional self-attention (also called unmasked self-attention), used in the BERT architecture

[98], and in general in the transformer-encoder. The attention is performed on X and, for an
element xℓ projected into queries, the atttention is performed on all elements {xℓ′}. This is the
type of attention used in this thesis.

� Unidirectional self-attention (also called masked or left-only attention), used in the transformer-
decoder for the generated sequence.The attention is only performed on the input matrix X, and for

141



an element xℓ projected into queries, the attention is performed on all elements {xℓ′}ℓ′≤ℓ, which
are projected into keys and values.

� Cross-attention is utilized in the transformer-decoder to compare two distinct sets, X and Z. For
example, in a translation task, the first set X corresponds to the generated translated sequence,
while the second set Z represents the text to be translated. In this process, the elements xℓ from
X are transformed into queries, and the elements {zℓ′} from Z are converted into keys and values.

Most of the used transformers utilize the positional encoding (also called positional embedding) to
model a sequence. Without the positional encoding, the transformer is PE (property of the attention
mechanism) [74], i.e. for every permutation on the inputs, the output undergoes the same permutation.

In this thesis, we use EOT and thus the decoder part of the transformer is not detailed. The EOT is
depicted in Figure A.7 and works as follows for an input set X ∈ ℜde×nL :

� The set passes in the multi-head attention (MHA) layer of the EOT, resulting in Ṽ the transformed
input set where each element has its context.

� The original value of the different elements is added to the corresponding transformed element
(xℓ + ṽℓ), corresponding to the residual connection operation [109]. This operation improves the
training and the gradient propagation, particularly by mitigating the vanishing gradient problem.

� This result passes in the layer norm [110], resulting in X̃. The layer normalization works for a
vector u = [u1, . . . , ude ]

T of size de as follows:
1. The mean value µ of the vector u is computed:

µ =
1

de

de∑
i=1

ui (A.92)

2. The variance σ2 is then computed:

σ2 =
1

de

de∑
i=1

(ui − µ)2 (A.93)

3. Then the layer normalization on the vector u is performed, leading to vector û:

û = γ
u− µ

σ
+ β (A.94)

= layer norm(u | γ,β) (A.95)

where γ is a diagonal matrix with dimension de to scale the normalization and β is an offet
vector of dimension de Both γ and β are trainable parameters.

� Each normalized element passes in a feed forward network (FFN) consisting of two layers with
a non-linear activation function between them, e.g. ReLU activation function. The first layer
projects from dimension de into dimension dmlp and the second layer projects from dimension dmlp

into dimension de. This operation results in the representation X̂.
� The residual connection and the layer normalization are performed again, obtaining the encoded

set E ∈ ℜde×nL as the output.
It is essential to note that transformer layers can be stacked. Specifically, an encoded representation
of X denoted as E can be processed through additional EOT layers. This sequence results in neot

transformations, producing representations within a ℜde×nL space. For simplicity, we refer to E as the
result of all transformations applied by the EOT layers.

The Algorithm 9 outlines the operation of the EOT architecture. This algorithm is adapted from
[111].

142



MHA
Residual

connections
Layer 
norm

FFN
Residual

connections
Layer 
norm

𝑿

෩𝑽 ෩𝑽 + 𝑿 𝑬
෩𝑿 ෡𝑿 ෩𝑿 + ෡𝑿

Encoder-only transformer (EOT)

Figure A.7: Encoder-only transformer (gray boxes contain trainable weights).

Algorithm 9: E ← EOT(X | θ)
/* EOT forward pass */

Input: X ∈ ℜde×nL .
Output: X̂ ∈ ℜde×nL .
Hyperparameters: neot, H, de, dmlp ∈ N
Parameters: θ includes all of the following parameters:
∀t ∈ {1, . . . , neot}:
| W t, multi-head attention parameters for layer t, see (A.91),

| γ1
t ,β

1
t ,γ

2
t ,β

2
t ∈ Rde , two sets of layer-norm parameters,

| W t
mlp1 ∈ Rdmlp×de , W t

mlp2 ∈ Rde×dmlp , btmlp1 ∈ Rdmlp , btmlp2 ∈ Rde , FFN parameters.

for t = 1, 2, . . . , neot do
X ←X + MHAttention(X |W t)

for ℓ ∈ [nL] : xℓ ← layer norm(xℓ | γ1
t ,β

1
t ) /* Defined in (A.95) */

X ←X +W t
mlp2RELU(W

t
mlp1X + btmlp11

T ) + btmlp21
T

for ℓ ∈ [nL] : x̂ℓ ← layer norm(xℓ | γ2
t ,β

2
t )

end
return E

The computational complexity of one EOT layer is outlined in Table A.1. Bias is considered, as well as
the ReLU activation of the FFN. However, transposition operations are not included in the calculations.
To have the total complexity of the whole EOT, the result of Table A.1 must be multiplied by neot.

143



Table A.1: Computational complexity of one EOT layer.

Operation FLOPs

Query, key projections 2× 2×Hdattn × de × nL

Value projections 2×Hdv × de × nL

(A.85) 2× nL ×Hdattn × nL − nL × nL

(A.86) and (A.87) 4×H × nL × nL

(A.88) 2×Hdv × nL × nL − nLHdv

(A.90) 2× de ×Hdv × nL

Layer norm 2× 8× de × nL

Residual connections 2× de × nL

FFN 2× 2× de × dmlp × nL

Total
2nL [de(2Hdattn + 2Hdv + 2dmlp + 9)

+2HnL +HdattnnL +HdvnL]− n2
L − nLHdv

Total if de = Hdattn = Hdv 2nL (de(4de + 2nL + 2dmlp + 9) + 2HnL)− n2
L − nLde

A.4.3 Action branching architecture

The AB architecture was introduced in [77] for the DRL field. Its objective is to address setups where
the number of actions is large and cannot be handle by conventional architectures, by dividing the action
space into multiple branches. This approach is generally applicable to tasks where the action space A
has a high cardinality and can be decomposed as: A = A1× · · · ×AND

, meaning that the action a ∈ A
can be written as a = [a1, . . . , aND

], where ad ∈ Ad is called a sub-action and can take nd possible
values. Each branch of the AB architecture corresponds to one of these sub-action spaces, with action
selection taking place within each branch.

