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Résumé en francais

Les réseaux de communication modernes sont confrontés a des défis croissants en raison de la diver-
sité des applications, allant des services ultra-fiables a faible latence aux communications massives de
type machine dans le cadre de I'Internet des objets. Ces applications variées génerent des types de
trafic hétérogeénes qui exigent des stratégies de gestion des ressources, telles que I'ordonnancement ou
I'allocation de ressources, capables de s'adapter a leurs besoins spécifiques. Cette thése se concentre
principalement sur |'ordonnancement des paquets, |'allocation de ressources n'étant considérée qu'a la
fin de la these.

L'ordonnancement étudié dans cette these concerne a la fois le domaine temporel et fréquentiel. I
définit comment les ressources radio dans ces dimensions sont attribuées aux différents dispositifs, appelés
équipements utilisateur (UEs), afin d'atteindre des objectifs de performance tels que le débit, I'équité et
la latence. Il joue un rdle central dans les réseaux sans fil, en garantissant que plusieurs appareils puis-
sent accéder au médium de maniere coordonnée et efficace. Les ressources radio élémentaires a attribuer
se composent de créneaux temporels (time slots) dans le domaine temporel et de blocs de ressources
(RBs) dans le domaine fréquentiel. Nous supposons dans cette thése que I'ordonnancement est géré par
une unité centrale appelée gestionnaire de ressources radio (RRM). Dans les réseaux cellulaires, le RRM
correspond a la station de base (BS). Dans les réseaux ad hoc, les requétes d'ordonnancement sont cen-
tralisées dans un nceud spécifique, désigné comme RRM. Dans les réseaux cellulaires, la BS sert de nceud
central reliant les différents liens, ce qui permet d'accéder a I'information instantanée de I'état du canal
(CSI). En revanche, dans les réseaux ad hoc, le RRM n'a acces qu'a des informations statistiques du canal.

A mesure que le nombre de types de services augmente, les techniques d'ordonnancement clas-
siques, qui reposent souvent sur des heuristiques ou sur |'optimisation de métriques, deviennent moins
adaptées. Ces méthodes manquent de flexibilité pour équilibrer plusieurs objectifs, souvent contradic-
toires, et ne sont pas concues pour gérer conjointement différents types de ressources. En revanche,
les méthodes basées sur I'intelligence artificielle (Al) peuvent apprendre a gérer de tels compromis de
maniere adaptative. Cette évolution est cohérente avec les principes de conception des systemes de
cinquieme génération (5G) et de sixieme génération (6G) a venir, ou I'Al jouera un role essentiel dans la
conception et I'optimisation des architectures, protocoles et opérations.

Parmi les paradigmes d'Al, I'apprentissage profond a gagné en importance grace aux avancées des ar-
chitectures de réseaux de neurones profonds (DNN). Lorsqu'il est combiné a I'apprentissage par renforce-
ment (RL), formant ainsi I'apprentissage par renforcement profond (DRL), il a démontré des capacités
remarquables dans les taches de prise de décision, initialement popularisé par les succes dans les jeux
Atari, puis conforté par son role dans I'entrainement des grands modeles de langage (LLM). Suivant cette
tendance dans de nombreux domaines de recherche, le DRL est naturellement exploré pour |'allocation
de ressources pour les communications sans fil.
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Cette these est consacrée au développement de méthodes basées sur I'Al pour I'ordonnancement dans
les réseaux de communication sans fil. L'objectif est d'explorer comment le DRL peut étre utilisé efficace-
ment pour optimiser |'allocation de ressources dans des environnements complexes caractérisés par des
modeles de trafic variés et des conditions de canal dynamiques. Pour atteindre cet objectif, nous com-
mencons par identifier les propriétés essentielles qu'une architecture de DNN pour |'ordonnancement doit
satisfaire. Nous validons d’abord cette architecture dans un environnement simplifié, ou I'ordonnancement
est réalisé slot par slot et ol le domaine fréquentiel se limite a un seul RB. Nous étendons ensuite I'étude
a un cas plus général avec plusieurs RBs qui sont attribués simultanément. Ces approches sont évaluées
dans deux scénarios : 1) avec CSl instantané, correspondant aux systémes 5G ; 2) avec CSl statistique,
correspondant aux réseaux ad hoc.

L'organisation du document de thése est la suivante.

Le chapitre [1| présente le modele de systeme général adopté et passe en revue |'état de I'art des
ordonnanceurs heuristiques et basés sur le DRL. Il introduit une classification des ordonnanceurs DRL en
fonction de leurs entrées (caractéristiques des UEs) et de leurs sorties. Le chapitre identifie également
trois propriétés essentielles qu'une architecture NN efficace doit satisfaire pour I'ordonnancement et
I'allocation de ressources :

e L'architecture doit pouvoir gérer un nombre variable de liens.

e L'architecture doit étre équivariante par permutation.

e L'architecture doit prendre en compte les buffers de tous les UEs conjointement.

Ce chapitre classe les architectures existantes selon ces critéres. Nous identifions que le transformeur
basé uniquement sur I'encodeur (EOT) satisfait ces trois propriétés grace a son mécanisme d'attention
et 'utilisons ensuite comme base de |'architecture proposée.

Le chapitre [2] formule le probleme d’ordonnancement slot par slot pour un seul RB comme un proces-
sus de décision markovien (MDP), en supposant un canal sans erreur et de capacité fixe ol des erreurs
peuvent survenir a cause de violation de délai ou de buffer overflow. Il introduit une solution basée sur
I'EOT, respectant les trois propriétés clés identifiées au chapitre [I Nous avons entrainé I'EOT pour
un nombre spécifique de liens et pour une valeur spécifique du taux d'arrivée du trafic, puis nous avons
comparé ses performances a celles d'heuristiques et d'un ordonnanceur conventionnel basé sur un réseau
de neurones entierement connecté (FC DNN). Nous avons ensuite évalué la capacité de généralisation
de I'ordonnanceur EOT par rapport au taux d'arrivée du trafic et au nombre de liens dans des réseaux
non rencontrés lors de I'entrainement. Les performances ont été évaluées en termes de taux perte de
paquets (PLR), de débit, d'équité et de délai de transmission. Nos résultats ont montré que : 1) I'EOT
surpasse les heuristiques ; 2) I'EOT surpasse également les ordonnanceurs basés sur les FC, bien que ces
derniers aient été entrainés spécifiquement pour un nombre donné de liens, c’est-a-dire un ordonnanceur
FC distinct pour chaque configuration entrainée/testée. De plus, 'EOT maintient des performances
robustes méme lorsqu'il est testé sur des configurations de liens qu'il n'avait jamais rencontrées lors de
I'entrainement, ce qui confirme sa scalabilité, son adaptabilité et sa forte capacité de généralisation.

Le chapitre 3| étend le chapitre [2| en considérant I'ordonnancement sur plusieurs RBs (appelé trame),
sous I'hypothése d'un canal sans erreur a capacité variable dans le temps. Deux approches sont ex-
aminées : 1) une sélection conjointe des UEs pour tous les RBs simultanément, ce qui constitue la prin-
cipale contribution de ce chapitre ; 2) une sélection séquentielle d'un UE par RB, comme au chapitre .
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L'espace d'actions de 1) étant tres grand, nous proposons d'utiliser I'architecture de ramification d'actions
(AB) pour réduire la cardinalité de I'espace d'actions grace a une décomposition. Combinée a I'EOT, cela
conduit a une nouvelle architecture NN appelée EOT-AB. Pour éviter I'allocation de RB a des buffers
vides, nous avons intégré un masquage adaptatif des actions. La solution 1) est évaluée par rapport aux
heuristiques et a la solution 2), mettant en avant I'importance d'une sélection conjointe des UEs. De
plus, nous avons démontré |'efficacité du masquage adaptatif des actions pendant I'inférence, soulignant
son importance pour améliorer les performances pendant les phases d'inférence.

Le chapitre [4] examine le probleme de I'ordonnancement avec sélection des schémas de modulation et
de codage (MCS) sur une trame, ou des erreurs de transmission peuvent se produire en plus des erreurs
liées a la violation de délai et au buffer overflow, dans un canal a évanouissement plat de Rayleigh,
en supposant un CSI statistique. La probabilité de transmission correcte des paquets dépend du MCS
sélectionné. La solution proposée s'appuie sur I'architecture EOT-AB introduite au chapitre [3] Deux
approches sont comparées : 1) une solution conjointe qui réalise simultanément |'ordonnancement et la
sélection du MCS ; 2) une solution ot le DRL est utilisé pour I'ordonnancement tandis qu'une heuris-
tique détermine le MCS. Les résultats expérimentaux ont démontré que la solution conjointe surpasse
systématiquement la solution disjointe en termes de PLR pour différents taux d'arrivée de trafic. Cette
comparaison met en évidence les avantages d'une solution réalisant conjointement |'ordonancement et
la sélection du MCS.

12



General introduction

Problem statement

Modern communication networks face growing challenges due to the increasing diversity of applications,
ranging from ultra-reliable low-latency communications to massive machine type communications in the
context of the Internet of things. These diverse applications generate heterogeneous types of traffic,
which demand efficient resource management strategies capable of adapting to their specific require-
ments, such as scheduling or resource allocation. This thesis primarily focuses on packet scheduling,
with resource allocation considered only at specific points.

The scheduling considered in this thesis involves both the time and frequency domains. It specifies
how radio resources in these dimensions are allocated among devices, called user equipments (UEs), to
meet performance objectives such as throughput, fairness, and latency. It plays a central role in wireless
networks, ensuring that multiple devices can access the medium in a coordinated and efficient manner.
The elementary radio resources to be allocated among [UEk consist of time slots in the time domain and
resource blocks (RBk) in the frequency domain.

We assume in this thesis that the scheduling is handled by a central unit, called radio resource
manager (RRM). In cellular networks, such as represented in Figure[la] the[RRMlis the base station (BS).
In ad hoc networks, such as illustrated in Figure[1b], scheduling requests are centralized at a specific node,
denoted by RRMl In cellular networks, the serves as the central node connecting the different links,
which may allow to access to instantaneous channel state information ([CSI). In contrast, in ad hoc
networks, the is assumed to have access only to statistical [1].

13



UE1 Link 1

(a) Cellular network. (b) Ad hoc network.

Figure 1: Different types of networks. The plain lines represent the links, the dashed lines represent the
CSI feedback and the dotted lines represent the scheduling instruction.

As the number of types of service grows, conventional scheduling techniques, that often rely on
heuristics or metric optimization, become less suitable. These methods lack the flexibility required to
balance multiple and often conflicting objectives, and they are not well adapted to the joint management
of heterogeneous resource types. In contrast, artificial intelligence ([Al)-driven methods can learn to
adaptively manage such trade-offs. This development is consistent with the design principles of emerging
fifth generation (5G) and planned sixth generation (6Gl) systems, where [All is expected to play a critical
role in designing and optimizing [6Gl architectures, protocols, and operations [2].

Among [Al paradigms, deep learning has gained substantial traction due to the advances in deep
neural network (DNNJ) architectures. When combined with reinforcement learning ([RL]), leading to deep
reinforcement learning (DRL]), it has demonstrated remarkable capabilities in decision-making tasks,
originally popularized through successes in Atari games [3] and more recently strengthened by its role in
training large language model (LLM]) [4]. Following this trend across many research domains, the
is then naturally explored for wireless resource allocation.

This thesis is devoted to the development of [Allbased methods for scheduling in wireless communica-
tion networks. The objective is to explore how [DRL] can be effectively employed to optimize scheduling
and resource allocation in complex environments characterized by diverse traffic patterns and dynamic
channel conditions.

To achieve this objective, we begin by identifying the essential properties that a architecture for
scheduling should satisfy. We first validate this architecture in a simplified environment, where scheduling
is performed slot by slot and the frequency domain consists of a single RBl We then extend the study
to a more general case with multiple [RBE, which are allocated simultaneously. These approaches are
evaluated under two scenarios:

e With instantaneous [CSI, corresponding to [5Gl systems.

e With statistical [CS]| corresponding to ad hoc networks case.

14



QOutline and contributions

This thesis is organized as follows.

Chapter [I] presents the general system model adopted throughout this thesis and reviews the state of
the art in heuristic and [DRI}based schedulers. It introduces a classification of DRL] schedulers according
to their inputs (i.e. or link characteristics) and their outputs. Furthermore, the chapter identifies
three essential properties that an effective DNNI architecture should satisfy for scheduling and resource
allocation, and classifies existing architectures with respect to these properties. We identify that the
encoder-only transformer (EQT]) satisfies these three properties and is then used as the core of our
proposed architecture for the next chapters.

Chapter [2] formulates the scheduling problem slot by slot for a single [RB|, as an Markovian decision
process (MDPI), under the assumption of an error-free channel with fixed capacity, where packet losses
may occur due to delay violation (DV]) or buffer overflow (BQI). It introduces an [EQT}based solution
satisfying the three key properties identified in Chapter [I] This solution is evaluated against heuristics
and alternative [DRLI methods lacking these three properties, highlighting their critical role in achieving
effective scheduling.

Chapterextends Chapter by considering the scheduling problem over multiple [RBk (called frame),
under the assumption of an error-free channel with time varying capacity. Two approaches are examined:
1) a joint selection of [UEk for all RBk simultaneously, which constitutes the main contribution of this
chapter, and 2) a sequential selection of one[UEl per[RB] as in Chapter . The number of actions for 1) is
very large, thus, we propose leveraging the action branching (ABI) architecture to reduce the cardinality
of the action space through action decomposition. Used alongside the [EQT] architecture, this leads to a
new [DNN] architecture called EOTHAB| The solution of 1) is evaluated against both heuristic baselines
and the solution of 2), highlighting the importance of performing a joint selection of [UEk for all [RBk
simultaneously.

Chapter investigates the scheduling problem and modulation and coding schemes (MCS]) selection
over a frame, where transmission errors may occur, in addition to packet losses causes by and [BO|,
under a Rayleigh flat fading propagation channel, assuming that statistical [CSIis available. The proposed
solution builds on the EOTHAB] architecture introduced in Chapter[8] Two approaches are compared: 1)
a joint solution that simultaneously performs scheduling and [MCSl selection, and 2) a solution where DRL
is used for scheduling while a heuristic determines the MCSl This comparison highlights the benefits of
joint scheduling and allocation.

Appendix |A| provides the foundations of machine learning (ML) concepts such as [MDP| [DRL] and
[DNN] architectures. Reading this appendix is recommended for readers unfamiliar with these concepts.
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Chapter 1

General context and state of the art on
scheduling

1.1 Introduction

This chapter introduces both conventional heuristics and [DRL}based solutions for scheduling and resource
allocation in wireless communications systems. Packet scheduling is a critical mechanism, determining
how data packets are prioritized and transmitted to ensure efficient resource utilization and/or low latency
and/or high-quality service.

Scheduling and resource allocation are performed centrally by the[RRML In this thesis, we assume that
scheduling prioritizes data flows over the considered dimensions (time and frequency), whereas resource
allocation refers, for instance, to the selection of [MCSl and transmit power.

Historically, scheduling algorithms have been based on heuristics tailored to specific goals (more
details are provided in the rest of the chapter). These heuristics operate with limited information on
flows and buffers, such as the average or instantaneous data rate, the packet delay, or the number of
packets per buffer for instance.

More recently, approaches utilizing DNNI architectures trained with [DRL have emerged to tackle the
scheduling challenge. A key advantage of DNNI architectures is their flexibility in incorporating numerous
features, offering greater flexibility than conventional heuristics. Additionally, DRLI enables defining
customized objective function through the reward.

This chapter is organized as follows. Section|[L.2]introduces a general system model and the notations.
Section reviews the state of the art (SotAl) in the existing heuristic scheduling methods. Section
provides a review, a classification, and a critical analysis of the existing [DRL schedulers. Finally,
Section [I.5] draws concluding remarks.

1.2 General system model

We consider a wireless communication system with ny, [UEk, each supporting nqoes types of traffic. Data
associated with each type of traffic are stored in the form of packets in first in, first out (EIEQ]) buffers
of finite capacity of B packets. The total number of buffers is thus ng = nrnqes. The index of the ¢th
buffer of the (th link is i = ¢nqges + ¢, with ¢ € {0,...,nq,s — 1} and ¢ € {0,...,n;, — 1}. Remark

that ¢ = ncj SJ and ¢ = ¢ mod nqes. In the rest of the thesis, we use equivalently the index i or the

pair (¢;,t;) for the buffer 7, where ¢; represents the link associated with buffer 7 and ¢; indicates its type
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of traffic. We assume that the nq.g traffic flows can be categorized into two types:

e npc delay constraint (DJ) traffic flows, which require data transmission within a specified delay

threshold,

® ngg = NQos — npc traffic flows that have no strict delay constraint. For simplicity, we refer to the

latter as best-effort (BE)) traffic.
Let us note the corresponding indexes of [DC traffic t; € {0,...,npc — 1} and the corresponding indexes
of BE traffic t; € {nDc, oy MQos — 1}

We define the slot as the smallest unit of time. Each packet in each buffer i is characterized by its
waiting time (\WTJ) that is initially set to 0, and which is incremented by one at each slot. This WT]
must respect a constraint D;,, which depends on the quality of service (QoS)) of buffer i. For [DC traffic,
i.e. t; < npc, Dy, < +0o, while for BEl traffic, D;, = +00. Packets from [DC traffic must be sent before
reaching D,,. If a packet's WT|exceeds D;,, a[DVloccurs. In Chapters[2and [4] this results in the packet
being dropped, whereas in Chapter [3] the packet remains stored in the buffer.

Let d,; € {—1,0,...,D;,} be the WT] of the uth packet in the ith buffer with v € {0,..., B — 1}
assuming that the packets are ordered in the buffer according to their WT] in the decreasing order, i.e.
do; > dy; > --- > dp_1,, and by convention —1 represents an empty entry. Let n; be the number of
packets in buffer ¢ for a given slot i.e. the number of entries d,; greater than —1. In the scheduling
literature, the oldest packet is conventionally called the head of line (Holl). As a consequence, dy; is
identified as the [Holl delay of buffer i.

Remark: the value of d,,; and n; depends on the slot index, which is omitted to lighten the notations.
Let us note n°t the number of packet with a [WTl equal to dy; in the buffer i. Figure depicts an
example of a buffer with n; packets.

n; packets B — n; empty entries

< »

do; | dii | dgi | g1 —1 || —1

A
v

B entries

Figure 1.1: Representation of buffer 7.

The transmission bandwidth of the considered system is denoted by W and is divided into Ny [RBs.
A central scheduler called is responsible for allocating these to the various buffers. During
each scheduling interval, N; buffers are selected, where the same buffer can be allocated multiple [RB.
Then, the bits of the oldest packets from the selected buffers are extracted and transmitted over the
channel on their assigned [RBs. The number of extracted bits depends on the channel capacity of the
corresponding [UEk on the [RBk. After the transmission of the bits, the WT] of the remaining packets in
the buffers is incremented by one. Then, new packets arrive in the buffers and their WT] is set to 0.
Packets arriving in a given buffer once it is full are discarded and a occurs, thus leading to packet
loss.

Figure[1.2| represents a global view of the considered system model. The buffers are shown at the top
of the figure along with their status and corresponding [CSIl The is obtained through feedback from
the receiver represented at the center of the figure. These inputs are processed and provided to a scheduler
responsible for assigning buffers to the available RBs. A is selected for each transmission. This
selection can be performed either jointly with buffer scheduling, i.e. using a single module, or separately
by employing two distinct modules, i.e. one for buffer scheduling and another for selection. The
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frame is then built with the different selected buffers and [MCSl To do that, the different [RBk for each
slot are allocated to the different [UEk, represented at the bottom left of the figure. The corresponding
bits of the selected buffers are transmitted over the propagation channel. The receiver attempts to
decode the received bits, which may or may not result in errors depending on the channel and Rx model,
as illustrated on the right side of the figure. Other losses may occur due to and BOl This system
model aligns with the BGl framework described in Section [1.2.2]

UE #0 UE #1 UE#n, —1
0 NQos — 1 0 NQos — 1 0 NQos — 1

Buff@{BI e ces e eee
( h

le—— Set of MCSs

Scheduling and MCS selection

_/ Feedback (CSI, SCSI, cQl,...)

Packet
Elapgivn

Frame construction + PHY

Path loss

RB #1 RB #2 RB #3 RB #N¢ Shadowing

Slot k UE #n; — 1 UE #4
° MCS #1 cee MCS #1 .
Propagation channel Rx —
- - 1csi i< DeCOded paCketS
MCS #2 L MCS #3

: 1§ Y,

Slotk +1

Y
Error-free or error probability

Figure 1.2: Illustration of the general system model.

Additional information and precision of the system model are provided in the dedicated chapters.
These refinements are related to the considered types of traffic, the packet arrival model, and the
channel model.

1.2.1 Additional information and precisions on the general system model in
the different chapters

The proposed scheduling solutions studied in this thesis are discussed across three chapters, Chapter 2]
to Chapter [4, The system models used in these chapters differ, which may complicate the reading, as
there is no continuous transition between them. The reasons for this are as follows:
e Chapter [2| presents the first work in the thesis, where the system model is inspired by [5], with
two-class traffic and a single RBL
e Chapter [3|introduces the second work, where we opted for a system model closer to the 5G| system.
We used the WS environment designed for this context, which required a system model imposed

by the wireless suite (W3]) framework—namely, multiple RBs (N; > 1) and a four-class traffic
model.
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e Chapter[d]presents the final work in the thesis, which focuses on joint scheduling and [MCS allocation
in a frame-based context. Since we needed to implement a Rayleigh channel model to account
for packet errors at the receiver side, adapting the framework to this context would have
required modifications beyond the scope of the thesis. Instead, we used the same traffic model as
in Chapter [2, but with multiple RBI (V; > 1) and a packet-based error model.

Thus, this section is dedicated to explaining the different system models used in these three chapters.

1.2.1.1 Additional information and precisions for Chapter 2|

In Chapter 2| we assume that there is a single RB] i.e. Ny = 1. Thus the scheduling is performed only
in the time dimension and is referred to as slot-based model. Two types of traffic are considered, i.e.
nQos = 2 with one and one BEl The packets of the different traffic are of the same size and arrive
in each buffer ¢ according to a Poisson distribution of parameter )\;. The considered channel is error-free
and allows to transmit a fixed number of packets, different for each [UEl

1.2.1.2 Additional information and precisions for Chapter 3|

In Chapter , we assume that there are several to be allocated, i.e. N; > 1. For a given slot,
the set of [RBk is called a frame. Thus the scheduling is performed in both time and dimensions,
and is referred to as frame-based model. The environment [6] is used for the simulations. As a
consequence, four types of traffic are considered, i.e. nq.s = 4: three guaranteed bit rate (GBR]) and
one non{GBRl The packets of the different traffic are of different size and the packet arrival depends on
the type of traffic. The considered channel is error-free and the number of bits that can be transmitted
for each [RB| depends on the channel quality indicator (CQI]) of the allocated [UEl

1.2.1.3 Additional information and precisions for Chapter [4]

In this chapter, we assume a frame-based model, along with the traffic model of Chapter , l.e. NQos = 2
with one and one BEl We assume a Rayleigh channel varying from [RBl to [RB] with a fixed average
signal-to-noise ratio (SNR]) per [UE| that is known from the [RRML In this chapter, the scheduler also
performs selection, and packets are subject to errors depending on the channel realizations.

1.2.1.4 Synthesis of the additional information and precisions

Tables[1.T} [1.2] and [1.3]summarize the principal changes of the system model across the different chapters
for the buffer model, the channel model and the bit management model respectively.

Table 1.1: Comparison of the buffer models across the different chapters.

H NQos ‘ ng Packet arrival
Chapter 2 || 2 2ny, A (Poisson)
Chapter [3 4 | 4k with k € N | Depends on the type of traffic
Chapter 4 2 2np, A (Poisson)
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Table 1.2: Comparison of the channel models across the different chapters.

H Channel model ‘ Errors ‘ Variability
Chapter |2| || Capacity limited No Fixed
Chapter 3] || Capacity limited | No | Random (shadowing)
Chapter 4 Rayleigh Yes | Random (fixed stat.)

Table 1.3: Comparison of the bit management models across the different chapters.

MCS selection Extracted bits
Chapter |2 No Fixed
Chapter 3] || No (determined by the CQI) | Variable (function of the CQI)
Chapter 4 Yes Variable (function of MCS)

1.2.2 Mapping with the 5G model

In practical communication systems such as bG| data belongs to different applications. The data, in the
form of packets of bits, originate from the IP layer and are transmitted to layer 2 of the open systems
interconnection ([OSI) model.

Figure depicts the four sub-layers composing layer 2 in BGl A complete description of these
layers is provided in [7, Chapter 6] and in [8] 9, 10 [11] for service data adaptation protocol (SDAPI),
packet data convergence protocol (PDCPI), radio link control (RLC) and medium access control (MAC)
sub-layers respectively.
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Figure 1.3: Downlink Layer 2 structure (from [12] Section 6.1]).

The different sub-layers work as follows:

The sub-layer [8] maps the different flows to appropriate data radio bearer (DRB),
ensuring that each flow is handled according to its requirements, as identified by its QoS flow
identifier (QFI). Figure provides an illustrative example using real application traffic such as
WhatsApp, Skype, YouTube, and Netflix. It shows how IP flows are classified through traffic flow
template ((TET]), associated with specific [QFls, and mapped to corresponding [DRBs. The user
plane function (UPE]) is a gateway between the radio access network (RAN]) and external networks
such as the internet [7]. The [SDAPI layer was introduced in the BG In this thesis, we considered
that the [QoS| flows are already mapped into radio bearers and by abuse of language we sometimes
refer to the radio bearers as flows or types of traffic.

e The [PDCP sub-layer [9] which performs robust header compression (ROHC]) and ciphering.
e The[RLsub-layer [10] which performs internet protocol ([P]) packets fragmentation and automatic

repeat request [ARQ)). In this thesis, we assume that the packets are already fragmented and we
aim to transmit correctly the fragment that we call by abuse of language " packets”.

The[MAC sub-layer [11] which performs scheduling and resource allocation of the different fragment
and manages hybrid automatic repeat request (HARQ)). The multiplexing operation of the
layer in Figure corresponds to taking the data from several logical channels (control or user
data) that have been granted resources by the scheduler, and assembling them into one transport
block. A transport block is the basic data unit exchanged between the PHYsical (PHY]) and the
layers, according to the definition given in [13]. The power level and are selected at
the layer and are then applied at the [PHYI layer (layer 1 of the model).
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Figure 1.4: QoS flows to radio bearers mapping (from https://devopedia.org/

5g-quality-of-service).

1.3 State of the art of heuristics for scheduling

This section reviews existing work on heuristic methods, which will serve as baseline comparisons for
packet scheduling. Several surveys have already been conducted on scheduling algorithms in both long
term evolution (LTE]) and [5Gl networks. For instance, [14] focuses on heuristics only for [[TE| while [15]
provides a review for both heuristic and schedulers for BG More recently, [16] has introduced a
[[LMlbased approach that generates scheduling heuristics from natural language intents and offers an
overview of various existing algorithms.

The survey in [14] categorizes scheduling algorithms along the following classification:

e Channel-unaware ([CU) or channel-aware ((CA)),

e QoS-unaware (QU]) or QoS-aware (QA),
leading to four groups:

1. [CUHQU]

2. [CARQU

3. [CUHQA

4. CARQA.
In contrast, [15] classifies scheduling algorithms based on both their parameters and their performance
objectives. The classification proposed in [15] provides a fine level of granularity, but tends to be overly
specific, often resulting in characterizing each algorithm individually. By contrast, the classification
from [14] offers a more coherent grouping, allowing for meaningful comparisons while still capturing the
essential characteristics of each algorithm. This is why we adopt the classification from [14] in this
chapter.

The general buffer selection rule of heuristic based schedulers can be written as [14, Eq. (1)]:

iy = arg max Pheur (Xi ), (1.1)
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where x; ;. are the features of buffer i of the scheduling index & (i.e. combining slot and [RBl) and %yeur
is the function computing the metric of heuristic heur.

Table presents a subset of popular heuristics schedulers. Other heuristics can be found in [14],
[15] or [16] for instance.

Table 1.4: Subset of popular heuristics schedulers.

Heuristic Date References Channel-aware | QoS-aware
Round-Robin | 1964 [17] No No
EDF 1969 [18] No Yes

1999 (presentation in Bell

PF labs —(sie [19, ref. 3]) [20] Yes No
LWDF 2001 (submitted in 1999) | [21] No Yes
EXP-rule | 2000 [22] [23] Yes Yes
MLWDF 2004 (submitted in 2000) | [24] Yes Yes
EXP/PF | 2003 [25] Yes Yes
GPF 2005 [26] Yes No
LOG-rule | 2009 [27] [28] Yes Yes

[29], [30] (and

adapted in [6]) Yes Yes

Knapsack | 2013

A criterion to evaluate the performance of a scheduling algorithm (or policy) is the analysis of its
stability region, which characterizes the set of arrival rates for which the scheduling policy keeps all buffers
stable. The definitions of stability region and stable buffer assume that the buffers have infinite capacity,
which does not hold in our case. In the case of an infinite-capacity buffer, the number of packets n; ;1
at step k 4 1 depends on the number of packets the channel allows to transmit, denoted c; ;, at step k,
the number of arriving packets n;, (a random variable), and the number of packets already in the buffer
n;j at step k:

N1 = Max(n g — Cip, 0) +ny ). (1.2)
Note that in case of finite buffers with length B, becomes:
Ni k1 = Min (max(ni,k — Cik, 0) + 1y B) ) (1.3)

Remark: We explicitly write the index & for the number of packets n;, for the sake of clarity, unlike in
Section where it was omitted to lighten the notation.

Let us note \; and ¢; the arrival rate, i.e. the number of packets arriving in average at each slot,
and the "service” rate, i.e. the average number of packets that it is possible to extract at each slot, for
buffer .. Mathematically:

K
1
Ai = lim ——— "E[n],] (1.4)

K—oo K +1 o

and
G = KWK+ ZE Ci] (1.5)

Let us define the notions of stability. The definition of a strong/y stable buffer is given in [31], Definition
3.1], and signifies that the number of packets in the buffer does not grow indefinitely.
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Definition 1 ([31, Definition 3.1]). A buffer i is called strongly stable if:

K
1
lim su E n; | < oo.
According to [31, Lemma 3.6]:
Ai <6 (1.6)

is a necessary condition for strong stability, and:

is a sufficient condition for strong stability.
Now, let us define the stability of a network.

Definition 2 ([31, Definition 3.2]). A network is strongly stable if all individual buffer of the network
are strongly stable.

With ng buffer the condition for the network stability, for a single server (i.e. in our case one [RBJ),
is [32], Section 3.4.2] [33]:
ng—1 A
Z o<t (1.8)
=0
For Ny servers (i.e. N;[RBS), in a time-slotted system, the condition ensuring network stability can be
expressed as [34]:

> §— < Ny. (1.9)

In contrast, for non time-slotted systems, where packets remain in service until completion, if there are
multiple servers and different service rates for the different buffers, the analysis becomes quite intractable
[32, Section 3.4.2.3].

Now let us define the stability region.

Definition 3 ([35, Adaptation of Definition 3.2]). The stability region A, of policy 7 is the set of
multiclass arrival rate A = [\, ..., Ay, 1] for which the system (i.e. a queuing network) is stable under
policy 7.

Now, let us define a throughput-optimal policy:

Definition 4 (Adaptation of [24]). A throughput-optimal policy is a policy maximizing the stability
region.

Definition [4] implies that, under a throughput-optimal policy, the number of packets in the buffer
does not grow indefinitely.

Among the different policies from Table[I.4] the modified largest weighted delay first (MLOWDF]), the
exponential rule (EXP-rulel) and the logarithmic rule (LOG-rulel) are throughput-optimal [24]. However,
policies such as round-robin (RRI) or proportional fair (PE]) are not throughput-optimal.

The rest of this section is organized as follows. Section presents the RRl  Section
presents the earliest deadline first (EDE]). Section presents the [PE| and the generalized PF (GPEI).
Section presents the largest weighted delay first (WDE]) and the MLWDEL Section presents
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the LOG-rulel Section presents the [EXP-rulel and the EXP/PF. Section presents the knapsack
(KE)

Remark: In the following, the value of d;; depends on the index &, which was omitted in Section
for simplicity of notation but is made explicit here for clarity. Accordingly, we denote dg;  the [Holl of
buffer 7 at index k.

1.3.1 Round-robin

The RRlis a [CUHQU] scheduling algorithm aiming to assign equal time or resource shares to buffers in a
cyclic order. The expression of the metric of RRlis:

hrr (Xix) == Tig, (1.10)

where T; ;. corresponds to the number of RBb that have elapsed since buffer i was served. It is set to 0
when it is scheduled, yielding:

Tip_1+1 ifbufferii hedul I
T _{ ik—1 T if buffer ¢ is not scheduled at slot & (1.11)

o if buffer 7 is scheduled.

1.3.2 Earliest deadline first

The [EDF is a [CUIQA] scheduling algorithm aiming to schedule buffers with the shortest deadline. The
expression of the metric of [EDH is:

1
Dti - dO,i,k .
Note that for [BEl traffic introduced in Section , D;, = +00. As a result, hgpr(x; %) = 0 for all the BE

buffers, meaning that they will never be scheduled. Therefore, the [EDEl metric is not suitable to handle
both and [BE| traffic flows.