The cardinality of the original action space A is given by card(A) = N and thanks to the action space
decomposition, we can write N =

∏ND

d=1 card(Ad) =
∏ND

d=1 nd. If the number of possible actions is the
same for each dimension, meaning nd = n for all d ∈ {1, . . . , ND}, we have N = nND . By implementing
action branching, selection is performed on each branch, resulting in ND separate selections, each with
n action possibilities. Instead of computing an argmax over nND possible actions, which becomes
impractical when nND is large, this approach simplifies the process by performing n × ND argmax
operations, provided that n remains reasonably small.

The action branching, represented in Figure A.8 and described in Algorithm 10, works as follows:
1. The state s goes in a first DNN of parameters θ0 that produces a shared representation of the

state for all branches. This shared representation is noted s̃:

s̃ = Φ0(s, θ0) (A.96)

2. The original AB architecture utilizes dueling [112], i.e. it splits the Q-values as the sum of the
state value V , which is a scalar, and the advantage of the different actions A, which is a vector:

� The shared representation goes in a DNN of parameters θV that produces the state value V :

V = ΦV (s̃, θV ) (A.97)

144



� For each branch d, the shared representation goes in a DNN of parameters θAd , producing
the advantage Ad of the different actions of branch d. Therefore, Ad is a vector of size nd.

Ad = ΦAd(s̃, θAd) (A.98)

3. For each branch d, the state value V is added to the advantage Ad producing the Q-values
Qd = Ad + V of the different actions of branch d. Let us note [ad,1, . . . , ad,nd ] the different
actions of branch d. Therefore, Qd can be written as: Qd = [Qd(s, ad,1), . . . , Qd(s, ad,nd)].

It is important to note that the values associated with each branch do not strictly correspond to the
Q-values defined in Section A.2.7, as they represent partial actions. However, they resemble the true
Q-values of the complete action due to the approximation provided by the neural network.

ϕ0 𝐬, 𝜃0

ϕ𝐴1 ෤𝐬, 𝜃𝐴1

ϕ𝐴2 ෤𝐬, 𝜃𝐴2

ϕ𝐴𝑁𝐷 ෤𝐬, 𝜃𝐴𝑁𝐷

ϕ𝑉 ෤𝐬, 𝜃𝑉

+

+

+

𝐬 ෤𝐬

𝑉

𝑨𝟏

𝑨𝟐

𝑨𝑵𝑫

𝑸𝟏

𝑸𝟐

𝑸𝑵𝑫

Figure A.8: Action branching (gray boxes contain trainable weights).

Algorithm 10: Action Branching

/* Action branching forward pass */

Input: s ∈ S.
Output: [Q1, . . . ,QND ] and [a1, . . . , aND ], the Q-values of all the branches and the taken

actions.
Parameters: θ = {θ0, θV , θA1 , . . . , θAND}
ND number of branches
s̃← Φ(s, θ0)
V ← ΦV (s̃, θV )
for d = 1 to ND do

Qd ← ΦAd(s̃, θAd) + V

ad ← argmaxa∈Ad
Qd

end

return [Q1, . . . ,QND ], [a1, . . . , aND ]

145



Since all the parameters are trained jointly, let us note θ = {θ0, θV , θA1 , . . . , θAND} and the Q-values
obtained on branch d, for state s and action a ∈ Ad, Qd(s, a, θ).

In [77], the AB architecture is trained with the double DQL presented in Section A.3. Hence, the
target value of the dth branch is written as:

yd = r + γQd(sk+1, argmax
a∈Ad

Qd(sk+1, a, θ), θ
−). (A.99)

After computing the target value of all the branches, the loss is computed as:

L(θ) = E(s,a,r,s′)∼B

[
1

ND

ND∑
d=1

(
yd −Qd(s, ad, θ)

)2]
, (A.100)

which corresponds to an aggregation of the TD of all the branches. This loss is used to train jointly the
set of parameters θ with (A.76).

The action taken on each branch d is:

ad := argmax
a∈Ad

Qd(s, a, θ), (A.101)

and the total action is:
a := [a1, . . . , aND ]. (A.102)

A.5 Conclusion

This Appendix provided an overview of the core principles of ML that are employed throughout this
thesis. Specifically, it introduced the MDP, which serves as the mathematical framework for formulating
the scheduling and resource allocation problem. Additionally, the chapter covered DQL, the learning
algorithm utilized in this thesis for addressing these MDPs. Finally, it discussed the different architectures
used to approximate the Q-function, with a particular focus on the EOT and the AB.

146



Appendix B

Number of possible states for APD

Let us consider one buffer with DC. We assume that we know the value of all the entries of this buffer.
Consequently, we also know the number of entries equal to −1, the number of entries equal to 0, and
so on, up to the number of entries equal to D. Since there are k = D + 2 distinct possible values, the
problem reduces to determining the number of ways to express the total buffer size B as a sum of k
non-negative integers. We claim that this number is given by the binomial coefficient:(

B +D + 1

D + 1

)
. (B.1)

We establish this result using induction.

Recursive formulation. Define Fk(B) as the number of ways to represent B using k non-negative
integers. Fixing one of the k integers to take a value ℓ, the remaining k − 1 integers must then sum to
B − ℓ. Summing over all possible values of ℓ, we obtain:

Fk(B) =
B∑
ℓ=0

Fk−1(ℓ). (B.2)

Base case. For k = 1, we are left with a single integer that must sum to B. Clearly, there is exactly
one such representation:

F1(B) = 1 =

(
B

0

)
.

Thus, the base case holds.

Inductive hypothesis. Assume that for some k ≥ 1, the following closed form holds:

Fk(B) =

(
B + k − 1

k − 1

)
.

147



Inductive step. We now prove the formula for k + 1. Using the recursive definition (B.2), we have:

Fk+1(B) =
B∑
ℓ=0

Fk(ℓ)

=
B∑
ℓ=0

(
ℓ+ k − 1

k − 1

)
. (B.3)

The combinatorial identity in [113, Section 0.15] states that:

B∑
ℓ=0

(
ℓ+ k

k

)
=

(
B + k + 1

k + 1

)
(B.4)

Substituting (B.4) into (B.3), we obtain

Fk+1(B) =

(
B + k

k

)
.

Conclusion. By the principle of mathematical induction, it follows that

Fk(B) =

(
B + k − 1

k − 1

)
,

for all k ≥ 1 and B ≥ 0. In particular, when k = D + 2, the number of ways to represent B as a sum
of D + 2 non-negative integers is (

B +D + 1

D + 1

)
.

This completes the proof.

148



Appendix C

Figures for Chapter 2

The following figures provide the distribution of packet delays across the different buffers for the evaluated
slot-based schedulers in Chapter2. They also provide the PLR associated with the different buffers. The
inference was performed with nL = 6, C = [1, 1, 2, 2, 3, 3] and Λ = 1.6. These distributions allow a
fine analysis of the behavior of the different schedulers under these conditions. The discussion of these
figures is provided in Section 2.6.2.3.

149



C.1 Figure for DC traffic

C.1.1 Heuristics

0.0
0.1 PLR 0.3561

Link 0

0.0
0.1 PLR 0.3552

Link 1

0.0
0.1 PLR 0.0506

Link 2

0.0
0.1 PLR 0.0510

Link 3

0.0
0.1 PLR 0.0032

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.0
0.1 PLR 0.0032

Link 5

Figure C.1: Distribution of the packet delay for DC traffic using RR, for nL = 6, C = [1, 1, 2, 2, 3, 3] and
Λ = 1.6

150



0.0

0.5
PLR 0.0642

Link 0

0.0

0.5
PLR 0.0636

Link 1

0.0

0.5
PLR 0.0000

Link 2

0.0

0.5
PLR 0.0000

Link 3

0.0

0.5
PLR 0.0000

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.0

0.5
PLR 0.0000

Link 5

Figure C.2: Distribution of the packet delay for DC traffic using LOG-rule, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

151



0.0

0.5
PLR 0.0000

Link 0

0.0

0.5
PLR 0.0000

Link 1

0.0

0.5
PLR 0.0000

Link 2

0.0

0.5
PLR 0.0000

Link 3

0.0

0.5
PLR 0.0000

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.0

0.5
PLR 0.0000

Link 5

Figure C.3: Distribution of the packet delay for DC traffic using MLWDF, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

152



0.0

0.1
PLR 0.1044

Link 0

0.0

0.1
PLR 0.1039

Link 1

0.0

0.1
PLR 0.0023

Link 2

0.0

0.1
PLR 0.0023

Link 3

0.0

0.1
PLR 0.0000

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.0

0.1
PLR 0.0000

Link 5

Figure C.4: Distribution of the packet delay for DC traffic using EXP-rule, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

153



0.00

0.25
PLR 0.0550

Link 0

0.00

0.25
PLR 0.0550

Link 1

0.00

0.25
PLR 0.0000

Link 2

0.00

0.25
PLR 0.0000

Link 3

0.00

0.25
PLR 0.0000

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.00

0.25
PLR 0.0000

Link 5

Figure C.5: Distribution of the packet delay for DC traffic using KP, for nL = 6, C = [1, 1, 2, 2, 3, 3] and
Λ = 1.6.

154



C.1.2 Fully connected

0.00

0.25
PLR 0.0863

Link 0

0.00

0.25
PLR 0.0015

Link 1

0.00

0.25
PLR 0.0001

Link 2

0.00

0.25
PLR 0.0000

Link 3

0.00

0.25
PLR 0.0000

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.00

0.25
PLR 0.0021

Link 5

Figure C.6: Distribution of the packet delay for DC traffic using FC-HoL, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

155



0.0

0.5
PLR 0.0002

Link 0

0.0

0.5
PLR 0.0000

Link 1

0.0

0.5
PLR 0.0004

Link 2

0.0

0.5
PLR 0.0000

Link 3

0.0

0.5
PLR 0.0002

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.0

0.5
PLR 0.0000

Link 5

Figure C.7: Distribution of the packet delay for DC traffic using FC-xHoL, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

156



0.0

0.2
PLR 0.0010

Link 0

0.0

0.2
PLR 0.0014

Link 1

0.0

0.2
PLR 0.0003

Link 2

0.0

0.2
PLR 0.0001

Link 3

0.0

0.2
PLR 0.0001

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.0

0.2
PLR 0.0003

Link 5

Figure C.8: Distribution of the packet delay for DC traffic using FC-APD, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

157



C.1.3 EOT

0.0
0.1 PLR 0.0019

Link 0

0.0
0.1 PLR 0.0022

Link 1

0.0
0.1 PLR 0.0018

Link 2

0.0
0.1 PLR 0.0016

Link 3

0.0
0.1 PLR 0.0048

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.0
0.1 PLR 0.0051

Link 5

Figure C.9: Distribution of the packet delay for DC traffic using EOT-HoL, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

158



0.0

0.1 PLR 0.0012

Link 0

0.0

0.1 PLR 0.0011

Link 1

0.0

0.1 PLR 0.0012

Link 2

0.0

0.1 PLR 0.0012

Link 3

0.0

0.1 PLR 0.0009

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.0

0.1 PLR 0.0010

Link 5

Figure C.10: Distribution of the packet delay for DC traffic using EOT-xHoL, for nL = 6, C =
[1, 1, 2, 2, 3, 3] and Λ = 1.6.

159



0.00

0.25
PLR 0.0066

Link 0

0.00

0.25
PLR 0.0067

Link 1

0.00

0.25
PLR 0.0031

Link 2

0.00

0.25
PLR 0.0031

Link 3

0.00

0.25
PLR 0.0033

Link 4

0 2 4 6 8 10 12 14 16 18 20
Delay

0.00

0.25
PLR 0.0030

Link 5

Figure C.11: Distribution of the packet delay for DC traffic using EOT-APD, for nL = 6, C =
[1, 1, 2, 2, 3, 3] and Λ = 1.6.

160



C.2 Figure for BE traffic

C.2.1 Heuristics

0.0

0.2
PLR 0.3004

Link 0

0.0

0.2
PLR 0.3026

Link 1

0.0

0.2
PLR 0.0000

Link 2

0.0

0.2
PLR 0.0000

Link 3

0.0

0.2
PLR 0.0000

Link 4

0 100 200 300 400 500 600
Delay

0.0

0.2
PLR 0.0000

Link 5

Figure C.12: Distribution of the packet delay for BE traffic using RR, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

161



0.0

0.1 PLR 0.4391

Link 0

0.0

0.1 PLR 0.4410

Link 1

0.0

0.1 PLR 0.0000

Link 2

0.0

0.1 PLR 0.0001

Link 3

0.0

0.1 PLR 0.0000

Link 4

0 100 200 300 400 500 600
Delay

0.0

0.1 PLR 0.0000

Link 5

Figure C.13: Distribution of the packet delay for BE traffic using LOG-rule, for nL = 6, C =
[1, 1, 2, 2, 3, 3] and Λ = 1.6.