(1.12)

hepr (sz) =

1.3.3 Proportional fair

[PE [20] is a[CAHQU]scheduling algorithm selecting [UElwith favorable channel conditions while maintaining
fairness between [UEl/buffers by considering the proportional gain relative to past average achieved rate.
The expression of the metric of [PH is:

Ci
hpp(Xig) = —* (1.13)

)
Cik—1

where ¢; . is the average achieved rate for buffer ¢ during the previous slots. In this thesis, we consider
the empirical average rate:

k
1 .
Ei,k = E Z Ci,k/ék’<l)7 (114)
k=1
with,

(1.15)

X0 1 if 7 is selected for the combination RB/slot &
1) = )
g 0 otherwise
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Note that in the literature, ¢;;—1 in (1.13) is conventionally replaced by the average rate estimation
Cik—1, which uses a sliding window and can be written as:

Cie = (1 — 7pF)Cik—1 + Ok (1) TPRCi k- (1.16)

Equation ({1.16)) requires tuning an hyperparameter 7pp €]0, 1], which is not necessary in the estimator
(T.14).
In [26], a general version of the [PE algorithm is introduced. This version called [GPF is given by:

hepr(Xix) = E;Zga

, (1.17)

»

where @ > 0 and 3 > 0 are parameters tuning the trade-off between fairness and throughput. With
a = [ = 1, conventional [PH is achieved. With o > 0 and 8 = 0, only the achievable throughput
is taken into account, yielding max throughput (MTI) (also called "max rate” or "max SNRI" or "best
[CQI') scheduling algorithm. With @ = 0 and 8 > 0, only the past average throughput is taken into
account, yielding blind equal throughput (BET]) scheduling algorithm [14].

1.3.4 MLWDF
Let us first introduce the [WDFI [21] scheduling algorithm, which is a [CUHQA] scheduling algorithm whose

expression is:
hLWDF(Xi,k:) = Nido ik (1-18)

where 7; is a weight which depends on the type of traffic of buffer i.

The [24, 36], which is derived from [[WDF| takes into account user specific time-varying
channel for wireless communications. Therefore, is a[CAHQA]|scheduling algorithm that prioritizes
users based on a weighted metric combining channel quality and the [Holl The expression of the metric
of is:

Pavtwor (Xi k) == @ eiCi ko i, (1.19)

—log (1072)
Dr,

where «a;;, and 7, are hand-tuned parameters. Common choices are o;; = z ;1 and 7; =
[14]. ’

Note that for BE traffic introduced in Section , D;, = +o00 and thus n; = 0. As a result,
hmuwoe (X;.%) = 0 for all BEl buffers, meaning they will never be scheduled. To alleviate this undesirable
behavior, we follow the recommendation from [14] suggesting that is used for traffic and
[PE is used for BE traffic. Since the [P is not throughput-optimal (Definition [4)), BE| buffers may become
unstable, potentially leading to significant BOL

1.3.5 LOG-rule

[27, 28] is also a scheduling algorithm that prioritized user based on the combination
of channel quality metric and a logarithm function of the [Holl packet delay. The expression of the metric
of LOG-rulel is:

hLoG—rule(Xik) = @irCixlog (Bi + nidoik) » (1.20)

where o, 1, 5; and n; are hand-tuned parameters. Common choices are o, = %Z Y B; = 1.1 and

i = ggop, Such as recommended in [37] and in [14].
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Note that for BEl traffic, 7; = 0 because D;, = 4+o00. As a result, for [BE| buffers the LOG-rule
metric is equal to —=*-log(1.1), which is the [PE] metric muItipIied by a factor close to 0, meaning that

they would rarely be scheduled As for MLWDF| the [LOG-rulel expression is used for [D{ traffic and [PE
expression is used to handle BE| traffic.

1.3.6 EXP-rule

[EXP-rule [23] is also a [CAHQA| scheduling algorithm that prioritizes users based on the combination of
channel quality metric and an exponential function of the Holl packet delay. The expression of the metric

of [EXP-ruld is:

nido i k
hEXP—rule(Xik) = Qi kCik €XD (—_) 1.21

where «; and 7; are hand-tuned parameters. Common choices are «;; =

5 10
i € | 599Dy, > 5.99Dy,
and X = ; Lo ! :‘DO Nie.tydo,ep) in [37], corresponding to the average weighted HollWT] of
bufFers Thanks to the exponentlal the buffers with urgent delay are more prioritized than with the
MIWDF] or LOG-rulel The denominator in the exponential tends to smooth the delay, in order not to
give it too much importance compared to the channel condition. Another expression of the metric of

[EXP-rulel is given in [23]:

Ckl

hEXPfrule(Xi,k) = O kG | €XD ( —
L+ v/Xk

where the parameters «;x, 1; and Y, are the same as for (L.21)). It is worth noting that if there are
only traffic, X, at the numerator can be dropped without changing the rule as it is common for all
buffers.

Another version of the [EXP-rule| called in the literature EXP/PF, handle the traffic with (1.22)
and the BE traffic with (1.13)). In this case, the X, at the numerator tends to de-prioritize traffic to
serve more often [BE traffic.

1.3.7 Knapsack

The [KPI from [29] and [30] is defined as the weighted sum of hyperbolic tangent. The expression of the
metric of [KP is:

hip (X4 ) Z o tanh (v;(x; 1)), (1.23)

Jj=1

with a; > 0 for j € {1,2,3,4} and

do,i
i (Xi) = 10)”’“ (1.24)
t;
ik
UQ(XZ'Jf) . g‘harget (125)
10 — p,
vy(Xi) = — & (1.26)
n;
V(X k) = éka (1.27)



where &, is the achieved packet loss rate (PLR) for buffer i at step k, & is the acceptable
defined by in the [QoS| tables [38] and p; € {1,...,9} is the bearer priority of buffer ¢ with 1 being the
highest priority. If we consider that &, in includes the loss due to channel, this version of [KPl is
a scheduling algorithm. Otherwise, this version of [KPl is a [CUHQA| scheduling algorithm.

1.4 State of the art of DRL solutions for scheduling

To the best of our knowledge, new approaches based on architectures trained using [DRLI have been
introduced to tackle the scheduling problem since 2017 with [39]. One advantage of DNNI architectures
is their ability to accommodate as many features as desired. This makes it straightforward to increase
the number of features at the input of the DNN| compared to heuristics. Moreover, since [DRL operates
in a model-free context, it allows for the design of customized objectives through the reward function.

1.4.1 Classification of the DRL schedulers

One can find several surveys on scheduling with in the literature. For example, [15] focuses
primarily on performance objectives, without addressing the design of state and action spaces. Similarly,
[40] provides a more comprehensive review, but is limited to a specific family of [RB] allocation strategies,
namely the fine-grained approach as defined in [41].

In this thesis, we propose a new classification of the DRL approaches according to their action spaces,
state spaces and rewards. The action space characterizes how the are allocated. The state space
includes the features used for decision-making and can be compared to the channel and awareness
of the heuristics, as it will be discussed later in this section. The reward is defined according to the
performance goal.

1.4.1.1 Classification based on the action space

The outputs of the[DNN| determine the possible actions, and as a consequence determine how the[RBE are
allocated. The action may, for example, correspond to the index of the buffer to be scheduled, the index
of a specific buffer [RBl combination, or the proportion of [RBE allocated to each [UEl as determined by a
softmax. Consequently, the classification of [RBl allocation approaches is essentially a characterization of
the action space used by the different [DRL}-based schedulers.

In the taxonomy of [41], two families are distinguished: the fine-grained approach, where resource
allocation is performed directly by the [DNNI architecture, and the coarse-grained approach, where the
[DNNI architecture selects an heuristic that carries out the allocation.

One of the contributions of this thesis is to extend the classification from [41] by introducing additional
sub-classes, thereby refining the taxonomy while maintaining its overall coherence. Figure represent
the proposed new categories:

e We add the sub-category tune heuristic in the coarse-grained category, to include heuristic param-

eters tuning.

e We add two sub-categories in the fine-grained:

— The sequential RB scheduling (SRS]) approach, where the agent performs allocation per
[RBl To fill the whole frequency band, composed by N, [RBs, the agent has to perform N
inference steps.

— The global RB scheduling (GRS)) approach, where the agent allocates directly the set of [RBE
to the different buffers, in one inference step. We identified two possibilities:
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* The architecture provides a proportion of [RBk to be allocated per [UEk, which is referred

to as GRS-proportion (GRS-P)).
* The architecture selects the [UEl to be scheduled for each [RBl which is referred to as

GRS-index (GRS-]).
It should be noted that the acronyms [SRS] [GRS-I, and [GRS-Pl along with the corresponding classifi-
cations are newly proposed and were first introduced in our prior work [42].

Scheduling
with DRL

Coarse

grained Fine grained

Select
heuristics

Figure 1.5: Classification of the different DRL methods for scheduling. White ovals are from [41], and
blue ones represent our proposed new classification categories.

Let us classifies the different [DRL] schedulers based on their action space, state space, reward and
studied performances.

Table presents the action space of different [DRL] schedulers from the literature into three main
categories: coarse-grained, fine-grained, and other approaches.

Table 1.5: Classification based on the action space.

Coarse-grained approach Fined grained approach Other
Selection of | Heuristic pa- || SRS GRS-P GRS-I
heuristic rameter tun-
ing

[39] [43] [44] | [45] [46] [55] [56] [57] | [61] [62] [63] || [67] [68]

[47]  [48][49]
[50] [41] [51] | [58] [59] [60] | [64] [65] [66]

In coarse-grained methods, at each time step, the agent either selects a scheduling heuristic from a
predefined set [39] 43, 44] or tunes the parameters of a chosen heuristic [45, 46]. In particular, [46] tunes
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parameters for each buffer, while [45] tunes the a, § and 7pp parameters of the scheduler given
by (1.17)). This design reduces the size of the action space, simplifying learning, but may limit flexibility
and optimality.

Fine-grained approaches allow more direct control over the decisions:

e SRS which needs a forward pass for each [RBl allocation [48, [47, [49, 50, [41, 51, 52, (3].

o outputs proportion of [RB] for each [55, 56, 57, 58, 59, 60]. However, an additional

operation is needed to provide an integer number of [RBl for each [UEL

. selects for each with a single forward pass [61, 162, 63, 64, B4, [65]. Multiple

approaches are possible: [61], [64] output values for each combination [UE//RBI and select the one
maximizing this value. [62] has Ny outputs and rescales it in [1,72z], and uses the ceiling operator
to select a per RBl [63] uses pointer networks to select for the different RBl Multiple
works leverage the architecture, such as [54, [65, [66], to handle the large number of action. In
particular, [54] leverages[ABl architecture in a non-orthogonal multiple access (NOMAI) framework,
where all the [UEs share a band and can be simultaneously scheduled within it. [65] integrates
graph neural network (GNNJ) and [ABl to allocate combinations of [UEk for each sub-band, where a
sub-band is a node of the [GNNL[66] proposes a [DRL method combining the architecture with
stable matching to jointly select the and for different [RBk.

In the other category, [67] aims to deliver packets to dedicated applications. The action is thus the
selected application (it does not consider [PHY] layer and by extension RB]). [68] does not provide clear
information about its action space.

Overall, the literature reveals a trade-off between granularity and complexity: coarse-grained ap-
proach, which may be more predictable since it relies on well-known heuristics but may be suboptimal,
whereas fine-grained designs offer higher adaptability at the expense of larger action spaces and longer
training times.

1.4.1.2 Classification based on the state space

The state space defines the input of the DNN] specifying the features used for optimization. Similar
to heuristic methods, it also determines whether the [DNNI is or and or [QAl Table
summarizes the used features in the state space in recent DRIl based scheduling approaches for wireless
networks, categorizing them into six main features:
° relative features
— [Holl delay.
— Number of packets (NP]) per buffer.
— All packet delays (APD)).
. relative features
— [CQI| (or or instantaneous rate or throughput).
— Average Rate.
e Other features
— Features that do not fall into the previously defined sub-categories. They may belong to [CA]
QA or neither, but still differ from the other sub-categories.
It should be noted that the acronyms [NPl and are newly proposed and were first introduced in
our prior work [69].
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Table 1.6: Classification based on the state space.

QA features CA features Other
HolL | NP | APD cQl | Average rate || Other
[55] [49] [61] | [43] [55] [67] [49] | [51] [54] || [39] [43] [47] [55] | [47] [55] [49] || [39] [43] [50]

[57] [44] [58]
[64] [68] [46]
[59] [60]

[50] [61] [62] [63]
[51] [45] [58] [64]
[68] [59] [53] [65]

[49] [50] [48] [61]
[56] [62] [41] [57]
[63] [44] [51] [45]
[58] [52] [64] [68]

[50] [48] [45]
[46] [53]

[48] [61] [56]
[41] [44] [52]
[68] [59] [54]
[66] [60]

[46] [59] [54] [53]
[65] [66] [60]

The Holl delay is one of the most frequently used state features, appearing in numerous works such
as [55] 49| [61), 57, [44] 58| [64) [68] 146, 59| [60]. Its prevalence reflects the importance of tracking the
waiting time of the oldest packet in the buffer, which is directly related to meeting delay constraints.

Similarly, the [NP] in the buffer is widely used [43| 55| 67, 149, 50, 61}, [62] 63, 51, [45], 58, 64, 68|, (59,
53, [65] as a measure of buffer occupancy and congestion level.

The [51, 54] appears less frequently. Even if it is possible to use all this information thanks to
[DNN| the Holl is preferred maybe due to its simplicity.

The [CQI] is the most represented [PHY] layer related metric, used extensively |39, 43| 47, [55| 49 50,
48, [61), 56, 62, [41], 57, 63, [44], 51), 145, 58|, 52, 64, 68|, 46, (9| 54, 53, [65], 66), [60], confirming its role as
a key indicator for scheduling and resource allocation.

The average rate is less frequent but still present in several works [47, 55| [49] (50, 48, 45| 146, 53],
typically serving as a throughput-oriented performance measure.

Finally, the Other category encompasses additional variables such as fairness metrics, number of
arriving packets, user priorities, or[QoS|class identifiers [39] 43, 50, 148, 61}, 56|, 41, 44, 52|, 68, 59, 54, 66].

Overall, the table shows a strong emphasis on simple buffer-related features (HoLl, INPI) combined with
link quality indicators (such as the [CQI). This reflects a consensus in the literature that effective [DRLI
schedulers must jointly capture both buffer dynamics and channel conditions to optimize performance.

1.4.1.3 Classification based on the reward

The reward specifies the objectives optimized by the [DR[}based scheduler. These objectives may in-
clude minimizing packet loss and delay, maximizing throughput and fairness, or a combination of these
objectives.

Table presents the reward optimized by different schedulers from the literature.

Table 1.7: Classification based on the reward.

Packet loss

‘ Throughput

\ Fairness

| Delay

‘ Other

[39] [43] [67]
[49] [64] [53]
[54]

[39] [47] [55]
[49] [50] [48]
[41] [45] [58]
[52] [64] [68]
[59] [53] [69]
[66]

[47] [55] [49]
[48] [41] [52]
[53] [65]
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[39] [43] [55]
[61] [57] [44]
[51] [45] [58]
[46] [59]

[56] [62] [63]
[51] [58] [64]
[68] [59] [60]




Many studies target packet loss minimization [39, 43, 67, 49, 64, 53, 54]. Throughput maximization
is another widely used reward criterion [39] 47, 55| /49| 50, [48|, '41), 45|, 58| 52, 64} [68, 59, 53| (65, 66],
reflecting the goal of efficient resource utilization.

To ensure equitable resource distribution, several approaches incorporate fairness metrics in their
rewards [47, 55, [49] [48], [41) 52, 53| 65]. Furthermore, delay-sensitive rewards are integrated in delay-
critical applications to meet stringent latency requirements [39, [43] 55| 61], 57, [44] 51|, 45, 58, /46|, 59].

Some works extend reward formulation to capture different objectives, the number of remaining
packets in the buffers [62].

Considering multiple objectives (i.e., multiple criteria in the reward function) is common in scheduling
problems. However, optimizing these objectives requires selecting appropriate weights for each criterion,
which requires careful weight tuning. To the best of our knowledge, [53] is the only work proposing a
multi-objective solution that can adaptively handle different weightings for the various objectives.

1.4.1.4 Classification based on the performance metrics during the inference phase

[DRI}schedulers are trained to maximize their expected discounted return (EDR]) (Section [A.2.5)). How-
ever, this does not necessarily guarantee good performance during inference: 1) with respect to the
objectives of the reward function, 2) with respect to other relevant telecommunication metrics. It is
therefore essential to evaluate performance against these metrics during the inference phase.

Table [1.8| provides the evaluated performance metric of different [DRL schedulers from the literature.

Table 1.8: Classification based on the performance during the inference phase.

Training reward

\ Packet loss

| Throughput | Fairness

| Delay

‘ Other

[43] [49] [41] [57]
[44] [51] [45] [58]
[52] [64] [68] [46]
[65]

[43] [59] [67]
[49] [57] [44]
[45] [58] [64]
[53]

[47] [55] [49]
[50] [48] [61]
[62] [41] [63]
[45] [58] [52]

[47] [55] [49]
[48] [56] [62]
[41] [63] [52]
[53]

[43] [59] [61]
[62] [57] [44]
[64] [68] [46]
[59]

[39] [61] [56]
[44] [64] [68]
[59] [54] [66]
[60]

[64] [46] [59]
[53] [66] [60]

Most works evaluate their methods using the throughput, reflecting spectral efficiency in wireless
networks. Then, the reward is the second most studied performance, reflecting the training of the DNN|
and if the reward aligns with other performance goals. The packet loss, the fairness and the delay are
also well-studied. The packet loss reflects the reliability of the trained scheduler. The fairness reflects
how the resource allocation is balanced among users, which is critical in multi-user scenarios.

A subset of works include other performance indicators, such as energy efficiency or buffer stability,
to capture broader system objectives.

Overall, this table highlights the diverse evaluation criteria adopted by existing [DRL] schedulers,
demonstrating that[SotAlsolutions strive to optimize multiple, sometimes conflicting, performance aspects
to meet complex network demands.

1.4.2 Analysis of the scheduler properties

Based on our experience in scheduling, we argue that a good [DNN] architecture for a scheduler should
satisfy the following properties:

33



e It should be able to operate with a variable number of links. Since the number of [UEs (or links) may
vary over time, the DNNI architecture must be sufficiently flexible to accommodate such changes.
We denote this property as number of links independent (INLI).

e It should be permutation equivariant ([PE]) with regards to the inputs since this property provides
superior performance for both learning and inference phases [70].

e It should jointly consider the buffer information of all (or links) when performing scheduling, in
order to provide a global and thus potentially optimal solution. Indeed, it is reasonable to assume
that maximizing the by taking into account all the buffers yields better performance than
relying on only a subset of the buffers. We denote this property as global buffer management
(GBM).

Remark: The [NLI property enables the architecture to handle a varying number of links, but it does not
necessarily guarantee good performance. The performance depends on the training process (algorithm,
hyperparameters, dataset...) and the architecture’s ability to generalize, which shall be evaluated by
simulations.

One important feature to classify the solutions proposed in the literature is the way the state vectors
are fed at the input of the architecture. Let f, denote the ng X 1 column state vector of link /¢
where ng is the number of the state components. We can identify two approaches:

1. The state vectors are defined as single column nyng x 1 vectors [ff,f], ... £ |7 where T
denotes the transposition operator and ny, is the number of links. We refer to this case as vector
state input ((\VSI)).

2. The state vectors are fed in series (one after the other) corresponding to gathering the vectors into
the ng x ny matrix [f,fa, ..., f,, _1]. We refer to this case as matrix state input (MSI]).

It should be noted that the acronyms [NLI, [GBM] [VSI, and along with the corresponding classi-
fications are newly proposed and were first introduced in our prior work [69].

Table classifies the [DRL] schedulers from the literature according to their properties (NLI, [PE|

and [GBM)) and the form of their input state (\VSI or [MSI).

Table 1.9: Properties of the DNN used in the SotA.
NLI PE | GBM NLI+PE NLI+-GBM | PE+GBM | NLI+-PE+GBM

[39] [47] [51]
[67] [49] [61]
[56] [62] [41]
VSI | [50] [68] [57] [44] [51] [43] None None None
[58] [52] [64]
[46] [54] [53]
[65] [66]

MSI | None | None | None [55] [59] [45] | [48] [63] [45] None [60]

The majority of the different works uses a and are[GBMl These works are by construction neither
INLI nor [PEL Even if [5I] mimics the [PE| property by performing permutation of the buffers at the input
of the DNN| it is not strictly speaking a [PE| architecture.

To get the [NLI property while using a fully connected (EC]) DNN] [50] proposes to first select a fixed
number of links using a [Pl heuristic and then to build a [VSI with the selected links as input to the
network. Since a[EClis used, the architecture is not [PE| and since only a subset of the links are used to
perform the scheduling it is not [GBMI
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[68] seems to be [NLI according to their simulation. However, the authors do not provide clear
information about their state space and [DNN] architecture to determine if it is also [PE| and/or and
if the state input is really a vector or a matrix (by default, we consider that it is a vector).

[45] is not clear on how the characteristics of the [UEk are used by the DNNl Depending on how it is
proceeded, it is either [NLI and [PE| or [NLI and [GBMI

References [63] /48] use pointer networks [71] that involves internal memory (or hidden states).
These solutions are [NLI, by construction, and [GBM] thanks to the hidden state, but are not [PE|since the
scheduling decision depends on the input order of the state vectors [72].

[43] and [59] mimic the property by using statistics of the network, such as the average [Holl
and its standard deviation for instance, for the state space vector for [39] or in the state vector of each
in addition of their individual features at the input of the DNNl However, it is not strictly speaking
[GBM| [43] is [NLI even if it uses [VSl since it selects an heuristics to perform the scheduling.

We propose in this Thesis to resort to the [EQTI architecture, which is described in Sec-
tion since it satisfies the three previously-listed properties, thanks to its attention
mechanism.

Similar to the approach we develop in the following chapters, the method proposed in [60] satisfies
the INLI| [PE] and properties. However, their system model differs from ours. Specifically, they
assume that each has only a single packet to transmit, whereas our model accounts for multiple
types of traffic per [UE| with packets arrivals, as described in Section [I.2l The key component enabling
their architecture to satisfy the [NLI, [PE| and [GBM] properties is the use of Deep Sets [70]. It is worth
noting that the term -117"in [60, Equatlon 10] functions as a uniform attention mechanism, analogous
to that described in Section [A.4.2) with (A.86)), as it assigns equal importance to all [UEs when pooling
their features. Furthermore, the term :vF in [60 Equation 10] can be interpreted as a learned projection,
analogous to the ‘value’ component in the attention mechanism.

Transformers (Section extend this pooling by replacing the uniform weighting with a learned
attention mechanism that dynamically adjusts the importance of each [UE| based on its current state. For
example, a with a large number of packets nearing their deadlines may be assigned more attention
than one with a single packet and a relaxed delay constraint.

1.5 Conclusion

In this chapter, we presented the general system model underlying our study, detailing both the buffer
and channel configurations used across Chapter [2] to Chapter [, We introduced a range of heuristic
approaches as well as an overview of existing [DRL}based methods for scheduling and resource allocation.
Additionally, we demonstrated how the proposed system model aligns with the bGl framework, establishing
its relevance for current and future wireless communication standards.

We categorized the various [DRL}-based methods based on their level of scheduling granularity. In
coarse-grained approaches, the [DRLI agent either selects a scheduling heuristic or tunes its parameters.
In contrast, fine-grained approaches involve the agent directly selecting the buffers to be scheduled.
We proposed to classify these fine-grained methods into three categories:

e SRS a separate forward pass is executed for each [RB] selecting one buffer at a time.

e [GRS-PI a single forward pass outputs a proportion of the bandwidth allocated to each buffer.

e [GRS-I a single forward pass determines which buffer is assigned to each individually.

We recommended that an effective DNN] architecture for scheduling must satisfy three key properties:

e [NLL the ability to handle a variable number of buffers without requiring retraining.
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e PEL the output should preserve the order of inputs, meaning that permuting the input buffers
results in the same permutation in the output.
e [GBML the architecture must take into account all buffers in the network when making scheduling
decisions.
From the analysis, we observed there is no reference using VSl and having the three properties
[GBM], [NLI and [PE| with the fine-grained approach. Except [60] which uses Deep sets, solutions based
on are [NLI by construction but cannot achieve both [PEl and at the same time. The solutions
proposed in this thesis (Chapter 2 Chapter [3) and Chapter [4) are based on the [EQT] architecture,
which differentiates itself from the by simultaneously satisfying the three required properties and
enhancing the pooling operation of Deep Sets through its attention mechanism. We also identified the
[ABl architecture as a suitable approach to handle large action spaces and adopted it in Chapter [3] and

Chapter [4]
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Chapter 2

Slot-based scheduling

2.1 Introduction

This chapter addresses the problem of slot-based scheduling, which corresponds to a slot-by-slot allocation
considering a single RB (V; = 1).

In this chapter, a scheduling relying on an [EQT] architecture trained using a deep Q-Learning
algorithm is proposed. We have selected an [EQT] architecture that possesses the three properties men-
tioned in Section [1.4.2} [PE| [NLI, and [GBMI In [DRL] the take as input vectors belonging to the
state space, which plays a key role in system performance and is defined by the solution designer. Most
of the schedulers proposed in the literature (both heuristics and [DNNE) primarily use the [Holl or NPl in
the buffers, or both. In this Chapter we investigate two new state space models for the traffic:

e An extended version of the [Hol| denoted extended Hol (xHoll), as the [Holl value augmented by
its multiplicity, i.e., the number of packets sharing the same [Holl value. The number of entries in
the state vector increase by one for each buffer compared to the conventional [Holl

e A state model that considers the WT|information of all packets in the buffers, referred to as[APDI
This state has higher cardinality than the Holl or kHoll but is expected to improve performance.

The main contributions of this chapter are:

1. The proposal of a [DRL scheduling solution that mitigates the [PLR| due to and using an
[EQT] architecture.

2. The performance evaluation and comparison of three different state spaces for traffic, i.e. the
conventional [Holl, the proposed kHoll and [APDI

3. The performance assessment of the proposed architecture in terms of PLR| concerning packet arrival
rate and the number of links.

The rest of the chapter is organized as follows. Section describes the system model. Section
introduces the optimization problem. Section [2.4]describes the implementation of the evaluated solutions.
Section presents the methodology of evaluation. Section presents and analyzes the numerical
results. Finally, Section offers concluding remarks.

2.2 System model

We consider a communication network depicted in Section [1.2| with nj, active links, each characterized
by two kinds of traffic: and BE

Let C := {ng, - ,n;, 1} be the set of channel capacities for the different links, where nj is the
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number of packets that the channel associated with link £ can support for an error-free transmission. We
note n¢,. . := maxC.

A buffer i is selected by the scheduler at each time slot. Then, the n} := min(ng,, n;) oldest packets
are extracted from this buffer and transmitted through the channel. Let n¢ be the number of packets
with WT] equal to D;, after the extraction. A occurs and these packets are discarded, thus leading
to packet loss (PL]). It is worth noting that n¢ = 0 for BE buffers, since there is no for this
traffic. Let n¢ := n! + n¢ be the total number of packets leaving buffer i. Then, the [WT] time of each
remaining packet is incremented by 1, and the number of remaining empty entries in the buffer is equal to
ki = B—n;+nf. After that, n] packets arrive in buffer ¢ following a Poisson distribution with parameter
Ai € [0, Amax]. We note A = 27971\, the global arrival rate (GAR). There are n? = max(0, n! — x;)
additional discarded packets due to [BOl This process is repeated at each slot.

Our objective is to design a scheduler mitigating the due to and DVI

2.3 Problem formulation

The objective to mitigate the [PLR] is translated into minimizing the number of lost packets due to
and over an infinite horizon by modeling the scheduling problem as an [MDPL

2.3.1 MDP formulation

Such as stated in Section [A.2.4} an models decision-making problems partly under control and
partly random due to a random perturbation. The random perturbation wy, is in our case the number of
packets arriving in the buffers nj, = {ng,,....nj, .} at step &k (wy, € N*").

In the following, we define tailored state and action spaces and reward that define an fitting
the scheduling problem.

2.3.2 State space

Let S, be the set of all the possible states for link ¢, which can be decomposed as S, = SP¢ x SPF x §;*"*
with SPC, SPE and S;*™* are the set of state for the buffer, for [BEl buffer and for channel capacity
respectively. The number of possible states for each set is:
e |SPC| depends on the considered representation. The details for each are given in the dedicated
paragraph.
e |SPF¥| = B + 1, corresponding to the possible number of packets in the [BE buffer,
o ISy = N

The set of the states of the whole system is S = H?ial Sp.
Since the buffer characteristics are identical for all links, the set of states is the same for each link,

ie. So =851 =---=8,,-1. As a consequence, the total number of states is:
S| = (ISPC] x (B+1) x n&) ™" (2.1)
The state of the system at time k is defined by the ngeatures X 7z matrix sg := [fo, ..., f,, _1] where

fy is the Nfearures X 1 state vector of the (th link with ngeatures its number of elements (for the sake of
notation clarity we drop the k index for f;). The value of natures depends on the considered features to
represent the state vector. This state vector can be expressed as:

f, = [£POe, £25 £ (2.2)
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where f{*** € §{*" is given by —"—, and f£* € SPF is "2, where the normalization in [0, 1] is done to
provide a better training with the [DNNk. This kind of normalization is performed systematically for the
other features introduced later.

For the traffic we consider three state space representations as introduced at the beginning of

this chapter, i.e. the state-HolL, the state-xHoL and the state-APD, yielding:

T
c

£, — fDC-:J: 2041 1y
l -— A 3 B 3 ne )

max

(2.3)

where f?c‘x is the vector composed of the [DC traffic features for the state space of type . Nfeatures 1S
thus equal to the number of entries of f?“% plus 2. We now define the flPC*x vectors for the three state
space representations.

2.3.2.1 State-HolL (S-Hol)
This model considers the features used in the [SotA| i.e. the NPl and the Hol] yielding:
d n
oot _ [doae o] 2

In that case we have Ngeapures = 4 and [SPC| = B(Dy + 1).

2.3.2.2 State-xHolL (S-xHol)
This model slightly improves the S-HoL one by adding the [Holl multiplicity, i.e. nie" the number of

packets having the [Holl value:

B Dy B

In that case we have Neapures = 5 and [SPC| = B2(Dg + 1).

FPO-SxTToL {”%OL do,2¢ n%] _ (2.5)

2.3.2.3 State-APD (S-APD)

In this model we consider the full buffer information. One possibility is to set the state vector with all
the packet WT] values, i.e. [doas,...,dp—12 of length B. Another possibility is to set the state vector
with the instantaneous distribution of the packet WT] values [po s, p1.2es - - -, PDo+1.2¢], Paze € [0,1],
of length Dy + 2 defined as the WT] histogram normalized by B. Both solutions contain the same
information, but we propose to use the second one. Indeed, it is very likely that B > Dy + 2 and
thus the second representation offers a smaller size for the input vectors, easing the implementation and
training. Moreover, the size of the link state is independent of the buffer size. Therefore, we have:

FPOSAPD = [Do.2¢, P1,205 - - - PDo+1,2¢] - (2.6)

_ DC| _ (B+Do+1
In that case we have nfeapures = Do + 4, and [SPC] = ( fid )

The impact of the size of the state vectors on the complexity with regard to the space state model
is discussed at the end of Section 2.4.2]
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2.3.3 Action space

Let A = {0,--- ,ng — 1} be the action space, i.e. the set of available actions for the scheduler. We
note ay := m(sg) the action belonging to A chosen by the scheduler when applying the deterministic
policy 7 on the state s;. The action a; = ¢ corresponds to selecting the buffer ¢ at slot & triggering the
transmission of n! packets over the channel.

2.3.4 MDP model

The transition from a state s, to the next state s, ; depends on the number of extracted packets and the
number of arriving packets in each buffer. From the state and action space definitions in Section 2.3.2]
and Section , and following the same approach as in [57], one can prove that the considered state
spaces hold the Markov property, and thus the scheduling problem is an [MDP|

2.3.5 Reward

Let ‘R, be the reward associated with that we define as the opposite of the number of packets
discarded due to [BOl

ng—1

%O<Sk7a’k7n2) = Z n?,ka (27)
i=0

and R, be the reward associated with that we define as the opposite of the number of packets
discarded due to DVt

ng—1

%d(sk,ak,nb = — Z nf;k (28)
=0

nr—1

- = Z ng@,k? (29)
/=0

since [DV] only occurs for [D{ traffic.

It is worth noticing that ng, and n¢, are the number of lost packets due to and respectively,
such as defined in Section [2.2] at step k.

In order both to penalizes the packets loss and to map the reward in [0, 1], we define the reward 7y

at step k as the sum of the exponential of (2.7)) and (2.9), yielding:

(ewmd(sk,akm@ + BWYRO(Skﬂk»n@) (2.10)

Y

DN | —

T =

where the parameter w > 0 is an hyperparameter controlling the behavior of the exponential function.