162



0.0

0.1
PLR 0.4826

Link 0

0.0

0.1
PLR 0.4844

Link 1

0.0

0.1
PLR 0.0042

Link 2

0.0

0.1
PLR 0.0043

Link 3

0.0

0.1
PLR 0.0000

Link 4

0 100 200 300 400 500 600
Delay

0.0

0.1
PLR 0.0000

Link 5

Figure C.14: Distribution of the packet delay for BE traffic using MLWDF, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

163



0.0
0.1 PLR 0.4320

Link 0

0.0
0.1 PLR 0.4339

Link 1

0.0
0.1 PLR 0.0000

Link 2

0.0
0.1 PLR 0.0001

Link 3

0.0
0.1 PLR 0.0000

Link 4

0 100 200 300 400 500 600
Delay

0.0
0.1 PLR 0.0000

Link 5

Figure C.15: Distribution of the packet delay for BE traffic using EXP-rule, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

164



0.00
0.01 PLR 0.1373

Link 0

0.00
0.01 PLR 0.1400

Link 1

0.00
0.01 PLR 0.0000

Link 2

0.00
0.01 PLR 0.0000

Link 3

0.00
0.01 PLR 0.0000

Link 4

0 100 200 300 400 500 600
Delay

0.00
0.01 PLR 0.0000

Link 5

Figure C.16: Distribution of the packet delay for BE traffic using KP, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

165



C.2.2 Fully connected

0.00

0.01
PLR 0.0295

Link 0

0.00

0.01
PLR 0.0165

Link 1

0.00

0.01
PLR 0.0025

Link 2

0.00

0.01
PLR 0.0041

Link 3

0.00

0.01
PLR 0.0005

Link 4

0 100 200 300 400 500 600
Delay

0.00

0.01
PLR 0.0001

Link 5

Figure C.17: Distribution of the packet delay for BE traffic using FC-HoL, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

166



0.00

0.01
PLR 0.0501

Link 0

0.00

0.01
PLR 0.0706

Link 1

0.00

0.01
PLR 0.0001

Link 2

0.00

0.01
PLR 0.0001

Link 3

0.00

0.01
PLR 0.0000

Link 4

0 100 200 300 400 500 600
Delay

0.00

0.01
PLR 0.0000

Link 5

Figure C.18: Distribution of the packet delay for BE traffic using FC-xHoL, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

167



0.00

0.01
PLR 0.0689

Link 0

0.00

0.01
PLR 0.0094

Link 1

0.00

0.01
PLR 0.0001

Link 2

0.00

0.01
PLR 0.0049

Link 3

0.00

0.01
PLR 0.0000

Link 4

0 100 200 300 400 500 600
Delay

0.00

0.01
PLR 0.0001

Link 5

Figure C.19: Distribution of the packet delay for BE traffic using FC-APD, for nL = 6, C = [1, 1, 2, 2, 3, 3]
and Λ = 1.6.

168



C.2.3 EOT

0.000
0.005 PLR 0.0237

Link 0

0.000
0.005 PLR 0.0256

Link 1

0.000
0.005 PLR 0.0015

Link 2

0.000
0.005 PLR 0.0017

Link 3

0.000
0.005 PLR 0.0008

Link 4

0 100 200 300 400 500 600
Delay

0.000
0.005 PLR 0.0008

Link 5

Figure C.20: Distribution of the packet delay for BE traffic using EOT-HoL, for nL = 6, C =
[1, 1, 2, 2, 3, 3] and Λ = 1.6.

169



0.000
0.005 PLR 0.0156

Link 0

0.000
0.005 PLR 0.0162

Link 1

0.000
0.005 PLR 0.0012

Link 2

0.000
0.005 PLR 0.0012

Link 3

0.000
0.005 PLR 0.0007

Link 4

0 100 200 300 400 500 600
Delay

0.000
0.005 PLR 0.0009

Link 5

Figure C.21: Distribution of the packet delay for BE traffic using EOT-xHoL, for nL = 6, C =
[1, 1, 2, 2, 3, 3] and Λ = 1.6.

170



0.00

0.01
PLR 0.0002

Link 0

0.00

0.01
PLR 0.0002

Link 1

0.00

0.01
PLR 0.0029

Link 2

0.00

0.01
PLR 0.0020

Link 3

0.00

0.01
PLR 0.0001

Link 4

0 100 200 300 400 500 600
Delay

0.00

0.01
PLR 0.0003

Link 5

Figure C.22: Distribution of the packet delay for BE traffic using EOT-APD, for nL = 6, C =
[1, 1, 2, 2, 3, 3] and Λ = 1.6.

171



Bibliography

[1] X. Leturc, “Resource allocation for HARQ in mobile ad hoc networks,” Ph.D. dissertation, Uni-
versité Paris Saclay (COmUE), 2018.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap to 6G: AI empowered
wireless networks,” IEEE communications magazine, vol. 57, no. 8, pp. 84–90, 2019.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[4] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi
et al., “DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning,”
arXiv preprint arXiv:2501.12948, 2025.

[5] I. Fawaz, M. Sarkiss, and P. Ciblat, “Optimal resource scheduling for energy harvesting communi-
cations under strict delay constraint,” in IEEE International Conference on Communications (ICC),
2018.

[6] A. Valcarce. Wireless suite: A collection of problems in wireless telecommunications. [Online].
Available: https://github.com/nokia/wireless-suite

[7] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The next generation wireless access technology.
Academic Press, 2020.

[8] 3GPP, TS 37.324, Service Data Adaptation Protocol (SDAP) specification (Release 17).

[9] ——, TS 38.323, Packet Data Convergence Protocol (PDCP) specification (Release 17).

[10] ——, TS 38.322, Radio Link Control (RLC) protocol specification (Release 17).

[11] ——, TS 38.321, Medium Access Control (MAC) protocol specification (Release 17).

[12] ——, TS 38.300, NR and NG-RAN Overall Description (Release 17).

[13] ——, TR 21.905, Vocabulary for 3GPP Specifications (Release 17).

[14] F. Capozzi, G. Piro, L. Grieco, G. Boggia, and P. Camarda, “Downlink packet scheduling in LTE
cellular networks: Key design issues and a survey,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 2, 2013.

172

https://github.com/nokia/wireless-suite


[15] A. Mamane, M. Fattah, M. E. Ghazi, M. E. Bekkali, Y. Balboul, and S. Mazer, “Scheduling
algorithms for 5G networks and beyond: Classification and survey,” IEEE Access, vol. 10, pp.
51 643–51 661, 2022.