2.4 Problem solution

2.4.1 Learning procedure

Conventional tabular techniques such as value iteration (VI) or @-Learning cannot be used to opti-
mally solve the [MDP] described in the previous section due to the high cardinality of the state space.
Consequently, employing function approximation methods, such as [DNNJ, becomes essential for deriving
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m*. To achieve this, we implement the algorithm, which utilizes a neural network known as deep
Q-network (DQN) to arrive at the solution.

In this section, we present both used architectures for the [DQN}

e The [EQT] architecture which is the proposed one.

e The [EQ architecture which corresponds to an architecture from the [SotAl

2.4.2 Encoder only transformer architecture

The approach is [NLI by construction but neither a [ECl nor a architecture with hidden states
(such as long-short term memory (LSTM])) allows to achieve both [PE| and properties at the same
time. This is why we propose to use an [EOT] architecture [73] that is able to achieve the three properties:

1. First, it is [NLI since we are in the case.

2. Second the [EQT]is [GBMI by construction thanks to the attention mechanism that combines all the

input vectors through the scale dot product.

3. Third, we render the [EOTIPE| by removing the positional encoding [74].

The output of this architecture for each input f; is a 2 x 1 vector Q representing the ()-values for
the and [BE| traffics of link £. Then, the buffer to be scheduled is determined by an argmax over
the n; (Q-value vectors. In addition, to avoid choosing an empty buffer, we apply action masking [75]
before selecting an action.

The proposed architecture is depicted in Figure and synthesized in Algorithm [I]

St = [fuyr oo B fo]

=[fn, _1, ., f0, f §, = £, _1, o £ £ =! o — 10 s Q)
Sk [ -1 1 o] We’be Sk [ -1 1 0]: EOT > Wu,bu Q Q,_1 Q: Qo]

Figure 2.1: The proposed architecture with the EOT (gray boxes are learned).

The input state vectors are first multiplied by a d. X Ngeatures Matrix W, yielding as an output
f, ;= W, + b, V€ [0,1,...,n — 1], where W, is a weight matrix of size d. X Neatures and be
corresponds to a vector of size d. for the bias, corresponding to an affine embedding that is learned
during the training. Note that we assume d. > Ngeatures- 1he de X 1 vectors f"g are then entered in the
[EQT] block. The [EQOT]is detailed in Section [A.4.2] The [EOQT] performs multi-head attention on H heads
and the size for each head is dastn. The [ECIIDNN in the [EQT has d. inputs, the hidden layer has dy,
neurons with a rectified linear unit (ReLUl) non-linearity, and the number of outputs is equal to d.. The
d, x 1 output vectors f; of the [EOT] are multiplied by a 2 x d, matrix W, leading to the Q, vectors,
Q= Wufﬁ—bu, Ve e [0,1,...,n._1], W, is a weight matrix of size 2x d, and b, is the bias vector of size
2, since we have two types of traffic per link] Defining Q := [Qo(0), Qo(1), - - -, Qu,-1(0), Qn,—1(1)],
the buffer * to the scheduled is then deduced by ¢* := arg max; Q.

Note that due to the embedding W,, the size of the space vectors Neatures has a limited impact on the
global complexity. Indeed, the embedding transforms the ngatures X 1 vectors into d, x 1 ones with d, >
Nieatures Which is a constant regardless of the state model. Thus the complexity is mainly driven by d..

L Another methods is to consider the buffer separately, i.e. performing these operations with ng vectors instead of ny.
In that case, the W, should be a 1 x d. matrix and b,, a scalar.
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Algorithm 1: Forward pass of architecture depicted in Figure 2.1}
Input: {f,}7"
Output: * .
for 0 €{0,...,np —1}: £, < W, + b,
{fo,.. £, 1} < EOT(f,..., £, 1)
for 0 €40,...,n, —1}: Q< W, f,+ b,
Q<+ {Q€7 cee QnL—l}

return * = arg max;

The proposed architecture complexity in floating point operations (ELOPS) is detailed in Table [2.1]

Table 2.1: Number of FLOPs of the proposed architecture.

Operation H Number of FLOPs
Embedding W, 2 X de X Nfeatures X ML
EOT (from Table|A.1) 2ny, (do(4de + 2np, + 2dyp, +9) + 2Hny) — ng — npd.
Projection into ()-values W, 2xX2xd, Xng,
Total 2nr, [de(Nteatures + 4de + 2np, + 2d, + 11) + 2Hnp| — n? — npd,.

2.4.3 Fully connected architecture

For the sake of comparison with the [SotAl in addition to the heuristics, we also implemented a [VSI
scheduler using a [ECIIDNN] trained using DQLl The used [EC architecture is illustrated in Figure [2.2] and
consists of two hidden layers with activation function and an output layer, and thus the Q)-values
are obtained with the following operations:

\ 4

S, Wll b1 RelU Wz, bz — RelLU W3, b3 — Q

Figure 2.2: The proposed architecture with the FC (gray boxes are learned).

The trainable weight matrices W, Wy and W3 are of dimension dg. X Neaturesr, die X dg. and
ng X dy, respectively. The trainable biases b, by and bs are of dimension dy., ds. and ng, respectively.
The [EQ architecture complexity in [FLOPS is detailed in Table [2.2]
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Table 2.2: Number of FLOPs of the FC architecture.

Operation | Number of FLOPs
First layer W} 2 X dfe X Nfeatures X T
Second layer W, 2 X dge X die
Third layer W3 2 X 2nr X dg.
ReLU activations (2 times) 2dy.
Total 2ds, [nfeaturesnL +die + 1y, + 201, + 1]

2.4.4 Adaptation of the heuristics

In this section, we present the proposed adaptations to the heuristics introduced in Section [1.3]in order
to account for the slot-based context:
1. The channel capacities, expressed as the maximum number of packets that can be transmitted
over the different links, are incorporated into [PF|, M[WDF, LOG-rulel, and [EXP-rulel
2. According to Sections [1.3.4] [1.3.5 and [1.3.6] we must distinguish between and [BE traffic.
Therefore, MLCWDE| and [EXP-rule should be modified accordingly.
3. The [KPI presented in Section requires a [PLRl target and a bearer priority, which are not
defined in this chapter. Consequently, this method also requires adaptation.
Accordingly, the achievable rate ¢;;, for buffer i in slot %, defined in Section [1.3} corresponds to ny.
Therefore, for all the heuristics, we set:

Cik = N5 (2.12)

2.4.4.1 Round-robin

The [RR| does not depend on the channel and thus does not require adaptation.

2.4.4.2 Proportional fair

The [PE| uses the instantaneous rate information for each buffer i, noted c¢; (for link ¢;). The [PH
expression is thus obtained using (|1.13)) as:

n¢
hPF<Xz’,k> = = ! y (213)

Cik—1

where ¢; . is given by ((1.14)).

2443 MLWDF

Using (2.12) in ((1.19)), and based on the discussion in Section [1.3.4] which indicates that the metric for
[BE buffers is equal to zero and that the [PE metric must be used to handle this type of traffic, we obtain:

a; ninidy;p, if  mod 2 =0 (if ¢ is a DC buffer)

. . : (2.14)
hpr(X; k) if ¢ mod 2 =1 (if 7 is a BE buffer)

hMLWDF(Xi,k) = {

where o, is set as in Section [I.3]
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2.4.4.4 LOG-rule

Using (2.12)) in ((1.20]), and based on the discussion in Section [1.3.5] which indicates that the metric for
BE| buffers is multiplied by a factor close to zero and that the [PE| metric must be used to handle this

type of traffic, we obtain:

a; nélog (B; + midoix) if i mod 2 =0 (if ¢ is a DC buffer)

- o ; (2.15)
hpr(Xi k) if i mod 2 =1 (if 7 is a BE buffer)

hLOG—rule(Xi k) 1= {
where a;, 3; and 7); are set as in Section [I.3]

2445 EXP-rule

Using (2.12)) in ([1.22]), and based on the discussion in Section [1.3.6, which indicates that the [DC buffers
are handled using the [EXP-rulel metric defined in (1.22)) and the [BE| buffers are handled using the [PE

metric defined ([2.13)), we obtain:

Q; NS exp (T—k\/;_:’“) if ¢ mod 2 =0 (if ¢ is a DC buffer)
hpr(X; 1) if i mod 2 =1 (if 7 is a BE buffer)

hEXP—rule (Xi k) = , (2.16)

where a;, X, and 7; are set as in Section [I.3

2.4.4.6 Knapsack

The adaptation of the [KPlis a little bit more tricky.

Since a [PLR| target is not defined for the different traffic types, and because it may represent a
channel metric as discussed in Section [1.3.7, we adapt ((1.25)) using the channel capacity, normalized by
nICn&X:

C
n;

(2.17)

Vo (X ) 1= -

max
Second, since we do not consider bearer priority, we instead use a measure of allocation fairness, such as
the [KP] expression in [6], and accordingly, we adapt ([1.26)) as follows:

(i) = —— (2.18)

1+ Z@k’
where z; , is the number of times that buffer ¢ is selected since the beginning of the simulation until .
The new expression of [KP| adapted to our context is given by along with (1.24)), (2.17), (2.19),
and ([1.27)), with ; =1 for j € {1,2,3,4}.
It is worth noting that for BE] buffers, is equal to 0. Because [KP] expression is a sum ([1.23)),
it does not imply that hkp(x; ) = 0, conversely to the MLWDEF] expression ([1.19)) when 7; = 0. Thus,
there is no need to differentiate between and BE traffic, as is the case with MLWDF!
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2.5 Performance evaluation

2.5.1 Simulation settings
2.5.1.1 Evaluated methods

We evaluate the performance of the proposed [EQT] such as specified in Section [2.4.2] associated with
the three types of states defined in Section[2.3.2; S-HoL, S-xHOL, S-APD that are denoted “EOT-HoL",
“EOT-xHoL", and “EOT-APD", respectively in the sequel.

The [EC] architecture, from Section [2.4.3] is also evaluated with the three proposed state spaces, and
we denote the resulting schedulers as “FC-HolL", “FC-xHoL", and “FC-APD". The input dimension is
4ny, for “FC-HolL", 5ny, for "FC-xHoL" and ny(Dgy + 2) for “FC-APD". It is worth noting that the [EC]
uses a whereas the [EOT] uses a [MSIl

The [DRL schedulers are then compared with the following heuristics defined in Section [2.4.4]

2.5.1.2 Training setup

We train the [EOT] with a fixed value of the number of links by setting n;, = 6, yielding thus ng = 12
buffers. Since the [EQT]is [NLI, we further investigate its generalization capability to different values of
ny by simulations. We assume that the different buffers have identical arrival rate A\ = 0.15, resulting
into a[GARI A = 1.8, defined in Section [2.2] We fix the value of C = [1,1,2,2,3,3]. Since the EClis not
[NLI, we train a dedicated [FC| for each value of n;.

We set the arrival rate for each buffer as A\ = 1.8/(2n), as for the training of the EOT] We train the
specific [ECk using the configurations specified in Table[2.3] In each vector ng, the ith entry corresponds
to the number of links with capacity 7. These capacities are then arranged in ascending order to form
the set C, with the links at the input of the [EC| being sorted in the same way.

Table 2.3: nj values used for the training.

ngl 4 | 6 | 8 | 10 | 12
ng || [1,2,1] | [2,2,2] [ [3,2,3] [ [3,4,3] | [4,4,4]

An e-greedy approach is used where the exploration parameter ¢,,, for episode m, is set to €. = 1

at the first episode and decayed by a factor €gecay at each episode until reaching the value €y, = 0.01,
ie.

€m = MAaX(€y—1€decay; Emin) (2.19)

Table provides the other parameters used for the training.
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Table 2.4: Training parameters.

H Parameters Values
System model D, 20
parameters B 40
v 0.99
Training parameters Target network uPdate period | 50 steps
Batch size 64
€decay 0.99
Learning rate 5x 107*
Number of heads H 4
Number of [EQT] layer 1
EOT t
parameters 0. = dory — Heloun 56
Number of episodes 2000
Number of steps per episode 7000
dge 512
Learning rate 5x 107°
t
[EC! parameters Number of episodes 4000
Number of steps per episode 15000

To optimize weight selection, validation episodes are performed every 100 training episodes using a
fixed seed to ensure the same randomness. During validation, the exploration factor is set to 0 and the
weights are frozen. If the sum of the rewards exceeds the previous ones, the weights are saved.

2.5.1.3 Inference setup

Three types of inference are conducted:

1. Inference with respect to arrival rates: this evaluates the generalization capabilities of the trained
schedulers across different traffic regimes. A single episode of K = 10° steps is performed for each
value of A.

2. Inference with respect to the number of links: this assesses the generalization ability of the trained
[EQTI across varying numbers of links, as well as the performance of different [ECs under their
respective training configurations.

3. Inference with respect to both the number of links and channel capacities: this examines the
generalization of the schedulers across both n;, and C for the EQT] and across C for the ECl To
achieve this, 100 episodes of 10° steps are performed, totaling K = 10® steps. At the beginning
of each episode, the channel capacities are randomly assigned for each number of links.

Table [2.5] summarizes the training and inference setup.
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Table 2.5: Summary of the training and inference setup.

EOT FC
np, A C ny, A C
Specified in
B _ Table 2.3
Training || 6 A= 8 1.8 “and [1,1,2,2,3,3] || 4:2:12 A A 1.8 and sorted in
L increasing
order
Inference || ¢ Ae[1.5,1.85 |[1,1,2,2,3,3]| 6 Ae[15,1.85 |[1,1,2,2,3,3]
wrt A
Inference Same as for Same as for
wrt n, 4212| A=18 FC training 42121 A=18 FC training
Inference 100 draws 100 draws
wrt np || 4212 A=1.5 with median || 4:2:12| A=1.5 with median
and C above 1.5 above 1.5

Table provides the number of [ELOPS corresponding to each value of ny for the different ar-
chitectures considered. One can observe that the [EOT] requires over ten times more [ELOPS than the
[EC

Table 2.6: Number of FLOPs of the different architectures for each number of links.

nr, 4 6 8 10 12
EOT-HolL || 3192256 | 4800688 | 6417408 | 8042416 | 9675712
EOT-xHoL || 3194304 | 4803760 | 6421504 | 8047536 | 9681 856
EOT-APD | 3233216 | 4862128 | 6499328 | 8144816 | 9798592

FC-HolL 549888 | 562176 | 574464 | 586752 | 599040
FC-xHoL 553984 | 568320 | 582656 | 596992 | 611328
FC-APD 631808 | 685056 | 738304 | 791552 | 844800

2.5.2 Performance metrics

We study the reward defined in ([2.10]) as well as the following metrics:
e The[PLRI ¢ which is the number of lost packets divided by the total number of packet arriving in
the buffers:

ng—1 o
- Zf:l > o (ngk + nzk) (2.20)
2211 Z:‘L:Qoil i g
In the same way, we define the [PLR for each buffer as:
K d o
1 \ My + 1y
gi - Zkfl ( ik z,k) ' (221)

K
D ke ny g
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We assume that a PLR below 1072 is acceptable, corresponding for instance to the suitable [PLRI
for conversational voice [38].
The throughput 77 which is here defined as the average number of packets sent per unit of time:

1
Ek 1 ZnQ ”fk
i )

(2.22)

Because the buffers are of limited size, when the simulation is long enough, 1 can be approximated
by 7, defined as the difference between the number of packets arriving in the buffers and the
number of lost packets, normalized by the overall duration of the simulation i.e.:

n, 1 r 0
lim Zk 1ZQ ( i,k_nzd,k_ni,k) s 293

It is worth noting that when the simulation time is infinite, we have:

n 1
Y
1m

K—oco K

From (22.23)) to ([2.24)), we can rewrite 7] as:
K 1 1
et Do ik Ek s (n zd,k + ”Zk)

~ A (2.24)

n= [}1_{1(1)0 % 7 =A-—9, (2.25)
where § > 0. Therefore, we deduce that:
<A, (2.26)

indicating that the throughput of the whole network is upper bounded by A. Let us also define the
throughput per buffer:
K
Zk:l "fk

K

The fairness in terms of throughput. For a collection of metric x = [y, ...,an_l] where z; is e.g.
n;, the Jain's fairness [76] is defined as:

N = (2.27)

(2.28)

The average delay D;, is defined for each buffer i as the average WT] of the packets at the moment
they are sent. We define in the same way the average delay for a traffic Dpc and Dgg the average
delay for respectively [D{ traffic and [BE| traffic.

2.6 Performance analysis

2.6.1 Training analysis

Figure 2.3 represents the average training reward per episode for ny, = 6 for the different studied methods.
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Figure 2.3: Training reward of the different architectures for n; = 6.

One can observe that:

1. [EQTk and [ECE architectures have converged.

2. The EQTlbased methods converge faster than the [EC| based methods. Moreover, the training
rewards once convergence is reached for the [EQT] are better than the training reward of the [EC,
with [EQT] converging around 0.96 whereas [EC] converges to about 0.94.

3. For both [EQT] and [EC] the state space offers a slightly better reward compared to the two
other state spaces.

Figure plots the validation reward for n, = 6 E| The markers indicate the highest validation

reward and, consequently, the weights applied during inference.
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Figure 2.4: Validation reward of the different architectures for n; = 6.
It can be noted that the[EQTk converge more rapidly than the[ECs. Additionally, the[EQOTk outperform

all EGk, as there exists at least one episode for each [EQT] in which the validation reward exceeds 0.95,
which is superior of any [EC| reward.

2The [ECk are trained during 4000 episodes, such as specified in Table but for the sake of comparison, we decide
to present the first 2000 episodes of the training.

3For the[EQT] validation episodes are conducted every 100 training episodes. In contrast, for the[EC] validation episodes
are also performed whenever the current training reward surpasses the best obtained so far. Additionally,we perform more
training episodes for the FC than for the EOT, as it requires more time to converge.
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Regarding the EQT] which is trained with a specific value of ny, it is of interest to explore whether it
can be generalized to different values of ny. In addition, we compare the proposed [EQOTk with different
[EC trained for specific number of links.

For the sake of comparison with [EC] that is not [NLI, we train a dedicated [EC] for each value of n.
Figure provides the training reward of the [ECl for n;, € {4, 8,10, 12}.
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Figure 2.5: FC training rewards.

One can see that all the trained [ECl have converged. As the number of links increases, the architecture
exhibits a slower rate of convergence, regardless of the state space employed.
Figure [2.6] plots the validation reward for the [ECk for n; € {4,8,10,12}.
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Figure 2.6: FC validation rewards.

As for the training, as the number of links increases, the [EC] exhibits a slower rate of convergence,
regardless of the state space employed. Furthermore, the maximum reward value diminishes as the
number of links increases. The markers indicate the highest validation reward and, consequently, the
weights applied during inference.

2.6.2 Inference analysis
2.6.2.1 Tested inferences

In this section, we study the generalization capabilities of the different solutions in terms of 1) arrival
rates and 2) number of links and channel capacities. Furthermore, a high reward does not necessarily
indicate that the other metrics are performing well, indeed. Thus, we compare the performance of the
schedulers in terms of [PLR] fairness, throughput and delay.
The rest of this section is organized as follows:
e Section studies the generalization with respect to (frf) the A.
e Section[2.6.2.3|emphasizes the performance associated with each link and traffic for A = 1.6, when
the [DRL methods achieve a [PLRl below 1072,
e Section examines the generalization performance of the [EOTk wrll ny. The channel and
arrival rates are set as for the training of the [ECl
e Section [2.6.2.5 examines the generalization performance of the EQOTkwrflny, and C. The channels
are drawn at the beginning of each inference episode, for each value of ny.
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Table 2.7] summarizes the realized inferences.

Table 2.7: Summary of the inferences.

[PLRlin function of A
[PLR due to in function of A
Section [PLR due to in function of A
Throughput in function of A

Fairness in function of A

due to for each link
Section [PLRI due to for each link
Average delay for and BE| buffers
[PLRl in function of ny,
PLRI due to in function of ny,
Section [PLRI due to in function of nj,

Throughput in function of ny,

Fairness in function of ny,

[PLRIin function of n; and C
[PLR due to in function of ny, and C
Section [PLRI due to in function of ny and C
Throughput in function of ny and C

Fairness in function of n;, and C

2.6.2.2 Generalization wrt A

In this section, we conduct inference to assess the generalization capabilities of the proposed schedulers
across A and with C = [1,1,2,2,3,3]. The inference is done over one episode of 10° steps for each value
of A. The metrics being evaluated include [PLR] throughput, and fairness.

Before analyzing the inference results, we first verify if a single inference (i.e., one seed) yields reliable
outcomes. Figure presents the inference results obtained using 50 different seeds for the EOTHxHoll
Specifically, Figure illustrates the evolution of the [PLRI over the course of the steps. It shows that
after 10° steps, the [PLR] stabilizes around an average value, in contrast to the beginning where it is
widely dispersed, highlighting the importance of performing long training episodes. Figure displays
the final average [PLRl (green) along with three times the standard deviation (represented by red vertical
bars around the mean), providing an estimate of the range within which 99% of the results are expected
to fall. The standard deviation tends to increase when A decreases. This shows that for high values of
A, a single inference gives a good estimate of the average [PLR| while for lower A, the result can vary
more, making it less reliable.
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Figure 2.7: Evaluation of the PLR with 50 seeds for the EOT-xHoL.

Figs. depicts the [PLRI achieved for the different schedulers versus the A when n;, = 6.
The channels’ capacities are those used during the training, i.e., the values of C used for Figure [2.7] and
provided in Table 2.3 The aim here is to test the generalization capability of the simulated schedulers
across A, given that they were trained for A = 1.8.
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Figure 2.8: Evaluation of the generalization capability in terms of PLR over A, for a training with
A=18.

One can observe that:
1. The different heuristics have a[PLRlclose to 107!, except the [KPlscheduler, defined in Section
that achieves better performance.
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5.

The [DRL}based methods outperform the heuristic schedulers in terms of [PLRI

. The performance of EOTHAPDI and [EOTHxHoll are very close regardless of A.

For A € [1.5,1.65], the EQOTHxHoll and schedulers provide better performance than
their [ECl counterparts. For instance at A = 1.55, the [PLRl of EOTHxHoll is about 2 x 10~* whereas
the [PLR| of FCIAPD (which is the best [ECtbased scheduler at A = 1.55) is about 1073,

The EQOTHxHoll performs much better than the EOTHHoll when A < 1.6 and it is very close to the
[EQTHAPDL This confirms the benefit of considering the multiplicity of the [Holl in the state space.

Figure 2.9] depicts the [PLRI for both (Figure [2.9a]) and (Figure [2.9b)).

1.70 175 1.80 1.85
A

(a) PLRl due to DVl vs A. (b) PLRI due to [BOlvs. A.

Figure 2.9: Evaluation of the generalization capability in terms of PLR due to DV and BO over A, for a
training with A = 1.8.

One can observe that:
1. The [M[CWDF] scheduler provides the lowest [PLRl due to among the simulated methods. Then,

the [ECHxHoLl and the are the schedulers that lose the fewest packets due to [DV], followed
by the EOTHHoll and the [EQTHxHoll for A > 1.65. All of these schedulers obtain a [PLR| due to
less than 10~2. However, the [ECHHoI] has a high [PLR| due to [DV] at the same level as for the
LOG-rulel for A > 1.65 whereas the is slightly above, with a [PLRl between 10~2 and
1071,

Concerning the [PLR| due to BQO] the [EXP-rule] the and the are the worst
scheduler with a[PLRl close to 10~%. They are followed by the RR. Among the heuristics, only the
[KP has a [PLR] below 1072 for A < 1.5. Concerning the [DR[I-based schedulers, all of them have
a[PLRI below 1072 for A < 1.6 (so below the [PLRl of the heuristics), then above 1072 for higher
values of A, except for the EQTHAPDI

Figure depicts the throughput wrfl A for the different methods.
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Figure 2.10: Evaluation of the throughput wrt A for n;, = 6, C = [1,1,2,2,3,3] for a training with
A=128.

One can see that:
1. The DRO methods outperform the heuristics. This aligns with previous observations where the
[DRLlbased methods demonstrated a lower [PLRl compared to the heuristics. According to the

throughput approximation in (2.25)), a reduction in [PL] and consequently in [PLR] leads to an
increase in throughput.

2. The [EQOT}lbased methods are slightly better than the [FC-based methods. This still aligns with the
previous observations.

Figure depicts the throughput fairness [wrfl A.
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Figure 2.11: Evaluation of the fairness wrt A for n;, = 6, C = [1,1,2,2, 3, 3], for a training with A = 1.8.

One can see that:

1. The [DR[}based methods outperform the heuristics.

2. The [EQT}lbased methods outperform the [EClbased ones.

3. The is the worst one. This is attributable to the fact that it effectively serves the
buffers frequently, resulting in minimal loss associated with [DVl However, it does not adequately
address the [BE] buffers, which leads to a significant amount of [BOl

4. The fairness decreases with increasing A due to the difficulty to obtain the same throughput on
all the buffers, because the [PLlis in majority produced by buffers with a bad channel condition.

Conclusion of Section [2.6.2.2] We observed in this section that [EOT] shows strong generalization
capabilitieswrflto A, providing better performance in terms of [PLR], throughput and fairness as compared
with the heuristics. Among the various[DRI[}based schedulers, the[EQTlbased ones demonstrate the best
performance, highlighting the significance of the architecture in the scheduling process. Since the
metrics are averaged over all the buffers, i.e. including the different traffic and different links in one
single metric, they provide a global view of the system behavior. However, these global metrics may
mask some failures of the schedulers for certain buffers and links, and thus we study in the next section
the per link and per traffic performance.

2.6.2.3 Performance per link or traffic for A = 1.6

We assess in this section the inference performance of individual links with A = 1.6 and C = [1, 1,2, 2, 3, 3].
We analyze the [PLRI for the various links and the average delay for both the different links and the various
types of traffic.
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Let us examine the [PLR] and the delay associated with the different buffers and traffic types, with
a specific focus on fixing the value of A = 1.6. This value represents the last instance at which [DRL]
schedulers achieved a [PLR] below 1072, as illustrated in Figure .
In Figure [2.12, the [PLRI for the different links are plotted:
1. The [PLRI due to in Figure. 2.123] It is worth noting that only buffers can have this kind
of loss.
2. The[PLR due to [BQOlin Figure. 2.12b] Looking in details each buffer [PLl (not shown in the figure),
we remarked that the [PL] due to only occurs for some BE| buffers. For example, for Link 4 and
Link 5, there is no [PLl due to [BOI for heuristics (absence of markers).
The links are sorted based on their channel capacity.
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(a) PLR due to DV. (b) PLR due to BO.

Figure 2.12: Evaluation of the PLR per link due to DV and BO for A = 1.6, n, =6, C =[1,1,2,2,3, 3]
and for a training with A = 1.8.

One can observe that:

1. For two different links with the same channel capacity, the[PLRlis roughly the same when a heuristic
or an [EQTlbased scheduler is used, which is not the case when a [EClbased scheduler is used. This
could be attributed to the [PEl property of both the heuristics and [EQT]

2. The PLRl is a decreasing function of the channel capacity for all the heuristics, while it is not
systematically the case for the DRI scheduler, for instance the EOTHHoL] loses more packets due
to DV for links with a channel capacity equal to 3 than for links with a channel capacity equal to
1.

3. The [PLRI due to [DV] for each link is below 1072 for the [DRL] based scheduler (except for the first
link with the [ECHHoL), thus respecting a of 1072 for traffic.

4. The [PLRl for BE traffic is above 1072 for links with a channel capacity equal to 1 for all the
scheduler except the which has a [PLRl below 1072 for all the links.

Figures [2.13a] and [2.13b] depict the average delay wrfl the different links when A = 1.6.
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Figure 2.13: Evaluation of the average delay per link for A = 1.6, n;, =6, C =[1,1,2,2,3,3] and for a
training with A = 1.8.

One can observe that:

1. For the heuristics, there is an inverse relationship between channel capacity and average delay:
when the channel capacity increases, the average delay tends to decrease. This is the case for both
BEl and [Dd traffics. This may be due to that more packets can be sent for the links with a higher
channel capacity, avoiding congestion and therefore large delays.

2. For traffic one can observe that the average delay for EClbased methods is very different even
though the channel capacity and the arrival rate are the same. For instance, for the links 0 and 1,
the channel capacity is equal to 1, and the [EClxHoL obtains different average: 11 for link 0 and
1.5 for link 1. This may be due to the nonPEl property of the [EC] architecture.

3. The average delay of the traffic is a decreasing function of the channel capacity for EQOTHHol
and [EQTHxHoll but not for the scheduler. Therefore, the trained may serve
more often the buffers with a bad channel capacity to avoid congestion, leading to better average
delay than the buffers with a good channel capacity which can be emptied faster.

4. For BE traffic, the average delay for the heuristic-based schedulers increases significantly, partic-
ularly for buffers experiencing poor channel quality. In contrast, DRIlbased methods maintain
a stable average delay regardless of the channel capacity. According to Little's law, the average
number of packets in a buffer, denoted by B, is given by the product of the average arrival rate \
and the average delay D experienced by the packets:

B=AD. (2.29)

This relationship can be used to estimate an upper bound on the average delay that ensures minimal
[PLl due to BOl For BE| traffic, where each buffer has a maximum capacity of 40 packets and the

average arrival rate is A = %, Little's law gives:
_ B 40

Thus, to avoid significant loss due to BO], the average delay should remain below 300 time units.

This bound is constantly respected by all DRLl-based scheduling methods. The [DRL}based sched-

ulers have D closer to 250. This signifies that the average number of packets in the buffers is 34,
allowing these schedulers to keep a margin preventing from buffer overflow.

To enable a more detailed analysis of the packet delay (PDI), we study its distribution for each method

and each buffer. In order not to overload this chapter with figures, plots are provided in Appendix [C|
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Figs[C.I] to [C.11] represent the distribution of the[PDland provide the [PLRIfor each link for [DO traffic, for
the different methods. The red vertical bar indicates the average for the corresponding buffer, while
the corresponding [PLR] value is shown on the right of each plot. Notice that the distribution support is
[0, Dy], with Dy = 20. One can observe that:

1. For the heuristics: 1) for links with the same channel capacity, the distributions and the [PLRI
are very close, 2) the distributions are more concentrated and left-shifted as the channel capacity
increases, 3) the average values decrease as the channel capacity increases, 4) the and
distributions are more localized, whereas the distributions for the others are more spread.

2. For the [ECtbased: 1) for links with the same channel capacity, the distributions and the [PLR
are very different (average, shape and standard deviation), which explains the previously observed
differences in [PLRl caused by [DVl and average [PD], shown in Figures[2.12aland[2.13a] For instance,
for the ECHHoL in Figure [C.6} Link 0 exhibits a high due to and a lot of packets are sent
close to their deadline, while for Link 1, which has the same channel capacity as Link 0, exhibits a
lower [PLR| and a distribution further from the deadline than for Link 0.

3. For the[EQT}based: 1) for links with the same channel capacity, the distributions and the [PLRl are
very close, which can be attributed to the [PEl property of the EQT] 2) the average values decrease
as the channel capacity increases for EOTHHoLl and [EOTHxHoll, 3) the average values increase
as the channel capacity increases for although the tends to decrease at the same
time.

Figs[C.12]to[C.22| represent the repartition of the [PD]and provide the PLRIfor each link for BEl traffic,
for the different methods. The red bar indicates the mean for the corresponding buffer, while the
is shown to the right of each plot. Notice that, conversely to the[D{ traffic, the distribution support
is theoretically [0, +00[, however to plot the histograms, we have set up the maximum value to fit the
data, i.e. [0,650]. One can observe that:

1. For the heuristics: 1) for links with the same channel capacity, the distributions and the [PLRI
are very close, 2) the distributions are more concentrated and left-shifted as the channel capacity
increases, 3) the average values decrease as the channel capacity increases, 4) except for [KP] for
channel capacity equal to 1, the average values are quite high whereas for channel capacities equal
to 2 and 3, the average values are close to each other and close to 0. Notably, for a capacity equal
to 3, about 20% of packets are sent with a of 0. This is because higher capacity allows both
newly arrived and older packets to be transmitted simultaneously.

2. For the [ECtbased: 1) for links with the same channel capacity, the distributions slightly differ,
resulting in slight difference in average. However, although the average are quite close, one can
notice large difference in terms of PLR| 2) the average delays are approximately constant regardless
of the channel capacity, 3) most of the packets are sent with a delay greater or equal to 100,
indicating that these schedulers tend to delay serving [BEl buffers until they are more heavily loaded.

3. For the [EQT}based: 1) for the links with the same channel capacity, the distributions and the
[PLR are very close, 2) the average delays are approximately constant across all links, regardless
of channel capacity, 3) EOTHHoL] appears to prioritize early packet transmission when the channel
capacity is equal to 1 or 2, 4) the average delay for EOTHAPDI is lower than the others.

Conclusion of Section [2.6.2.3l We evaluated in this section the individual link metrics in terms of
[PLRl and average delay. The use of DRL}based schedulers (particularly EQTlbased) demonstrates lower
variance in [PLR| and average delay compared to heuristics. Heuristic methods generally perform better
on links with high channel capacities than on those with low channel capacities, whereas [DRLlbased
schedulers are more effective at achieving balanced results across links with different capacities. The
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[EClbased schedulers struggle to deliver constant performance across two links with the same channel
capacity, unlike the EQTlbased schedulers, which do not face this issue.