[16] M. Elkael, M. Polese, R. Prasad, S. Maxenti, and T. Melodia, “ALLSTaR: Automated LLM-driven
scheduler generation and testing for intent-based RAN,” arXiv preprint arXiv:2505.18389, 2025.

[17] L. Kleinrock, “Analysis of a time-shared processor,” Naval research logistics quarterly, vol. 11,
no. 1, pp. 59–73, 1964.

[18] H. Hellerman, “Some principles of time-sharing scheduler strategies,” IBM Systems Journal, vol. 8,
no. 2, pp. 94–117, 1969.

[19] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar, “Providing
quality of service over a shared wireless link,” IEEE Communications Magazine, vol. 39, no. 2, pp.
150–154, 2001.

[20] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE
Transactions on Information Theory, vol. 48, no. 6, 2002.

[21] A. Stolyar and K. Ramanan, “Largest weighted delay first scheduling: Large deviations and opti-
mality,” The Annals of Applied Probability, vol. 11, 02 2001.

[22] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and P. Whiting, “CDMA data
QoS scheduling on the forward link with variable channel conditions,” Technical Memorandum,
2000.

[23] S. Shakkottai and A. L. Stolyar, “Scheduling for multiple flows sharing a time-varying channel: The
exponential rule,” Translations of the American Mathematical Society-Series 2, vol. 207, 2002.

[24] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and P. Whiting, “Scheduling
in a queuing system with asynchronously varying service rates,” Probability in the Engineering and
Informational Sciences, vol. 18, no. 2, 2004.

[25] J.-H. Rhee, J. Holtzman, and D.-K. Kim, “Scheduling of real/non-real time services: adaptive
EXP/PF algorithm,” in The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC
2003-Spring., vol. 1, 2003, pp. 462–466 vol.1.

[26] C. Wengerter, J. Ohlhorst, and A. von Elbwart, “Fairness and throughput analysis for general-
ized proportional fair frequency scheduling in OFDMA,” in 2005 IEEE 61st Vehicular Technology
Conference, vol. 3, 2005, pp. 1903–1907 Vol. 3.

[27] B. Sadiq, S. J. Baek, and G. de Veciana, “Delay-optimal opportunistic scheduling and approxima-
tions: The log rule,” in IEEE INFOCOM 2009, 2009, pp. 1692–1700.

[28] ——, “Delay-optimal opportunistic scheduling and approximations: The log rule,” IEEE/ACM
Transactions on Networking, vol. 19, no. 2, 2011.

[29] M. Brehm and R. Prakash, “Overload-state downlink resource allocation in LTE MAC layer,”
Wireless networks, vol. 19, pp. 913–931, 2013.

173



[30] N. Ferdosian, M. Othman, K. Y. Lun, and B. M. Ali, “Overload-state downlink resource scheduling
and its challenges towards 5G networks,” in 2016 IEEE 21st International Workshop on Computer
Aided Modelling and Design of Communication Links and Networks (CAMAD). IEEE, 2016, pp.
154–156.

[31] L. Georgiadis, M. J. Neely, L. Tassiulas et al., “Resource allocation and cross-layer control in
wireless networks,” Foundations and Trends® in Networking, vol. 1, no. 1, pp. 1–144, 2006.

[32] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals of queueing theory.
John wiley & sons, 2011, vol. 627.

[33] L. Kleinrock, “A conservation law for a wide class of queueing disciplines,” Naval Research Logistics
Quarterly, vol. 12, no. 2, pp. 181–192, 1965.

[34] I. Mitrani and P. J. King, “Multiprocessor systems with preemptive priorities,” Performance Eval-
uation, vol. 1, no. 2, pp. 118–125, 1981.

[35] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and schedul-
ing policies for maximum throughput in multihop radio networks,” in 29th IEEE Conference on
Decision and Control. IEEE, 1990, pp. 2130–2132.

[36] S. Shakkottai and A. L. Stolyar, “Scheduling algorithms for a mixture of real-time and non-real-time
data in HDR,” in Teletraffic Science and Engineering. Elsevier, 2001, vol. 4.

[37] B. Sadiq, R. Madan, and A. Sampath, “Downlink scheduling for multiclass traffic in LTE,”
EURASIP Journal on Wireless Communications and Networking, vol. 2009, 2009.

[38] 3GPP, TS 23.501, System architecture for the 5G System (5GS) (Release 17).

[39] I.-S. Comsa, A. De-Domenico, and D. Ktenas, “QoS-driven scheduling in 5G radio access networks
- a reinforcement learning approach,” in IEEE Global Communications Conference (GLOBECOM),
2017.

[40] M. Seguin, A. Omer, M. Koosha, F. Malandra, and N. Mastronarde, “Deep reinforcement learning
for downlink scheduling in 5G and beyond networks: A review,” in 2023 IEEE 34th Annual Inter-
national Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2023, pp.
1–6.

[41] F. Al-Tam, N. Correia, and J. Rodriguez, “Learn to schedule (LEASCH): A deep reinforcement
learning approach for radio resource scheduling in the 5G MAC layer,” IEEE Access, vol. 8, pp.
108 088–108 101, 2020.

[42] S. Nérondat, X. Leturc, P. Ciblat, and C. J. Le Martret, “Efficient 5G resource block scheduling
using action branching and transformer networks,” in 2025 IEEE International Conference on
Machine Learning for Communication and Networking (ICMLCN), 2025, pp. 1–6.

[43] I.-S. Comşa, S. Zhang, M. E. Aydin, P. Kuonen, Y. Lu, R. Trestian, and G. Ghinea, “Towards 5G: A
reinforcement learning-based scheduling solution for data traffic management,” IEEE Transactions
on Network and Service Management, vol. 15, no. 4, 2018.

174



[44] S. Shen, T. Zhang, S. Mao, and G.-K. Chang, “DRL-based channel and latency aware radio resource
allocation for 5G service-oriented RoF-MmWave RAN,” Journal of Lightwave Technology, vol. 39,
no. 18, 2021.

[45] J. Song, Y. Nam, H. Kwon, I. Sim, S. J. Maeng, and S. Jang, “Adaptive generalized proportional
fair scheduling with deep reinforcement learning,” in IEEE GLOBECOM Workshops, 2022.

[46] Y. Hao, F. Li, C. Zhao, and S. Yang, “Delay-oriented scheduling in 5G downlink wireless networks
based on reinforcement learning with partial observations,” IEEE/ACM Transactions on Network-
ing, vol. 31, no. 1, 2023.

[47] J. Wang, C. Xu, Y. Huangfu, R. Li, Y. Ge, and J. Wang, “Deep reinforcement learning for
scheduling in cellular networks,” in International Conference on Wireless Communications and
Signal Processing (WCSP), 2019.

[48] F. AL-Tam, A. Mazayev, N. Correia, and J. Rodriguez, “Radio resource scheduling with deep
pointer networks and reinforcement learning,” in IEEE International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks (CAMAD), 2020.

[49] C. Xu, J. Wang, T. Yu, C. Kong, Y. Huangfu, R. Li, Y. Ge, and J. Wang, “Buffer-aware wire-
less scheduling based on deep reinforcement learning,” in IEEE Wireless Communications and
Networking Conference (WCNC), 2020.

[50] A. Anand, R. Balakrishnan, V. S. Somayazulu, and R. Vannithamby, “Model-assisted deep rein-
forcement learning for dynamic wireless scheduling,” in Asilomar Conference on Signals, Systems,
and Computers, 2020.

[51] E.-M. Bansbach, V. Eliachevitch, and L. Schmalen, “Deep reinforcement learning for wireless re-
source allocation using buffer state information,” in 2021 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2021, pp. 1–6.

[52] W. AlQwider, T. F. Rahman, and V. Marojevic, “Deep Q-network for 5G NR downlink scheduling,”
in IEEE ICC Workshops, 2022.

[53] B. Toure, D. Tsilimantos, T. Giannakas, O. Esrafilian, and M. Kountouris, “Multi-objective
scheduling in wireless networks with deep reinforcement learning,” in 2025 IEEE Wireless Commu-
nications and Networking Conference (WCNC), 2025, pp. 1–6.

[54] B.-M. Robaglia, M. Coupechoux, and D. Tsilimantos, “Deep reinforcement learning for uplink
scheduling in NOMA-URLLC networks,” IEEE Transactions on Machine Learning in Communica-
tions and Networking, vol. 2, pp. 1142–1158, 2024.

[55] J. S. Shekhawat, R. Agrawal, K. G. Shenoy, and R. Shashidhara, “A reinforcement learning
framework for QoS-driven radio resource scheduler,” in IEEE Global Communications Conference
(GLOBECOM), 2020.

[56] J. Li and X. Zhang, “Deep reinforcement learning-based joint scheduling of eMBB and URLLC in
5G networks,” IEEE Wireless Communications Letters, vol. 9, no. 9, pp. 1543–1546, 2020.

175



[57] Z. Gu, C. She, W. Hardjawana, S. Lumb, D. McKechnie, T. Essery, and B. Vucetic, “Knowledge-
assisted deep reinforcement learning in 5G scheduler design: From theoretical framework to imple-
mentation,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, 2021.

[58] S. Gracla, E. Beck, C. Bockelmann, and A. Dekorsy, “Learning resource scheduling with high
priority users using deep deterministic policy gradients,” in ICC 2022-IEEE international conference
on communications. IEEE, 2022, pp. 4480–4485.

[59] A. Paz-Pérez, A. Tato, J. J. Escudero-Garzás, and F. Gómez-Cuba, “Flexible reinforcement learn-
ing scheduler for 5G networks,” in 2024 IEEE International Conference on Machine Learning for
Communication and Networking (ICMLCN), 2024, pp. 566–572.

[60] A. Avranas, P. Ciblat, and M. Kountouris, “Deep reinforcement learning for resource constrained
multiclass scheduling in wireless networks,” IEEE Transactions on Machine Learning in Communi-
cations and Networking, vol. 1, 2023.

[61] T. Zhang, S. Shen, S. Mao, and G.-K. Chang, “Delay-aware cellular traffic scheduling with deep
reinforcement learning,” in IEEE Global Communications Conference (GLOBECOM), 2020.

[62] N. Sharma, S. Zhang, S. R. Somayajula Venkata, F. Malandra, N. Mastronarde, and J. Chakareski,
“Deep reinforcement learning for delay-sensitive LTE downlink scheduling,” in 2020 IEEE 31st
Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2020,
pp. 1–6.

[63] A. Robinson and T. Kunz, “Downlink scheduling in LTE with deep reinforcement learning, LSTMs
and pointers,” in IEEE Military Communications Conference (MILCOM), 2021.

[64] V. H. L. Lopes, C. V. Nahum, R. M. Dreifuerst, P. Batista, A. Klautau, K. V. Cardoso, and
R. W. Heath, “Deep reinforcement learning-based scheduling for multiband massive MIMO,” IEEE
Access, vol. 10, 2022.

[65] A. Giovanidis, M. Leconte, S. Aroua, T. Kvernvik, and D. Sandberg, “Online frequency scheduling
by learning parallel actions,” in 2024 3rd International Conference on 6G Networking (6GNet),
2024, pp. 153–160.

[66] X. Ye and L. Fu, “Joint MCS adaptation and RB allocation in cellular networks based on deep
reinforcement learning with stable matching,” IEEE Trans. Mobile Comput., vol. 23, no. 1, pp.
549–565, 2024.

[67] Q. Wang, T. Nguyen, and B. Bose, “Towards adaptive packet scheduler with deep-Q reinforcement
learning,” in International Conference on Computing, Networking and Communications (ICNC),
2020.

[68] S. Mollahasani, M. Erol-Kantarci, M. Hirab, H. Dehghan, and R. Wilson, “Actor-critic learning
based QoS-aware scheduler for reconfigurable wireless networks,” IEEE Transactions on Network
Science and Engineering, vol. 9, no. 1, 2022.

[69] S. Nérondat, X. Leturc, C. J. Le Martret, and P. Ciblat, “Transformer-based packet scheduling
under strict delay and buffer constraints,” in IEEE Wireless Communications and Networking
Conference (WCNC), 2025.

176



[70] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep
sets,” Advances in neural information processing systems, vol. 30, 2017.

[71] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in neural information
processing systems, vol. 28, 2015.

[72] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to sequence for sets,” arXiv
preprint arXiv:1511.06391, 2015.

[73] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30,
2017.

[74] H. Xu, L. Xiang, H. Ye, D. Yao, P. Chu, and B. Li, “Permutation equivariance of transformers
and its applications,” 2024. [Online]. Available: https://arxiv.org/abs/2304.07735

[75] S. Huang and S. Ontañón, “A closer look at invalid action masking in policy gradient algorithms,”
arXiv preprint arXiv:2006.14171, 2020.