2.6.2.4 Performance wrt n,

We evaluate in this section the performance of different schedulers under the training conditions of the
[EClbased schedulers, i.e. using the values of C used for the training of these schedulers. The goal of this
analysis is to determine whether the EQTlbased schedulers can generalize across different values of ny.

Given that these conditions match those used during the training of the [ECtbased scheduler, we expect
it to perform well.

Figure [2.14] shows the [PLRl as a function of the number of links.
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Figure 2.14: Evaluation of the PLR wrt n with the training channel capacities of the FC.

The following observations can be made:

e The DRLIbased methods outperform the various heuristic approaches.

e The[PLRfor all methods remains above 3 x 1072 across all values of ny, indicating an overloaded
regime.

e The curves for the DRIl-based methods are nearly identical, suggesting that all the trained archi-
tectures result in a comparable policy in terms of total [PLl

e Among the heuristics, the provides the worst performance, while the [KP| method performs the
best. The MIWDF|, [LOG-rulel and [EXP-rule] methods show equivalent performance.

Figure displays both the [PLRl due to (Figure [2.15a)) and [BOI (Figure [2.15b)).
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Figure 2.15: PLR due to DV and BO wrt ny, in the training set up of the FC

The following observations can be made regarding [PLl due to DVt

1. [PLR due to DV}

The method results in the smallest [PLR
The [RRl method leads to the highest [PL1
The [KP| [LOG-rulel and [EXP-rulel methods exhibit comparable performance.
The method loses more packets due to[DVl than all other methods, except for RRl
Other [EQOT}based schedulers begin to lose more packets than the [FC-based scheduler when

nr > 10, with similar performance between the two methods for n; < 10.

2. [PLRl due to BOI

e The [EQOTHAPDI method incurs the least [PL] due to [BOl compensating for its higher [PL] due

to DV

e Other[EQTlbased methods outperform the rest for n;, > 8, while showing similar performance

to the [FClbased schedulers for lower values of ny,.

e The [EClbased schedulers outperform the heuristics for n; = 4, achieving equivalent perfor-

mance to them for ny > 6.

e Among the heuristics, M[WDF] results in the highest [PLR] as it favors buffers over BE
buffers. The remaining heuristics yield comparable performance, with a [PLRl around 10~*.

Figure presents the throughput as a function of the number of links.
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Figure 2.16: Evaluation of the throughput wrt ny in the training set up of the FC.

The following observations can be made:

e Throughput generally decreases as the number of links increases across all methods.

e [DRI}based methods achieve higher throughput compared to heuristic approaches, with no signifi-
cant performance differences among the [DRL methods.

e Among the heuristic methods, [KPl performs the best, while [RR] yields the lowest throughput.

Figure illustrates throughput fairness as a function of the number of links.
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Figure 2.17: Evaluation of the fairness wrt ny, in the training set up of the FC.

The following observations can be made:

e The fairness of the [EQT}based schedulers remains stable with respect to the number of links,
constantly ranging between 0.98 and 1, outperforming all other methods.

e The fairness of the [EClbased schedulers declines sharply as the number of links increases, ranking
as the second worst when n; = 12.

e Most heuristic methods, except MLWDF] converge to similar fairness levels as the number of links
increases. The [MLWDF| may prioritize serving buffers while leaving BE| buffers underserved.

Conclusion of Section [2.6.2.4] We compared the performance of the different schedulers under the
training conditions of the [EClbased schedulers, meaning identical arrival rates, channel capacities, and
channel capacity ordering. The methods achieve comparable performance, all outperforming the
heuristics. Despite being trained with n; = 6, the EQTk generalize well to other values of ny.

To better distinguish the performance differences among the schedulers, we must conduct inference
with different values of C for each ny.. The results for this scenario are presented in the next section.

2.6.2.5 Generalization wrt n; and C

We assess the generalization capabilities of the [EQT}lbased schedulers across both n; and C, while
evaluating the [EClbased schedulers across C only, as they are trained on a fixed n; value. The analysis
focuses on [PLR] throughput, and fairness. All inferences are conducted with A = 1.5.

The channel capacities C are chosen such that each episode uses a distinct value. Additionally, an
episode is conducted only if the median of C is at least 2, ensuring compliance with stability conditions
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( Z?fo_l 2 < 1[32]). Specifically, for n;, = 4, all 54 possible configurations of C are covered, while for
other values of nr, 100 distinct configurations are randomly sampled.

Additionally, we evaluate the [EClbased schedulers both with and without sorting links by channel
capacity. In the unsorted case, channel capacities are drawn at the beginning of each episode and remain
unordered, meaning the states of different links appear in arbitrary order in the [EC] input. In contrast,
with sorting, links are arranged in ascending order based on their respective channel capacities before
being fed into the [EC, to circumvent the absence of [PEl property of the [EC|

Figure presents the as a function of the number of links, without channel ordering in

Figure and with channel ordering in Figure [2.18b]
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Figure 2.18: Evaluation of the PLR wrt ny.

The following observations can be made:

e Generally, as the number of links increases, the [PLR] also increases.

e The [EQTlbased schedulers constantly outperform all other methods. It is worth noting that the
results with and without permutation are the same for EQTlschedulers since they are [PE|

e Without sorting, the [KPl scheduler generally outperforms the [EClbased schedulers. However, with
channel ordering, the [EClbased schedulers achieve better performance, indicating their sensitivity
to the order of buffers in their VSl Additionally, when inputs are not sorted, the performance of
the [EClbased schedulers is slightly better than the performance of the heuristics, except [KPL

Figure presents the [PLRl contributions from both [DVI and [BO
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Figure 2.19: PLR due to DV and BO wrt np,

The following observations can be made:

1. Regarding [PLRl due to DVt

e The outperforms all other methods.

e The [EQTlbased schedulers generally surpass [KP] except for when n; = 4. Their
performance approaches that of the as the number of links increases.

e Thel[EClbased schedulers exhibit erratic behavior, likely due to the use of distinct architectures
for different numbers of links. Notably, their performance improves when the input is sorted
in increasing order of link capacities.

2. Regarding [PLRl due to [BOL

e The [EQTlbased methods outperform all heuristic approaches, regardless of the number of
links. They drop three times fewer packets than [KP| and achieve more than an order of

magnitude improvement over other heuristics.
The [ECtbased methods benefit significantly from sorting inputs in increasing order of link

capacities. In Figure[2.19¢] they perform worse than[KPland struggle to surpass[RRl However,
in Figure [2.19d] the [ECHHoL] achieves substantial gains over [KPl for n;, < 8, demonstrating
improved performance in certain cases.
Figure [2.20] depicts throughput as a function of the number of links.
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Figure 2.20: Evaluation of the throughput wrt ny.

The following observations can be made:
e The [EQTlbased schedulers outperform all other scheduling methods.
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EOT-APD

The[ECtbased schedulers, when using unsorted input (i.e., link capacities not arranged in increasing
order), perform worse than the [KPl scheduler. However, when the input is sorted, they achieve
significant gains and even surpass the [KPl scheduler in certain cases.

Unlike other methods, both sorted and unsorted [EClbased schedulers exhibit erratic behavior. This
may be attributed to the fact that each [EC] is trained for a specific number of links, leading to

significantly different learned policies.
Figure illustrates fairness as a function of the number of links.
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e All methods achieve high fairness, exceeding 0.95, indicating that all buffers are served equitably,

with none experiencing starvation. This is due to the moderate traffic load, which allows the
schedulers to serve all buffers effectively.

e The [ECk exhibit improved fairness when links are sorted compared to when they are not.

Conclusion of Section [2.6.2.5l

We evaluated in this section various methods across different numbers

of links and channel capacity values, with A = 1.5. The [EClbased schedulers were assessed both with
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and without sorting the links based on their channel capacities, emphasizing the significance of input
order for this architecture.

Our results demonstrate that the proposed [EQOTFbased scheduler outperforms all other methods in
terms of [PLR] throughput, and fairness. Notably, despite being trained on a fixed configuration (i.e., a
specific number of links, channel capacities, and arrival rates), the EQOT}based schedulers exhibit strong
generalization capabilities, adapting effectively to varying conditions.

2.7 Conclusion

In this chapter, we addressed a slot-based scheduling problem with the objective of minimizing the [PL]
that may come from and BOl We considered two types of traffic: packets with strict [DC, and
BEl packets. The scheduling decision is performed at each slot where only one buffer can be served.
The packet transmission is done on deterministic and error-free channels, with each link having different
channel capacity.

As alternatives to the conventional [Hol]state space, we proposed the xHoLl which adds the multiplic-
ity of the oldest packet in the buffer, and the[APDI] which takes into account the WT]of all packets in the
buffer. We proposed a [DQL}-based scheduler using an [EQT] architecture for the DNNI This architecture
is NLI, meaning that it can handle variable number of links, [GBM| meaning that it considers the entire
buffer information, and is permutation equivariant.

Our simulations demonstrate that the proposed [EOTI scheduler surpasses both [ECtbased schedulers
and heuristics from the [SotAl This holds true even when the [EQOT] is evaluated with a different number
of links compared to those used in its training, alongside an [ECl specifically optimized for that particular
number of links. This observation is promising, and suggests that the [EOTI could achieve even better
performance if trained on varying numbers of links. Additionally, we observed that xHol] state space
improves upon the standard [Holl one, while getting close to the performance of the [APDl In addition,
the [EQOT}schedulers achieve better results on metrics other than the one used for training (throughput,
fairness, and average delay). This suggests that these metrics are interrelated. For instance, minimizing
the [PLl helps keep the average delay for all traffic types bounded, regardless of the channel conditions.
Further investigation is required to fully understand the relationship between these two metrics.

Part of material of this chapter has been published in [69].
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Chapter 3

Frame-based scheduling

3.1 Introduction

This chapter addresses the scheduling and resource allocation problem over a frame, i.e. over a set of
for a given slot as depicted in Section [1.2

We remind that two approaches can be used for the scheduling operation over a frame:

e [RBE are assigned sequentially, one by one, which is refereed to as an approach[SRSl This approach
can be seen as a local optimization and one can use for instance the slot-based approach developed
in Chapter [2|

° are assigned all at once, which is refereed to as[GRSl This approach can be seen as a global
optimization.

The solution proposed in this chapter follows the approach (Section , by introducing a novel
architecture trained with double deep Q-Learning (DDQL]). The approach suffers from the
curse of dimensionality, as the number of possible actions grows exponentially with the number [UEk,
rendering this approach inapplicable with conventional DNNI architectures. To mitigate this issue, we
propose to use the module [77], described in Section . The is composed of two different
parts:

e The first part is a producing a latent representation of the state.

e The second part is built of parallel branches which use the latent state representation as inputs.
Each branch corresponds to a and allows selecting a for the corresponding [RBl

The producing a shared representation is an [EQT] because we have previously identified that it
possesses the three properties described in Section [1.4.2} [NLI, [PEl and [GBMl The resulting architecture
is called [EOTHAB

The solution is evaluated using Nokia's environment that is available online [6] and

which implements a simplified version of the bGl downlink scheduling mechanism.

The main contributions of this chapter are:

1. The proposal of a[GRSHDRL] solution, based on an architecture, and using an [EQT] for the first
[DNNI

2. The development of a masking procedure adapted to the architecture.

3. The performance evaluation and comparison of the proposed architecture, along with three heuris-
tics implemented, in the environment.

The rest of this chapter is organized as follows. Section formulates the scheduling problem as

an [MDPl Section describes the proposed solution. Section presents the training and evaluation
setup, in particular the environment and the proposed adaptations. Section provides numerical
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results and analyses them. Section [3.6] concludes the chapter.

3.2 Problem formulation

The I[GRS| approach can be still cast into a [MDP| where the state space, the action space and the reward
as described below.

3.2.1 State spaces

The features related to buffer i for RBl j at time slot % is denoted by the vector ffk of dimensions

Nfeatures X 1. Then the state s{% of all the buffers for RBl j during time slot k is denoted by the
Nfeatures X nNLNQos matrix:

(3.1)

Since we propose an allocation for all the for the approach, the input state s; provided to
the DNNI corresponds to j = 1, i.e.:

Jo.__ [f] J
s, 1= [f07k, . 7fnLnQoS*1yk]'

Sk = Sj.. (3.2)

3.2.2 Action space
For the [GRSH approach, the joint allocation is written as:

ay = (i,ﬁ, . szf> , (3.3)

where z’i corresponds to the buffer to be scheduled during the jth of slot k. It is worth noting that
the resulting action space has a dimension of (nLnQos)Nf. For instance, if Ny = 25 and npnqes = 32,
we obtain (npnqes)™ > 10%, illustrating the curse of dimensionality discussed previously, and thus
justifying the need for the [AB| architecture to mitigate it.

3.2.3 Reward
In the [GRS] approach, a single reward 7y, is received after all N; [RBk are allocated.

3.3 Problem solution

We first expose in what follows the proposed [DNNI architecture, and then detail the implementation of
the masking mechanism.

3.3.1 Deep neural network architecture

The proposed architecture follows the architecture philosophy as described in Section along
with the use of an [EOTIDNN] referred to as EOTHAB] and is illustrated in Figure 3.1] First, the state
space, s, undergoes a linear embedding using the d. X Ngeatures Matrix W,. The result of this embedding is

S, := W,sy, —i—belanQos, with dimensions d. X nynq.s, where b, is an additional bias vector of dimension
d,x1and 17 is a vector of one of dimension nynqes X 1. Next, Sy is processed by an [EOT] module.

NLNQoS
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The output of the EQT]is a d. x n;, matrix, denoted by 0g. To integrate the sequence of an [EQT| with
the architecture, we propose to distribute the latent representation of the state across each branch.
For the jth branch, the projection into advantages is performed by the 1 x d, vector w’, with the output
denoted as: a; := wlop + b{tlgLnQos, which has dimensions 1 x nynqges. b is the additional bias,
which is here a scalar, on the jth branch. The ith entry of o represents the advantage function of
action 7 for [RBl j. Additionally, following [77], dueling is applied to estimate the value function. Here,
op is multiplied by a 1 x d, vector, g and a vector blanQos corresponding to the bias is added, yielding
a 1 X npnqoes vector v, where the ith entry of v represents the estimated state value of the ith buffer.
This vector v is then added on each branch j to produce the vector Q;, where each entry is an estimate
of the ()-value for each action. To prevent suboptimal decisions due to selection of an empty buffer,
action masking [75] is applied on each branch. Section provides the detailed implementation of the
mask. Finally, the action a{; is selected by taking the arg max on the masked vector @;. As highlighted

in gray in Figure , W,, [EQOT], w’, and g are learned during the training phase.

—_—

— A

Argmax

Mask m°
A

a;y Q,

— Qg

Argmax

2 2
wj, by

Mask m?!

g

u’-u

Figure 3.1: EOT-AB architecture combining an EOT and an AB structure. Gray blocks are learned.

Table details the complexity of the proposed architecture.
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Table 3.1: Number of FLOPs of the proposed architecture, EOT-AB.

Operation H Number of FLOPs
Embedding W, 2 X de X Nfeatures X MLNQoS
EOT (from Table ’ 2nQosnL (d;(llde + 2nLnQoS + Qdmlp + 9) + 2HnLnQoS)
—(nrnQos)” — NLNQosde
Dueling 2 X de X nNQos
Projection into advantages 2 X Ny X de X npnqos
Q-values (advantage plus value) || nznqgos X Ny
Total NLNQoS [Qde (nfeatures + 4d, + 2ny, + 2dm1p + 10+ Nf) + 4HnLnQoS]
—(nLnQos)? — nLNQosde

3.3.2 Action masking procedure

The action masking procedure [75] aims to prevent the selection of "invalid" actions, i.e. actions that
are not possible or allowed. In [75], authors:

1. Theoretically validate this approach.

2. Demonstrate that action masking improves training convergence and inference performance com-

pared to more conventional methods, such as invalid action penalty that consists into attributing
a bad reward to invalid action.
In the scheduling problem, there is no invalid actions, but rather suboptimal ones when an empty buffer
is selected. Here, we propose using action masking for empty buffers.

Once the actions a;, have been determined, the [RBk are filled with the bits taken from the selected
buffers. Note that during this process, no new bit arrives, the buffer contents evolve only due to bits
extraction. The are filled sequentially, and for each [RBl the bits are extracted from the buffer
(the selection order of the is not significant). As a result, a buffer may be selected multiple times,
reflected by multiple occurrences of the same index in ay.

Two situations can lead to the selection of an empty buffer:

1. The first time a buffer is selected when it is already empty.

2. A buffer is selected multiple times, eventually emptying the buffer.

Therefore, we need to track each buffer's status (empty or not) after each allocation, and, when an
empty buffer is detected, set its mask to empty. To do that, knowing the channel quality, with the [CQ]|
for instance, and therefore the quantity of data bits that can be transmitted per [RBl and the quantity of
packets in the buffer, it is possible to determine the number of [RBE, 2}, required to empty the buffer 1.
At each [RBl allocation, the remaining number of [RBk required to empty the buffer is updated as follows:

z = 3.4
' 1, otherwise. (34)

j {zf_l — 1, if buffer ¢ is selected
jf
<

The mask m? ™" associated with buffer i for the jth is:

: 1, ifz/ >0
m‘?_l = A . (35)
0, otherwise.

The mask vector used for the jth [RBlis denoted as m/~' = [mj, ', ... ,mf;,lmos_l]. This sequential

adaptive masking procedure, to the best of our knowledge, is not covered in the literature and is illustrated
in Figure [3.7].
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In this figure, the [RB are selected sequentially from [RBl#1 to [RBl # N, (top to bottom). The initial
mask, m’, is set based on the buffer statuses at the beginning of the slot. For #1, the buffer aj.
is selected among the non-empty buffers, thanks to the mask m®, which is applied to the Q-values in
Q,. After bits are extracted from buffer a;,, we update the mask if the buffer becomes empty. This
corresponds to the curved arrow pointing from a}.. We then update the mask, resulting into m?, apply
m! to the second branch, and repeat the process until the last branch.

3.4 Performance evaluation

We implement our architecture within the Nokia's environment that is suited for [RL algorithms
evaluation since its implementation follows the conventional state, action, reward of the RL scheme [80].
We focus in this chapter on the TimeFreqResourceAllocation-v0 (TERA) challenge presented in [6], and
referred to as WSHTFRAIin the sequel. In the following sections, we describe the environment
and the corresponding communication model, followed by the implemented [RL] model.

3.4.1 Wireless Suite environment

implements a [BS] designed to send traffic to ny, [UEk, which are uniformly distributed within
a 1000-meter square around it. The [BS transmits with effective isotropic radiated power ([EIRP]) P (in
dB), using carrier frequency f.. The total bandwidth T is divided into Ny [RBs, which are allocated
by the scheduler to at each slot. The move according to a random walk at constant speeds,
which is independently sampled from a normal distribution, with mean 1.36 and standard deviation 0.19
in meter per second [81]. Free space propagation is assumed along with shadowing. The communication
model is detailed in Section 3.4.2

The data to be scheduled to the different are stored in finite length buffers at the[BS] each
buffer containing at most B packets.

There are two kinds of [QoY classes: and non{GBR| and four types of traffic: voice, video,
delay-critical, and web, each with a specific [QoS| Voice, video, and delay-critical are [GBR], while web is
non{GBRI Let us note nqo.s the number of services and Q := {1,...,nqes}. In the framework, we
have nq.s = 4 and the mapping between ¢ € Q, services and class is given in Table 3.2

Table 3.2: Mapping between ¢, services and QoS class.

H Service \ class
Voice [GBRI
Video IGBR

Delay-critical IGBR
Web non4GBR

=W N R

ensures that the traffic types are equally represented, which requires that the number of
is a multiple integer of four, i.e. n;, = 4p, with p € N*. In the following, our developments are
presented in a more general manner for possible future extensions keeping the constraint n; = pnqos.
The traffic characteristics are defined by the inter-arrival time 7,, i.e. the time between the arrival of two
consecutive packets in the buffer, and the incoming packet size B,, where ¢ € Q.

The scheduling sequence is depicted as follows. At each slot &, the scheduler selects the different
to be served on the Ny of the slot. To do so, the BS selects one [UE| per [RB], with the possibility
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of allocating multiple to the same[UEl The number of bits delivered by the BS| to each selected
depends on the [CQI| index necQI € {0,...,ncq} with ncq = 15, where 0 represents the worst channel
quality, and 15 represents the best. Depending on the number of allocated [RBE, the [CQI| and the packet
sizes, a packet may not be completely transmitted, resulting in partial packet transmission. The age of
a packet continues to increase as long as it is not fully transmitted. Once the bits have been extracted
from the buffers, the age of the packets is incremented.

Remark: unlike in Chapter[2 the packets exceeding the packet delay budget (PDB)) are not discarded.
New packets arrive in the buffers according to 7,, and B,,, which depends on the traffic type of [UEl /. If
a new packet arrives while the corresponding buffer is full, a occurs, and the packet is lost. Finally,
the [UEk move, and the sequence is repeated at each slot.

Notice that in this chapter:

e A packet may not be completely transmitted in one slot, resulting in partial packet transmission,

whereas in Chapter 2] the packets are always transmitted in one slot.
e The \WT] of the packets continues to increase even if it exceeds their (corresponding to the
[DC), while in Chapter , these packets are deleted.

e The channel quality changes at each slot as users travel and shadowing is considered, whereas in
Chapter [2] it is fixed.

e Packets arrive individually, with each arrival depends on an inter-arrival time in slot, whereas in
Chapter [2 multiple packets may arrive simultaneously, according to a Poisson distribution.

3.4.2 Communication model

Let d, represent the distance between ¢ and the BSl assumes free-space propagation and
implements the path loss for [UE| ¢ in dB as:

A7s
PL, := 20log,, < T ZW) + (3.6)
&

where ¢ is the speed of light in vacuum and v, corresponds to the shadowing, which is modeled as a
gaussian random variable with zero mean and standard deviation o which is set to 6 dB in WSl
The received power at [UE ¢ in dB is:

P> =P —PL,. (3.7)
The instantaneous signal-to-interference-plus-noise ratio (SINR)) at [UEl ¢ is computed as:
Rx
1071

ry=——-:,
‘ Ny + 1

(3.8)
where Ny, represents the constant thermal noise, set to 2 x 107!, and I is a constant interference term,
105
set to 10~ 10 .
The spectral efficiency for k is determined as:

r
SE, = log, <1+ £ ) (3.9)

1_‘map

where I',,;, is a mapping coefficient from [SINRI to spectral efficiency, as defined in [82].
Finally, the [CQI is determined using the look-up table (LUTI) provided in [83, Table 5.2.2.1-2] and
drives the number of bits that are extracted from the buffers.
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3.4.3 State spaces and reward of WS-TFRA and proposed adaptations

In this section, we describe the state and reward used in our architecture, which are derived from those of
WSHTFERAL Several adaptations are required to convert the outputs of WSHTFRAI to fit our architecture:

e Going from sequential to joint [RB] allocation.

e Adapting the state vector format to the format.

Next, for the state and reward, we first review the outputs of WWSHTERA| followed by a description
of the proposed adaptations.

3.4.3.1 State spaces

State space from WS-TFRA. The state space implemented in is the concatenation of the
features related to each buffer and the index in the slot. The features related to buffer ¢ for [RB j
during time slot k is denoted by f/, and is defined as the vector of dimensions (25 + nqes + 1) x 1:

£/, = by, de,ng¥ 1], (3.10)

where by := [by,...,bpe] and d; := [dy 4, ..., dp,| are the vectors containing the number of bits and
the WT] of each packet, respectively (the indexes of the slot and the are omitted), nECQI is the [CQI|
and hy is the one-hot encoded vector of the [QoS] where all entries equal to zero except the gsth entry,
which is equal to one, ¢, € Q. The resulting state provided by the at[RBl j of slot k can thus
be written as the (n; (2B + nqes + 1) + 1) x 1 vector:

j i T ; /A
Sgc,WS = [fg,k ) >f7JLL71,k 7]]T' (311)

Naive adaptation. Since we propose a joint [UE| allocation for all the [RBk in the slot, we only need the
state at the beginning of the slot, and the index is thus useless in the state. Moreover, we propose
an architecture that can handle a variable number of [UEk that takes as an input a stacked version of the
buffer information. The state space is therefore adapted as follows:

e
f[,k T

(3.12)

T
bg dg n?QI h
By Dy’ 15 7 °|

In (3.12)), the data pertaining to the different types of traffic are normalized, by B, s, for the number of
bits of the different packets and by D,, for the PDB], according to their type of traffic and the [CQ]] nEQI
is normalized by its maximum value 15. It is worth noting that the values of d;/D,, may exceed 1 if the
according packets exceed their since they are not deleted. Then, the whole state is the matrix of

dimension (2B + nqos + 1) x ng:

Sk, Naive -— [f.&,kv e 7f71LL71,k‘}' (313)

The resulting scheduler is denoted by EOTHABIN (EOT-AB-Naive).
Proposed adaptation. In the naive adaptation, an entry in (3.12)) can correspond to different traffic
types, while the [DNN] applies the same weight to this entry regardless of the traffic type. As a result,

the network must rely heavily on the one-hot encoded vector h, to differentiate between traffic types.
To address this issue, we propose an alternative adaptation of the state space.
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To allow the architecture to better distinguish the different traffic types, we propose a new state space
by shifting traffic features in a larger dimension according to the traffic type by applying a Kronecker
product between the one-hot vector h, and the normalized features, except the [CQl| that is common to
all services. The resulting state space can be written as a vector of dimensions (2Bngq.s + 1) x 1:

T
bg dg :| HZCQI]

fl,pr0p _
ek D
Btﬂath q¢ 15

(3.14)

ho |

where ® represents the Kronecker product. For instance, with the four types of traffic of the

environment, ([3.14) yields:

( b d nSU T .
B, &, 0,0, T, if hy = [1,0,0,0]
3%x2B times o0
I
b d n T . _
1 [0, 30, 2, 0,0, )T, if hy = [0,1,0,0)
,prop __ 1x2B times 2X2B times
T L0 0L e oo N e~ 00,10 (319)
[ [ ’83,th7D_3’ P 71_5]7 I E_[a ) 7]
2X2B times 1>é2QB times
I
b d, 7 T H _
(0,0, 2, & 2T, if hy = [0,0,0, 1].
\ 3x2B times

In the proposed architecture described in Section [3.3} the features from the various buffers are pro-
jected linearly using a weight matrix W,. Since the offset depends on the traffic type, only a specific parts
of W, is dedicated to a specific type of traffic, allowing the [EOT] to apply distinct weights accordingly.
Indeed, for a given type of traffic ¢ € Q, only the columns of W, from 2B(q— 1)+ 1 to 2¢B and the last
one (for the [CQI)) are used. Unlike the other features, the [CQI|is not shifted, as it consistently represents
the same amount of bits that can be transmitted, regardless of the [QoS]

Subsequently, the overall state of the network sj p,op, is defined by staking the state of all the buffers
defined in (3.14)), which is a matrix with dimensions (2Bnq.s + 1) X np:

Skprop = (B £ (3.16)

The resulting scheduler is denoted by EOTHABIP (EOT-AB-Proposed).

3.4.3.2 Reward
The reward implemented in is given by:
Tkws = —Ndk — Tk, (3.17)

where n4; and ny; denote the total number of bits subject to in the buffers and the number of bits
in the non{GBRI buffers, respectively, during the frame duration. The reward is computed after the

allocation and before new packets arrive. The objective of this reward is thus to minimize the number
of bits present in the nond{GBRI buffers and the number of bits exceeding the [PDB] for both [GBRI and
non{GBR] ones.

Proposed adaptation. For the approach, we propose to use the reward (3.17]), mapped to the
range [0, 1] using the exponential function:

T’kﬂ = exp (Tk,WS) . (318)
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3.4.4 Heuristics used in wireless suite

We use three heuristics from the environment as baselines for comparing the proposed sched-
ulers. Notice that the heuristics work in an fashion, i.e., the state of the selected buffer for each
[RBl is updated when it is chosen, while the \WT] of the packets in the different buffers remains constant
within the frame duration.

Remark: In this section, to simplify the notation, the index k denotes the current combination of
slot and [RB], instead of using separate indices for slots and [RBE.

3.4.4.1 Proportional fair

The implemented expression of the [PE| algorithm differs from that of [20], as it accounts for the [Holl
and the buffer load, but not for the average achieved rate. This expression of [PE| uses the spectral
efficiency, which can be determined thanks to the [CQI| and tables of conversion [83]. Because the
spectral efficiency is directly related to capacity, we continue to use the notation ¢, to denote spectral
efficiency, rather than the transmission rate as in the previous chapters. The used [PFl algorithm is named
proportionalFairChannelAware in WS| and its expression is:

1+d
—|-D 0,0,k be ke (3.19)

qe
where by, is the total number of bits in buffer of [UE| ¢ at time k.

hpr (Xz,k) =

3.4.4.2 Knapsack

The [KP] from the environment [6] is defined as the weighted sum of hyperbolic tangents. Its
expression is given by (1.23)), with a; = 1 for j € 1,2,3, 4.

First, the expression in remains unchanged.

Second, since no [PLR| targets are defined for the different traffic types, and because it may represent
a channel metric as discussed in Section [1.3.7] is adapted using the [CQI| normalized by 15, the

maximum [CQI| value:
cQl

va(xes) = 2K (3.20)
’ 15
Third, since bearer priority is not considered, a measure of allocation fairness is used instead, following
the [KP] expression in [6]. Accordingly, is adapted as:
1

1+ zop

U3(Xg,k) S (321)
where z; . is the number of times that ¢ is selected since the beginning of the simulation until .
Finally, (1.27)) takes into account a quantity of data in the buffer. It is adapted in [6] as follows:

bi

i) = 3.22

e (3.22)

where by, is the total number of bits in buffer of [UEl ¢ at k, by, is the sliding window average number

of bits in buffer of UEl ¢ and 2z is the number of times that the buffer ( is selected since the beginning

of the simulation until k. Variable b, is computed as follows:

B {( - 7_]V—f)5g’k_1 + be’k_ljv—f if £ mod Twin 7é 0
f,k’ — win win

| | (3.23)
0 if Kk mod Ty, =0
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where 7y, = 15N} [6].

3.4.4.3 Bosch agent

The Bosch agent (BA]) was specifically designed for the WSHTFRAI environment and is therefore not
presented in Section [1.3] It was introduced in [84], with the following expression:

4
hea(Xek) =) av;(Xex), (3.24)
j=1

where «;, with j € {1,2,3,4}, are the weights of the different features, determined by the optimization
methods of [84], v1, v2 and v3 are given by (1.24)), (3.20) and (3.21) respectively and:

U4(Xg k) = bf,k
’ BBiax’
where Byax = max, By, is the maximum number of bits per packet.
Remark: prioritizes buffers with more packets, such as ([3.22]).
According to the value of «; in [6], the BAl gives more importance to the number of bits in the buffers
and to the[CQIl In contrast, the \WT] and the fairness are less important according to their weights. As a
result, it may prioritize non{GBR) buffers and those with favorable channel conditions, potentially at the
expense of [GBRI buffers whose WT] values are approaching D, .

(3.25)

3.4.5 Communication setup

We use the default parameters of the WSHTERAL a bandwidth of W = 5 MHz, N; = 25 [RBk, and
B = 8. The parameters of the four types of traffic and parameter D, are reported in Table [3.3
For traffic, both b, and 7, are fixed, while for the non{GBR traffic, they are drawn according to
a geometric distribution G. The probability mass function of the geometric distribution G, with
mean % where % €,1]0, 1], is defined as:

1\ 11
P(X =k)= (1——) -, for £=1,2,3,..., (3.26)
p p
and,
1
b4 = min (max (1, g <m)) 7Bth> y (327)
G (%) (3.28)

with By, = 41250 and 8 = 10, the default parameters in WSHTFRAL

Table 3.3: QoS and traffic parameters.

Service H [QoS] class \ q \ D, \ by \ Ty
Voice GBRI 1| 100 584 20
Video GBR 2| 150 41250 33
Delay-critical IGBR 31 30 200 20
Web non{GBRI | 4 | 300 | Eq. (3.27) | Eq. (3.28)
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Table [3.4] details the training parameters of both [EOTHABL
An e-greedy approach is used where the exploration parameter ¢ is set to €. = 1 at the beginning
of the training and decayed by a factor €gecay at each episode until reaching the value €4, = 0.01.

Table 3.4: Training parameters.

Parameter Value
K 1000
P 13 dBm
System model parameters Jearrier 2655 MHz
w 5 MHz
Ny 25
B 8
Both EOT-AB Number of transformer layer 1
Number of heads 4
v 0.99
Learning rate 5x 107*
Batch size 64
DQL parameters Edecay 0.99
Number of training episodes 2000
Number of steps per episodes | [65536/25] = 2622
Target network update period 20

3.4.6 Training and inference setup

The proposed scheduler is trained over 2000 episodes of 65 536 [RBk (default value of the environment for
one episode), which corresponds to 2622 steps, with a fixed 5 = 10. During the training, the number of
[UEk varies between each episode, with n;, € N := {32,36,40}. Our objective is to train a single DNN]
achieving good performance across different values of n;, avoiding the need to implement a dedicated

[DNN] for each possible n;,.