[76] R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A quantitative measure of fairness and discrimi-
nation,” Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA, vol. 21, p. 1,
1984.

[77] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures for deep reinforcement
learning,” in Proceedings of the aaai conference on artificial intelligence, vol. 32, no. 1, 2018.

[78] A. Aniket and A. Chattopadhyay, “Online reinforcement learning in periodic MDP,” IEEE Trans-
actions on Artificial Intelligence, 2024.

[79] Z. Chen, K. K. Leung, S. Wang, L. Tassiulas, K. Chan, and P. J. Baker, “Learning technique to
solve periodic markov decision process for network resource allocation,” in MILCOM 2023 - 2023
IEEE Military Communications Conference (MILCOM), 2023, pp. 464–470.

[80] R. S. Sutton, “Reinforcement learning: An introduction,” A Bradford Book, 2018.

[81] S. Chandra and A. K. Bharti, “Speed distribution curves for pedestrians during walking and cross-
ing,” Procedia-Social and Behavioral Sciences, vol. 104, pp. 660–667, 2013.

[82] G. Piro, N. Baldo, and M. Miozzo, “An LTE module for the ns-3 network simulator.”

[83] 3GPP, TS 38.214, Physical layer procedures for data (Release 17).

[84] P. M. de Sant Ana and N. Marchenko, “Radio access scheduling using CMA-ES for optimized QoS
in wireless networks,” in 2020 IEEE Globecom Workshops (GC Wkshps, 2020, pp. 1–6.

[85] S. Nérondat, X. Leturc, C. J. Le Martret, and P. Ciblat, “Procédé d’ordonnancement dynamique
de communications entre une pluralité d’équipements utilisateurs,” Patent FR 24 11 578, filed on
October 23, 2024.

[86] J. Gaveau, “Allocation des ressources pour la gestion dynamique du spectre dans les réseaux ad
hoc clustérisés,” Ph.D. dissertation, Université Paris Saclay, soutenue le 11 juillet 2018.

177

https://arxiv.org/abs/2304.07735


[87] S. Nérondat, X. Leturc, C. J. Le Martret, and P. Ciblat, “Ordonnancement et ACM conjoint sur
canal aléatoire basé sur un transformer entrainé par apprentissage profond par renforcement,” in
GRETSI, 2025.

[88] P. Series, “Multipath propagation and parameterization of its characteristics,” ITU
recommmendations, pp. 1407–8, 2021. [Online]. Available: https://www.itu.int/dms pubrec/
itu-r/rec/p/R-REC-P.1407-8-202109-I!!PDF-E.pdf

[89] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel et al., “Soft actor-critic algorithms and applications,” arXiv preprint arXiv:1812.05905,
2018.

[90] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[91] P. Laige and T. Yoshimasa, “Improving action branching for deep reinforcement learning with a
multi-dimensional hybrid action space,” vol. 2019, pp. 80–85, 2019.

[92] D. P. Bertsekas et al., Dynamic programming and optimal control 4th edition, volume ii, 2012.

[93] C. J. Watkins and P. Dayan, “Q-Learning,” Machine learning, vol. 8, 1992.

[94] H. Van Hasselt, “Double Q-Learning,” Advances in neural information processing systems, vol. 23,
2010.

[95] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and Q. Miao, “Deep reinforcement
learning: A survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 4,
pp. 5064–5078, 2024.

[96] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-Learning,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 30, no. 1, 2016.

[97] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444,
2015.

[98] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[99] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language understanding
by generative pre-training,” 2018. [Online]. Available: https://cdn.openai.com/research-covers/
language-unsupervised/language understanding paper.pdf

[100] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers in vision:
A survey,” ACM computing surveys (CSUR), vol. 54, no. 10s, pp. 1–41, 2022.

[101] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mor-
datch, “Decision transformer: Reinforcement learning via sequence modeling,” Advances in neural
information processing systems, vol. 34, pp. 15 084–15 097, 2021.

[102] K. Esslinger, R. Platt, and C. Amato, “Deep transformer Q-networks for partially observable
reinforcement learning,” arXiv preprint arXiv:2206.01078, 2022.

178

https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1407-8-202109-I!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1407-8-202109-I!!PDF-E.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf


[103] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as one big sequence modeling
problem,” Advances in neural information processing systems, vol. 34, pp. 1273–1286, 2021.

[104] P. Agarwal, A. A. Rahman, P.-L. St-Charles, S. J. Prince, and S. E. Kahou, “Transformers in
reinforcement learning: A survey,” arXiv preprint arXiv:2307.05979, 2023.

[105] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing machines,” arXiv preprint arXiv:1410.5401,
2014.

[106] D. Bahdanau, “Neural machine translation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[107] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural
machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[108] L. Weng, “Attention? attention!” lilianweng.github.io, 2018. [Online]. Available:
https://lilianweng.github.io/posts/2018-06-24-attention/

[109] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[110] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv e-prints, pp. arXiv–1607,
2016.

[111] M. Phuong and M. Hutter, “Formal algorithms for transformers,” arXiv preprint arXiv:2207.09238,
2022.

[112] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network architec-
tures for deep reinforcement learning,” in International conference on machine learning. PMLR,
2016, pp. 1995–2003.

[113] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Academic press, 2014.

179

https://lilianweng.github.io/posts/2018-06-24-attention/


Titre : Apprentissage par renforcement profond pour l’optimisation conjointe de l’allocation de ressource et de
l’ordonnancement pour les réseaux ad hoc

Mots clés : Allocation de ressources, Ordonnancement, Apprentissage par renforcement profond

Résumé : Les réseaux de communication modernes
font face à des défis croissants en raison de la diver-
sité des applications, allant des services ultra-fiables
à faible latence aux communications massives de
type IoT. Ces applications génèrent des demandes
hétérogènes nécessitant une planification efficace
des paquets, qui consiste à allouer les ressources ra-
dio dans le temps (slots) et en fréquence (blocs de
ressources, RBs) afin de garantir le débit, l’équité et
la latence. Les méthodes heuristiques traditionnelles
manquent de flexibilité pour gérer ces besoins contra-
dictoires, ce qui rend les solutions basées sur l’IA plus
adaptées, en particulier pour les systèmes 5G et 6G.
Cette thèse est consacrée au développement de
méthodes basées sur l’IA pour la planification dans
les réseaux de communication sans fil. Le problème
d’optimisation global implique un espace d’états et
d’actions de grande dimension et ne peut être résolu
par des méthodes analytiques ; d’où l’adoption de
techniques d’apprentissage par renforcement, com-

binées à des réseaux de neurones profonds. L’objectif
est d’explorer comment le DRL peut être utilisé effi-
cacement pour optimiser l’allocation des ressources
dans des environnements complexes, caractérisés
par des schémas de trafic variés et des conditions de
canal dynamiques.
Pour ce faire, nous identifions d’abord les propriétés
essentielles qu’un réseau de neurones doit satisfaire
pour réaliser la planification, en particulier la capa-
cité à gérer un nombre variable d’utilisateurs. Nous
évaluons ensuite une architecture répondant à ces
critères dans des conditions de complexité croissante.
Dans un premier temps, la solution est testée dans
un environnement slot par slot avec un seul RB par
slot. Ensuite, elle est étendue afin de réaliser la plani-
fication sur plusieurs RBs simultanément. Enfin, l’ap-
proche est adaptée pour traiter conjointement la pla-
nification des RBs et la sélection du schéma de mo-
dulation et de codage (MCS).

Title : Deep reinforcement learning for joint optimization of scheduling and resource allocation in mobile ad
hoc networks

Keywords : Resource allocation, Scheduling, Deep reinforcement learning

Abstract : Modern communication networks face ri-
sing challenges due to diverse applications, from
ultra-reliable low-latency services to massive IoT traf-
fic. These generate heterogeneous demands requi-
ring efficient packet scheduling, which allocates ra-
dio resources in time (slots) and frequency (resource
blocks, RBs) to ensure throughput, fairness, and la-
tency. Traditional heuristic methods lack the flexibility
to manage these conflicting needs, making AI-based
solutions more suitable, especially for 5G and 6G sys-
tems.
This thesis is devoted to the development of AI-based
methods for scheduling in wireless communication
networks. The global optimization problem involves a
high-dimensional state and action space and cannot
be solved using analytical methods, hence the adop-
tion of reinforcement learning techniques powered by

deep neural networks. The objective is to explore how
DRL can be effectively employed to optimize resource
allocation in complex environments characterized by
diverse traffic patterns and dynamic channel condi-
tions.
To achieve this, we first identify the essential pro-
perties a neural network must satisfy for schedu-
ling, particularly the ability to handle a variable num-
ber of users. We then evaluate an architecture that
meets these requirements under increasingly com-
plex conditions. Initially, the solution is tested in a slot-
by-slot environment with a single RB per slot. Next,
it is extended to perform scheduling across multiple
RBs simultaneously. Finally, the approach is adapted
to jointly handle RB scheduling and modulation and
coding scheme (MCS) selection.

Institut Polytechnique de Paris
91120 Palaiseau, France


	List of acronyms
	Résumé en français
	General introduction
	General context and state of the art on scheduling
	Introduction
	General system model
	Additional information and precisions on the general system model in the different chapters
	Additional information and precisions for Chapter 2
	Additional information and precisions for Chapter 3
	Additional information and precisions for Chapter 4
	Synthesis of the additional information and precisions

	Mapping with the 5G model

	State of the art of heuristics for scheduling
	Round-robin
	Earliest deadline first
	Proportional fair
	MLWDF
	LOG-rule
	EXP-rule
	Knapsack

	State of the art of DRL solutions for scheduling
	Classification of the DRL schedulers
	Classification based on the action space
	Classification based on the state space
	Classification based on the reward
	Classification based on the performance metrics during the inference phase

	Analysis of the scheduler properties

	Conclusion

	Slot-based scheduling
	Introduction
	System model
	Problem formulation
	MDP formulation
	State space
	State-HoL (S-HoL)
	State-xHoL (S-xHoL)
	State-APD (S-APD)

	Action space
	MDP model
	Reward

	Problem solution
	Learning procedure
	Encoder only transformer architecture
	Fully connected architecture
	Adaptation of the heuristics
	Round-robin
	Proportional fair
	MLWDF
	LOG-rule
	EXP-rule
	Knapsack


	Performance evaluation
	Simulation settings
	Evaluated methods
	Training setup
	Inference setup

	Performance metrics

	Performance analysis
	Training analysis
	Inference analysis
	Tested inferences
	Generalization wrt 
	Performance per link or traffic for =1.6
	Performance wrt nL
	Generalization wrt nL and C


	Conclusion

	Frame-based scheduling
	Introduction
	Problem formulation
	State spaces
	Action space
	Reward

	Problem solution
	Deep neural network architecture
	Action masking procedure

	Performance evaluation
	Wireless Suite environment
	Communication model
	State spaces and reward of WS-TFRA and proposed adaptations
	State spaces
	Reward

	Heuristics used in wireless suite
	Proportional fair
	Knapsack
	Bosch agent

	Communication setup
	Training and inference setup
	Performance metrics

	Performance analysis
	Inference performance on the training setup
	On the importance of the mask for the proposed architecture
	Generalization vs. 

	Conclusion

	Joint scheduling and MCS selection
	Introduction
	System model
	Buffer model
	Channel model
	Procedure for the average PER


	Problem formulation for JSM and DSM approaches
	State spaces
	Action spaces for both JSM and DSM approaches
	Reward

	Problem solutions 
	Solution approaches for MCS and buffer selections
	Adaptation of the heuristics for buffer selection
	Round-robin
	Proportional fair
	MLWDF
	LOG-rule
	Knapsack

	Adaptation of the EOT-AB for JSM and DSM-LBS approaches

	Performance evaluation
	Simulation settings
	Training setup
	Inference setup

	Performance Metrics

	Performance analysis
	Training analysis
	Inference performance analysis

	Conclusion

	Conclusions and perspectives
	Background on machine learning
	Introduction
	Reinforcement learning
	Introduction
	Finite Markov chain
	Finite Markov Decision Process
	Optimal control framework and MDP
	Optimal policy
	Value iteration
	Q-Learning

	Deep reinforcement learning
	Deep neural network architectures
	Fully connected architecture
	Transformer architecture
	Action branching architecture

	Conclusion

	Number of possible states for APD
	Figures for Chapter 2
	Figure for DC traffic
	Heuristics
	Fully connected
	EOT

	Figure for BE traffic
	Heuristics
	Fully connected
	EOT


	Bibliography