For the inferences, 1000 episodes are performed for each n; € N, for each scheduler. Each episode
consists on K = 2622 steps of 25 [RBE.

Two kinds of inference are performed:

1. With the training setup, i.e. with 8 = 10 (all the environment parameters are the same).

2. With different values of 3 to evaluate the generalization capabilities of the EOTHAB}P.

We compare the different state spaces with three of the implemented heuristics in WSl the [PE| [BAI
and [KP] such as described in Section [3.4.4]

3.4.7 Performance metrics

We compare the solutions in terms of the following performance metrics, collected at the end of the
inference episodes:
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The average cumulative WSl's reward, which is defined as:

1 K
R=— - . 3.29
(K + 1)N; = kWS (3.29)

The number of packets exceeding their [PDEBI

The number of packets lost due to [BOl

The time spent by a packet in the buffer between arrival and departure in slot, referred to as
in the sequel.

Since the age of a packet is determined by the age of the last transmitted bit:

e A packet is said to exceed its [PDBl as soon as, at least one bit of the packet exceeds the [PDBI

e The[PDlis evaluated as the number of slots between the arrival of the packet in the buffer and the
departure of the last bit of this packet from the buffer.

3.5 Performance analysis

This section is dedicated to the performance evaluation of both along with various other
schedulers outlined in Section that are already integrated into the environment. We
remind that the different heuristics follows the approach. Notice that the less effective heuristics
present in the environment are not included in this analysis.

We select the best values of d, (assuming dpy, = d.) for the two state spaces. Table reports the
best values, noted d,.

Table 3.5] gives the number of [ELOPS of the different architectures for ny, € {32, 36,40}, using the
expression of Table 3.1 for both [EOTHABL

Table shows that the proposed architecture (EOTHABIP) is about ten times less complex than
the EOTHABEN since the latter requires a higher-dimensional input.

Table 3.5: Number of FLOPs of the different architecture with H = 4 heads for MHA and to allocate
Ny =25 RBs.

Nfeatures de nrp = 32 ng = 36 ny = 40
EOT-AB-P 65 64 2254937 | 2575385 | 2904409
EOT-AB-N 21 256 || 27136281 | 30677465 | 34251801

3.5.1 Inference performance on the training setup

In this section, we set as during the training 5 = 10, and we evaluate the inference performance of the
learned for n;, € \.

Table provides the average cumulative rewards, defined in (3.29), obtained by the different
schedulers. The median, the standard deviation, the mean value, the minimum and the maximum of the
reward obtained during the 1000 episodes are detailed in Tables [3.6a] [3.6b| and [3.6d for 32, 36 and 40
[UEs respectively. One can observe that:

e Both [EQOTHABI provide the best reward. The mean reward of both [EOTHAB]I are at least twice

better than the one of the other heuristics.

e The proposed architecture achieves a standard deviation twice less than the one of the other

methods.
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e Both [EQTHAR]I achieve a minimum for 32 that is superior to the maximum of the [PE| for the
same number of [UEk. In general, the minimum of the [EQOTHAB]I is approximately twice less than
the minimum of the other methods.

e Concerning the maximum, both [EOTHABI are approximately four times better than the other
methods.

These results show that the [EOQ THABI architecture learns a policy that is more efficient than the heuristics
in terms of the implemented reward.

Table 3.6: Reward for the different methods.

(a) Reward for the different methods for 32 UEs.

Method H median ‘ mean ‘ std H min ‘ max
PF —1797 | —1814 | 243 || —2852 | —1057
Bosch —1512 | —1522 | 226 || —2414 | —754

Knapsack —1412 | —1427 | 224 || —2362 | —773
EOT-AB-P || —446 | —457 | 98 | —870 | —162
EOT-AB-N || —432 | —441 | 94 || —852 | —162

(b) Reward for the different methods for 36 UEs.

Method H median ‘ mean ‘ std H min ‘ max
PF —2829 | —2886 | 451 —4761 | —1640
Bosch —2195 | —2228 | 366 || —3650 | —1198

Knapsack —2378 | —2427 | 449 || —4297 | —1323
EOT-AB-P —722 | =747 | 209 || —1692 | —284
EOT-AB-N —666 | —697 | 195 || —1574 | —280

(c) Reward for the different methods for 40 UEs.

Method H median ‘ mean ‘ std H min ‘ max
PF —5032 | —5209 | 1106 || —10596 | —2649
Bosch —3709 | —3916 | 1051 || —11888 | —1723

Knapsack —4837 | —5073 | 1343 || —13009 | —2041
EOT-AB-P || —1788 | —1899 | 689 || —5513 | —400
EOT-AB-N | —1516 | —1815 | 2326 || —51588 | —317

Table compares the number of packets lost due to buffer overflow and violations for ny, €
{32,36,40} [UEk. [PEl and [BAl show substantial degradation, particularly at higher loads. In contrast,
[EQOTHABLIP and [EQTHABIN achieve significantly lower packet loss. Notably, EQOTHABIP achieves zero
loss at 32 [UEk and remains below 50 lost packets even at 40 [UEs. [EQTHABIN shows similar trends, with
an increase to 6983 packets at the highest load, still below the baseline methods, except [KPl
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Table 3.7: Number of lost packets due to BO and exceeding the PDB for 32, 36 et 40 UEs.
H 32 UEs \ 36 UEs \ 40 UEs

PF 1813 | 18650 | 143048
Bosch 19751 | 90955 | 493521
KP 3 ) 200
EOT-AB-P 0 3 42
EOT-AB-N 0 2 6983

It is important to distinguish and analyze packet losses due to and [PDBlviolations, as they reflect
different network limitations (congestion handling and delay compliance) that directly impact [QoS|in [5Gl

Table provides the number of packets lost due to BOIwrfl ;. The [BAlhas the worst performance
in terms of BOl The [PFl loses few packets due to BOl The [KPl loses more packets due to than
the proposed solution. [EQTHABIP achieves the best performance in terms of BOl In contrast, while
[EQOTHABIN performs well for scenarios with 32 and 36 [UES, its performance significantly degrades for
40 [UEk, with a loss exceeding 4000 in BOl All the packets lost by the [KPlis due to [BQl

Table 3.8: Number of lost packets due to BO for 32, 36 et 40 UEs.
| 32 UEs | 36 UEs | 40 UEs

PF 0 0 9
Bosch 0 275 | 50796
KP 3 5 200
EOT-AB-P 0 0 0
EOT-AB-N 0 2 4107

Table [3.9] provides the number of packets exceeding the PDBl The [BA| has the worst performance in
terms of both and violations. The [PH loses few packets due to but thousands exceed the
[PDBI and thus does not satisfy well the [QoS| The [KP| has no packet exceeding the PDBl The proposed
approach yields the best performance in terms of BOl and is very close to the [KPl which has no packet

lost in terms of [PDB] violation, outperforming the [PE| and [KPl

Table 3.9: Number of transmitted packets exceeding the PDB for 32, 36 et 40 UEs.
| 32 UEs | 36 UEs | 40 UEs

PF 1816 | 18650 | 143039
Bosch 19751 | 90680 | 442725
KP 0 0 0
EOT-AB-P 0 3 42
EOT-AB-N 0 0 2876

We analyse in what follows the number of packets lost due to BO for each traffic type. Table [3.10
details the number of packets lost due to for each traffic type with the different values of n ;.
e Table[3.10a provides results with 32[UEs. One can observe that nearly all algorithms maintain zero
packet loss across all traffic types.
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e Table provides results with 36 [UEs. [BAl begins to show losses for voice and delay-critical
traffic, algorithms such as [PE, [KP, and both variants still maintain a near loss-free
operation.

e Table provides results with 40 [UEk. One can observe that only EOTHABLIP continues to
have zero loss across all traffic types. [BAl suffers from considerable losses, particularly in voice and
delay-critical traffic. EOTHABIN obtains few losses for traffic at the cost of the web traffic.

e One can remark that the [KP]loses packets only for web traffic, whatever the number of tested [UEL

Table 3.10: Number of packets lost due to BO for each traffic for 32, 36 et 40 UEs.

(a) 32 UEs.
H Voice ‘ Video ‘ Delay-critical ‘ Web
PF 0 0 0 0
Bosch 0 0 0 0
KP 0 0 0 3
EOT-AB-P 0 0 0 0
EOT-AB-N 0 0 0 0
(b) 36 UEs.
H Voice ‘ Video ‘ Delay-critical ‘ Web
PF 0 0 0 0
Bosch 248 0 27 0
KP 0 0 0 D
EOT-AB-P 0 0 0 0
EOT-AB-N 0 0 0 2
(c) 40 UEs.
H Voice ‘ Video ‘ Delay-critical ‘ Web
PF 1 0 0 8
Bosch 37182 0 13522 92
KP 0 0 0| 200
EOT-AB-P 0 0 0 0
EOT-AB-N 40 104 0 | 3963

In Table[3.11] the number of packets exceeding the [PDBI for each traffic as well as the corresponding
proportion, i.e. the number of transmitted packets exceeding the [PDBl over the total number of trans-
mitted packets for the corresponding traffic, are provided for 32, 36 and 40 in Tables[3.114]
and respectively. One can observe that:

e All schedulers have no packets exceeding the for all the tested number of [UEk for video and

web traffic, except the [EQTHABIN for 40 [UEk.

e The[PE exceeds the [PDB] principally for the delay-critical traffic. It also exceeds the [PDBI for voice

traffic with 40 [UEk.

e The BAlis the worst one in terms of number of packets exceeding the [PDB
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e The EQOTHABLIP has packets exceeding the for voice and delay-critical traffic for 36 and 40
[UES.
e As seen in Table [3.9] the [KPl has no packets exceeding the whatever the traffic.
The BGl specifications [38, Section 5.7.3.4] states that 98% of the packets from the traffic shall
not experience a delay exceeding its PDBl Therefore, only the [KPl and EQTHAB] respects this for
all the tested number of [UEE.

Table 3.11: Number of transmitted packets exceeding the PDB for each traffic for 32, 36 et 40 UE.

(a) 32 UEs.
H Voice ‘ Video ‘ Delay-critical ‘ Web
Count Prop. | Count | Prop. | Count Prop. | Count | Prop.
PF 0 0 0 0 1816 | 1.7 x 1073 0 0
Bosch 44 | 4.2 x 107° 0 019707 | 1.9 x 1072 0 0
KP 0 0 0 0 0 0 0 0
EOT-AB-P 0 0 0 0 0 0 0 0
EOT-AB-N 0 0 0 0 0 0 0 0
(b) 36 UEs.
H Voice ‘ Video ‘ Delay-critical ‘ Web
Count Prop. | Count | Prop. | Count Prop. | Count | Prop.
PF 0 0 0 0| 18650 | 1.6 x 1072 0 0
Bosch 3268 | 2.8 x 1073 0 087412 | 7.4 x 1072 0 0
KP 0 0 0 0 0 0 0 0
EOT-AB-P 2| 1.7x107° 0 0 1[85x%x10°7 0 0
EOT-AB-N 0 0 0 0 0 0 0 0
(c) 40 UEs.
H Voice ‘ Video ‘ Delay-critical ‘ Web
Count Prop. | Count Prop. Count Prop. | Count Prop.
PF 1029 | 8x 1074 0 0| 142010 | 1.1 x 1071 0 0
Bosch 94109 | 7.5 x 102 0 0 | 348616 | 2.7 x 1071 0 0
KP 0 0 0 0 0 0 0 0
EOT-AB-P 11 | 8.4x107° 0 0 31| 24x107° 0 0
EOT-AB-N 148 [ 1.1 x 1071 | 1595 | 2.0 x 1073 915 | 7.0 x 10~* 218 [ 8.3 x 107°

The is measured for each transmitted packets during all the inference episodes. Figures (3.2
and depict the histograms and the cumulative distribution function (cdfl) respectively of the for
the voice, delay-critical, video and web traffic, for [KP] and both with 32 [UEk. The red line
represents the and thus the bars at the right of this line represent the packets exceeding their PDB|
The histograms are plotted in the log,, scale because of the high dynamic range of the [PDlvalues. The
other heuristics are not displayed since they yield significantly worse performance.
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Figure 3.2: Histograms of the packet delays for 32 UEs.
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Figure 3.3: CDF of the packet delays for 32 UEs.

One can observe that:

1. The EQOTHABLIP spreads more the packet transmissions for voice and delay-critical traffic than the
[KPl and tends to serve the web packets faster. This behavior can be explained by the reward
expression ([3.18]), which encourages the scheduler to prioritize nondGBRI buffers by penalizing any
residual bits left in them.

. The majority of the packets for voice and delay-critical traffic are sent within few slots for both
[KP] and EQOTHABLIN. The voice and delay-critical packets are short and thus can be transmitted
within few [RBk.

. To send more than 80% of video packets, both schedulers needs at least 15 slots. This can be
explain by the size of the video packets which are more than 20 times larger than the delay-critical
packets. Therefore they need more [RBk to be fully sent, leading to larger transmission delay.

. Concerning the web traffic, both EOTHABI send 90% of packets within less than 5 slots whereas the
[KPl scheduler needs more than 10 slots for the same proportion. For the same number of slots, the
[KPl sends 50% of the packets. This can be explained by the reward formulation that encourages
both to serve the non{GBRI buffers.

Figures. and depict the histograms and the lcdf] respectively of the for the voice, delay-

critical, video and web traffic, for [KPl and both [EOTHABI for a scenario with 36 [UEk.
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(d) Web.

(c) Video.

Figure 3.4: Histograms of the packet delays for 36 UEs.
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Figure 3.5: CDF of the packet delays for 36 UEs.

The same observations can be made as for 32 [UEk, with the following differences:

1. The [EQTHABIP spreads more the transmission of packets for voice and delay-critical traffic than
the [KPl and [EQTHABIN. However, this time, the EQTHABIP has packets exceeding the for
these two traffic types.

2. The EQTHABIP sends 90% of web packets within 5 slots whereas the [KP] does it within 15 slots.

Figures. and depict the histograms and the lcdf] respectively of the for the voice, delay-

critical, video and web traffic, for [KP| and both EQTHAB] for a scenario with 40 [UEk.
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Figure 3.7: CDF of the packet delays for 40 UEs.

The same observations can be made as for 32 and 36 [UEk, with the following differences:
1. The EQOTHABI spreads more the for video traffic compared to 32 and 36 [UEk. The maximum

has doubled.
2. The EQTHABI sends 90% of web packets within 10 slots whereas the [KP] does it within 25 slots.

Synthesis of the inference on the training setup. We have observed through simulations that the
proposed solution outperforms heuristic schedulers in terms of reward and achieves lower total packet loss.
Additionally, it enhances for nondGBRI traffic at the cost of a degradation of those of delay-critical

IGBRI and voice traffic, due to the reward formulation (3.18)).
Furthermore, we have shown that the chosen state representation improves both generalization and

computational efficiency compared to the "naive” representation described in ([3.12]).
We will focus in the next section on the[EOTHABLIP architecture using the state representation defined

in (3.14).
3.5.2 On the importance of the mask for the proposed architecture

The training and inference in Section were performed using adaptive action masking. In this section,
we assess the benefits of adaptive masking during the inference phase by comparing performance with
and without adaptive action masking.
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The number (resp. the proportion of packets) exceeding the for each traffic obtained during
the inference of the EOTHABHIP with and without mask is reported in Table [3.12a] (resp. [3.12b)).

One can remark that, without the action masking, there is a lot of packets exceeding the for
all the traffic. No packets have exceeded the [PDB for the web traffic. This can be explained by
the reward that encourages the agent to serve the non{GBRI traffic and by the [PDB]I of this traffic which
is much larger than the other PDB]

Table 3.12: Number of packets exceeding the PDB for the EOT-AB-P with and without mask.

(a) Number of packets.
| 32 UEs | 36 UEs | 40 UEs

Voice without mask 5398 | 120276 | 357499
with mask 0 2 11
Video without mask 8762 | 56768 | 116794
with mask 0 0 0
Delay-critical without mask || 45359 | 249102 | 231963
with mask 0 1 31
Web without mask 10 0 0
with mask 0 0 0
Total without mask 590529 | 426146 | 706 256
with mask 0 3 42
(b) Proportion of packets.
| 32UEs | 36 UEs | 40 UEs
Voice without mask 51 x 1072 [ 1.0 x 1071 | 2.7 x 107!
with mask 01.7x107% | 84 x 1076
Video without mask 14x1072 | 79x 1072 | 1.5 x 107!
with mask 0 0 0
Delay-critical without mask || 4.3 x 1072 | 2.1 x 107! | 1.8 x 107!
with mask 0[85x1077|24x107°
Web without mask 4.8 x 107° 0 0
with mask 0 0 0
Total without mask 1.2x1072 | 7.8 x 1072 | 1.2 x 10~*
with mask 055x1077|6.9x 1076

Table [3.13] shows the number of packets packets lost due to BOl Even if the number of packets
exceeding the for the delay critical is important, the trained EOTHABIP does not loss packets for

this due to BQI
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Table 3.13: Number of lost packet due to BO for the EOT-AB with and without mask.
H 32 UEs \ 36 UEs \ 40 UEs

Voice without mask 1277 | 50448 | 229758
with mask 0 0 0

Video without mask 3 51 531
with mask 0 0 0
Delay-critical without mask 0 0 0
with mask 0 0 0

Web without mask 0511 | 112472 | 394330
with mask 0 0 0

Total without mask 10791 | 162971 | 624619
with mask 0 0 0

Table [3.14] shows the number and proportion of RBs where an empty buffer is selected while there
were packets in other buffers. For more than a quarter (resp. more than ten percent) of the [RB] the
[EQOTHABLIP selects an empty buffer for the setup with 32 [UEk (resp. 36 and 40 [UEk). When the number
of [UEk increases, it is easier to select a with packets, leading to a lower proportion for 36 and 40
[UEs. Without adaptive mask, the EQOTHABLIP selects therefore non-optimal action, causing packet loss
and packet exceeding the PDBl This shows the importance of the adaptive masking during the inference
in addition of the training.

Table 3.14: Empty buffer selection for the EOT-AB-P without mask.

H Count ‘ Proportion
32 UEs || 17027151 26%
36 UEs || 7507960 11.4%
40 UEs || 7347526 11.2%

3.5.3 Generalization vs. [

The proposed architecture was trained with the mean inter-arrival time for non{iGBRI g = 10. We

evaluate here the generalization capability of the proposed architecture vs. % To do so, we saturate

the traffic by reducing 8 (or increasing %) The metric considered here is the sum of the number of
packets lost due to and the ones exceeding the for the DCl These packets are included in the
packet error rate (PER]) in the [5Gl specifications [38, Section 5.7.3.5] and are thus referred to as "lost
packets” in the sequel. 1000 inference episodes are performed for each value of 3. The range of 3 values
is adjusted based on the number of [UEk to prevent over-saturation. After running all inference episodes,
we observed that the trained architecture performed poorly in few cases, leading to unsatisfactory overall
results. Notably, two particular runs significantly degraded the overall performance of the proposed
architecture. We suspect that during these episodes the architecture encountered states that were far
from those seen during training, causing it to deviate from its expected behavior. Further investigation
should focus on detecting such deviations as they occur and therefore switch on a heuristic such as [KPl
The two least effective episodes for each scheduler are eliminated (a total of four episodes) to prevent
the substantial distortions in the overall results. This approach retains the majority of the results while
ensuring that no single scheduler’'s performance is unduly favored.
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B
ng, = 32. Figure [3.8a] provides the results over the 1000 inference episodes. Figure represents the

results over the 996 inference episodes where the four episodes are withdrawn, corresponding to the two

worst for EOTHABIP and for [KPL

Figure shows the lost packets as a function of % for the [KPl and [EQTHABIP schedulers for
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Figure 3.8: Number of lost packets vs. 5 for ny = 32.

One can observe a good generalization capability of the proposed approach, which loses less packets
than the [KP] for all the simulated values of 3. The two figures show no significant differences, indicating
that packet loss is not concentrated in just four episodes. Therefore, there is no instance in which the
trained scheduler exhibits underperformance, demonstrating robust generalization capabilities across all

inference episodes.
Figure plots the lost packets as a function of % for the[KP| and EQOTHABI-P schedulers for n;, = 36.
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Figure 3.9: Number of lost packets vs. %3 for np = 36.

One can remark that for all the 1000 episodes, in Figure [3.9a] the EOTHABIP performs poorly for
£ = 8.5, 8.6 and 8.8, corresponding to % ~ 0.118, 0.116 and 0.114, with more than 400 lost packets.
When the worst episodes are withdrawn, in Figure [3.9b] the EQOTHABLIP outperforms the [KP| scheduler
for all the values of 3, with less than 50 lost packets. Moreover, [KPl's performance varies little with the
removal of its worst episodes. This suggests that:
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e Losses of the [KPl schedulers appear evenly distributed among between episodes. Consequently,
eliminating the least effective episodes has no apparent effect on its overall performance.

e Packet loss is mainly observed in a limited number of episodes for the EQOTHABLP, indicating that
it has made poor decisions only in those instances. Further investigation is required to determine
the factors that may have contributed to these choices.

Figure [3.10] plots the lost packets as a function of 3 for the [KP] and [EOTHABIP schedulers for

ny = 40.
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Figure 3.10: Number of lost packets vs. % for ny, = 40.

One can remark that for all the 1000 episodes, in Figure [3.10a] the EOTHABIP performs poorly for
£ = 9.6, 9.7 and 9.8, corresponding to % 0.104, 0.103 and 0.102. When the worst episodes are
withdrawn, in Figure [3:10B] the EOTHABLIP outperforms the [KPl scheduler for all the values of 3 except
£ =9.6. One can still remark that [KE]S performance varies little.

Synthesis of the inference over different values of 5. The EQTHABIP sometimes struggles to
generalize under heavy traffic conditions, i.e. when 3 decreases. This can be explained by the current
reward formulation, which is ineffective for reducing packet loss during periods of high traffic load.
As outlined in (3.17), the agent tends to prioritize scheduling non{GBR traffic. Consequently, when
the packet inter-arrival rate decreases, more packets accumulate in the non{GBR] buffers, inciting the
trained scheduler to focus on emptying these buffers at the expense of other traffic types, leading to
their starvation. Therefore, the delay-critical traffic may be starving, leading to delay-critical packets
exceeding their PDBl In future work, it would be useful to detect when the method begins to diverge
and switch to a heuristic like [KP| which offers more consistent performance.

3.6 Conclusion

We addressed in this chapter the problem of the packet scheduling over a frame composed of [RBk, as
in the K@l context. We proposed solutions based on an architecture which is a combination of [EQT] and
[ABl This architecture is [NLI thanks to the [EQT] and is capable to handle the very large action space
induced by the joint allocation thanks to the [ABl

We observed through simulations using the environment that the proposed scheduler
outperforms the heuristics implemented in in terms of number of lost packets, although the reward
provided in is not perfectly suited to this task.
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We have also shown the importance of the adaptive action masking during the inference phase to
prevent the scheduler from selecting empty buffers and thus non-optimal action.

Finally we have observed that the trained architecture generalizes over different inter arrival rates for
non{GBR traffic.

There are few issues concerning the generalization over the inter-arrival rate, where the proposed
scheduler performs poorly for some rare episodes. Additionally, the reward design in
[TERAl is questionable, as similar average rewards can correspond to significantly different results in
communication metrics like and violations. A high reward does not necessarily reflect better
performance for these metrics.

In future work, it could be of interest to improve the proposed architecture, for instance, by replacing
the linear embedding and projections of Q-values with a [DNNl Moreover, it would be valuable to
train with variable arrival rates to enhance the architecture's reliability. In addition, detecting when the
architecture begins to deviate and switching to an heuristic could further improve robustness.

Part of the material developed in this chapter had been patented in [85] and published in [42].
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Chapter 4

Joint scheduling and MCS selection

4.1 Introduction

This chapter addresses the problem of joint frame-based scheduling and selection. Specifically, we
assume that scheduling decisions are made at the beginning of each frame, and we aim to jointly allocate
each of the frame to a transmission buffer, and to select an appropriate [MCS] for packet transmission.

In Chapter [2] and in Chapter [3| we assumed an ideal error-free channel for which the capacity is
perfectly known, which does not reflect real-world conditions. This chapter considers a more realistic
setup where transmission errors at the receiver may occur and where only statistical is known by the
scheduler. We assume that the packets are transmitted over a Rayleigh flat fading channel.

The main contributions of this chapter are the proposal and comparison of three different solutions
elaborated along two approaches: 1) one involving joint selection of the buffer and the [MCS] referred to
as joint scheduling and MCS (JSMI), 2) the other one involving separately selections of the buffer and
the referred to as disjoint scheduling and MCS (DSM)).

The three solutions can be synthesized as follows:

e The solution, based on [DRL| adapting the proposed in Chapter 3]

e A fully heuristic-based solution, where scheduling and selection are performed using
heuristics. Introducing the acronym heuristic for the buffer selection (HBSI), this approach is
denoted as [DSMHHBS!

e A hybrid DSMisolution, using the EOTHAB] proposed in Chapter [3]for buffer selection and a heuristic
for the selection. Introducing the acronym learning for buffer selection (LBS)), this approach
is denoted as [DSMHLBSI

This chapter is organized as follows. Section introduces the system model. Section provides
the formulation of this problem. Section [4.4] presents the proposed solutions to solve this [MDPL
Section details the training and evaluation setups. Section provides the simulation results. Finally,
Section draws concluding remarks.

4.2 System model

We consider the same communication model as in Section , with ny, active links and two types of
traffic, a and a [BE traffic.

In this chapter, each link is characterized by its average denoted by I'. We assume that the
average in dB is uniformly distributed among the links, in the range [[98 T9B ]. The channel

min’ - max
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may induce transmission errors depending on I' and the selected [MCS| The available are noted
[MCSHu, where 1 € {1,... M} and M is the total number of available [MCSk. Each enables
the extraction of a different integer number of packets, noted p,, from the buffer. We assume that
p1 < p2 < -++ < pp. The channel model is detailed in Section [4.2.2]

The joint scheduling and [MCSl selection is performed at each frame over a total bandwidth T divided
into Ny [RBk. Each and each link experiences different channel realizations.

4.2.1 Buffer model

The buffer model is described in Section for the general model and in Section for the and
[BE| buffer model. We remind that n; ;1 is the number of packets in buffer i at the beginning of frame
k i.e. the number of entries d,,; (index of the frame is omitted) whose value is greater than —1.

For each frame k, Ny buffers are selected for transmission and a is assigned to the selected

buffers. Let 4, = {i},... ,i]kv'f} be the selected buffers and p;, = {u, ... ,/Lévf} the corresponding [MCS
assignment. Note that a given buffer may be selected multiple times (i.e., iil = ii"’ with j1 # jo), and
that different may be applied to the same buffer if selected multiple times. The scheduling and
selection at frame k yields a set of pairs { (i}, ul), ..., (iy’, jur ')}, where [MCSHu!, determines the
number of packets pi = P that can be extracted from buffer zfe for the jth [RBl

Then, the nf, . = min(p}, n;x ;) oldest packets are extracted from this buffer and transmitted

through the channel, using ,ui, where n; ;. ; is the number of packets in the 7th buffer before the
transmission of the jth [RBl The value of n; ; is updated at each as Nikjt1 = Nikj — Ny ;- 1he
bits of the nj, ; packets are jointly interleaved, encoded and modulated producing a codeword (CW]).

)

This[CWis then modulated using [MCS}1],, producing a constant number of modulated symbols, denoted
by Bs, which are transmitted over the channel. The channel may induce errors at the receiver side. Let
n;f,’;j be the number of packets lost due to transmission errors for [RB| j of frame k from buffer 7, which
is equal to nj, ; in case of decoding failure and 0 otherwise.

We remind that at the end of the frame (i.e. j = N;) the WT] of all the packets is incremented and
may lead to DVl Then, new packets arrive in the buffers according to a Poisson distribution and
may occur.

Note that all the packets can be sent without using all the [RBk. Let n} be the number of unused

[RBE for the frame k.

4.2.2 Channel model

We assume that the transmitted modulated [CW]| « experiments a flat-fading Rayleigh channel hy(k, j) ~
CN(0,207).

The channel varies between each [RB| and the received signal is corrupted by an additive white
Gaussian noise (AWGN]) with variance 202 at the receiver level. The received signal on the (th link at
the jth of frame k can be expressed as:

y((kaj):hf(kaj)m+yf<k7j>7 (41)

where v,(k, 7) is the realization of the complex[AWGNl We assume that the channel varies independently
between successive [RBk and frames.
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Let T'y(k,j) be the instantaneous SNR| experimented for link ¢ at frame k& on [RBl j which can be

written as:
ek, 5)1?

202

The corresponding instantaneous [PERl is derived from a [LUT], which maps each selected and
instantaneous [SNRI value to a[PERl estimate, based on performance. This mapping is denoted by
q.(Te(k, 7)), where 1 is the index of the selected [MCSl

We assume in this Chapter that I'; is not available at the scheduler, instead, selection is
performed based on the average SNR| which is defined as:

Ly(k,j) = (4.2)

Lo =E[Te(k, )] (4.3)

In this context, computing the average [PERIis essential to enable a suitable [MCY selection.

4.2.2.1 Procedure for the average PER

The average can be written as:

Gu(Te) = En[qu(T0)], (4.4)

where the expectation is taken over the channel realizations.
Eq. (4.4) can be rewritten as:

0T = / " u(wpr, (w)d, (4.5)

where pr, corresponds to the probability density function ([pdf]) of the SNRIon link ¢. The [LUTI curve is
often provided in a dB scale rather than in a linear one. In this case, we have qﬂB(v) where u = 10%/1

instead of ¢, (u). Therefore, we aim to rewrite (4.5) using ¢"(v) . Since du = 10800 10v/10y, (4.5)
becomes:

_ log(10
G.(Ty) = gl(O ) / ¢ (v)pr, (107/1°)10°/ 04, (4.6)

As noticed in [86], previous expression is computed over a restricted range of SNR], corresponding to the
BNRl of the [UT] denoted by [SNRI>MUT. SNRIBLUT] and ([4.6)) is approached by:

log( 1 0) SNR?H%;(LUT / /
— T\ ~ dB v/10 v/10
qu(L'e) = 10 /SNRdBLUT q, (v)pr,(10°°7)10% P dv. (4.7)
Since the [LUT] is discrete, the integral in (4.6]) is approximated by a sum, as in [86]. Specifically, the
values are uniformly sampled in dB as v = [vg,v1, ..., UnN,,,...—1], With a constant step size A,
between consecutive samples, where vy = SNRIZ and vy, ample—1 = = SNRUB.LUT,

s 105—’; Mg vi/10, v;/10

3u(Ty) = A Z B (0;)10%/Opp, (10%/10), (4.8)

where A, is the discretization step in the dB domain. Equation (4.8) holds for any channel model, i.e.,
for any distribution pr, .
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For Rayleigh flat-fading channel, the probability to have a given instantaneous SNRI T'y(k) is:

1 _
pr,(u) = £, P (—u/Ty) . (4.9)
Inserting (4.9)) in (4.8) gives us:
log sample
— (T dB v; /10 v; /10 /T
u(Ty) =~ 10 rg Z (v;)10"/10 exp(—10"/1°/T,). (4.10)

=0

This approach can be extended to frequency selective channel by using effective SNR mapping (ESM])
approach such as in [36].

4.3 Problem formulation for JSM and DSM approaches

Three types of packet loss can occur in the system described in Section 4.2} 1) losses, 2) losses
for Dd traffic, and 3) losses due to the propagation channel.

In Section , we showed that under system model with only losses due to and [DV] the problem
can be formulated as an [MDPL In Section [3.2] we showed that frame-based scheduling can be also cast
as an [MDP|, where the action is the simultaneous allocation of all the RBk. In this chapter, the losses
due to channel and the selection of a proper are also considered. One can prove that the Markov
property is preserved in both cases: the selected influences the number of packets extracted, and
losses due to the propagation channel depend on the average [SNR| and the chosen [MCS] i.e. the current
state and action.

We propose an[MDPI formulation of the packet loss minimization problem for such system, introducing
the state spaces, the action spaces and the reward.

4.3.1 State spaces

As for Section [2.3.2] let us note S, the set of all the possible states for link ¢. Since the state of each link

( is composed of the state of the DT buffer SP“, the state of the BE| buffer SP¥ and the state related to

the channel information SPER | then S, = SP¢ x SPE x SPER. The considered sets SP€ and SPP are the

same as in Section , whereas the set S;" is different from the set S;"™ defined in Section m
The state vector f, € Sy can be expressed as:

£, = [£P97 P8 £7°8] (4.11)

where:
o fPY € SPC can be represented with the three different representations (HoL, xHoL and APD)
defined in Sections [2.3.2.1}, [2.3.2.2| and [2.3.2.3| respectively.
o fPF € SPE is the number of packets in the [BEl buffer, normalized by the buffer size such as in

Section 2.3.2]

° fl}DER c S?ER

is defined as:

per _ [10g(@1(Te)  log(qm(Ty))
£, = og @om) " Tog@m) | (4.12)
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where gnin is the lowest average [PER| achievable in the system, according to the available and the
range. Gmin is thus defined as:

Guin 1= 100 G (Lina). (4.13)
where T'pax = 100m2x/10 s the highest average[SNRin linear considered in the system model in Section .
The logarithm in helps the DNN] to differentiate between orders of magnitude in the PER. The
entries of £/ ™R are in [0, 1]. We consider that f'*R remains constant over the time. Hence, the considered
state spaces follow the Markovian property.

Let us note ngeature the number of features characterizing the different state spaces, where:

® Nieature = 3 + M for [Holl representation.

® Niearure = 4 + M for XHoll representation.

® Nieature = Do + 3+ M for representation.

Notice that the information per link is required at the input of both and [DSMHLBS]

architectures. Therefore, one might guess that:

e In the solution, the [PERI information should be fully used by the architecture to jointly select
a buffer along with a suitable [MCS]

e In the solution, although the is selected by an heuristic, the architecture may use
this information to guess the selected [MCSl thanks to the training, and thus adapt the buffer
selection accordingly.

It is worth noting that other state representations could be considered instead of S;*R for the

approach. For example, one may include the chosen by the heuristic for the MCS selection (HMS))
along with its associated [PER

4.3.2 Action spaces for both JSM and DSM approaches

The proposed scheduler aims to jointly select the buffer to be served and the associated [MCSI for each
[RBl For the [JSM] approach, the action can be written as a;, := {a;, ... ,aka}, where ], corresponds to
a pair (47, u3,). For the DSMHLBS| the action can be written as ay, := {i}, ... ,i]kvf}.

4.3.3 Reward

The proposed scheduler aims to mitigate the total number of lost packets. The reward is computed at
the end of the frame and is defined by:

= ew(almd,kJrano,kJFaSmc,k) (4_14)
where
nr—1
%dk = — Z ng&k (415)
=0
ng—1
Rop i= — Y _ 1y (4.16)
=0
Ny ng—1
R (a7)
j=1 i=0
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correspond to the opposite of the number of lost packets due to [DV] to and to the propagation
channel, respectively, for frame k. w > 0 is a hyperparameter controlling the behavior of the exponential
function, and oy, as and a3 are positive hyperparameters controlling the importance of the different
losses, with Z?Zl a; = 1. The exponential maps the reward in |0, 1].

4.4 Problem solutions

4.4.1 Solution approaches for MCS and buffer selections

The three different approaches proposed in this chapter are the following ones:

1. The solution, performing joint scheduling and selection with statistical [CS]| leveraging
also the architecture.

2. The [DSMHHBS] solution, fully based on heuristics. Both the and the buffers are selected by
two different heuristics.

3. The solution, where the are selected by a heuristic and the buffers are selected
according to a [DRLlscheduler, leveraging the EOTHAB] architecture proposed in Section [3.3]

Table classifies the different scheduling and selection solutions considered in this thesis.

Table 4.1: Considered scheduling and MCS selection solutions.

Scheduling
Heuristic DRL
Heuristic DSM-HBS DSM-LBS

DRL Not addressed JSM

MCS selection

One can notice that in Table [4.I] the combination of [HBS] with [DR[}based selection has not
been addressed. We were unable to evaluate this configuration within the timeframe available for this
thesis.

The different solutions listed in Table are illustrated in Figure |4.1]
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(c) Disjoint scheduling and MCS selection (DSM-LBS).

Figure 4.1: Scheduling and MCS selection with different methods. Yellow boxes represent operations
that are done once per average SNR trial.

These different solutions can be explained as follows:

e The method in Figure [d.13]illustrates the [JSM]solution, where [DRLis employed for both scheduling
and selection. The average [PERlis computed and is fed into the EQOTHARI that outputs the
Q-value for each bufferIMCS pairs.

e The method in Figure illustrates the DSMHHBSI solution, where the average [SNRl is used for
both the average computation and the scheduler.

e The method in Figure illustrates the solution, where the average is used to
compute the average [PER only. The average [PERlis used as state space, such as in Section [4.3.1],
for DRO scheduler which is in our case an [EQTHABl The outputs the ()-value for each
buffer.

One can note that the used in and are slightly different since they do not

have the same number of outputs.

The used for the solutions is as follows: 1) we compute the average PER ,(Ty) for

pe{l,...,M}. 2) we select p"™5 = argmax,cr; vy {pu | Gu(Te) < Gm}. This corresponds to the
that allows to transmit the largest number of packets while satisfying a [PERI threshold condition.
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4.4.2 Adaptation of the heuristics for buffer selection

In this section, we present the proposed adaptations for the different [HBSE, introduced in Section [1.3]in
order to account for the frame-based and [MCS| selection context:

1. [PE, MIWDE, and LOG-rulel require the instantaneous rate. Since this information is not available,
for the sake of simplicity, we propose to replace it using this expression:

¢ =log, (1+Ty,). (4.18)

2. According to Sections [1.3.4] and [1.3.5], we must distinguish between and [BEl traffic; therefore,
and should be modified accordingly.
3. The [KPI presented in Section requires a [PLRl target and a bearer priority, which are not
defined in this chapter. Consequently, this method also requires adaptation.
Remark: In this section, as for Section [3.4.4] to simplify the notation, the index k denotes the
current combination of slot/[RB] instead of using separate indices for slots and [RBk.

4.4.2.1 Round-robin

The does not depend on the channel and thus does not require adaptation.

4.4.2.2 Proportional fair

The [PH uses the instantaneous rate information for each buffer 4, noted ¢; (for link ;).

The [PE expression is thus given by (|1.13)):

¢ logy (1 + f‘gi)

h i) = — , 4.19
pr (X;) Z Z ( )
where x; is the feature vectors of buffer 7, and as a reminder
1 Y
k=1 j=1
with
) 1 if 7 is selected for RB j of frame k
0k (1) = . / : (4.21)
0 otherwise

44.2.3 MLWDF

The [MLWDF] uses also ¢;. Thus, we propose the same approach as for [PE| and to use (4.18) for ¢;. The
[MIWDF expression given by ([2.14)) is transformed as:

a;cido; if i mod 2 =0 (if i is a DC buffer)

. - (4.22)
hpr(x;) ifi mod 2 =1 (i is a BE buffer)

haitwpr (Xz) = {

where «; is set as in Section [1.3]
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4.4.2.4 LOG-rule

The uses also ¢;. Thus, we propose the same approach as for [PH and to use (4.18)) for ¢;. The
LOG-ruld expression given by ([2.15)) is transformed as:

a;c;log (B; +mido,;) if i mod 2 =0 (if i is a DC buffer)

. . : (4.23)
hpr(X;) if i mod 2 =1 (i is a BE buffer)

hLOGfrule(Xi) = {
where «;, 3; and 7); are set as in Section [1.3

4.4.2.5 Knapsack

Since a [PLRl target is not defined for the different traffic types and the [CQl| is unavailable, and because
it may represent a channel metric as discussed in Section [1.3.7, we adapt ([1.25)) using the average SNR|
normalized by T'dB

max

FaB
Ug(Xi,k) = f‘dzB .

The new expression of [KP] adapted to the statistical [CSIl context is given by along with ([1.24)),
@2, €19, nd (120

It is worth noting that for BE] buffers, is equal to 0. Because [KP] expression is a sum ([1.23)),
it does not imply that hkp(x; ) = 0, conversely to the MLWDEF] expression ([1.19)) when 7; = 0. Thus,
there is no need to differentiate between and BE traffic, as is the case with MLWDE!

(4.24)

4.4.3 Adaptation of the EOT-AB for JSM and DSM-LBS approaches

As in Chapter 3], we use the EOTHABI architecture that is adapted to the [JSMland [DSMHLBS] approaches.
It is illustrated in Figure [4.2]
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Figure 4.2: EOT-AB architecture adapted to JSM and DSM-LBS approaches. Gray boxes are learn.

The works as follows:

1. First, the state space, s; undergoes a linear embedding using the d. X Ngeature Matrix W,. The
resulting embedded state is s := Wesk—i—bel,a, with dimensions d. X n;,, where b, is the additional
bias vector of dimension d. x 1, and 1,,, is a vector of ones of dimensions n;, x 1.

2. Next, S, is processed by an [EOQT] module which outputs a d. x n;, matrix, denoted by op.

3. Then og is projected into advantages on all the branches and into value for the dueling.

e The 1 x ny, value vector is obtained by v := gog + blZZe where the /th entry of v represents
the estimated state value of the /th link, g is a 1 x d. weights vector and b, is a scalar
corresponding to the bias.

e For the jth branch, the projection into advantages is performed:

— For approach with the 2M x d, matrix W7 where the output is denoted as:
A;j = Wlop+bl17  which has dimensions 2M x n. bJ, is the additional bias on the
jth branch.

— For [DSM] approach with the 2 x d, matrix W7 where the output is denoted as: A=
Wiop + b{;lgw which has dimensions 2 x ny. b’ is the additional bias on the jth
branch.

4. The vector v is then added to the advantage on each branch j to produce the matrix Q;, i.e.
Q; = A; + 1ov, where the (th column is an estimate of the ()-value for the different possible
actions for the /th link.

e For[ISMl approach, the ¢th column contains 2M entries where the first (resp. last) M entries
are the estimated (Q-values corresponding to each for the (resp. BE]) buffer. The
corresponding is given by the modulo.

e For [DSM] approach, the (th column contains 2 entries where the first (resp. second) entry is
the estimated ()-values for the (resp. [BE]) buffer.
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To prevent from selecting an empty buffer, adaptive action masking is applied on each branch.
5. Finally, the action ay, is selected by taking the arg max on the masked flattened matrix Q.

e For [ISM| approach, the selected buffer and associated MCS are retrieved as zfc = L%J and

,ui = ai mod M respectively.
e For the approach, the action corresponds to the scheduling, i.e. i} = a], and the
is chosen according to the procedure discussed in Section [4.3.2]
The differences between this architecture and the one from Section reside in the outputs. In
Section , only buffer selection is performed whereas in this chapter, a is also selected.
Notice that there exist cases where a selected buffer i, and its corresponding [MCS|, [MCS}1],, verify
Ny < Pyi- Hence, the is over-dimensioned compared to the number of packets to be transmitted,

and the is not fully used. In that case, it would be more convenient to use a MCS}ji, with i < 2],
verifying p; = Ny, ensuring that the average [PERIis smaller than the one achieved using IMCS}Hi;. One

may consider such a trick in future works to improve performance.
Table gives the complexity of this architecture.

Table 4.2: Number of FLOPs of the EOT-AB for JSM.

Operation H Number of FLOPs
Embedding W, 2 X do X Nfeature X NL

EOT (from Table |A.1[) nr(2d.(4de + 2ng, + 2dyp + 11) + 4Hnp + 2dmp)

Dueling 2xd, Xnp,

Projection into advantages 2 X 2M xde X ng, x Ny

()-values (advantage plus value) 2Mmny, x Ny

Total 2ny, [de (Nfeature + 4de + 21y, + 21, + 10 + 2MNy)
2Hng, + MN;s] — n? —npd.

4.5 Performance evaluation

In this section, we compare the performance of the different solutions referenced in Table [4.1]

For the solutions, we use the heuristics presented in Section [4.4.2] We note "[DSMHHBS|
h" the DSMHHBSI solution using heuristic "h" € {RR, MLWDF, LOG-rule, KP}.

For the [DRL] solutions (JSMl and DSMHLBS]), we use the three state space representations depicted
in Section [4.3.1} Holl xXHoll and [APDl We note "[JSM|s" and "[DSMHLBSls” the and
solutions using state space representation "s" € {HoL,xHoL, APD}.

The[MCS|used for the DSMI methods is chosen according to the procedure described in Section [4.4.1]

4.5.1 Simulation settings

At the beginning of each episode, in both training and inference, the average of each link is drawn
uniformly at random from the interval [['4® T98 ] and is considered to be constant for the episode

duration. Then the average [PERl is computed for each link thanks to (4.8). Table details the
simulation parameters.
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Table 4.3: Simulation system model parameters.

D 20
B 40
N, 5
Gth 1072
rds 20 dB
rds. 40 dB
B 1000 data bits per packet
Bs 1000 symbols per [RBI

Table details the available which are implemented along with a low-density parity check
(LDPCQ) code.

Table 4.4: Available MCSs.

MCS index p 1 2 3
Modulation QPSK | 16QAM | 64QAM
Coding rate 1/2 1/2 2/3
Number of encoded bits 1000 2000 3000
Number of transmitted packets per RB (p,,) 1 2 3

Figure [4.3] illustrates the average [PERl over a Rayleigh flat fading channel for the considered [MCSk.
For ¢, = 1072, which corresponds to the threshold for both and methods, the following
are applied based on the average SNRE

e QPSK 1/2 is selected from 20 dB up to approximately 27 dB.

e 16QAM 1/2 is then used from 27 dB to around 34 dB.

e 64QAM 2/3 is applied from 34 dB to 40 dB.

For gy, = 107!, the selection changes:

e QPSK 1/2 is never used.

e 16QAM 1/2 is used between 20 dB and about 23.5 dB.

e 64QAM 2/3 is employed from 23.5 dB to 40 dB.

As stated in Table [4.3] all the solutions have been evaluated with ¢, = 1072. We observed
that DSMHUHBSIKP| outperforms all other heuristics. Therefore, we tried the DSMHHBSIKPI with g, =
10~L. Indeed, in that case, we select more often with higher p,, thus draining faster the buffers.
Thus, we can expect better performance in terms of total [PLRI for high value of A. Let us note KP1
(resp. KP2) the DSMHHBSIKP] using the [PER] threshold equal to 107! (resp. 1072).
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Figure 4.3: Average PER for the considered MCSs on Rayleigh flat-fading channel (red vertical bars
represent the lower and upper bounds for the average SNR trials).

Table [4.5] details the EOTHABI hyperparameters.

Table 4.5: EOT-AB hyperparameters.

Parameter ‘ Numerical value
ot 0.95
7 (soft update parameter) 0.005
Target network update period 20 steps
Batch size 512
Learning rate 5x 1074
Estart 1
€end 0.01
€decay 0.99
Number of heads H 4
Number of [EQT] layer 1
de = dwip = Hdatin 256

Table [4.6] shows the complexity in [ELOPS computed for the [JSM| and DSMHLBS] solutions along with

the [EQT] used in Chapter [2|
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Table 4.6: EOT-AB complexity for n; = 6.
State space || FLOPs JSM | FLOPs DSM-LBS || FLOPs EOT (Chapter [2)

HolL 4895925 4 834,485 4800688
xHoL 4898997 4837557 4803760
APD 4957 365 4895925 4862128

One can see that the complexity of the solution is approximately 1% higher than the DSMHLBS|
solution, even if it also performs [MCSl selection. It is also less than 2% higher than the architecture used
for the slot-based scheduling in Chapter [2] even if the architecture used for the [JSMlis used for a frame
with Ny instead of a single slot.

4.5.1.1 Training setup

The different architectures are trained during 4000 episodes of 7000 steps. The arrival rate for each buffer
is set to A = %Nf = % x 5. Every 100 episodes, a validation episode of 70000 steps is performed. A
validation episode is also performed when the current average training reward is higher than the previous
average training rewards. This may lead to different number of validation episodes among the trained
architectures. The weights used for the inference are the ones for which the highest validation reward has
been obtained. This may lead to a selection bias since only one validation episode is performed, i.e. only
one seed, and by extension one average configuration is used for the weights selection. The used
average in dB for the validation are: [['$B,... T9B] = [27.49,39.01,34.64,31.97,23.12,23.12]. In
future works, multiple validation episodes, i.e. multiple seeds with distinct average configuration,
should be used to reduce the selection bias.

We also implemented the following trick for the training: when the total number of packet in the
buffers is lower than N; at the beginning of the frame, we fill the using the most robust [MCSl
This trick enhances transmission reliability since it implements deterministic optimal actions according
to our problem, thus minimizing the number of lost packets for the current frame. We suppose that such
transitions are not valuable for training since the actions can be directly performed without using a
and therefore exclude them from the replay buffer.

4.5.1.2 Inference setup

We perform nepisode = 25 inference episodes. Each episode, corresponding to different average
draws, is composed of K = 1000000 steps, each step corresponding to a frame of Ny = 5 [RBk. We
consider two types of inferences:

1. Inferences with the implementation trick used during the training: if there are less than N packets
in total at the beginning of the frame, we fill directly the using the most robust [MCSl This
may decrease the energy efficiency (EE]) but decrease the PERl

2. Inferences without the implementation trick used during the training: if there are fewer than Ny
packets in total at the beginning of the frame, the selected still depends on the scheduler
and may not be the most robust one.

4.5.2 Performance Metrics

We evaluate the following metrics:
e The training and validation rewards.
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The[PLRl defined as the total number of lost packets divided by the total number of arrived packets
in the buffers. The loss may come from [DV], and channel error transmission i.e.:

Tlepisode n 1
Szt S S (nu(ne) + i (nep) + 50371 T ()
- Tepisode n 1 n’ ’
n;:i’ Zk i i,k(nep)
The [PLR| due to DVl and only defined as the total number of lost packets due to and
divided by the total number of arrived packets:
Tepisode n 1 o
neﬁzi Zk 1 >0 % (”z k(nep) + nzk(”ep))
TMepisode n 1 ’
Zneizi Zk IZ % zk(nep)

The [PLRI due to only defined as the total number of lost packets due to divided by the
total number of arrived packets:

(4.25)

{pv+BO = (4.26)

; 1
ZZ::S:OT Zk 1 ZnQ n; k(nep)
, I )
ZZ:::T Zk 1 ZnQ n; k(nep)

The [PLRI due to only defined as the total number of lost packets due to divided by the
total number of arrived packets:

v = (4.27)

; 1
ZZ:I:T Zk 1 ZnQ n; k(nep>

: i .
ZZ:':T Zk 1 ZnQ i,k(nep)

The [PLR| due to channel which is here defined as the number of lost packets due to channel error
transmission divided by the total number of transmitted packets, i.e.:

i 1

22:'5:0‘153 Zk 1 ZHQ Z] 1 nz k ,J (nep)
i 1

S Yy S o s (nep)

The throughput, defined as the number of correctly transmitted packets divided by the total number
of frame, over all the episodes:

, 1 <N
. ZZ:':T Zk 1 ZnQ Zj:fl (nfkg (Tep) — n?}fg (nep))

nepisodeK

€Bo = (4.28)

Con = (4.29)

(4.30)

It is worth noting that the number of packets sent cannot exceed the limit imposed by the highest
[MCS, which allows a maximum of 3 packets per [RBl As a result, the throughput is capped at
3Ny = 15.

The proportion of unused [RBlin total, which might occur w when the selected empty all the
buffers with a number of [RBk strickly less than N, and which is defined by:

Tepisode K u
U o=l D =1 Mk (T2ep)
nepisodeKNf

(4.31)

The [EE] which is defined as the number of correctly transmitted packets divided by the number of

effective [RBk:
Tepisode n 1 N X
e S S 00 () (nes) — T ()
& = g , (4.32)

P (essose KNy — St S ()
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where P is the transmit power, which is assumed to be equal to one. It is important to note that, in
general, [EE] formulations include circuit power consumption, particularly in [EEl maximization problems
[1]. However, this is not considered here. In our case, excluding the power of circuitry allows for simpler
interpretation: if £ > A, then not all available RBE are utilized, resulting in power saving and nearly
all packets are transmitted. Otherwise, if £ < A, either nearly all [RBk are used, not all packets are
transmitted correctly, or both. If all the [RBk are used for all the episodes, then the [EElis proportional to
the throughput.

4.6 Performance analysis

4.6.1 Training analysis

In this section, we analyze the evolution of the reward during the training and validation reward.
Figure [4.4] plots the training rewards for [JSMl and [DSM] architectures.
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Training episodes Training episodes
(a) Training rewards for JSM architectures. (b) Training rewards for DSM architectures.

Figure 4.4: Training rewards for JSM and DSM architectures.

One can observe in Figure [4.43] that the architectures have converged, and the training rewards
have a low variance. In Figure [4.4b] one can observes that the DSM] architectures have a training reward
with higher variance than the architectures. Due to the high variance of the architectures, it
seems difficult to conclude if they have converged or not. The difference in variance can be attributed to
the following: when the average SNR|is high, both the [ISM and approaches succeed in emptying
the buffers with low packet loss, resulting in high reward values for both. However, when the average
BNRlis low, the [JSMlapproach adapts the [MCS] for each [RBl to optimize buffer draining, thereby reducing
the overall packet loss, yielding high reward values. In contrast, the approach, which uses a fixed
for all the [RBE, struggles to efficiently empty the buffers, leading to high packet losses due to
and BQ| and consequently lower reward values.

The validation reward is plotted in Figure for both methods, as a function of the training
episodes.A validation episode is performed every 100 training episodes, or whenever the average re-
ward obtained at the current episode surpasses all previously observed training rewards. The markers
indicate the episodes at which validation occurs.
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Figure 4.5: Validation rewards for JSM and DSM architectures.

One can observe that for both methods, the validation rewards converge in less than 500 training
episodes, to the average value of about 0.96. The two different methods seem to converge at the same
speed despite the fact that the action space in Fig. is larger than in Fig. [4.5b]

4.6.2 Inference performance analysis

Figure plots the [PLR| (noted &) vs. A. Figure plots the [PLR from the first inference setup,
which includes the implementation trick, while Figure plots the [PLRI from the second setup, without

the implementation trick.
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Figure 4.6: PLR vs. A.

One can observe that:

e The two figures are nearly identical, except for A < 1.2, where the setup including the implemen-

tation trick achieves better [PLRl performance.

e Regardless of the value of arrival rates, the KP2 yields similar results as the [DSMHLBS!
e When A < 1, the [JSMl architectures have a higher [PLR| than the [DSM methods, which obtain
approximately the same [PLRL In this regime, the [PLR|is mostly due to channel transmission errors,

see e.g. Figure[4.9 and Figure [4.7]
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For 1 < A < 2, the proposed [JSMlsolutions yield significant lower [PLR| compared to the[DSMHUHBSI
and the DSMILBS solutions. It is noteworthy that a gain of approximately one order of magnitude
is achieved compared to [RR], M[WDF], and from A = 1.5, and relative to KP2 and the
from A = 1.7. This highlights the importance of performing [MCS selection to adapt to
varying traffic loads.

KP1 has the higher for A < 1.2. For 2 < A < 3.1, it obtains better performance than the
architecture. A possible explanation is that this range of arrival rate is far from the training
arrival rate, producing generalization issues. For A > 3.1, KP1 and obtain similar
results and beat the other methods. This confirms what was anticipated when defining KP1 in
Section [4.5.1]

For A > 3.1, all the methods have a [PLRl greater than 10~!. For these arrival rates, the average
number of arriving packets exceeds the maximum that can be transmitted using the highest [MCS|

The above figures aggregate the losses due to [DV], and channel providing a global view of the
performance of the different methods. To better understand the underlying strategy of the different
methods, let us study the loss from the different sources separately, that is, épviso, €pv, €Bo, and (cn.-

Figure [4.7] represents the [PLR| due to plus (épviBo) vs. A.
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Figure 4.7: PLR due to DV plus BO vs. A.

One can observe that:

There is almost no difference between the two figures, with and without the implementation trick,
meaning that it prevents only from packet loss due to the channel.

For low arrival rates, i.e. A < 1, there is few packet loss due to and BOl

For A > 1.1, the proposed architecture obtains lower [PLR] due to [DV] and [BO], with a factor 10.
Concerning the different state space input for the approach, for A < 0.7, the different
methods are closed. Concerning the [JSMlxHoll, it has a higher than the other methods for
A € [0.8,1.1], is better than for A > 1.2 and better than [JSMI[Holl for A > 1.3. The
[JSMIHoll has a lower [PLR than the for A € [0.5,1.4].

KP1 achieves low [PLRI due to and for A < 2.5, then its PLRl increases drastically until
reaches the of ISMI[APD| for A > 3. This implies that for A < 3, the majority of the packet
loss of KP1 comes from the channel.

Figures and plot the [PLRI due to (épv) and (o) vs. A respectively. Since
there is no great difference for the sum of the [PLRl due to and BQ| only the results without the
implementation tricks are plotted.
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Figure 4.8: PLR due to DV (a) and PLR due to BO (b) vs. A.

One can observe that:
e There is little packet loss due to [DV] and [BOI for all methods when A < 1.
e The KP1 obtains little packet loss due to regardless the value of A and little packet loss due

to for A < 2.7.

e Except for RR, [DSMHHBS| methods lose fewer packets due to than [DR[}based methods.

However, they lose more packets due to [BOl

e There is at least one order of magnitude difference between one of the [JSM| methods and all

DSMHLBS| methods for 1.1 < A < 2.1, across the different types of loss. For 2.1 < A < 2.9,
both JSMHAPD] and [JSMlixHol] exhibit an order of magnitude difference in packet loss due to [BQ),
whereas only [JSMHAPD] shows such a difference in packet loss due to [DVI

e There is a magnitude order of difference between at least one [ISMl and all the DSMHULBS] ones, for

1.1 < A < 2.1 for the different types of loss. For 2.1 < A < 2.9, [JSMI[APDI and [JSMIxHol] have
one order of magnitude for packet loss due to BO| whereas only the [JSMI[APD has one order of
magnitude for packet loss due to [DVI

Figure [4.9| plots the [PLR due to channel ({cn) vs. A.
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Figure 4.9: PLR due to channel vs. A.

One can observe that:
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e The first setup with the implementation trick offers better performance for A < 1.2. For A > 1.2,

the two setups are nearly identical.

e For A > 1.2, the[PLRl due to channel of the methods is almost constant for both setups.

e The[PLRl due to channel of DSM methods remains below the [PER| target, as expected, since the
chosen guarantees a [PLR| due to channel under the specified threshold.

e The[PLRldue to channel for the architectures increases as A increases. Additionally, the PLR]
due to channel for these architectures is higher than the due to channel of the [DSM| methods,
except for the JSMI[Hol] which have the same than the methods for A < 0.6.

e The[PLRl due to channel of the exceeds the one of the KP1 for A > 2.7. This signifies
that this architecture selects less robust to empty faster the buffer for high arrival rates.

Figure [4.10] plots the throughput (1)) vs. A.
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Figure 4.10: Throughput vs. A.

One can observe that:

e All the curves are superimposed for A < 1.2. It is worth noting that the implementation trick does
not affect the performance of the throughput.
e For 1.2 < A < 2.2, the [ISMl methods and KP1 offer the same throughput, surpassing the other

[DSMHLBS] methods with g, = 1072.

e For A > 2.2, and KP1 remain close in performance and outperform the other methods,
with 14 packets per frame, which is close to the bound of 15 packets. [JSMI[Holl saturates at 11
packets per frame, while [JSMIxHol] reaches 10. DSMHLBSIHoll and DSMHLBSIIAPDI also achieve
10 packets per frame, outperforming [DSMHHBS] using [HMS] with G, = 1072, which are limited to

9 packets per frame.

Figure [4.11] plots the proportion of unused (U) vs. A.

114



Proportion of unused RB

--- RR

1 3 4 5

(a) With the implementation trick.

™ --- RR
-<- log Dé -< log
MLWDF 3 MLWDF
-4 KP1 § -4 KP1
KP2 b KP2
—— JSM HoL c —— JSM HoL
JSM xHolL £ JSM xHoL
—a— JSM APD S —a— |SM APD
DSM HolL £ DSM HoL
DSM xHoL DSM xHoL
—e— DSM APD —e— DSM APD

1 3 3 ] 5

(b) Without the implementation trick.

Figure 4.11: Proportion of unused RB vs. A.

One can observe that:

e In the first setup, the implementation trick leads the methods to use more [RBk when arrival rates
are low (i.e., A < 1). Without this trick, nearly 50% of the [RBk remain unused at A = 0.5,
with usage gradually decreasing as A rises, except for JSMI[APDl As A increases beyond 1, the
proportion of used [RBk decreases, since the buffers are filling up and more [RBk are needed to
empty them .

e The methods lead to higher unused [RBk than the other methods, whereas the
methods and KP2 lead to lower unused [RBE than the other methods.

e The continues to leave some [RBk unused regardless of the value of A. This may be due
to its frequent selection of the highest to empty the buffers when A is high.

Figure plots the [EEl (£), where the power is considered unitary, vs. A.

3.0

2.5

2.0

EE

15

1.0

0.5

--—- RR
-<- log
MLWDF
-4-- KP1
KP2
L —e— JSM HoL
JSM xHoL
—=— JSM APD
DSM HoL
DSM xHoL
—e— DSM APD

1 2 3 4 5
A

(a) With the implementation trick.

3.0

2.5

2.0

EE

1.0

0.5

--—- RR
-<- log
MLWDF
-4-- KP1
KP2
4 —— JSM HoL
JSM xHolL
—=— JSM APD
DSM HolL
DSM xHoL
—e— DSM APD

1 2 3 4 5
A

(b) Without the implementation trick.

Figure 4.12: Energy efficiency vs. A.

One can observe that:

e The setup with the implementation trick results in lower [EEl for small values of A, while for A > 1.5,
both setups yield nearly the same [EEL

e The proposed [JSMl methods, in particular [APD] lead to better [EE] in general, than the other
methods. This highlights the gain to use a joint optimization.
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4.7 Conclusion

We addressed in this chapter the joint scheduling and selection problem over a frame, considering
statistical [CSIl The objective was to minimize the packet loss due to [DV], and channel effect.

We have proposed and evaluated two different approaches for the [DRL}-based methods: the first one,
referred to as [JSM] uses an [EQOTHAB] architecture that jointly selects the buffer and the [MCSl The
second one, referred to as[DSMHLBS], uses an architecture that selects only the buffers for each
RB of the frame, while relying on an heuristic for selection. One of the main difference between
both approaches is that for the DSM], the [MCSlis selected once for all transmissions based on the average
value, whereas for the [ISM| the is selected for each [RBl These approaches are compared
along with [DSMHHBS], where heuristics are used for both and buffer selections.

Simulation results show that solutions (in particular [JSMI[APD]) outperforms the ones.
This can explained as follows:

e Both solution have difficulties to maintain low under different traffic loads due to its
lack of flexibility. Indeed, these methods are constrained by the fixed selection, which may be
either insufficiently robust, resulting in a high [PLR] due to channel errors, or not efficient enough
to empty the buffer, leading to high [PLR| due by and BO

e The solution offers better performance in terms of total [PLR] throughput and [EEl at the
expense of a higher due to the channel. Specifically, it demonstrates an adaptation in the
selection strategy based on the traffic load, accepting a higher due to the channel
conditions in order to mitigate the total [PLRl In contrast, the approach yields lower [PLR|
due to the channel conditions but results in a higher total PLR| reduced throughput, and lower [EEL
This is due to its reliance on heuristic-based selection, which lacks the flexibility to adjust to
varying traffic loads. These observations highlight the benefit of jointly performing scheduling and
selection to dynamically adapt decisions based on the state of the buffers.

Since the average[PERis used in the state space, it would be interesting in future works to study if the
proposed architecture succeeds to generalize over different channel conditions (e.g. multipath Rayleigh
channel, Rician channel). Moreover, the average SNR remained constant throughout each episode, which
differs from real-world scenarios where link mobility causes variations in average[SNRl Future works could
explore integrating mobile links to better reflect these dynamics such as in Chapter [3| In addition, they
could integrate repetition mechanism to mitigate the [PERL

Part of the material presented in this chapter has been published in [87] and patented in [85].
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Conclusions and perspectives

The main objective of this thesis was to propose [DRLI solutions for a central joint optimization of
scheduling and resource allocation in multi-user wireless communication systems.

In Chapter [I, we presented the general system model along with a of both heuristics and
DRI based solutions for scheduling and resource allocation. We recommended that an effective [DNNI
architecture for scheduling should satisfy the following three key properties: [NLI, [PEland [GBMl We then
proposed an original classification of the schedulers based on these three properties. We identified
that the [EQT] architecture possesses these three properties thanks to its attention mechanism, and we
thus proposed to use it as a basis for the scheduling solutions developed throughout this thesis.

In Chapter [2}, we considered a slot-based scheduling problem with two types of traffic, and BE|
and assuming error-free propagation channel. We trained the [EQT] using for a specific number
of links and for a specific value for the traffic arrival rate, and we compared its performance against
heuristics, and a conventional [ECI[DNNI scheduler. We evaluated the generalization capability of the
[EQT] scheduler with respect to traffic arrival rate and the number of links in the networks not seen
during the training. The performance are evaluated in terms of packet loss, throughput, fairness, and
packet delay. Our results showed that 1) [EQOT] outperforms the heuristics, which are[NLl and 2) [EQTl also
outperforms the [ECtbased schedulers, although the latter were trained specifically for a given number
of links, i.e., one [ECtbased scheduler per trained/tested number of links. Remarkably, [EOT] maintains
robust performance even when tested under link configurations it had not encountered during training,
confirming its scalability, adaptability, and good generalization capability.

In Chapter 3} we considered a frame-based scheduling problem with four types of traffic and assuming
error free propagation channel. We introduced the EOTHARB] architecture trained with to jointly
perform [RBl allocation over a frame. This model combines the benefits of the EOT], which is[NLI|, [PE], and
[GBM], with the[AB|architecture, which enables managing large discrete action space through a structured
action decomposition, where each branch handles the selection of a specific[RBl To prevent the allocation
of RBk to empty buffers, we incorporated adaptive action masking. Experimental results showed that
jointly allocating [RBb across the frame outperforms heuristics that operate on an [RBlby{RB] basis. Our
solution shows also better results than the heuristics. Additionally, we demonstrated the effectiveness of
adaptive action masking during inference, highlighting its importance for improved performance during
inference phases.

In Chapter [4] we also considered a frame-based scheduling problem with two types of traffic,
and BE| and assuming Rayleigh flat fading propagation channel. We extended the scheduling problem
by incorporating selection alongside buffer scheduling over a frame. We introduced the packet
loss due to the channel. The probability of correctly transmitting the packets depends on the selected
[MCSl Two approaches were evaluated: 1) a joint solution, where both buffer and selections
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are made simultaneously by a single architecture; and 2) a disjoint solution, where the [EOQT}H
architecture performs buffer selection, and the is determined heuristically based on average
[PER conditions. Experimental results demonstrated that the joint solution consistently outperforms the
disjoint one in terms of [PLR] across various traffic arrival rates, highlighting the benefit of learning both
tasks in a unified framework.

Perspectives

The following challenges are identified as perspectives for future research.

System design

e In this thesis, we assumed either perfect packet transmission or transmission with errors. In the
latter case, retransmission mechanisms such as [HARQ] which are commonly used in practical
communication systems, were not considered. Future work should therefore incorporate
alongside the scheduling process to better reflect real-world conditions and improve performance.

e We assumed fixed transmit power in this thesis. It should be of interest to allow dynamic transmit
power adaptation to improve the [EE] of the system [I].

e We assumed frequency flat Rayleigh fading channel. It should be of interest to consider more
realistic multipath channel models such as the ones from [88].

DRL improvement

e We trained the EOTHAB] using[DDQL] It should be of interest to implement other [DRL] algorithms
such as soft actor critic (SAC) [89] or proximal policy optimization (PPQI) [90] for performance
comparisons.

e As the system model evolves, the associated [DRL] methods must also be adapted accordingly.
For example, incorporating transmit power control, which can be modeled as a continuous action,
requires modifying the architecture to handle a mixed discrete-continuous action space. One
possible approach is to leverage methods such as those proposed in [91], which are specifically
designed to address this type of hybrid action setting.

e Both Chapters [2| and [4| focus on packet loss minimization. However, in practical situations, it
is often important to manage multiple objectives simultaneously, such as fairness, delay, or [EEl
Addressing these potentially conflicting goals with a single architecture, without retraining for each
new set of objective weights, would be highly beneficial. One promising approach is the method
proposed in [53], which enables multi-objective optimization within a unified learning framework.

e Throughout this thesis, training was performed with a specific [GARl It would be interesting to
investigate whether training over a range of arrival rates could improve performance. Additionally,
enriching the state representation, by including features such as the current arrival rate or histor-
ical buffer states, could help the model better adapt to dynamic traffic conditions and improve
generalization.
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Appendix A

Background on machine learning

A.1 Introduction

This Appendix introduces the concept of [ML] as applied throughout this thesis. It begins with an overview
of RL in Section [A.2] which first explores fundamental concepts like Markov chains and [MDP5. Next,
we discuss various methods for solving an [MDP], typically by computing the optimal policy that specifies
the best action to take in each state to maximize the expected return. Specifically, Section
focuses on the [V] algorithm and Section on the Q)-Learning algorithm. Section addresses the
DRI approach, that leverages [DNNk to solve an with high-dimensional state spaces, and more
particularly the algorithm. Finally, Section presents the specific architectures utilized in this
thesis.

A.2 Reinforcement learning

A.2.1 Introduction

In the RO paradigm [80], an agent interacts with an environment such as illustrated in Figure [A.1]

Action a,,
' !

Agent

Environment

r

State sy,

Reward 13,
I: Interpreter <

State Sy, 1

Figure A.1: RL interaction with the environment.

The agent selects at each step k an action Ay, based on the state S, which is an observation of the
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environment. After taking action Ay, the environment is abstracted by an interpreter, which outputs the
reward Ry, and the next state Si.1.

We think it is of interest to incorporate an interpreter in Sutton’s [RL] schemes [80, Figure 3.1]. This
interpreter can be seen as a way to elaborate an observation state Sy from the environment from which
it may be difficult to define the true state. The way the observation state is built is left to the solution
designer who makes technical choices to take into account some constraints, such as metrics availability
or agent internal status. For instance, let us assume a wireless packet scheduler acting as the agent and
interacting with an environment made up of several links, each characterized by a transmission quality.
The transmission quality can, for instance, be represented by a [SNR] a [CQI or a [PERl The state can
then be complemented by the agent’s internal status information, such as buffer occupancy.

A common assumption in[RLis that the environment is Markovian. When 1) the underlying Markovian
model is known i.e. when the transition probabilities are known, and 2) both the action and the state
space are of relatively low dimension, the can be solved using dynamic programming algorithm
such as VI, detailed in Section [A.2.6] This approach is referred to as model-based since the transition
probabilities are assumed to be known. Otherwise, [RL algorithms need to be used. If 2) is fulfilled but 1)
is not, then the Q-Learning detailed in Section[A.2.7|can be applied. If neither 1) nor 2) are fulfilled, then
one can resort to [DQL] as detailed in Section [A.3] The[RL approach does not rely on prior knowledge of
the model. Instead, the [RL algorithm learns the unknown transition probabilities and is therefore referred
to as model-free.

Note that in the remainder of Section [A.2], we consider two complementary approaches to represent
[MDPk:

1. The conventional approach, which represents the using transition probabilities and rewards,

as in the book by Sutton and Barton [80].

2. The optimal control approach, which incorporates a stochastic perturbation model, as in the book
by Bertsekas [92]. This approach provides a theoretical framework for the scheduling problem,
where perturbations represent the packet arrivals.

We present both approaches and show that they are equivalent in the sense that they lead to the

same [MDP] model. All the material presented hereafter can be found in either [80] or [92].

A.2.2 Finite Markov chain

A discrete-time stochastic process { Sy, x>0 with finite state space S = {s',s?,...,s"}, i.e. [S| < 400, is
called a finite Markov chain if and only if it satisfies, for all integers k > 0 and all states s®+1, g%, ... s%
belonging to S:

Pr(SkJrl = SikJr:l ‘ Sk = Sik,Sk,1 = Sik*l,...,SO = Sio) = Pr(SkH = Sik+1 ’ Sk = Slk) (A].)

We assume that all Markov chains considered in this thesis are finite and homogeneous, meaning that
the right-hand side of is independent of k.

A Markov chain can be thus defined by the set of transition probabilities p;, ., ;, := Pr(Spyq = s™+1 |
Sp = sik) with s’ € S and s+ € S. Let us take the example of a Markov chain with three states,
i.e. S = {s!,s? s%}. It can be represented by the graph in Figure which shows the states and the
associated transition probabilities.
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P11

Figure A.2: Graph of transition probabilities of a Markov chain with n = 3 states.

A.2.3 Finite Markov Decision Process

A finite MDP| extends the finite Markov chain framework by introducing actions and rewards. Recall from
the [RLI context in Section [A.2.1] that, in a given state Sy € S, the agent takes an action A and receives
a reward Ry1. The actions are chosen from a finite set A with |A| < 4+00. Then, the system transitions
to a new state Si,1. This process is repeated over time. The sequence of successive states, actions,
rewards, starting from k£ =0, i.e. Sy, Ag, R1, 51, A1, Ra, 52, Ag, R3,S3, ..., is called a trajectory.

The rewards are in general real-valued and bounded, taking values in a set R C R, which is typically
assumed to be uncountable. In [80], however, authors assume that the rewards take values in a finite set
to simplify notation and derivations. In our scheduling application, the reward depends on the number
of lost packets through a bounded function. Because the number of lost packets due to buffer overflow
can, in theory, be arbitrarily large, R is countably infinite.

A finite MDPI can be defined by the tuple (S, A, p(-,- | s,a)), where p(-,- | s,a) is the four-argument
function [80] (3.2)]

p(s’,r|s,a):=Pr{S, =8 Ry =71|Sk1=s,A_1 =a}, (A.2)

where we use as in [80] the convention s’ = s* and s = s*~!. Notice that (A.2)) defines both the next
state and the corresponding reward at the same time.
The function p(s’,r | s, a) defines the dynamics of the [MDP] and verifies

D p(srlsa)=1, VseSa€A. (A.3)

s’'eSreR
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We now derive other expressions for the transition probabilities and expected rewards from function

(A.2)), leading to a different definition.

An alternative way to define a finite (equivalent to the one generated by ) is to define the
three-argument transition probability p(s’ | s,a) along with the corresponding three-argument expected
reward 7 (s, a,s’):

p(s' | s,a) :=Pr{Sy =¢"| Sk_1 =s, Ap_1 = a}, :
T’(S, a, S/) =FE [Rk ’ Sk—l = 8, Ak = a, Sk = S/] . (A5)

The tuple (S, A, p(- | s,a),7(s,a,s’)) defines an [MDPI that is the same as the one defined by the tuple

(S,A,p(-,- | s,a)). This can be proved by showing that (A.4) and (/A.5)) can be expressed using (A.2)).
To do so, one can first express p(s’ | s,a) as a function of the four-argument transition probability

(A.2) using the identity:
p(s'|s,a) = Zps r|s, a). (A6)

reR

Then, applying the expectation definition to (A.5)), we get 7(s,a,s") = > rp(r | s,a,s’), which after
some calculations (proof is omitted) can be rewritten [80, (3.6)] as a function of the four-argument

transition probability:
p(s',r | s,a)
. AT
r(s,a,s’) Z (s | 5.0) (A7)
reR

Last, one can also define the two-argument expected reward 7 (s, a) that is often used in the optimal
policy algorithm development (e.g. Section and subsequent sections) as [80, 3.5]:

r(s,a) :=E[Ry | Sk—1 =8, Ax = a]. (A.8)

Applying the expectation definition to (A.8)), we get 7(s,a) = Y . rp(r | s,a). Using the following
identity: p(r | s,a) = > csp(s',7 | 8,a), we find [80, 3.5]:

=> ry pls.r]sa). (A.9)

reR s’'eS

For a given (s, a), if taking action a in state s always leads to a specific next state s, i.e. p(s’ | s,a) =
1, the corresponding is called deterministic[MDB. On the other hand, if taking action a in state
s can lead to multiple possible next steps s’ with p(s’ | s,a) # 0, the is called stochastic [MDBA
This occurs when random perturbations affect the state transition. The scheduling problem considered
in this thesis is modeled as a stochastic [MDPl

As an example, Figure shows a graph representing the three-argument transition probabilities of
an [MDPI with two states, S = {s',s?}, and two actions, A = {a', a*}.
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Figure A.3: Graph representing the three-argument transition probabilities of an [MDP| with two states,
S = {s!,s%}, and two actions, A = {a!, a?}.

A.2.4 Optimal control framework and MDP

The optimal control framework for stochastic discrete-time dynamic systems, as developed for instance

by Bertsekas [92], explicitly accounts for random perturbations occurring in the state transitions and is

therefore well suited to the scheduling process with random packet arrivals considered in this thesis.
Following Bertsekas' framework and our notation conventions, a dynamic stochastic system is modeled

by the equation:
Sk+1 = f(Sk, Ak, wk) (AlO)

where f is the state transition function, or the system function, and wy € W is the stochastic perturbation
at time & with probability distribution py/(-). As in [92], we assume that the disturbance set W is
countable.
A cost is associated to each transition, and is defined through the cost function g, referred to as cost
per stage in [92], as:
Ok = g(Sk,Ak,wk) (A].].)

which is used to derive optimal policies that minimize the cumulative cost.

Given and (A.11)), the trajectory Sy, Ao, C1, S1, A1, Co, Ss. .. is an [MDP), which is defined by
the tuple {87 A? WaPW? f7 g}

In the following, for the sake of clear comparison, we refer to {S, A, W, pw/, f, g} asIMDPFOC (OC for
optimal control) to distinguish it from the[MDPldefined in Section[A.2.3] namely (S, A, p(- | s,a), r(s, a,s')),
which we refer to as [MDPIC (C for conventional).
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We now prove that, under simple conditions, the MDPIOC is equivalent to the MDPLC, as the latter
can be deduced from the former. In the [MDPLC, randomness is captured by transition probabilities rather
than by explicit disturbances. This result is important because it enables the application of reinforcement
learning frameworks developed for the MDPIC to scheduling problems modeled using the optimal control
formulation.

In what follows, we show that all the rewards and transition probabilities defined in Section[A.2.3] can
be expressed as a function of f, g, and w. To do so, we switch to the Sutton and Barto notation, as
in the previous section, for clarity. In addition, to simplify notation, and without loss of generality, we
omit the random variable names, e.g., we write Pr{S; = s’ | Sy_1 = s, Ap_1 = a} = Pr{s’ | s,a}, or
E[Rk | Sk—l = S,Ak = a,Sk = S/} = E[R | S,CL,S/].

We identify the state transition and cost as:

s'=f(s,a,w), (A.12)
c=g(s,a,w). (A.13)

We notice that in the [MDPLC, each transition is associated to a reward, whereas in the [MDPLOC,
each transition is associated to a cost. Thus, to make the two [MDP5s equivalent, we need to define the
cost as the opposite of the reward, i.e.:

r=—g(s,a,w). (A.14)
Regarding the four-argument transition probability, one can re-express (|A.2) as:
p(s’,r|s,a) =Pr{f (s,a,w) =5, g(s,a,w) = —r | s,a}. (A.15)

Introducing the set
W= {w: f(s,a,w) =5, g(s,a,w) = —r | 5,a} (A.16)

the right-hand side of (|A.15)) is computed as:

Pr{f (s,a,w) =5, g(s,a,w) = —r|s,a} = Z pw (w) (A.17)

/
s’ r
weWg

thus leading to:

p(ssr]s,a)= Y pw(w). (A.18)
wewif;[

Regarding the three-argument transition probabilities (jA.4f), we can write:
p(s' | s,a) =Pr{f(s,a,w) =¢"|s,a}. (A.19)

Introducing the set
W, i=A{w: f(s,a,w) =5 | s,a} (A.20)

the right-hand side of (A.19)) is computed as:

Pr{f(s,a,w) =¢"|s,a} = Z pw(w) (A.21)

/
weWs ,
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thus leading to

p(s' | s,a) Z pw (w (A.22)

wEW;a

Posing:
R (s,a,w):=—g(s,a,w), (A.23)

the three-argument expected reward (|A.5)) is computed as:
r(s,a,s") =E[R(s,a,w) | s, a,s]
= ZrPr{g(s,a,w) =—r| f(s,a,w) =¢,s,a}. (A.24)

reER

To compute the probability in (A.24), we apply the Bayes rule to take f(s,a,w) = s’ out of the
conditioning;:

Pr{g(s, a, ’LU) =T f(S, Cl,’LU) =s' | S, CL}

The numerator in ((A.25) is given by ((A.17]), and the denominator by (|A.22)), yielding:
D ety Pw(w | s,a)
Pr{g(s,a,w) = —r | f(s,a,w) = §,8,a} = s . (A.26)
Zwenga pW(w | 8, a)
Plugging (|A.26]) into ((A.24) finally leads to:
Yo sfrpw(w | s,a)
r(s,a,s’) Z Sk (A.27)
reR ZwEWSI pW(w | S, CL)
One can notice that (A.27]) is consistent with ((A.7)) using ((A.18) and (A.22).
The two-argument expected reward (|A.8]) is computed as:
r(s,a) =E[R(s,a,w) | s,q] (A.28)
= ZTPr{g(s,a,w) =—r|s,a}. (A.29)
reR
Introducing
W, ={w:g(s,a,w) = —r|s,a} (A.30)
we have:
Pr{g(s,a,w) = —r | s,a} = Z pw (w) (A.31)
weWwg ,
leading to:

:ZT Z pw(w). (A.32)

reR  weWg ,
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An equivalent way of expressing (s, a) with the [MDPLOC parameters is obtained using (|A.9)) along

with :
r(s,a) =Y Y p(s',r|s,a) (A.33)

reR s’'eS

=> > > pwlw). (A.34)

reR s’'eS ’LUGW:f(}r

In the following sections, we use equivalently both [MDPI modelings, MDPIOC or MDP}C depending
on the context.

A.2.5 Optimal policy

In the previous sections, we defined and characterized an without specifying how actions A,
are selected, thereby leaving the decision aspect of the [MDPl—that is, how actions should be cho-
sen—unaddressed.

One of the main goal of modeling a problem with an is to find the best way to select actions
according to a given criterion. To formalize how actions are selected, we introduce the notion of policy
7, which is a function that specifies the action to take in state Sj.

A policy can be classified as:

e Deterministic: 7(S;) := Ay, i.e., 7 is a function,

e Stochastic: the action Aj is drawn according to m( Ay | Sk), i.e., 7 is a distribution.

In finite discounted [MDP5, deterministic policies are sufficient for optimality [80, Section 4.2, p. 79],
[02, Section 1.1.4, p. 13]. Stochastic policies are primarily useful for exploration or in settings with
constraints, average-reward criteria, or multi-objective settings.

Therefore, unless otherwise specified, in the remainder of this document:

e We consider deterministic policies, thus A;, = 7(S).

e For the sake of notational simplicity, we may use Ay instead of 7(Sy) when convenient.

e We assume that the policies considered are stationary, i.e., independent of the time index k.

In that context, for the [MDPLC case, the trajectories take the form: Sy, m(Sp), R1, S1, m(S1), Rz, Sa,
W(SQ), Rg, 53 <o

In an[MDP|, where the reward reflects the benefit of taking an action, a common performance criterion
is the discounted return. The discounted return at time t is defined as the discounted sum of future
rewards [80, (3.8)]:

+o00
Gt = Rt.l,_]_ + 'YRH—Q + 72Rt+3 + = Z 'Yth+k:+1 (A35)
k=0

where v € [0,1] is the discount rate or discount factor. Notice that in this thesis we always consider
v € (0,1), see discussion in [80] for singular cases v =0 and v = 1.

The discounted return corresponds to the outcome of a single trajectory generated by following a
policy, and is therefore a random variable. To account for the variability across trajectories, we define

the [EDR] as [80, (3.12)]:

JW(S) =E [Gt | St = S] (A36)
+oo

=E Z ’Yth_A'_kJ’_l ‘ St =8S]|. (A37)
k=0
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This quantity evaluates the average discounted return obtained when starting from state s and following
policy m. The expectation is taken with respect to the stochastic transitions and rewards defined by
the dynamics which depends on the model. In the case of an [MDPLOC, the dynamics are
driven by the random perturbation wy, so the expectation is taken with respect to wy. In contrast, for
an [MDPL-C, the dynamics are governed by the transition probabilities, and the expectation is taken over
the resulting state sequence 5.

Bertsekas [92, (1.2)] provides a slightly more general definition of (A.37):

N

> YRk [ Si=s
k=0

J™(s) ;== lim E

N—o0

(A.38)

As discussed in the footnote on p. 4 of [92], this expression is equivalent to the infinite-series definition
(A.37)) under mild assumptions, namely that the discount factor satisfies v < 1 and the rewards are
bounded (or at least bounded in expectation). These conditions ensure convergence of the discounted
return, which holds in our context. For the remainder of this Appendix, we use .

Notice that the[EDRIis also referred to as the state-value function and noted V™ (s) or v.(s) depending
on the authors. In the following, we note

V7T(s) := J"(s). (A.39)

This function plays a key role in the value iteration algorithm, described in Section [A.2.6]
In what follows, we set ¢ = 0 to simplify the notation, without loss of generality. Depending on the
underlying formulation, the can be written as:

+00
JW(S) = Ewmwh--- [Z vk%(Sk, Ak,wk) | SO = S] (A40)

k=0

in the case of an IMDP}OC, or as:

+oo
J™(s) = Eg, s,.... [Z Vor(Sk, Ag) | So =s (A.41)
k=0
in the case of an [MDP}C.
Solving an [MDP] consists in finding the optimal policy 7* that maximizes the [EDRE
7 := argmax J"(s). (A.42)

K

By defining the reward of the[MDPFOC as in ((A.23)), the two[MDPk become equivalent. Consequently,
solving with either expression ([A.40)) or (A.41)) yields the same optimal policy.

The following derivations adopt the [MDPIOC framework, consistent with the approach in [92], to
establish the subsequent results.

Solving directly is intractable, since the number of possible policies grows exponentially. An
alternative is to solve (A.42)) iteratively by formulating it as a dynamic programming (DP]) problem,
which can be solved using the Bellman operator T (also called mapping DP in [92, (1.5)]):

(TJ)(s) := max E, [R(s, a,w) +vJ(f(s,a,w))]. (A.43)
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Notice that f(s,a,w) = ¢/, so (|A.43)) explicitly shows the dependence of the next state on the current
state.
For a deterministic policy 7, we also define the operator 7, as:

(T=J)(s) := E, [R(s, 7(s), w) +vJ(f(s,7(s),w))] . (A.44)

The Bellman operator has some interesting properties that ensure the convergence to the optimal
[EDRI and allow the characterization of the optimal policies. These properties are recalled below.
Let us denote J*(s) the optimal state value function (or [EDR]) when starting in state s, and

TF =To--oT (A.45)

k times

the k-fold composition of 7.
The main results, with proofs given in [92], are the following ones.

Proposition 1. [92, Proposition 1.2.1]

For any bounded function J : S +— R, we have for all s € S,

J¥(s) = lim (T*J)(s). (A.46)

k—+o00

This proposition states that applying the Bellman operator 7 infinitely many times to a function J
converges to the optimal function J*, regardless of the initial state s.

Proposition 2. [92], Proposition 1.2.3 (Bellman's Equation)]

The optimal cost function J* satisfies for all s € S:

J*(s) = max E, [R(s,a,w) + v [J*(f(s,a,w))]] . (A.47)

acA

or equivalently
Jr=TJ". (A.48)

Furthermore, J* is the unique solution of this equation within the class of bounded functions. Moreover,
for any bounded function J with J > TJ (or J < TJ), we have J > J* (or J < J*, respectively).

This proposition states that J* is the unique fixed point of the Bellman operator 7. This uniqueness
guarantees that iterative application of 7 converges to J*, providing the foundation for computing
optimal policies, for example, via the value iteration algorithm addressed in Section [A.2.6] Equation
is called the Bellman equation.

Proposition 3. [92 Proposition 1.2.2] For any bounded function J : S +— R and for any stationary and
deterministic policy 7, we have for all s € S,

J(s) = lim (TFJ)(s). (A.49)

k—+o00

This proposition states that for any stationary policy 7, applying the Bellman operator 7 infinitely
many times to a function J will converge to the optimal [EDRI function J7™, regardless of the initial state
S.
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Proposition 4. [92, Proposition 1.2.4]

For every stationary policy 7, the associated cost function satisfies for all s € S,
Jr(s) = By [R(s,7(s), w) + 7 J=(f (s, 7(s), w))] (A.50)

or, equivalently
Jr =Ty (A.51)

Furthermore, J is the unique solution of this equation within the class of bounded functions. Moreover,
for any bounded function J with J > T.J (or J < T.J), we have J > J. (or J < J., respectively).

This proposition states that J, is the unique fixed point of 7.

Proposition 5. [92, Proposition 1.2.5 (Necessary and Sufficient Condition for Optimality)]

A stationary policy 7 is optimal if and only if 7(s) attains the maximum in Bellman's equation (|A.47))
for each s €§; i.e.,
TJ =T.J" (A.52)

This proposition states that a stationary policy m is optimal, i.e. @ = 7*, if and only if its value
function J; which is the fixed point of the operator 7, is equal to the optimal value function J*, the
fixed point of the Bellman operator 7, is equal to the optimal, for all s € S.

As a synthesis, we can summarize the different results as follows:

e Proposition (1| defines the optimal state value J*, as the limit of the value function obtained by

applying the Bellman operator 7 an infinite number of times, and Proposition [2] establishes that
J* is the unique fixed point of 7.

e Proposition 3| defines the state value J, for a stationary policy 7 as the limit of the value function
when repeatedly applying the operator 7., and Proposition {4 shows that J; is the unique fixed
point of 7.

e Proposition [5| characterizes the optimal policy, with J,« = J*. It also states that achieving the
optimal value J* using the Bellman operator leads the optimal policy. This latter statement forms
the basis of the value iteration algorithm discussed in the next Section.

A.2.6 Value iteration

This section addresses the [VI algorithm, a common method for solving finite MDPk, i.e., for finding
the optimal policy 7* and its associated value function that maximizes the EDRl Another well-known
algorithm is policy iteration, see e.g., [80], which is not covered here.

We use the [MDP}C notation where V™ (s) is defined as (A.39) with J™ given by (A.41):
+oo
V7(s) = Eg, 5,.. | > _7"7(Sk, Ar) | So =s (A.53)
k=0

where V™ (s) is interpreted as the [EDR| when starting from state s and following the policy 7.
As stated in the previous section, the [Vl consists of applying the Bellman operator iteratively until
convergence. Let Vi (s) denote the value function at the kth iteration. At the beginning of the [VI
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algorithm, i.e. k = 0, the value function V{(s) is initialized for each s € S. At the kth iteration the
update rule is given by:

Vi(s) = (TVi-1)(s), (A.54)

which can be written explicitly as
Vi(s) = max |r(s,a) + ZS p(s'|'s,a)Vii(s) | . (A.55)

s'e

(A.56)

From Proposition [T, we have:
V*(s) = klirJlrn (T*Vo)(s). (A.57)

—+o00

This guarantees that repeated application of the Bellman operator converges to the optimal value func-
tion, which, by Proposition [5] yields to the optimal policy. Since convergence is guaranteed regardless
of initialization, the choice of V{(s) does not affect correctness but only the speed of convergence. In
practice, the initial values are commonly set to zero, though random initialization is also possible.

Since the Bellman operator cannot be applied infinitely many times in practice, a stopping criterion
is required to assess convergence. A typical choice in the V] algorithm is:

mgSXWk(s) — Vi_1(8)| <e, (A.58)

where € is predefined threshold.
When the optimal state-value function V* is reached, thus equal to J*, the optimal policy is given

by:
7*(s) = argmax |r(s,a) + 72]9(3’ |'s,a)V*(s')]| . (A.59)

acA ses

A pseudo-code for the V] algorithm is given in Algorithm [2]

Algorithm 2: [V] algorithm
Input: State space S, action space A, transitions p(s’|s,a), rewards 7 (s, a), discount v € (0, 1),
tolerance € > 0
Output: Approximate optimal value function V* and optimal policy 7*
Initialize V'(s) < 0 for all s € S;
repeat
A« 0:
foreach s € S do
v« V(s);
V(s) + maxgep <r(s, a)+v> . p(s's, a)V(s’));
A+ max{A, v —V(s)|};
end
until A < ¢;

Define 7*(s) € argmax,ea (r(s, a)+ vy o p(ss, a)V(s’));
return V, 7%;

The [V algorithm has the following limitations:
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1. It requires complete knowledge of the transition probabilities.

2. Storing these probabilities requires significant memory, thus VI is feasible only for problems with
relatively few states and actions, and becomes impractical for larger ones.

To overcome the first point, one can use the ()-Learning algorithm detailed in Section [A.2.7]

A.2.7 ()-Learning

To overcome the limitation of [Vl that requires the complete knowledge of the transition probabilities, it is
possible to use [RLl algorithms, such as the Q-Learning [93]. This section is dedicated to the presentation
of the ()-Learning algorithm. Since the transition probabilities are unknown, ()-Learning is considered as
a model-free [RL] algorithm.

Instead of computing the state-value function as for the [Vl the Q)-Learning estimates the state-action
value function @ : S x A — R, which is also called the Q-function and is defined as:

“+o0o
Q(s,a) :== Eg, g, [Z Vor(Sy, Ap) | So =, 40 =al | (A.60)
k=0
which corresponds to the [EDRI starting from state s by taking action a.
When the actions are taken according to a deterministic policy m, we define:
+oo
Q”(s,a) = ]Esl,sg,... [Z ’)/k’l”(Sk,Ak> | SO = S,AO =al ,
k=0
+oo
= ES:[,SQ,--- [T(S, CL) + Z'ykr(Sk, Ak) | SO =S, AO =a (A61)
k=1

which evaluates the long-term state-action value of choosing the action a under policy 7.
Expression ((A.61]) can be further developed as:

—+o0
Q" (s,a) =r(s,a) + Eg, s, .. [Z Yor(Sy, Ar) | Sy = s’]
k=1

= T(S, a) + 7E51 ESQ,-..

“+oo
nykr(SkH, ars1) | S1 = S/”

— 1(5,a) + 1B [Q7(&', 7(5)].

The optimal state value function V* is linked to the optimal ()-value function Q*, through the

following relation:
V*(s) = max Q*(s, a). (A.62)

a€A

The -Learning estimates the optimal ()-value by iteratively solving the following equation:

Q*(Sk, Ak) - [T(Sk, Ak) + ”YESk+1 [QW(Sk+17 alm =0, (A-63)

where @' = argmax,c,, Q*(Sky1,a).
The objective is thus to learn QQ*, the optimal policy being obtained by:

7*(s) := argmax Q" (s, a). (A.64)

a€h
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The @Q-function is learned through interaction with the environment. The Q-function is represented
as a table, called )-table, whose entries (s, a) correspond to the estimated -value for a specific state-
action pair. To handle such a table, both the state space S and the action space A must be discrete and
of relatively small cardinality, to keep memory requirements manageable.

The entries of the ()-table are initialized with random values. At each step k, the agent observes a
state S; and selects an action A, based for instance on an e-greedy exploration strategy. This strategy
chooses a random action with probability €, or the action that maximizes the ()-value, i.e. A, =
arg maxyecp Q(sg, a’), with a probability 1 — €. The e-greedy strategy balances exploitation (choosing
the current optimal action) with exploration (trying a random action), allowing the agent to escape from
suboptimal policies.

The agent observes a reward Ry, observes the next state Sj.; and updates the ()-table as follows
[80, (6.8)]:

Q(Sk, Ar) < Q(Sk, Ar) + o | Riy1 + Y max Q(Sk+1,a) — Q(Sk, Ax) |, (A.65)

N J/
-~

temporal difference

where « is the learning rate. It is worth noting that the ()-Learning algorithm minimizes the temporal
difference (TD), therefore the [TDlis null when the algorithm has converged, and thus is verified.
The theoretical convergence of the ()-Learning is guaranteed [93]. A pseudo-code of the (Q)-Learning
algorithm is given in Algorithm [3]

Algorithm 3: )-Learning algorithm
Input: Learning rate «, discount factor y, exploration rate ¢
Initialize the ()-table arbitrarily;
while not converged do

Initialize state Sp;

for £ =0 to K do
Choose action ay, using exploration policy:

random action with probabilit
Ak <— { P y €

arg max, Q(Sk,a) with probability 1 — ¢
Take action Ay, observe reward Ry 1 and next state Si.1;
Update Q-value:
Q(Sk, Ar) < Q(Sk, Ar) + o (Riy1 + v maxaes Q(Skt1,a) — Q(Sk, Ax));
Set S}, < Sk+1;
end
end

During inference, once the (Q-function has converged, exploration is not longer used, and the agent
selects the actions that maximize the (-values.

In the training phase, )-Learning can suffer from overestimation bias when updating the ()-values,
because the estimates are learned from finite data are noisy.

To tackle this issue, double @-Learning [94] extends the )-Learning algorithm by maintaining two
separate ()-tables, )1 and ()5, which mitigates the overestimation problem. The ()-tables are randomly
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selected and updated as follows:

Qi(Sk, Ak) < Qi(Sk, Ax) + o | R +vQ;(Sky1, Arr1) — Qi(Sk, Ax) |, (A.66)

temporal difference

where i,j € {1,2} with j # ¢, and Apy1 = argmax,.y Qi(Sk+1,a). When both ()-tables have

converged, they both should verify (A.63).
A pseudo-code of the double Q-Learning algorithm is given in Algorithm [4]

Algorithm 4: Double ()-Learning Algorithm
Input: Learning rate «, discount factor ~, exploration rate ¢
Initialize two Q)-value functions Q1 (s, a) and Qs(s, a) arbitrarily;
while not converged do

Initialize state Sy;

for k=0 to K do
Choose action ay, using exploration policy:

random action with probability € '
e arg max, Q1(Sk, a) + Q2(Sk,a) with probability 1 — ¢’
Take action Ay, observe reward Ry, and next state Sy 1;
Select i randomly in {1,2};
Update the value of the corresponding ()-function:
Qi(Sk, A)  Qi(Sk, Ar) + a (R + vQ; (Sk+1, Art1) — Qi(Sk, Ak));
where A; 1 = argmax,, Q;(Sk+1,a), and j # i;
Set S}, <+ Sk:—i—l;
end
end

Note that the following identity holds:

max Q(Sk+1,a) = Q(Sk+1, arg max Q(Sk+1, a)). (A.67)

a€A

Using this property, both ()-Learning and double ()-Learning can be expressed in the same update form:
Qi < Qi( Sk, Ar) + a (Ri1 +7Q;(Skr1,a') — Qi Sk, Ax)) (A.68)

where o/ = argmax, Q; (Sk+1,a) and:

(A.69)

i =4 for Q-Learning
i # j for double QQ-Learning.

A.3 Deep reinforcement learning
When the number of states is large, it is not practically possible to store a table with the ()-values related

to all the different states. This phenomenon is known as the curse of dimensionality. This problem can
be handled through the use of function approximator such as[DNN] yielding to[DRLl There exists a lot of
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[DRL] algorithms, see for instance [95]. This thesis focuses on the algorithm and [DDQL] which are
extensions of Q-Learning and double Q-Learning respectively, using DNNI Different DNNI architectures
can be envisioned. Some of them are reviewed in Section [A.4] The are trained by minimizing a
loss function.

In the DQL] the @-function is approximated by a [DNN] called DQNI The [DQN]| can be represented
by a function parametrized by 6, which takes state s € S as inputs and outputs the ()-values for the
different actions. Let (s, a; ) be the (Q-values of state s, action a obtained by the DNN] of parameters
0. As seen in , the @Q-function aims to minimize the [TDl Hence, the loss used to train the
is:

N 2
L(0) = <'rk + 7 max Q(Sk+1,a;0) — Q(sk, ax; 9)) ) (A.70)

Then, this loss is used to update the weights of the DQN}
0« 0 —aVyL(0), (A.71)

where « is the learning rate.
In practice, using may lead to unstable results because of:
1. Correlations present in the sequence of states (updating the weights of the at each time step
in the same way as for a ()-table).
2. Correlation presents between the state-action value (s, ax) and the target value, defined as:

T + 7y max Q(Sk+1,a,0). (A.72)

This signifies that when the ()-value is updated to get closer of the target, the target also moves,
leading to instabilities.

To address these issues, [3] introduces:

1. Experience replay is used to reduce the correlation between consecutive observations. It involves
leveraging past transitions, known as experiences, to update the DNNl A transition at step k is
represented by the tuple (s, ax, rx, sk11) (also written as (s, a,r,s’)). These transitions are stored
in a buffer B, called replay buffer, which accumulates experiences collected during training.

2. A target network, parameterized by 67, is used as a delayed copy of 6. It is updated periodically or
gradually (via soft updates), which helps reducing the correlation between the predicted (-values
and the target values, thereby stabilizing the learning process.

The is trained by minimizing the [TD] which serves as loss function:

E(e) = IE:(s,a,r,s’)wB [(y - Q(Sv a; 9)>2] ) (A73)

where y := r + ymax, Q(s, a; 0~ ) is the target value.

In practice, the is trained as stated in Algorithm [5 and summarized as follows:

e The agent explores the state and action spaces using an e-greedy exploration policy. It receives, as
for the ()-Learning, a reward and the next state. However, instead of using the current state s,
the taken action ay, the reward rj and the next state s, 1 to update directly the DQN] (as for the
(Q)-Learning), this information is stored in the replay buffer B. The set (s, ag, 7k, Sg+1) is referred
to as an experience.

e Once the replay buffer contains enough experiences, a batch of b experiences is randomly sampled
to approximate to train the DQN]

Let j € {1,...,b} index the sampled experiences. The is the difference between the evaluated
(Q)-value Q(s;,a;) and the target value y; which is defined as:

Yj =1+ mgx Q(Sj-l-la a; 9_)7 (A74)
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and the approximated loss by:

o~

£0) = 3 > (05~ Qs :0))* (A75)

It is worth noting that corresponds to a loss with a single sample and without a target
network, whereas (/A.75)) and both include multiple samples, thanks to the replay buffer, as
well as the target network.

e Then this loss is used to update the weights 6,

00— aVyeL(). (A.76)

e The target network is updated every C' steps: 0~ < 6. With the soft-update approach, the target
weights are updated as 6~ <« 70 + (1 — 7)0".

Algorithm 5: Deep Q-Learning (DQL)

Initialize replay memory B;

Initialize Q-network with random weights 6;

Initialize target ()-network with weights 6~ = 6;

for each episode do

Initialize state sg;

for k =0 to K do

Choose action ay, using e-greedy policy based on ()-network;
Execute action a; and observe reward 7, and next state sy 1;
Store experience (S, ak, 'k, Sgr1) in B;

Sample random minibatch of experiences (s;,a;,r;,s;+1) from B;
y; = r; + ymax, Q(sj+1,a,07);

Compute the loss with :

00— aVeL(0);

Update target ()-network every C' steps;

end
Update € according to schedule;

end

The [DQL has been successfully used in [3] to play Atari games. However, the DQL| produces overes-
timation for the same reasons as the ()-Learning does, and therefore, the DDQL| was introduced in [96]
to mitigate this phenomenum. In that case, the target value ¥, becomes:

Y = TE +7Q (Sk+17 arg max Q(sy41,a,0), 0‘) ) (A.77)

a

The rest remains the same as for the algorithm.
One can remark that the general form of the target value can be written as:

yr =Tk +7Q (Sk41,0,07) (A.78)

where

(A.79)

argmax, Q) (sgr1,a’,0) for deep Q)-Learning
arg max, @ (sg1,a’,0)  for double deep Q)-Learning
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Algorithm 6: Double Deep Q)-Learning (DDQL)

Initialize replay memory B;

Initialize -network with random weights 6;

Initialize target ()-network with weights 6= = 6;

for each episode do

Initialize state sg;

for k =0 to K do

Choose action ay, using e-greedy policy based on ()-network;
Execute action a; and observe reward 7, and next state sy 1;
Store experience (S, ak, 'k, Sgt1) in B;

Sample random minibatch of experiences (s;,a;,r;,s;+1) from B;
a < argmax, Q(s;j+1,a’,60) ;

yj < 15+ 7Q(s541,4,07)

Compute the loss ;

0+ 60— O&V@ﬁ(&);

Update target ()-network every C' steps;

end
Update € according to schedule;
end

A.4 Deep neural network architectures

This section introduces the different architectures used throughout this thesis.

[DNNk work as function approximator that seek to predict an output y based on a given input . The
context with known (labeled) outputs y is referred to as "supervised learning” [97]. When y is unknown,
the can be trained either with unsupervised learning, or DRL], which is the focus of this thesis. The
[DNNI architectures presented in this section are:

e The[EC in Section[A.4.1]

e The transformer in Section [A.4.2]

e The in Section [A.4.3]

A.4.1 Fully connected architecture

A [ECIDNNI consists of multiple layers where each neuron in one layer is connected to each neuron in the
subsequent layer.
: - )
For a given neuron j in the [th layer, the output y;

)= o <Z wily Y+ b§”> , (A-80)

is computed as:

where:
° wg) are the weights connecting neuron ¢ from the previous layer to neuron j in the current layer [.

° by) is the bias term for neuron 7 in the current layer [.
e o) is the activation function applied to introduce non-linearity for the layer [.
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Equation (A.80) can be re-expressed in matrix form as:
y .=, (y(lfl)) (A.81)

o &)(x) =00 (W(Z)a} + b(l)>, P - Rh-1 — R,
o W .= <w(l-)), W g Rixdi

7

<

o yl) = <y§l)>, y® € R4 _ It is worth noting that y(®) = a where x is the input vector.

o 60— (1), b €

J
The output of the neural network can be represented as:

y = 0(x), (A.82)
<I>(:13) = <I>N0<I>N_1O---O<I>1(:Iz). (A83)

For example, considering the DNNlillustrated in Figure [A.4] we identify:
y=0(z) = W) (me . b<1>> + b, (A.84)
where y = [?Jh?h]T: T = [$1,IE2]T: bt = [bgl)abgl)abgl)]Tv b = [b§2),b(22)]T, w = (wz(;))ie{l,z,:s}
je{1,2}
and W® = <w§?) ie{1,2) - In this figure, the obtained vector after the first layer is y = wlg =

j€{1,2,3}

1 1
Y, ).

Figure A.4: Example of neural network.

A.4.2 Transformer architecture

The transformer architecture, introduced in [73], relies on the attention mechanism. The original trans-
former is composed by two different parts: an encoder and a decoder. An encoder and a decoder,
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that can be used either jointly or separately, meaning that it is possible to use [EQT] or decoder only
transformer (DOT]). The transformer architecture has shown powerful performance:

e In natural language processing (NLPJ) field for:

— Text translation [73].

— Text classification and masked word prediction [98] with the bidirectional encoder represen-
tations from transformer (BERTI) architecture, which is an [EOQT]

— Text generation [99] with the generative pre-trained transformer (GPT)) architecture, which
is a DOT]

e In the computer vision ([CV)) field for image recognition, object detection, segmentation, image
generation, image synthesis [100].

e In[DRLIfield for a sequence modeling problem [101], [102], [103]. A survey for [DRL application of
transformer can be found in [104].

The attention mechanism helps the architecture to focus on certain elements of the set which are

relevant for the prediction.

It is worth noting that the attention mechanism was introduced before the transformer architecture,
originally in the [NLP field for text translation using recurrent neural network (RNNJ)s such as [[STMk.
The first instance, known as content-based attention, was proposed in [105], while additive attention,
which involves a concatenation operation, was introduced in [106].

Then, [107] proposed another form of the attention mechanism, called dot-product attention, which
was improved in [73] that proposed scaled-dot-product attention yielding transformer. The authors also
introduced the multi-head attention reducing the training time, the inference time and improving the
generalization. A review of the different attention mechanisms can be found in [108].

Let us describe the attention mechanism. For that, let us consider a matrix X of dimension d, x nj,
where each column x, represents an element of the input set, containing n; elements each represented
by a vector of dimension d, x 1. For instance, in NLP, x, can be a word or a token of the input
sentence that belongs to a vocabulary set, which is the input set, and, to be more general, x, belongs
to a vocabulary set. The attention mechanism is illustrated in Figure and works as follows: first the
x, are projected into:

o keys: k, := Wy, + by, for each ¢, where k; is a vector of dimension d.,,, Wy is of dimension
dattn X de and by is a vector of dimension d,,. The elements projected into keys represent the
context.

e queries: q, := Wyx,+ b, for each ¢, where k; is a vector of dimension d,,, Wy is of dimension
dattn X de and bg is a vector of dimension da,. This allows to find the relevant elements of the
set, for example in translation task to find the relevant word in a language to translate it correctly.

e values: v, := Wyx, + b, for each ¢, where k, is a vector of dimension d,, W, is of dimension
d, x d, and b, is a vector of dimension d,. This holds the actual information that corresponds to
each element.

Wi, Wy and W, are trainable weights matrices and by, by and b, are trainable biases. Let us note
Q:=1lq,. . .,q,] K:=[ki,... .k, ] and V = [v,...,v,,] the matrix of queries, keys and values
respectively. @ and K are of dimension d, X ny and V' is d, X ny.

The keys are compared with the queries thanks to the scale dot-product attention to determine how
relevant each element is, i.e. what elements of the context are relevant for the different queries. Then,
the inner-product between the queries and the keys is performed, producing a ny-squared matrix S,

called score matrix:
S=K"Q. (A.85)

Each entry S;; represents the score between the key 7 and the query j. The higher this score, the most

138



relevant the information of x; with respect to x;.
After that, the softmax function is applied producing the attention matrix A:

A := softmax (5) . (A.86)
The softmax function is defined column-wise (A;; = % ), producing weights between 0 and 1.
The softmax function can lead to very small gradients ciue to ti1e potential high magnitude of the scores
[73].
To mitigate this effect, the inner product is divided by dy:
~ S
S = . (A.87)
V dattn
Therefore, the softmax is applied on S instead of S.
Finally, the values are summed for each element of the set according to their weights:
V=VA. (A.88)

V is of dimension d, x ny, and is the result of the scaled dot-product attention. For single head-attention,
d, = d.. These operations are illustrated in Figure [A.5] and are summed up in the Algorithm [7] We
consider that the attention is performed in one set only, such as described in the equation above.

Scale dot-product attention
Q R
WQ i
s s A
Matmul » Scale »| Softmax >
/ K KT V;
X \ » Wy »| transpose » Matmul »
|4
wy >

Figure A.5: Scale dot-product attention (gray boxes are trainable weights).

In Algorithm [7], 1 denotes a column vector of size n;, with all entries equal to one. Therefore, the
product b17, where b is a vector bias of size d, is a matrix of size d x ny, where each column is equal
to b.
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Algorithm 7: V « Attention(X | Wiko)

/* Computes a single self-attention head. x/

Input: X € R4*"L, representations of a set.

Output: V € Rdew*b2  ypdated representations of the input set X.

Parameters: Wy, consisting of: W, € Rduunxde p € Ravn Wy € Ratmxde  py ¢ Reatin
W, € Rdvxde  p, € Rbout,

Q<+ W, X +b,1"7  [Query € Rbunxi]

K+ WX + b 1" [Key € Rbevenxtx]

V + W,X +b,17 [Value € Rdouext]

S+ K'Q [Score € RE*4]
s

A < softmax <m>

return V =V A

For multi-head attention, which is illustrated in Figure and summarized in Algorithm (8] the
elements of the input set are projected into keys, queries and values on H heads, and the scaled-dot
~h
product is performed on each of these H heads, resulting on V' on head h.
The results on the different heads are combined by concatenated them:

~1 ~H

V=[V,., V] (A.89)
and by applying a final projection:

V =W,V +b,17, (A.90)

where W, is a d. x Hd, trainable matrix and Visa d. X ny, matrix representing the different elements
with their context, i.e. with the information of the other elements.

Let us note WV the entire set of parameters (query, key, value and output linear projections) required
by a multi-head attention layer:

Wi € Riumxde - pl e Rdaen - |y € [H|
W € Rlatnxde bé € Rbsn | € [H]
Wh e Rdoxde  phc R hc[H]
W, € RlexHdo — p c Re

(A.91)
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Figure A.6: Multi-head attention (gray boxes contain trainable weights).

Algorithm 8: V <+ MHAttention(X | W)

/* Computes Multi-Head self-attention layer. */
Input: X € fRdexnL representation of a set.
Output: V € R%>"z uypdated representations of the input set X.
Hyperparameters: H, number of attention heads
Parameters: W consisting of
Vh € [H], W, consisting of:
| WZ 6 %dattnXde, bZ’ E %dattn,
‘ W}I;L: c %dattnXde' bz c %dattn,
| Wh e Rdoxde ph c R,
W, € RdexHdv p ¢ Rde,
for h € [H| do
~h ] h
| V" Attention(X | Wh,)
end

1 ~2 ~H
V[ViV, . V]
return V = W,V + b,17

There exist multiple manners to use the attention, depending on the task:

e Bi-directional self-attention (also called unmasked self-attention), used in the BERT] architecture
[98], and in general in the transformer-encoder. The attention is performed on X and, for an
element x, projected into queries, the atttention is performed on all elements {x,}. This is the
type of attention used in this thesis.

e Unidirectional self-attention (also called masked or left-only attention), used in the transformer-
decoder for the generated sequence.The attention is only performed on the input matrix X, and for
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an element x;, projected into queries, the attention is performed on all elements {x }y<,, which
are projected into keys and values.

e Cross-attention is utilized in the transformer-decoder to compare two distinct sets, X and Z. For
example, in a translation task, the first set X corresponds to the generated translated sequence,
while the second set Z represents the text to be translated. In this process, the elements x, from
X are transformed into queries, and the elements {z, } from Z are converted into keys and values.

Most of the used transformers utilize the positional encoding (also called positional embedding) to

model a sequence. Without the positional encoding, the transformer is [PEl (property of the attention
mechanism) [74], i.e. for every permutation on the inputs, the output undergoes the same permutation.

In this thesis, we use [EQT] and thus the decoder part of the transformer is not detailed. The EQTlis

depicted in Figure and works as follows for an input set X € Rdexnr: B

e The set passes in the multi-head attention (MHAI) layer of the[EQT], resulting in V' the transformed
input set where each element has its context.

e The original value of the different elements is added to the corresponding transformed element
(x, + ©y), corresponding to the residual connection operation [I09]. This operation improves the
training and the gradient propagation, particularly by mitigating the vanishing gradient problem.

e This result passes in the layer norm [110], resulting in X. The layer normalization works for a
vector w = [uy, ..., ug,|" of size d. as follows:

1. The mean value 1 of the vector u is computed:

d

1 €
:d_e E U; (A92)

i=1

2. The variance o2 is then computed:

1 &
= =7 ZZl (A.93)
3. Then the layer normalization on the vector w is performed, leading to vector u:
'&:'yu =y (A.94)
= layer,norm(u | v,8) (A.95)

where -y is a diagonal matrix with dimension d. to scale the normalization and 3 is an offet

vector of dimension d. Both ~ and 3 are trainable parameters.
e Each normalized element passes in a feed forward network (EEN]) consisting of two layers with
a non-linear activation function between them, e.g. [ReLUl activation function. The first layer
projects from dimension d, into dimension d,,;, and the second layer projects from dimension d,,

into dimension d.. This operation results in the representation X.
e The residual connection and the layer normalization are performed again, obtaining the encoded
set E € R%*"L 3s the output.
It is essential to note that transformer layers can be stacked. Specifically, an encoded representation
of X denoted as E can be processed through additional [EQT] layers. This sequence results in 7
transformations, producing representations within a R9*"Z space. For simplicity, we refer to E as the
result of all transformations applied by the [EQT] layers.
The Algorithm [9] outlines the operation of the [EQT] architecture. This algorithm is adapted from
[111].

142



Encoder-only transformer (EOT)

74 I X X . X+X £
X > vba > Re5|deaI > Layer >l FEN > Re5|du.a| > Layer >
connections norm connections norm
' 1

Figure A.7: Encoder-only transformer (gray boxes contain trainable weights).

Algorithm 9: E < EO0T(X | 0)

/* EOT forward pass */
Input: X € Rbexnz,
Output: X € Rdexnr,
Hyperparameters: nq., [, d., dpyp € N
Parameters: 6 includes all of the following parameters:
Vi e {1,..., Neot}:
| W,, multi-head attention parameters for layer ¢, see (A.91)),
| ~1, 81, 72,82 € R%, two sets of layer-norm parameters,
| Wihpt € Rtmexde W1 o € Rlexdmie bl € Rémie bl , € R, FFN parameters.
fort=1,2,... n¢ do
X + X + MHAttention(X | W)

for £ € [ny] : @, < layer norm(x, | v}, B3;) /* Defined in ([A.95) */
X — X + W}, ,RELUW, X + b, ,17) + by 01"
for ¢ € [ng] : @ < layer norm(zx, | vZ, 37)

end

return £

The computational complexity of one [EQTllayer is outlined in Table[A.I] Bias is considered, as well as
the [Re[ U activation of the EENL However, transposition operations are not included in the calculations.
To have the total complexity of the whole [EQT] the result of Table must be multiplied by ne.
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Table A.1: Computational complexity of one [EQT] layer.

Operation FLOPs
Query, key projections 2% 2x Hdyn X de X np,
Value projections 2x Hd, x d. x np,
2 xnp X Hdayn X N, —nyp X 0
(A.86)) and ((A.87)) 4x HXnpxXng
(A.88)) 2x Hd, X n;, xn;, —npHd,
(A.90)) 2xd, x Hd, X nr,
Layer norm 2Xx8xd, xnp,
Residual connections 2 X d, Xng,
FEN| 2 X2 X de X dpyp X N
Total 2ny [de(2H dain + 2Hd, + 2dimp +9)

+2Hny, + Hdanng + Hdyng] — n2 —npHd,
Total if d, = Hduywn = Hd, | 2np, (de(4de + 2np + 2dpp + 9) + 2Hny) — n3 — npd,

A.4.3 Action branching architecture

The architecture was introduced in [77] for the field. Its objective is to address setups where
the number of actions is large and cannot be handle by conventional architectures, by dividing the action
space into multiple branches. This approach is generally applicable to tasks where the action space A
has a high cardinality and can be decomposed as: A = A; x --- X Ay, meaning that the action a € A
can be written as @ = [ay,...,ay,|, where ay € A, is called a sub-action and can take n, possible
values. Each branch of the architecture corresponds to one of these sub-action spaces, with action
selection taking place within each branch.

The cardinality of the original action space A is given by card(A) = N and thanks to the action space
decomposition, we can write N = Hév:Dl card(Ay) = Hév:Dl ng. If the number of possible actions is the
same for each dimension, meaning ng = n foralld € {1,..., Np}, we have N = n™?. By implementing
action branching, selection is performed on each branch, resulting in N separate selections, each with
n action possibilities. Instead of computing an argmax over n? possible actions, which becomes
impractical when n™¥P is large, this approach simplifies the process by performing n x Np argmax
operations, provided that n remains reasonably small.

The action branching, represented in Figure and described in Algorithm [I0, works as follows:

1. The state s goes in a first DNN| of parameters 6, that produces a shared representation of the

state for all branches. This shared representation is noted s:

5 = Dy(s, b) (A.96)

2. The original [AB| architecture utilizes dueling [112], i.e. it splits the @-values as the sum of the
state value V/, which is a scalar, and the advantage of the different actions A, which is a vector:
e The shared representation goes in a [DNNl of parameters 6y, that produces the state value V:

V =0y, 0y) (A.97)
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e For each branch d, the shared representation goes in a [DNN| of parameters 644, producing
the advantage A of the different actions of branch d. Therefore, A? is a vector of size ny.

Ad — (I)Ad(g, QAd> (A98)

3. For each branch d, the state value V is added to the advantage A¢ producing the Q-values

Q! = A%+ V of the different actions of branch d. Let us note [at, ... a®"] the different
actions of branch d. Therefore, Q% can be written as: Q% = [Q%(s, a®), ..., Q%(s, a®)].

It is important to note that the values associated with each branch do not strictly correspond to the
()-values defined in Section [A.2.7] as they represent partial actions. However, they resemble the true
(Q-values of the complete action due to the approximation provided by the neural network.

$4,(5,60,1) —’A1—><-I>_> Q'
$a,(5,042) [—> A* —-»G.)—» Q>

s> ¢o(s,6p) > s

¢AND(§: eAND) — AND " + QND

A4

¢V (§l BV)

Figure A.8: Action branching (gray boxes contain trainable weights).

Algorithm 10: Action Branching

/* Action branching forward pass */

Input: s € S.

Output: [Q',...,Q"?] and [a',...,a"?], the Q-values of all the branches and the taken
actions.

Parameters: 0 = {0y,0v,041,...,0,~5p}

Np number of branches

§ < D(s,00)

V «+ (Dv(g, 9\/)

for d =1 to Np do
Q" u(5,04) +V
al <+ arg MaX,ep, Q"
end
return [Q',...,Q""], [a!, ..., a"P]
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Since all the parameters are trained jointly, let us note 6 = {6y, 0y, 041, ...,0,~5,} and the Q-values
obtained on branch d, for state s and action a € A4, Q%(s, a,0).

In [77], the architecture is trained with the double presented in Section [A.3] Hence, the
target value of the dth branch is written as:

Yg =1+ VQd(skH, arg IélaX Qd(sk+1, a,0),07). (A.99)
achg

After computing the target value of all the branches, the loss is computed as:

Np

1 2
E(Q) = ]E(s,a,r,s’)wB N_D Z (yd - Qd(sa ad7 9)) ) (A]'OO)
d=1

which corresponds to an aggregation of the [TD] of all the branches. This loss is used to train jointly the

set of parameters 6 with (A.76)).

The action taken on each branch d is:

a® .= argmax Q%(s, a, 0), (A.101)
aeAd
and the total action is:
a:=[d',... a""]. (A.102)

A.5 Conclusion

This Appendix provided an overview of the core principles of that are employed throughout this
thesis. Specifically, it introduced the [MDP], which serves as the mathematical framework for formulating
the scheduling and resource allocation problem. Additionally, the chapter covered [DQL] the learning
algorithm utilized in this thesis for addressing these [MDPk. Finally, it discussed the different architectures
used to approximate the (Q-function, with a particular focus on the [EQT] and the [ABl
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Appendix B

Number of possible states for APD

Let us consider one buffer with DTl We assume that we know the value of all the entries of this buffer.
Consequently, we also know the number of entries equal to —1, the number of entries equal to 0, and
so on, up to the number of entries equal to D. Since there are k = D + 2 distinct possible values, the
problem reduces to determining the number of ways to express the total buffer size B as a sum of k
non-negative integers. We claim that this number is given by the binomial coefficient:

<B;f1“>. (B.1)

We establish this result using induction.

Recursive formulation. Define Fy(B) as the number of ways to represent B using k non-negative
integers. Fixing one of the k integers to take a value ¢, the remaining k — 1 integers must then sum to
B — £. Summing over all possible values of ¢, we obtain:

Fi(B) = ZFI@—I(@' (B-2)
=0

Base case. For k = 1, we are left with a single integer that must sum to B. Clearly, there is exactly
one such representation:

B
Thus, the base case holds.

Inductive hypothesis. Assume that for some k > 1, the following closed form holds:

Fu(B) = (Bl":fl_l).

147



Inductive step. We now prove the formula for & + 1. Using the recursive definition (B.2)), we have:

B
Fen(B) =Y Fi(0)
EB: O+k—1
k—1 )
The combinatorial identity in [113] Section 0.15] states that:

B(0)- (21

=0

Substituting (B.4]) into (B.3)), we obtain

~
Il
=)

Foor(B) = (B Z k)

Conclusion. By the principle of mathematical induction, it follows that

e = (),

(B.3)

(B.4)

forall k > 1 and B > 0. In particular, when k = D + 2, the number of ways to represent B as a sum

of D + 2 non-negative integers is
B+D+1
D+1 )

This completes the proof.
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Appendix C
Figures for Chapter 2

The following figures provide the distribution of packet delays across the different buffers for the evaluated
slot-based schedulers in Chaptef2l They also provide the [PLRl associated with the different buffers. The
inference was performed with n;, = 6, C = [1,1,2,2,3,3] and A = 1.6. These distributions allow a
fine analysis of the behavior of the different schedulers under these conditions. The discussion of these

figures is provided in Section [2.6.2.3]
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C.1 Figure for DC traffic

C.1.1 Heuristics
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0 2 4 6 8 10 12 14 16 18 20
Delay

Figure C.1: Distribution of the packet delay for DC traffic using RR, for n, =6, C = [1,1,2,2,3,3] and
A=16
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Figure C.2: Distribution of the packet delay for DC traffic using LOG-rule, forn, =6,C =[1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.3: Distribution of the packet delay for DC traffic using MLWDF, for n;, =6, C = [1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.4: Distribution of the packet delay for DC traffic using EXP-rule, forn, = 6,C =[1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.5: Distribution of the packet delay for DC traffic using KP, for n;, =6, C = [1,1,2,2,3,3] and
A=16.
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C.1.2 Fully connected
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Figure C.6: Distribution of the packet delay for DC traffic using FC-HoL, for np, =6, C =[1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.7: Distribution of the packet delay for DC traffic using FC-xHoL, for n;, =6, C =[1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.8: Distribution of the packet delay for DC traffic using FC-APD, for n;, =6, C =[1,1,2,2, 3, 3]
and A = 1.6.
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C.1.3 EOT
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Figure C.9: Distribution of the packet delay for DC traffic using EOT-HoL, forn, = 6,C =[1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.10: Distribution of the packet delay for DC traffic using EOT-xHoL, for ny, = 6, C =
[1,1,2,2,3,3] and A = 1.6.
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Figure C.11: Distribution of the packet delay for DC traffic using EOT-APD, for n, = 6, C =
[1,1,2,2,3,3] and A = 1.6.
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C.2 Figure for BE traffic

C.2.1 Heuristics
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Figure C.12: Distribution of the packet delay for BE traffic using RR, for n, = 6, C = [1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.13: Distribution of the packet delay for BE traffic using LOG-rule, for n, = 6, C

[1,1,2,2,3,3] and A = 1.6.
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Figure C.14: Distribution of the packet delay for BE traffic using MLWDF, forn;, = 6,C = [1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.15: Distribution of the packet delay for BE traffic using EXP-rule, forn, = 6,C = [1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.16: Distribution of the packet delay for BE traffic using KP, for n, = 6, C = [1,1,2,2,3, 3]
and A = 1.6.
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C.2.2 Fully connected

0.01: Link O
PLR 0.0295
0.00— : A
0.01: Link 1
PLR 0.0165
0.00— : A : : :
0.01: Link 2
PLR 0.0025
0.00— ! J‘L : :
0.01: Link 3
PLR 0.0041
0.00— ! A : :
0.01: Link 4
PLR 0.0005
0.00— , A : :
0.01: Link 5
‘ PLR 0.0001
0.005 100 200 300 400 500 600
Delay

Figure C.17: Distribution of the packet delay for BE traffic using FC-HolL, for n;, =6, C =[1,1,2,2, 3, 3]
and A = 1.6.
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Figure C.18: Distribution of the packet delay for BE traffic using FC-xHoL, forn;, = 6,C =[1,1,2,2, 3, 3]
and A = 1.6.

167



Link 0

0.011
PLR 0.0689
0.00— : , :
Link 1
0.01] oh
PLR 0.0094
0.00— : , : :
Link 2
0.014
PLR 0.0001
0.00— : , : :
Link 3
0.011
PLR 0.0049
0.00— : , : :
Link 4
0.011
PLR 0.0000
0.00 : : : :
Link 5
0.01]
PLR 0.0001
0.00

0 100 200 300 400 500 600
Delay

Figure C.19: Distribution of the packet delay for BE traffic using FC-APD, forn;, = 6,C = [1,1,2,2, 3, 3]
and A = 1.6.
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C.2.3 EOT
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Figure C.20: Distribution of the packet delay for BE traffic using EOT-HoL, for n, = 6, C =
1,1,2,2,3,3] and A = 1.6.
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Figure C.21: Distribution of the packet delay for BE traffic using EOT-xHoL, for ny, = 6, C

1,1,2,2,3,3] and A = 1.6.
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Figure C.22: Distribution of the packet delay for BE traffic using EOT-APD, for n, = 6, C

1,1,2,2,3,3] and A = 1.6.
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I'ordonnancement pour les réseaux ad hoc

Résumé : Les réseaux de communication modernes
font face a des défis croissants en raison de la diver-
sité des applications, allant des services ultra-fiables
a faible latence aux communications massives de
type loT. Ces applications génerent des demandes
hétérogenes nécessitant une planification efficace
des paquets, qui consiste a allouer les ressources ra-
dio dans le temps (slots) et en fréquence (blocs de
ressources, RBs) afin de garantir le débit, I'équité et
la latence. Les méthodes heuristiques traditionnelles
manquent de flexibilité pour gérer ces besoins contra-
dictoires, ce qui rend les solutions basées sur I'lA plus
adaptées, en particulier pour les systemes 5G et 6G.
Cette these est consacrée au développement de
méthodes basées sur I'lA pour la planification dans
les réseaux de communication sans fil. Le probleme
d’optimisation global implique un espace d’états et
d’actions de grande dimension et ne peut étre résolu
par des méthodes analytiqgues ; d’ou I'adoption de
techniques d’apprentissage par renforcement, com-

Titre : Apprentissage par renforcement profond pour I'optimisation conjointe de I'allocation de ressource et de

Mots clés : Allocation de ressources, Ordonnancement, Apprentissage par renforcement profond

binées a des réseaux de neurones profonds. Lobjectif
est d’explorer comment le DRL peut étre utilisé effi-
cacement pour optimiser I'allocation des ressources
dans des environnements complexes, caractérisés
par des schémas de trafic variés et des conditions de
canal dynamiques.

Pour ce faire, nous identifions d’abord les propriétés
essentielles qu’un réseau de neurones doit satisfaire
pour réaliser la planification, en particulier la capa-
cité a gérer un nombre variable d'utilisateurs. Nous
évaluons ensuite une architecture répondant a ces
criteres dans des conditions de complexité croissante.
Dans un premier temps, la solution est testée dans
un environnement slot par slot avec un seul RB par
slot. Ensuite, elle est étendue afin de réaliser la plani-
fication sur plusieurs RBs simultanément. Enfin, I'ap-
proche est adaptée pour traiter conjointement la pla-
nification des RBs et la sélection du schéma de mo-
dulation et de codage (MCS).

hoc networks

Abstract : Modern communication networks face ri-
sing challenges due to diverse applications, from
ultra-reliable low-latency services to massive loT traf-
fic. These generate heterogeneous demands requi-
ring efficient packet scheduling, which allocates ra-
dio resources in time (slots) and frequency (resource
blocks, RBs) to ensure throughput, fairness, and la-
tency. Traditional heuristic methods lack the flexibility
to manage these conflicting needs, making Al-based
solutions more suitable, especially for 5G and 6G sys-
tems.

This thesis is devoted to the development of Al-based
methods for scheduling in wireless communication
networks. The global optimization problem involves a
high-dimensional state and action space and cannot
be solved using analytical methods, hence the adop-
tion of reinforcement learning techniques powered by

Title : Deep reinforcement learning for joint optimization of scheduling and resource allocation in mobile ad

Keywords : Resource allocation, Scheduling, Deep reinforcement learning

deep neural networks. The objective is to explore how
DRL can be effectively employed to optimize resource
allocation in complex environments characterized by
diverse traffic patterns and dynamic channel condi-
tions.

To achieve this, we first identify the essential pro-
perties a neural network must satisfy for schedu-
ling, particularly the ability to handle a variable num-
ber of users. We then evaluate an architecture that
meets these requirements under increasingly com-
plex conditions. Initially, the solution is tested in a slot-
by-slot environment with a single RB per slot. Next,
it is extended to perform scheduling across multiple
RBs simultaneously. Finally, the approach is adapted
to jointly handle RB scheduling and modulation and
coding scheme (MCS) selection.
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